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ABSTRACT
Guitar string separation is a novel and complicated task. Gui-
tar notes are not pure steady-state signals, hence, we hypoth-
esize that neither Non-Negative Matrix Factorization (NMF)
nor Non-Negative Matrix Factor Deconvolution (NMFD) are
optimal for separating them. Therefore, we separate steady-
state and transient parts using Harmonic-Percussive Sepa-
ration (HPS) as a preprocessing step. Then, we use NMF for
factorizing the harmonic part and NMFD for deconvolving
the percussive part. We make use of a hexaphonic guitar
dataset which allows for objective evaluation. In addition,
we compare several types of time-frequency mask and in-
troduce an intuitive way to combine a binary mask with a
ratio mask. We show that the HPS mask type has an effect
on source estimation. Our proposed method achieved results
comparable to NMF without HPS. Finally, we show that the
optimal mask at the final separation stage depends on the
estimation algorithm.
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1 INTRODUCTION
A guitar signal is usually captured with either a pickup or a
microphone. These ways all the strings are recorded into a
single track. Conversely, capturing each string individually
can be achieved by fitting a hexaphonic pickup to the gui-
tar. However, this is uncommon since it requires additional
hardware.
One of the reasons why having each string in a separate

track is beneficial is that non-linear processing causes inter-
modulation distortion when applied to signals containing
more than one frequency component [8]. Although inter-
modulation distortion is desirable at times, it is generally
unpleasant because it produces inharmonic partials. Non-
linear processing applied to guitar notes that do not overlap
in time does not produce obtrusive inharmonic partials.

Separating a guitar signal into a signal per string is a very
difficult task compared to a more commonly tackled problem
- separating different instruments. While guitar processing
has received much attention [1, 13], little research is focused
on guitar string separation. Previous work examined a spe-
cial case where a non-standard tuning was used so that the
strings were not harmonically related and only open strings
were considered [15].

While Non-Negative Matrix Factorization (NMF) and its
variations have been used for separation of both harmonic
and percussive instruments [9, 10], it has been claimed that
preserving time evolution of the spectra is especially impor-
tant to non-stationary signals [11, 16]. Although the guitar
is generally categorized as a quasi-harmonic instrument,
plucked strings produce sharp transients in addition to the
steady-state content (for convenience, we refer to these as
percussive and harmonic parts, respectively). Based on the
notion that it is important to preserve time evolution of the
spectra, we hypothesize that Non-Negative Matrix Factor
Deconvolution (NMFD) is more suited for the separation of
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transient source elements like guitar onsets. However, since
guitar notes vary greatly in length, it is not straightforward
to apply NMFD to guitar string separation. For this reason,
we first separate the guitar recordings into harmonic and
percussive parts. Then, we factorize each part independently
- NMF is applied to the harmonic part while NMFD is applied
to the percussive part. Finally, the factorized harmonic and
percussive parts are sorted into strings.

The rest of the paper is structured as follows. In Sec. 2 & 3
we discuss relatedwork: NMF&NMFD, harmonic-percussive
separation (HPS) and time-frequency (TF) masking. Our ex-
periments are described in Sec. 4 while their results are dis-
cussed in Sec. 5. Finally, we draw the conclusions and suggest
further work in Sec. 6.

2 NMF & NMFD
NMF is defined as follows [12, 16]:

V ≈ Ṽ =W · H (1)

whereV ∈ R ≥ 0M×N is the original mixture, Ṽ ∈ R ≥ 0M×N

is the estimated mixture,W ∈ R ≥ 0M×R contains bases and
H ∈ R ≥ 0R×N contains activations (M, N & R are the
number of frequency bins, the number of time frames and
decomposition rank, respectively), · is a matrix product. It
can represent each source with several basis spectra but it
does not make use of spectro-temporal information.

Smaragdis proposed an NMF extension which makes use
of time-wise patterns - NMFD [16]. It is defined as follows:

V ≈ Ṽ =
T−1∑
t=0

Wt ·
t→
H , (2)

whereWt ∈ R ≥ 0M×R are bases, t→· is a shift operation
where matrix columns are shifted right with resulting empty
columns on the left being filled with zeros, and T is convolu-
tion depth. Kullback-Leibler (KL) divergence is often used to
find the factors.
Kwon et al. showed that NMF results are highly depen-

dent on initialisation ofW due to the problem being non-
convex [10] whenW and H are updated concurrently [2].
Hence, supervised/informed NMF based methods are com-
mon. Often the bases are not updated.

