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ABSTRACT
Deep Q-learning has achieved signi�cant success in single-agent de-
cision making tasks. However, it is challenging to extend Q-learning
to large-scale multi-agent scenarios, due to the explosion of action
space resulting from the complex dynamics between the environ-
ment and the agents. In this paper, we propose to make the computa-
tion of multi-agent Q-learning tractable by treating the Q-function
(w.r.t. state and joint-action) as a high-order high-dimensional
tensor and then approximate it with factorized pairwise interac-
tions. Furthermore, we utilize a composite deep neural network
architecture for computing the factorized Q-function, share the
model parameters among all the agents within the same group,
and estimate the agents’ optimal joint actions through a coordinate
descent type algorithm. All these simpli�cations greatly reduce the
model complexity and accelerate the learning process. Extensive
experiments on two di�erent multi-agent problems demonstrate
the performance gain of our proposed approach in comparison
with strong baselines, particularly when there are a large number
of agents.
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1 INTRODUCTION
Multi-Agent Reinforcement Learning (MARL) studies a group of
autonomous agents in a shared environment from which they learn
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what to do according to the received reward signals while inter-
acting with each other. For many real-world applications, it is
appealing to employ multiple agents because they could accom-
plish tasks that a standalone agent could not do or would do in a
costly manner.

�e great obstacle for applying single-agent reinforcement learn-
ing algorithms such as Q-learning [31] directly to the multi-agent
se�ing is that with the presence of other agents taking actions, the
environment for each individual agent can no longer be regarded as
stationary. To address the di�cult decision problems arising from
MARL, researchers have tried to borrow techniques from game the-
ory, in particular, the framework of stochastic games [8]. However,
such algorithms are computationally expensive and therefore only
able to deal with a few agents.

In this paper, we aim to make Q-learning for MARL scalable
to a large number of agents. Inspired by the Factorization Ma-
chines [18, 19] widely used in recommender systems, we model
the complex relationship between the environment and the agents
as a high-order high-dimensional tensor and then approximate
it through factorization. Speci�cally, the multi-agent Q-function
(w.r.t. state and joint-actions) is decomposed into independent com-
ponents plus pairwise interactions (between any two agents). As
indicated in [1], focusing on pairwise interactions could greatly
reduce the complexity of a multi-agent system while maintaining
the essence of the multidimensional complex relationship among
di�erent agents. Moreover, such a factorized Q-function is going
to be shared among di�erent agents within the same group (or
the entire system when there is no grouping of agents), which
further cuts down the complexity of the multi-agent system and
also helps to speed up the deep learning process. It is also worth
noting that the agents’ last actions are leveraged to estimate their
current strategies in the optimization algorithm, which e�ectively
mitigates the combinatorial explosion of joint actions. In summary,
we propose a computationally e�cient Q-function approximation
for MARL named “Factorized Q-learning (FQL)” which is capable
of handling large-scale multi-agent systems.

2 RELATEDWORK
2.1 Single-Agent Q-Learning
Q-Learning [13, 30, 31] is a model-free o�-policy reinforcement
learning method that estimates the long-term expected return of
executing an action a from a given state s . �e estimated returns,
known as Q-values, can be learned iteratively by updating the
current Q-value estimate towards the observed reward rt plus the
maximum possible Q-value over all actions a in the next state st+1:
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Q(st ,at ) ← (1 − α)Q(st ,at ) + α
(
rt + γ ·max

a
Q(st+1,a)

)
,

where γ ∈ [0, 1) is the discount factor and α ∈ (0, 1] is the learning
rate.

