
40

Evaluating Auto-Vectorizing Compilers through Objective

Withdrawal of Useful Information

SERGI SISO, Hartree Centre and University of Liverpool

WES ARMOUR, University of Oxford

JEYARAJAN THIYAGALINGAM, Rutherford Appleton Laboratory

The need for compilers to generate highly vectorized code is at an all-time high with the increasing vector-

ization capabilities of modern processors. To this end, the information that compilers have at their disposal,

either through code analysis or via user annotations, is instrumental for auto-vectorization, and hence for the

overall performance. However, the information that is available to compilers at compile time and its accuracy

varies greatly, as does the resulting performance of vectorizing compilers. Benchmarks like the Test Suite for

Vectorizing Compilers (TSVC) have been developed to evaluate the vectorization capability of such compil-

ers. The overarching approach of TSVC and similar benchmarks is to evaluate the compilers under the best

possible scenario (i.e., assuming that compilers have access to all useful contextual information at compile

time). Although this idealistic view is useful to observe the capability of compilers for auto-vectorization, it

is not a true reflection of the conditions found in real-world applications.

In this article, we propose a novel method for evaluating the auto-vectorization capability of compilers.

Instead of assuming that compilers have access to a wealth of information at compile time, we formulate a

method to objectively supply or withdraw information that would otherwise aid the compiler in the auto-

vectorization process. This method is orthogonal to the approach adopted by TSVC, and as such, it provides

the means of assessing the capabilities of modern vectorizing compilers in a more detailed way.

Using this new method, we exhaustively evaluated five industry-grade compilers (GNU, Intel, Clang, PGI,

and IBM) on four representative vector platforms (AVX-2, AVX-512 (Skylake), AVX-512 (KNL), and AltiVec)

using the modified version of TSVC and application-level proxy kernels. The results show the impact that

withdrawing information has on the vectorization capabilities of each compiler and also prove the validity

of the presented technique.

CCS Concepts: • Software and its engineering → Compilers;

Additional Key Words and Phrases: Compiler evaluation, vectorization capability, auto-vectorization, vector-

ization test suite

ACM Reference format:

Sergi Siso, Wes Armour, and Jeyarajan Thiyagalingam. 2019. Evaluating Auto-Vectorizing Compilers through

Objective Withdrawal of Useful Information. ACM Trans. Archit. Code Optim. 16, 4, Article 40 (October 2019),

23 pages.

https://doi.org/10.1145/3356842

This is a new article, not an extension of a conference paper.

Authors’ addresses: S. Siso, Hartree Centre, Science and Technology Facilities Council, Keckwick Lane, Daresbury, UK,

University of Liverpool, Brownlow Hill, Liverpool, UK; email: sergi.siso@stfc.ac.uk; W. Armour, Department of Engineering

Sciences, University of Oxford, Keble Road, Oxford, UK; email: Wes.Armour@oerc.ox.ac.uk; J. Thiyagalingam, Science and

Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Oxford, UK; email: t.jeyan@stfc.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2019/10-ART40

https://doi.org/10.1145/3356842

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

https://doi.org/10.1145/3356842
mailto:permissions@acm.org
https://doi.org/10.1145/3356842
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3356842&domain=pdf&date_stamp=2019-10-11

40:2 S. Siso et al.

1 INTRODUCTION

Vectorization is an essential optimization for maximizing the performance of applications on mod-
ern systems. The key principle behind vectorization is to identify opportunities to perform a similar
set of operations over multiple data elements using a single instruction. Architectures that support
such a form of parallelism are often referred to as Single Instruction Multiple Data (SIMD) systems.
Modern compilers are able to automate, to a certain extent, the process of generating vectorized
code. However, the exact vector performance of the resulting code depends on several factors, in-
cluding type of application, quality of code, length of the vector registers, types of operations, and
the number of available vector units. Depending on the programming language of choice, poten-
tial candidates for vectorization include loop nests, abstract statements operating over arrays, and
memory accesses [25]. Ideally, compilers should identify all possible candidates for vectorization
and then vectorize them using the available SIMD instructions to perform as many operations in
parallel as possible.