3 HPS & TF MASKS
FitzGerald applied Median Filtering to magnitude spectro-
grams of audio signals to achieve HPS [6]. Based on the
notion that harmonic and percussive content forms orthog-
onal structures, filtering a spectrogram along the time axis
with a median kernel results in one with enhanced harmonic
components and vice versa. The resulting spectrograms can
be used to create TF masks for extracting harmonic and
percussive components from the original spectrogram.

TF masking is required not only for HPS but also for re-
covering sources from a mixture since sources estimated
with NMF or NMFD often contain artefacts. In the following
section, we discuss three types of mask - binary, ratio and
sigmoid - and introduce an intuitive way to combine a binary
mask with a ratio mask.
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Figure 1: Mapping from ratio mask coefficients to binary,
combined, sigmoid and ratio mask coefficients assuming a
mixture of two sources.

Binary Masks
A Binary Mask (BM), is defined as follows:

MB
i j =

{
1 if Xi j > Yi j
0 otherwise (3)

where X and Y are magnitude spectrograms of the target
and the interfering signals, respectively, while i and j corre-
spond to time and frequency indices. According to Yılmaz
and Rickard “perfect demixing via binary TF masks is pos-
sible provided the TF representations of the sources do not
overlap” [22]. Nevertheless, BMs are used for sources that
overlap more often than not. In the situations where they do,
BMs are likely to produce artefacts.

Sigmoid and Ratio Masks
Another type of TF mask is a Sigmoid Mask (SM) [7]. As
opposed to a BM, an SM is a continuous mask since its coeffi-
cients belong to [0, 1]. For more than one interfering source,
it is defined as follows:

MS
i j =

X
p
i j

X
p
i j +

∑
Y Y

p
i j

(4)

where p ∈ [1;∞), p = 1 is a special case - a Ratio Mask
(RM). It was defined for energy spectrograms by Srinivasan
et al. [17, eq. 1]. An SM can be considered as a compromise
between an RM and a BM. The lower the p the closer the
mask is to an RM. Conversely, the higher the p the closer it
is to a BM, see Fig 1.
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Ratio and Binary Masks Combined
On average, continuous masks outperform BMs in terms of
Signal to Distortion Ratio (SDR) [20]. This is supported by
perceptual evaluation results in [18] which showed that, out
of three types of mask - binary, ratio and sigmoid - applied
to energy spectrograms, BMs were the least appealing. Nev-
ertheless, a BM is useful because it offers more interference
suppression. However, it is too harsh when the target and in-
terfering sources contribute to the magnitude of a particular
spectrogram bin to a similar extent.
While an SM interpolates between an RM and a BM, it

does not allow for cases where most coefficients are very
close to a BM while the rest still make up a significant part
and are very close to an RM and vice versa. Hence, it may
be beneficial to create a mask with the coefficients equal to
RM coefficients when Xi j

Yi j
≈ 1 and BM coefficients when

Xi j
Yi j

≫ 1 or Xi j
Yi j

≪ 1. This can be achieved by combining an
RM and a BM. We introduce a convenient way of doing that
- a Combined Mask (CM) - defined as follows:

MC
i j =


1 if Xi j

Yi j
> ζ

Xi j
Xi j+Yi j

if 1
ζ ≤

Xi j
Yi j

≤ ζ

0 if Xi j
Yi j
< 1

ζ

(5)

where the parameter ζ allows for intuitively balancing be-
tween an RM and a BM. ζ ∈ [1;∞), ζ = 1 corresponds to
a BM (except for the bins where Xi j

Yi j
= 1) while ζ → ∞

corresponds to an RM.

4 EXPERIMENTS
Dataset
The GuitarSet dataset [21] includes 180 hexaphonic accom-
paniment tracks, i.e. chords, played on an acoustic guitar
sampled at 44.1kHz.

Each pickup in a hexaphonic pickup captures not only its
target string but also the neighbouring strings albeit with
lower amplitude. These tracks are not ideal for use as ground
truth because the goal is to estimate the signals produced by
each string individually. Conveniently, the dataset includes
tracks de-bleeded using Kernel Additive Modeling for Inter-
ference Reduction (KAMIR) [14]. These tracks were used for
creating ground truth for objective evaluation.
This dataset also includes note level annotations. It is

highly imbalanced in terms of note occurrence, i.e. some
notes appear much more frequently than others with the
number of occurrences ranging from 1 to 2485 per note. In
order to decrease this imbalance, we considered only the
notes that appear at least a given number of times (= 56)
in the training set. In addition, 0.2% of the accompaniment

annotations are clearly incorrect since they are lower than
the corresponding open strings. We excluded these notes. As
a result, a list of 32 MIDI notes (40-73, excluding 42 & 43)
was compiled.