For challenging domains like Atari games, there are too many
states to allow us to maintain all the Q-values in a table, so a model
is needed instead for the computation of the Q-function. �e state
of the art solution is the Deep Q-Network (DQN) algorithm [15]
which approximates as well as generalizes the relationship between
states (inputs) and actions (outputs) with a deep neural network
Q(s,a;θ ) parameterized by θ . �e network parameters are learned
via back propagation to minimize a di�erentiable loss function —
the squared temporal di�erence error

L(θ ) = E(st ,at ,rt ,st+1)∼Unif (D)
[
(Yt −Q(st ,at ;θ ))2

]
(1)

with
Yt = rt + γ ·max

a
Q(st+1,a; θ̃ ) , (2)

where (st ,at , rt , st+1) are the past experiences recorded in a “re-
play memory” D and then sampled uniformly from D to train the
network in a supervised manner, while θ̃ represents the parameters
of a “target network” Q̃ that are periodically copied from the online
neetwork Q and kept constant for a number of iterations in order
to make the DQN training stable.

In noisy environments, Q-learning o�en overestimates the action
values, which may slow the learning down [28]. �is problem could
be alleviated by the “double DQN” trick [27] that uses the online
network Q to select the next action but the target network Q̃ to
estimate its value:

Yt = rt + γ ·Q(st+1, arg max
a

Q(st+1,a;θ ); θ̃ ) . (3)

2.2 Multi-Agent Q-Learning
Generally speaking, the MARL algorithms that try to solve the
multi-agent stochastic games can be divided into two paradigms:
equilibrium learning and best-response learning.

In the equilibrium learning paradigm, the agents try to learn
policies which form a Nash equilibrium [10]. Speci�cally, each
agent a�empts to get at least the amount of payo� indicated by a
Nash equilibrium, i.e., the lower-bound of performance, regardless
of the policies being played by the other players. Since it is usually
di�cult to �nd such equilibrium, existing algorithms focus on a
small class of stochastic games, e.g., zero-sum games or two-person
general-sum games. For example, Nash-Q [5] and Friend-or-Foe
[9] extend the classic Q-learning [30] by encoding the interactions
between environment and agents in a so-called Nash Q function.
It is proved that Nash Q learning converges to the optimal policy
under some restrictive assumptions. �is is also the case for the
recently emerged mean-�eld Q-learning (MF-Q) algorithm [33]
which equips each agent with one Q-function and approximates
it by the average e�ects in the agent’s neighborhood. However,
such algorithms are not practical in a complex environment with
a large number of agents because of the expensive computation
required to estimate other agents’ policies at each state and �nd the
equilibrium. Besides, when there are many agents, the estimated

policies of di�erent agents might not belong to the same Nash
equilibrium, thus the convergence will become invalid [25].

In the best-response learning paradigm, each agent just tries to
learn a policy that is optimal with respect to the joint policy of the
other players [2, 26]. On one hand, such methods are not assured of
the lower-bound of performance, especially when the other agents
do not have stationary policies. On the other hand, it is possible
for an agent to take advantage of the fact that the policies being
played by the other players may not be their best responses and
thus obtain more reward than that guaranteed by the equilibrium.
�e simplest algorithms in this category back o� to the single-agent
case and just conduct independent Q-learning (IQL) in which each
agent independently learns its own Q-function by treating the other
agents as part of the environment without considering the interac-
tions among di�erent agents [23, 24]. RIAL (Reinforced Inter-Agent
Learning) [3] combines the idea of IQL with DRQN [7] to learn com-
munication protocols in a cooperative multi-agent environment.
Similarly, multi-agent DQN (MA-DQN) [23] carries out IQL with
an autonomous DQN for each agent to investigate the interaction
between two agents in the video game Pong. Although the IQL
style algorithms are computationally e�cient and therefore can
accommodate a large number of agents, they are o�en sub-optimal
because, as we have mentioned above, the environment would be
non-stationary from each agent’s point of view. Noticeably, the
additional knowledge about the other agents should be bene�cial
to the e�ectiveness of learning, and sharing policies or episodes
among the agents could speed up the learning process [24]. Value-
Decomposition Networks (VDN) [21] goes a li�le bit beyond IQL
by summing over all the independent Q-functions for cooperative
tasks, but the complex interactions in MARL are unlikely to be
captured by simplistic linear summations. Monotonic Value Func-
tion Factorization (QMIX) [17] mixes the per-agent action-value
Q-functions into a rich joint action-value function which provides
extra state information for learning. However, the QMIX archi-
tecture will become more and more complicated and di�cult to
compute as the number of agents increases. In contrast, the com-
plexity of our proposed method depends not on the number of
agents but on the number of agent-groups which usually remains
to be small even for large-scale MARL problems.