Although modern compilers provide automatic vectorization optimizations, the capabilities of
compilers to fully auto-vectorize a given piece of code are often limited. This limitation primarily
stems from the limited capabilities of compilers to extract or perceive relevant contextual informa-
tion from the code. For instance, values of many variables become known only at runtime, which
effectively prevents a number of vectorization opportunities at compile time. Even in cases where
the contextual information is available, compilers are conservative in their transformations. The
lack of or insufficient information at compile time forces compilers to generate suboptimal vec-
torized code [16, 28, 31].

As such, it is important to evaluate the capabilities of different compilers to auto-vectorize soft-
ware under multiple conditions when targeting vector achitectures. The Test Suite for Vectorizing
Compilers (TSVC) [5] and extensions of TSVC provided by Maleki et al. [19] were able to set a
precedent for evaluating the vectorization capabilities and are still widely used. TSVC and other
similar benchmarks usually consist of a set of loops with specific implementation patterns, de-
signed to demonstrate the vectorization capabilities of compilers. These implementations come
with a generous amount of contextual information provided to the compiler. In other words, this
approach provides a single picture of the performance of compilers under a set of preset scenar-
ios, which are close to the ideal case. Although it is useful to know the best possible vectorization
capability that a compiler can deliver, the approach fails to capture the full spectrum of compiler
behavior when a limited amount of information is available. In practice, due to the realities of com-
plex software engineering, many scientific applications lack a substantial amount of information
that would be beneficial for vectorization at compile time.

Furthermore, since TSVC was first developed, both the compiler and processor landscapes have
changed rather dramatically. Specifically, the number of processors supporting vectorization ca-
pabilities have evolved substantially. A notable and well-consolidated resource that demonstrates
this change is the list of the Top-500 supercomputers in the world [10]. By manually parsing and
compiling the Top-500 list, associated system manuals, and relevant processor manuals of the Top-
500 systems between the years 1993 and 2018, we show how the capability of vector processing
has changed over the course of 25 years in Figure 1.

This analysis focuses exclusively on host processors and does not take the accelerator hardware
on the systems into account. Nevertheless, several observations can be drawn from the figure. First,
systems without SIMD vector capabilities are now almost nonexistent. Second, the length of vector
registers of the newest machines quadrupled (from 128 to 512 bits) in recent years, and the adoption
of new instruction sets happens rather quickly. Finally, as Figure 1(c) shows, systems with AVX-2
instruction sets currently dominate the Top-500 list, but AVX-512 is rapidly gaining popularity.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

Evaluating Auto-Vectorizing Compilers through Objective Withdrawal 40:3

Fig. 1. Variation of different vector capabilities in Top-500 systems over the past 20 years.

In fact, in addition to what is observed in the Top-500 list, there is also a thriving research
community around modern vector Instruction Set Architectures (ISAs) such as the ARM Scalable
Vector Extension (SVE) [30] and the RISC-V “V” Vector Extension [32]. Although at this time there
are no production-level systems that make use these modern ISAs, they demonstrate the increasing
interest in vector processing.

Instead of assessing the vectorization performance of compilers by supplying all of the useful
information at compile time, an alternative approach is to objectively withdraw information that
would otherwise aid in auto-vectorization and monitor the resulting performance.

In this article, we propose an extension to TSVC that controls the amount of information pro-
vided at compile time and assesses the benefit that releasing this information has toward auto-
vectorization. Such an approach complements the TSVC benchmark suite and provides a more
extensive picture of modern compiler auto-vectorization capabilities in a broader range of sce-
narios that are often encountered in production software. In doing this, we make the following
contributions:

• We present an approach to extend TSVC to develop a more powerful framework for evalu-
ating the efficacy of auto-vectorizing compilers.

• We formulate a set of well-defined classes of information that are influential toward vec-
torization and can be withdrawn or supplied to compilers.

• We demonstrate how objectively withdrawing and/or supplying information at compile
time affects auto-vectorization.