The accompaniment tracks were split into a training set
(148 tracks) and a testing set (32 tracks) so that all notes in
the testing set were sufficiently represented in the training
set i.e. so that each note appeared in the training set at least
the given number of times. The resulting testing set con-
tained 6876 note instances. See the accompanying GitHub
repository for details1.

Experiment Flow
Figure 2 shows an overview of the experiment flow. Firstly,
linear mixtures were created by summing the channels of
the hexaphonic recordings from the testing set (32 mixtures
≈ 14 minutes of audio).

Then, both the resulting mixtures and the note instances
from the training set were separated into harmonic and per-
cussive parts using a Median Filtering implementation from
the TSM toolbox by Driedger and Müller [4]. The HPS pa-
rameters were a 1024 samples long Hann window with 75%
overlap for Short-Time Fourier Transform (STFT) along with
filter lengths of 0.2 seconds for the harmonic part and 500Hz
for the percussive part. The masks described in Sec. 3 were
used to extract the harmonic and the percussive parts.
Next, NMFD was applied to the percussive parts while

NMFwas applied to the harmonic parts. Both were initialised
with the corresponding parts of the note instances as follows.
56 instances of each MIDI note were taken from the training
set and split into harmonic and percussive parts. Together
with the harmonic and percussive parts of the mixtures,
they were transformed using STFT with a 1024 samples long
Hamming window and 50% overlap. Then, the 56 instances of
each note were averaged into one (harmonic and percussive
parts separately). 6 NMF bases per MIDI note were learnt
by factorizing the averaged percussive parts of each note
instance. Although the number of bases per averaged note
instance could have been reduced to 1, multiple bases were
learnt in order to represent the TF non-stationarity more
accurately. The averaged percussive parts of note instances
were used as bases for NMFD.

Updating both the activations and the bases did not lead
to satisfactory results, hence, only the former were updated
for both NMF and NMFD. The activations were normalized
at each iteration.
The resulting factors of the harmonic parts were then

added to the corresponding factors of the percussive parts.
Finally, the separated notes were sorted into strings relying
on the annotations.

1https://github.com/daliasen/GuitarStringSeparation-MF-NMF-NMFD

https://github.com/daliasen/GuitarStringSeparation-MF-NMF-NMFD
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Figure 2: Guitar string separation flow. P are percussive
while H are harmonic parts of the mixtures. P init are per-
cussivewhileH init are harmonic parts of the note instances
used for the initialisation of the bases. Dashed boxes show
the training procedure. S1 - S6 are the separated strings.

5 EVALUATION, RESULTS AND DISCUSSION
Three metrics from the BSS Eval toolbox were used for ob-
jective evaluation: Source to Distortion Ratio (SDR), Source
to Interferences Ratio (SIR) and Sources to Artifacts Ratio
(SAR) [19].

The Performance of TF Masks
Masks created using the ground truth were used to extract
the sources from the mixtures in order to evaluate the mask
performance independently of estimation. As expected, BMs
gave higher mean SIR but lower SAR and SDR compared to
continuous masks (p = 1, 2) while the performance of CMs
(ζ = 2) was closer to that of the BMs in terms of SIR but
closer to the performance of the continuous masks in terms
of SAR and SDR (see Tab. 1). SMs gave better results than
RMs. However, they performed worse than the CMs in terms
of SIR. This illustrates that a CM provides a good compromise
between interference suppression and distortion/artefacts.

Table 1: The results of masking the mixtures with
ground truth masks (averaged over strings and test
tracks).

SDR, dB SIR, dB SAR, dB
Binary 6.2 ±2.5 23.2 ±4.4 6.4 ±2.5
Ratio 6.3 ±2.5 16.2 ±3.8 7.2 ±2.4

Sigmoid, p = 2 7.0 ±2.4 20.1 ±3.7 7.4 ±2.5
Combined, ζ = 2 6.9 ±2.4 21.9 ±4.1 7.2 ±2.5