3 MULTI-AGENT FACTORIZED Q-LEARNING
Here we extend the Deep Q-Network (DQN) [15] to multi-agent
environments with an approximate Q-function based on Factoriza-
tion Machines [18, 19]. Speci�cally, we �rst reformulate the multi-
agent joint-action Q-function in a factorized form, then present the
optimization algorithm for learning such factorized Q-functions
through deep neural networks, and �nally provide an analysis of
this algorithm’s computational complexity.

3.1 Multi-Agent Q-Function Approximation
DQN combines Q-learning and deep neural networks to conduct
single-agent reinforcement learning and has achieved phenomenal
success in playing computer games etc. How to extend the success-
ful DQN technique to multi-agent systems is an important research
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problem with numerous potential applications. �e signi�cant dif-
ference between single-agent and multi-agent reinforcement learn-
ing is that the former only needs to consider individual actions of
one agent whereas the la�er should take the complex interactions
among multiple agents into account to optimize the joint actions.
For an N -agent system, the multi-agent Q-function for each agent
should be Q(s,a1,a2, · · · ,aN ) with s ∈ S = S1 × S2 × · · · × SN
representing the overall state and (a1,a2, · · · ,aN ) ∈ A = A1 ×
A2 × · · · × AN representing the join action, where Si and Ai are
the i-th agent’s individual state space and individual action space
respectively. At time-step t , agent i’s own state is sit and its own
action is ait , while all agents’ overall state is st and their joint action
is at = (a1

t ,a
2
t , · · · ,aNt ).

To make the Q-function computation scalable to a large number
of agents, we make two fundamental assumptions.

Low Intrinsic Dimensionality. In the reinforcement learning lit-
erature, the low-dimensionality (low-rank) assumption is widely
regarded valid for single-agent, and researchers have utilized vari-
ous approximation schemes to compactly represent the Q-function,
e.g., Radial Basis Function (RBF), Cerebellar Model Articulation
Controller (CMAC) [22], Product of Experts (PoE) [20], and Robust
Principle Component Analysis (RPCA) [16]. It is reasonable to be-
lieve that the low-dimensionality assumption holds for multi-agent
Q-learning as well. Considering the particular structure of the
multi-agent Q-function which involves the complex relationship
among many agents, we hereby propose to �nd its low-dimensional
approximation by borrowing the idea from the Factorization Ma-
chines [18, 19] which captures the complex relationship among
many users (items) with only independent components plus pair-
wise interactions.

Parameter Sharing. We assume all the agents in the same group
are homogeneous and let them share the same model (Q-function)
rather than maintaining a separate model for each individual agent,
which would obviously reduce the computational complexity a lot.

Under the above two assumptions, we are able to greatly simplify
the multi-agent Q-function as follows.

Qi (s,a1,a2, . . . ,aN ;Θ)
≡ Qi (s,ai ,a−i ;Θ) (4)
≈ Qi (s,ai ;θ ) + λo ·

∑
j ∈−i

V i (s,ai ; β1)
T
U i (s,aj ; β2) (5)

≈ Q(si ,ai ;θ ) + λo ·
∑
j ∈−i

V (si ,ai ; β1)TU (s j ,aj ; β2) (6)

= Q(si ,ai ;θ ) + λo ·V (si ,ai ; β1)T
∑
j ∈−i

U (s j ,aj ; β2) (7)

= Q(si ,ai ;θ ) + λ ·V (si ,ai ; β1)T
∑
j ∈−i U (s j ,aj ; β2)

N − 1 (8)

= Q(si ,ai ;θ ) + λ ·V (si ,ai ; β1)TU (s−i ,a−i ; β2) , (9)

where −i is an index set ranging from 1 to N with i removed,
the learnable parameters Θ = {θ , β1, β2}, the hyper-parameter
λ = λo (N − 1), and U (s−i ,a−i ; β2) =

∑
j ∈−i U (s j ,aj ; β2)/(N − 1).