• We demonstrate the applicability and utility of our method by evaluating and comparing
the auto-vectorization capabilities of five different compilers (GNU, Intel, Clang, PGI, and
IBM) across four representative contemporary vector platforms (AVX-2, AVX-512 (Skylake),
AVX-512 (KNL), and AltiVec).

• We outline a new visualization methodology, which we call the vectorization efficiency spec-

trum, for easily representing and understanding the auto-vectorization efficiency of com-
pilers.

The rest of this article is organized as follows. Section 2 outlines the TSVC benchmark suite and
other related work, highlighting the limitations of using these benchmarks to evaluate the auto-
vectorization of modern compilers. Section 3 describes the new proposed approach, including
the metrics used to quantify the auto-vectorization efficiency and a method for visualizing the

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

40:4 S. Siso et al.

efficiency under different settings. Section 4 describes the evaluation platforms. Section 5 presents
the evaluation results on the chosen architectures and compilers. Finally, we conclude in Section 6
with a brief description of the main observations and directions for further work.

2 RELATED WORK

Given that the majority of the applications, or significant parts therein, are developed in a scalar
style and expect the compiler to assume the responsibility of vectorizing them, there is a com-
pelling reason to determine the efficacy of compilers in their auto-vectorization capabilities. One
such approach, developed by Callahan et al. [5] is TSVC. This suite contains 100 FORTRAN loops
with scalar semantics organized in four main categories: dependence analysis, vectorization, idiom
recognition, and language completeness. These loops were used to evaluate different compiler-
architecture combinations. Over time, TSVC became one of the robust mechanisms to assess the
auto-vectorizing capabilities of compilers. However, with the development of new architectures
and advances in software engineering practices (TSVC had several loops with GOTO statements),
the suite became progressively outdated.

Maleki et al. [19] provided a revision of TSVC by converting the original loops to the C pro-
gramming language, and extended the loops to cover additional vectorization issues that were not
considered of the original suite. This resulted in 151 loops in the extended suite. Their work, pub-
lished in 2011, evaluated the GNU GCC, the Intel ICC, and the IBM XLC compilers, and showed that
ICC auto-vectorized 90 loops, whereas XLC and GCC auto-vectorized 68 and 59 loops, respectively.
The authors also highlighted three main reasons for compilers failing to vectorize loops: (i) hard-
ware limitations of the current vector extensions; (ii) compilers not being designed to support
some programming patterns, such as loops with wrap-around variables (e.g., C unsigned integers
where overflows/underflows wrap from 0 to the highest number represented); and finally (iii) the
inability of the compilers to reorder computations to avoid data dependencies or their inability to
perform algorithm substitution.

One of the design aspects of TSVC is that the benchmark consists of synthetic static loops with
well-defined parameters. The authors of the extended work specifically emphasized the following:

All arrays are [. . .] aligned and contain the restrict attribute and alignment as-
sertions. One intention was to provide the compiler with as much information as
possible. We believe that in many cases the restrict attribute and the alignment
assertion could be automatically inserted by the compiler but we have not studied
this issue.

A closer inspection of the loops confirms this statement such that a generous amount of in-
formation is provided to all loops, such as values of the loop bounds or values in the conditional
expressions. In terms of assessing the capabilities of compilers, what is considered as a trivial piece
of information in the case of TSVC may be, in fact, a very effective piece of information for trig-
gering and enabling a number of follow-on vectorization opportunities. These are well evidenced
by several techniques to improve the achieved vectorization when the static information is subop-
timal. For instance, Eichenberger et al. [11] propose vectorization techniques when the alignment
is not optimal, and Moll and Hack [21] propose a partial control-flow linearization method that
improves the if-conversion vectorization technique. Other approaches, such as presented by Saito
et al. [26], explore syntax extensions to support explicit vector programming.