Separation Evaluation
An experiment where the HPS was omitted and only NMF
was used was carried out for comparison. Surprisingly, NMF
gave the best overall results. It slightly outperformed our
proposed method in terms of SIR & SDR before the final
masking (see Tab. 2).
Focusing on the effects of the different mask types used

for HPS in our proposed method, as anticipated, BMs out-
performed continuous masks and CMs with regard to SIR
while they were outperformed by the continuous masks and
the CMs with regard to SDR & SAR. The CMs and SMs gave
similar results but the CMs gave higher SIR than the RMs
while the SMs gave similar SIR to the RMs. Both types of
mask performed worse than the RMs and better than the
BMs in terms of SDR & SAR.
When applied to the estimated signals BMs gave higher

SIR but at the expense of SDR & SAR as expected. Note that
when the BMs were used for HPS the improvement in SIR
was much less significant. As anticipated, RMs gave the best
results in terms of SDR & SAR but at the expense of SIR.
When the RMs were used for HPS the improvement in SDR
& SAR was much less significant.
For SMs, SIR was always higher than that of the RMs

but always lower than that of the BMs while SDR & SAR
were always higher than that of the BMs but always lower
than that of the RMs. Although we anticipated similar trends
for CMs, all three metrics were decreased in most cases.
Moreover, the SMs gave better results than the CMs in all
cases but one. The latter was when no HPS was used. In this
case, the CMs provided an alternative compromise between
interference suppression and distortion/artefacts. Overall,
these results showed that the optimality of the final stage
masking is dependent on the source estimation algorithm.

6 CONCLUSIONS AND FUTUREWORK
We introduced an approach to guitar string separation.While
it gave reasonable results it did not outperform the basic
NMF based method. This suggests that, in this scenario, NMF
may be more adaptive than NMFD since in NMF each note
is constructed from multiple bases. Therefore, it may be
better at representing different articulations of the same note.
Updating theNMFD baseswith constraints for adapting them
to each track may improve the results. Deep Learning based
approaches could also be considered, however, the amount
of available training data is limited.
In addition, our proposed method has many parameters

that could be explored further.We showed that the mask type
used for HPS stage has an effect on the source estimation
quality. Hence, different HPS methods, for instance, [3, 5],
should be investigated. We showed that the mask type at
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Table 2: The final stagemasking results (averaged over
strings and test tracks), p = 2, ζ = 2.

HPS mask Final mask SDR, dB SIR, dB SAR, dB

None (NMF)

Estimated 3.9 ±2.7 14.8 ±4.8 4.8 ±2.7
Binary 3.1 ±2.9 16.2 ±5.0 3.8 ±3.1
Ratio 4.0 ±2.7 13.6 ±4.4 5.1 ±2.9
Sigmoid 3.9 ±2.8 15.1 ±4.7 4.8 ±3.0
Combined 3.8 ±2.9 15.9 ±4.9 4.5 ±3.1

Binary

Estimated 2.5 ±3.3 14.6 ±5.1 3.3 ±3.1
Binary 2.2 ±2.9 14.7 ±4.9 3.0 ±3.1
Ratio 3.0 ±2.7 12.8 ±4.4 4.2 ±2.9
Sigmoid 2.9 ±2.8 13.8 ±4.6 3.9 ±3.0
Combined 2.2 ±3.1 12.7 ±4.1 3.2 ±3.1

Ratio

Estimated 3.8 ±2.6 14.1 ±4.9 4.8 ±2.4
Binary 3.0 ±2.9 15.8 ±5.2 3.7 ±3.1
Ratio 3.8 ±2.7 13.5 ±4.5 4.9 ±2.9
Sigmoid 3.7 ±2.7 14.7 ±4.9 4.6 ±3.0
Combined 3.5 ±2.7 14.1 ±4.5 4.5 ±2.7

Sigmoid

Estimated 3.2 ±3.0 14.1 ±5.0 4.2 ±2.7
Binary 2.8 ±2.9 15.5 ±5.1 3.5 ±3.1
Ratio 3.6 ±2.7 13.4 ±4.4 4.8 ±2.9
Sigmoid 3.5 ±2.8 14.5 ±4.8 4.4 ±3.0
Combined 2.7 ±3.0 12.3 ±4.3 3.9 ±2.8

Combined

Estimated 2.9 ±3.1 14.3 ±5.1 3.9 ±2.8
Binary 2.7 ±2.9 15.4 ±5.1 3.4 ±3.1
Ratio 3.5 ±2.7 13.3 ±4.4 4.7 ±2.9
Sigmoid 3.4 ±2.8 14.5 ±4.8 4.4 ±3.0
Combined 2.4 ±3.1 12.2 ±4.5 3.6 ±2.8

the final masking stage needs to be chosen to optimise for a
given source estimation algorithm.
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