�e approximation made from Eq. (4) to Eq. (5) is of course based
on the previous assumptions. Eq. (5) contains two terms which

( , ; )iQ s a Θ

1 2( , ; ) ( , ; )i i T i iV s a U s aβ β− −

λ

( , ; )i iQ s a θ

scalar

Q Network−
( )θ

( , )i is a( , )i is a

selector

1 2, , , , , , , ,i j Ns a a a a a  

V Network−

1( )β 2( )β
U Network−

{ , }j j
j is a ∈−

vector

vector

matrix

averaged1( , ; )i iV s a β

dot

2( , ; )j jU s a β

+
scalar

2( , ; )i iU s a β− −

Figure 1: �e composite deep neural network architecture
for multi-agent Factorized Q-Learning (FQL).

correspond to the independent component and the pairwise interac-
tions respectively, while the high-order interactions (among three
or more agents) have been ignored. �e approximation made from
Eq. (5) to Eq. (6) rests on the assumption that agents are homoge-
neous, so agent i’s individual model (Qi , V i , and U i ) is replaced
by the shared model (Q , V , and U ). �e remaining derivations
from Eq. (6) to Eq. (9) simplify the mathematical expression step
by step. In the end, the other agents’ overall in�uence on agent i is
summarized into a compact form U (s−i ,a−i ; β2).

Note that here we have used two separate vectors to represent
agent i in its pairwise interactions with other agents, the i-th col-
umn vector of V and the i-th column vector of U , to facilitate the
learning of factorization. �is is in the same spirit of word2vec
[14] which learns two separate embeddings, one target embedding
and one context embedding, for each word.

We refer to the �nal formula Eq. (9) as the factorized Q-function
for agent i , and name our proposed approach to MARL “Factorized
Q-learning (FQL)”. Since the factorized Q-function for each agent
requires the knowledge of the other agents’ current states and their
last actions for both training and execution, our proposed FQL
technique mainly addresses the MARL problems with a central con-
troller that communicates the global information to all the agents.
Nevertheless, at any particular moment each agent is not supposed
to know the other agents’ current action choices, which makes our
se�ing much more realistic than a completely centralized one [6].
�e requirement of global knowledge will be further relaxed to the
requirement of local neighborhood knowledge in the last game of
our experiments.

3.2 Neural Architecture
Similar to the DQN algorithm that we have described before, our
proposed FQL approach employs a deep neural network to �t the
Q-function for MARL. �e di�erence is that the FQL network is
a composite one consisting of three sub-networks: Q-network, V -
network andU -network corresponding toQ(si ,ai ;θ ),V (si ,ai ; β1)T
and U (s−i ,a−i ; β2) respectively in Eq. (9). �e architecture of such
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a composite network is depicted in Fig 1. �e structural decomposi-
tion of the FQL network into three sub-networks makes its learning
and inference much easier than a single big DQN network, in the
MARL context.

3.3 Optimization Algorithm
�eoretically, for each agent i at non-terminal time-step t , the target
value Y it should be estimated as

Y it = r
i
t + γ · Q̃i (st+1, arg max

ai ,a−i
Qi (st+1, ai ,a−i︸ ︷︷ ︸

joint action

;Θ); Θ̃) , (10)

where Q̃i is the target network, and ai and a−i represent the avail-
able actions for agents given the state st+1. However, it is infeasible
to directly search for the optimal joint action for state st+1 when
there are many agents, as the size of the joint action space grows
exponentially with N , the number of the agents in the system.