Despite its limitations, the synthetic TSVC is still widely used for evaluating the capabilities
of modern auto-vectorizing compilers and is, for instance, included in the LLVM benchmark-
ing suite [18]. There has been more recent analysis using TSVC. For instance, Moldavanova and
Kurnosov [20] use TSVC for quantifying the performance of the first-generation Intel Xeon Phi
co-processor.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

Evaluating Auto-Vectorizing Compilers through Objective Withdrawal 40:5

Similar to TSVC, Amiri et al. [2] created a set of benchmarks that use common kernels ranging
from simple matrix-matrix multiplications to more complex 2D discrete wavelet transform, op-
posed to completely synthetic loops. Although the PARSEC suite [3] was created for system-level
performance evaluation, to a certain extent it can also be used for evaluating auto-vectorizing com-
pilers. Yazdanpanah [33] analyzes the auto-vectorization limitations within the PARSEC bench-
mark suite, particularly to determine why only a few of the loops were vectorized. Cebrian et al.
[7] provide the ParVec benchmark suite, directly deriving it from the PARSEC suite. Similarly,
Zhao et al. [34] analyze the vectorization performance of the well-known NPB and SPEC CPU2006
benchmarks with various SIMD extensions. However, most of these approaches are based on fixed
implementations with an associated performance analysis and do not measure the performance
variation when altering the implementation provided.

To get a better approximation of production scenarios, some computing domains have devel-
oped their own proxy applications. For instance, several signal processing and multimedia-specific
application benchmarks have been created to assess the auto-vectorization performance of com-
pilers. Ren et al. [23], Fritts et al. [14], and Alvanos and Trancoso [1] all compare the performance
of auto-vectorizers against hand-vectorized counterparts using a set of multimedia applications.
All of these studies identify and report a number of missed opportunities for vectorization. Ad-
ditionally, there are several proxy applications to aid the development of future systems and pro-
gramming models such as the application collection from the ECP project [24].

There is a body of work that indirectly assesses the vectorizing limitations of compilers by
manually applying SIMD transformations. For instance, Cebrian et al. [6] share a concern that is
similar to ours when evaluating real-world applications. However, they chose to manually imple-
ment any necessary SIMD operations instead of benchmarking or relying on auto-vectorization
capabilities. Another approach that is similar to our macrogenerated benchmarking is discussed
in Satish et al. [27]. Their approach starts off from a basic C implementation and applies multiple
SIMD optimizations.

Another approach for automatically generating benchmarks is discussed in Deshpande et al.
[8], however, their focus is not in evaluating the vectorization capabilities of compilers. Skadron
et al. [29] highlight a number of practical issues in the current generation of benchmarking in-
frastructures, and Breughe and Eeckhout [4] propose a method for understanding the impact that
different input parameters have on the overall performance. Gong et al. [15] study the variations of
compiler performance to different loop mutations, and in doing so they demonstrate the instability
of compilers to consistently provide optimal results when the implementation is slightly different.
However, they do not consider multiple levels of information provided or withdrawn at compile
time.

More recently, Doerfert et al. [9] presented an automated tool to measure the effect that missing
static information has on a program. However, their approach is based on incrementally including
certain program annotations into the code, and these are often compiler specific. Their implemen-
tation is around Clang and the LLVM compiler infrastructure, and they conclude that the static
information can significantly improve the performance but that the compiler often fails to leverage
the information.

3 OUR APPROACH

3.1 Method for Supplying or Withdrawing Information

Our approach centers around the idea of supplying or withdrawing static information at compile
time to understand the effect that a piece of information has on the vectorization performance. To
realize this, we need to parameterize the amount of information that is exposed to the compiler
and be able to objectively supply or withdraw the information in a controlled manner.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

40:6 S. Siso et al.

Fig. 2. Architecture for withdrawing information, I , from benchmarks.

To achieve this, we have built a C-preprocessor infrastructure that expands multiple macros
representing different classes of static information, as discussed in the next section. The overall
evaluation relies on two aspects: (i) specific meta-information defining the class of information that
is withdrawn from the compiler and (ii) a set of benchmark loops derived from TSVC produced
by Maleki et al.The evaluation process has control over which class of information is presented or
withdrawn. Based on this control information, the preprocessor expands the macros using TSVC
as a template to generate a set of benchmarks. The generated benchmarks, unlike TSVC, will carry
only a defined piece of information to the compiler being evaluated. In other words, we control
the information that flows into the compiler that aids the vectorization process. Figure 2 shows
the overall architecture of the system we designed for this purpose.