In order to make the computation tractable, we get the idea
from coordinate descent that the optimization of a multivariate
function can be achieved by successively optimizing it along one
coordinate direction at a time, i.e., solving much simpler univariate
optimization problems in a loop [32]. Speci�cally, for each state s ,
we would need to identify the joint action that can maximize the
multivariate function Fs (a1,a2, . . . ,aN ) ≡ Qi (s,a1,a2, . . . ,aN ;Θ)
which, as we have explained above, is shared by all the agents
(in the same group). Using the standard technique of coordinate
descent (or more accurately coordinate ascent in our context), the
current solution to the Fs optimization problem, (a1

t ,a
2
t , . . . ,a

N
t ),

can be iteratively improved by �nding

ait+1=arg max
ai

Fs (a1
t , . . . ,a

i−1
t ,a

i ,ai+1
t , . . . ,a

N
t )

=arg max
ai

Qi (st+1,a
1
t , . . . ,a

i−1
t ,a

i ,ai+1
t , . . . ,a

N
t ;Θ)

=arg max
ai

Qi (st+1,a
i ,a−it ;Θ) (11)

for each variable ai (i = 1, . . . ,N ). From the perspective of agent i ,
the action to perform at time-step t + 1, ait+1, is obtained by �xing
the other agents’ actions a−it and optimizing the objective with
respect to its own action ai only. Since all the agents simultane-
ously carry out such coordinate descent updates in parallel at each
time-step and the experience replay mechanism from DQN [15] is
adopted, the concrete method to estimate the optimal joint action
for each state is somewhat similar to the “asynchronous (parallel)
stochastic coordinate descent” (AsySCD) algorithm which has been
proved to have sublinear convergence rate on general convex func-
tions [11], though Q-functions are of course not necessarily convex.
To summarize, the FQL learning process has two kinds of itera-
tive updates interwoven with each other: the temporal di�erence
updates of Q-learning and the asynchronous parallel updates of
stochastic coordinate descent.

In other words, for each agent i at non-terminal time-step t , the
target valueY it is heuristically estimated with the target network Q̃i

by keeping all the other agents’ actions �xed at their t-th time-step:

Y it ≈ r it + γ · Q̃i (st+1, arg max
ai

Qi (st+1,a
i ,a−it ;Θ); Θ̃) . (12)

�is would signi�cantly reduce the computational complexity
from O

(∏
i |Ai |

)
for the combinatorial optimization in Eq. 10 to

O
(∑

i |Ai |
)

for the simple linear scan of each agent’s possible
actions in Eq. 12. Although such an aggressive method for action
estimation is introduced for e�ciency purposes, it turns out to be
also empirically very e�ective for di�erent kinds of MARL tasks,
as shown later by our experiments.

3.4 Computational Complexity
As we have explained above, all the agents in the same group would
share the same factorized Q-function. �erefore, a multi-agent
system with G groups would only need to maintain G Q-functions,
and thus the whole complexity of computation would be merely G
times that for one agent’s Q-function, no ma�er how many agents
there are in the system. In practice,G is usually a very small number,
and G = 1 for pure cooperative tasks.

�e factorized Q-function for one agent in a group of size N
would behave just like a single-agent DQN [15], except that in the
former there are N joint actions to be evaluated for the next state
at each step of learning while in the la�er there is just one single
action. Nevertheless, using the previously described approximate
optimization algorithm, an agent i’s best action at the next state
st+1 is estimated with the other agents’ actions �xed at their cur-
rent choices a−it , so at time-step t we could e�ciently construct
N training examples {Y it ,Qi (st ,ait ,a−it ;Θ)}Ni=1 for the deep neural
network. Although at each step our proposed multi-agent FQL
approach would generate N times more training examples than a
single-agent DQN, the total number of training examples required
to reach convergence should be quite similar. So, the overall com-
putational complexity of training one group of agents in FQL seems
to be comparable to that of training a single agent in DQN.

4 EXPERIMENTS
We evaluate our proposed FQL approach to MARL on two di�erent
problems both involving quite a number of agents: the �rst is a
pure cooperative task while the second is a mixed cooperative-
competitive task.

4.1 �e Tra�c Game
Environment. Let us consider a resource allocation problem called

Gaussian Squeeze [4] which is inspired by the tra�c control task
where we want to let as many cars as possible use the available road
without causing tra�c congestion. Speci�cally, N agents need to
work together to allocate resources in such a way that the total allo-
cated resources x =

∑
i xi is neither too many nor too few, where xi

is the quantity of resources allocated by agent i (1 ≤ i ≤ N ). Given
a target quantity of the total allocation µ, we de�ne the reward by
a scaled Gaussian function x · e−(x−µ)

2/σ 2 where the parameter σ
controls the penalty for the deviation of x from the desired value
µ. In the generalized version of this problem, we could have K
allocation targets each of which is de�ned by its own pair of µk
and σk parameters (1 ≤ k ≤ K). �e complete reward function is
then given by the sum of the rewards for those K allocation targets∑
k x · e−(x−µk )

2/σ 2
k .

Since in this tra�c game the agents do not have state transitions,
it is simply a one-state Markov Decision Process aka a Multi-Armed
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Figure 2: �e learning curve of di�erent algorithms (with N agents) in the Tra�c Game (Gaussian Squeeze).

Bandit (MAB) problem. Nevertheless, it is still very challenging for
many agents to cooperate with each other in this game.

In our experiments, each agent can choose an integer value
from 0 to 9 as its action (allocation of resources), and the objective
consists of two pre�xed allocation targets with (µ1 = 0,σ1 = 100)
and (µ2 = 400,σ2 = 200).

Se�ings. �e following popular Q-learning based multi-agent
reinforcement learning methods have been used in the experi-
ments to compare with our proposed factorized Q-learning (FQL)
approach: independent Q-learning (IQL) [23, 24], multi-agent actor-
critic (MAAC) [12], and mean-�eld Q-learning (MF-Q) [33]. All the
competitors employ three-layer perceptrons (feed-forward neural
networks) to approximate their Q-functions. In particular, our FQL
model involves three sub-networks (Q , V , and U ) each of which is
realized as a three-layer perceptron in exactly the same way.

Results. Fig. 2 shows the experimental results of di�erent algo-
rithms in two scenarios: one with a relatively small number of
agents (N = 100) and the other with a relatively large number
of agents (N = 500). As we can see, IQL performed quite well in
the former scenario with 100 agents. It is because when N = 100
agents are independent of each other the sum of their allocations
would have the expected value E[x] = ∑N

i=1 E[xi ] = N × E[xi ] =
100 × (0+1+· · ·+9)

10 = 450 which happens to be close to one of the
allocation targets (µ2 = 400). However, IQL failed miserably for this
cooperative task with 500 agents. �ese two contrary outcomes
con�rm that IQL does not have any ability to let multiple agents
cooperate with each other. With respect to the MF-Q algorithm,
its performance is the worst (even inferior to IQL) when there are
just 100 agents, but it becomes almost the best when there are 500
agents. �is is reasonable, as the MF-Q algorithm estimates the
average e�ect of actions using the mean-�eld theory which would
be more accurate with more agents according to the law of large
numbers. �e opposite phenomenon is observed for the MAAC
algorithm, its performance is one of the best with 100 agents, but
one of the worst (similar to IQL) with 500 agents. �is is probably
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Figure 3: �e learning curve of di�erent algorithms in the
Battle Game (recorded every 10 rounds of training with self-
play).

due to the fact that the policy gradients used by MAAC would be
harder and harder to be estimated accurately with more and more
agents in the system. Finally, it is clear that our proposed FQL
algorithm is the only one that has achieved the top performance
in both scenarios. We believe that the advantage of FQL for such a
cooperative task can be a�ributed to its preservation of pairwise
interactions among agents in its factorized Q-function formulation.

4.2 �e Battle Game
Environment. �e recently emerged open source multi-agent

reinforcement learning platform MAgent [34] enable us to simulate
ba�les between two armies (groups) in which the soldiers from
one army would cooperate with each other to �ght against their
enemies, i.e., the soldiers from the other army. In our experiments,
each army consists of 64 soldiers who would be arrayed in the
ba�le�eld (a grid world). At each time-step, a soldier would a�empt
to either move to or a�ack one of the 8 neighboring grids. �e
overall objective of an army is to destroy as many enemies as
possible.
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Figure 4: �e performance of FQL competing against each
baseline algorithm in the Battle Game (when each agent con-
siders all the other agents). �e reported results are the av-
erage values over 100 battles for each comparative experi-
ment.
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Figure 5: �e performance of FQL competing against each
baseline algorithm in the Battle Game (when each agent con-
siders the neighboring agents). �e reported results are the
average values over 100 battles for each comparative exper-
iment.

Se�ings. �e following popular Q-learning based multi-agent re-
inforcement learning methods have been used in the experiments to
compare with our proposed factorized Q-learning (FQL) approach:
independent Q-learning (IQL) [23, 24], independent Q-learning
with the dueling network architecture (D-IQL) [29], and mean-�eld
Q-learning (MF-Q) [33]. �e MAAC algorithm appeared in the
previous game turned out to be incapable of learning to handle
a large number of agents in this game (cf. Fig. 2), therefore we
consider D-IQL instead. �e state of each agent consists of the
agent’s own feature vector which contains its group label, its obser-
vation of the grid world, its last reward received, and its last action
taken. Encoding the group label in the state enables the agent to
distinguish friends from foes. To approximate the Q-functions, all
the competitors including our FQL model employ convolutional
neural networks (CNN) with the same structure where the local
observation is embedded by two convolutional layers plus one
fully-connected layer while the feature vector is handled by just
one fully-connected layer. All the models will be trained with 2000
rounds of self-play, and then put into one-vs-one ba�les against
each other. �e full description of the implementation details are
provided in the supplementary material.

Results. Fig. 3 shows the learning curves of di�erent algorithms
w.r.t. three di�erent performance metrics: the number of enemies
killed in the ba�le (“Killing Index”), the average reward obtained
by each soldier (“Mean Rewards”), and the total reward for the

entire army (“Total Rewards”). �ese three di�erent metrics re-
�ect di�erent aspects of this mixed cooperative-competitive game.
Speci�cally, the “Killing Index” indicates how �erce the ba�le was;
the “Mean Rewards” de�ned as Rmean = 1

N
∑N
i=1(Ri/Ti ) where Ti

is the survival time of agent i and Ri is the total reward during
agent i’s survival time, represents how strong on average an indi-
vidual soldier was; and the “Total Rewards” shows how e�ective
the teamwork of the army was. It is clear that in the policy learning
stage, the FQL model could be trained more quickly and also reach
a higher capacity than the other models (i.e., IQL, D-IQL, and MF-Q)
in terms of all the above mentioned metrics.

Fig. 4 further shows the cross-comparison experimental results
between FQL and the three competitors in the policy execution
stage (averaged over 100 one-vs-one ba�les). �e competitive ad-
vantage of FQL over the other models can be seen clearly. It suggests
that the factorized Q-function could indeed capture the most im-
portant interactions among agents and thus encourage cooperation
within the group.

When the group size N becomes larger, the training of the FQL
model will become more computationally expensive, because each
agent would need to know not only the current state but also
the last actions of all the other N − 1 agents in the same group
for each step of Q-function update. �erefore, we go further to
investigate what happens if each agent can only remember the
last actions of the neighboring agents (i.e., those within a radius
of 13). In such a neighborhood-level decentralized paradigm, the
learning and execution of the FQL model would be a lot more
e�cient than in the centralized paradigm. �e experimental results
in Fig. 5 demonstrate that this partially decentralized version of
FQL could still achieve pre�y good results in comparison with the
other models. It suggests that FQL has the potential to scale up to
even larger multi-agent systems.

5 CONCLUSIONS
�e main contribution of this paper is a novel factorized formula-
tion of the joint state-action Q-function which makes reinforcement
learning with many agents computationally feasible. �e experi-
mental results suggest that although our proposed FQL model relies
on several aggressive simpli�cations to ensure the e�ciency, it is
surprisingly e�ective as shown by its performance for both a pure
cooperative task and a mixed cooperative-competitive task. An
open research question is whether the FQL algorithm is guaranteed
to converge. �e answer seems to be “yes” based on the empirical
evidence that FQL has always converged in our experiments, but
the theoretical proof is le� for future work.
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