In Figure 2, I is the information we would like to provide, and meta-info is the database of
benchmarks, links TSVC, and templates. The generated benchmarks are then compiled using the
compiler to be evaluated with appropriate compiler flags.

3.2 Classification of Effective Information

Here we provide a classification of information purely based on the types of contextual information
that could be effective in vectorization. These are the classes of information that are withdrawn
or supplied at compile time, including the following:

(1) Loop Bounds
(2) Parameters in Array Indices and Offsets
(3) Parameters in Conditional evaluations
(4) Array attributes.

We discuss each of these classes with a supporting code example. The code listings are provided for
explanatory purposes and do not come from any of the benchmark suites or applications discussed
in this article:

(1) Loop Bounds: Although loop nests can often be vectorized without full-fledged informa-
tion on loop bounds, compilers can take advantage of additional information to decide
which loops to vectorize and what vectorization strategy to use. Consider the example
shown in Listing 1, consisting of two nested loops with access to the arrays A and B with
different access patterns to each of the arrays.

Listing 1. Example with Loop Bounds Parameters.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

Evaluating Auto-Vectorizing Compilers through Objective Withdrawal 40:7

Vectorizing the loop over the i-index space as opposed to the j-index space could lead to
significant performance implications. To decide the optimal candidate loop for vectoriza-
tion, the exact values of the symbolic variables are needed. These include the values of M
and N , as well as the length of vector registers of the target system. If M is smaller than
the vector length, vectorizing the loop over the j-index could be suboptimal. However,
if M is very large, the gather operations on the accesses to array A will be expensive
and other additional costs related to the memory subsystem could be incurred. However,
the contrary is true if the size of M and N is swapped. Making decisions at compile time
requires not only a cost model but also information on the values or range of M and N .

(2) Parameters in Array Indices and Offsets: Understanding the access patterns of the
arrays or other data structures inside loop nests is the basis for performing robust de-
pendency analysis, which is often a precursor to vectorizing transformations. Consider
the example in Listing 2, consisting of two nested loops with an update operation on the
array A.

Listing 2. Example with Parameters in the Array Indices.

Here, if DIM is smaller than M and smaller than the vector length, there is no guarantee
that a single vector operation will respect the same read/write ordering of arrayA that the
scalar version has. This issue is known as loop-carried dependency. In this case, depending
on the compiler cost model, it may decide against auto-vectorization of the loop or it may
provide the necessary runtime guarantees or constrained implementation. Additionally,
there are performance improvements that compilers can apply with known indexing pat-
terns. In this specific case, if Offset(j) is constant, the access to array B becomes strided
in memory, and if the constant assumes a unit value, it may become contiguous in mem-
ory. In both cases, the compiler may be able to generate cheaper load operations. However,
if Offset(j) is a nonconstant value (or if the value is unknown), the vectorization has to
be implemented using gather operations.

(3) Parameters in Conditional Evaluations: The ability to resolve or predict the branch-
ing behavior of a given code snippet is another characteristic that compilers often rely on
to vectorize a given part of a code. Masking and if-conversion transformations [12] are
optimizations often applied to help the compiler vectorization capabilities. However, the
ability to vectorize a code may still be impeded by path divergences resulting from condi-
tional evaluations where not enough information can be inferred. Consider the example
in Listing 3, consisting of a single loop with a conditional update on array A.

Listing 3. Example with Parameters in the Condition Evaluation.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

40:8 S. Siso et al.

Here, the left-side operand of the conditional evaluation changes every iteration of the
loop. If the Constant has a runtime value of zero, the compiler can semantically remove
the if condition (the expression B[i] ∗C[i] will also evaluate to zero, and zero is the iden-
tity operator for the aggregation), resulting in a more efficient vectorized code, as no mask-
ing operations are needed. Idiomatic if removal optimizations are also beneficial on loops
that contain multiple exit conditions, as compilers just vectorize certain patterns of loops
with multiple exits.

(4) Array Attributes (e.g., Aliasing and Alignment): Modern vector units are sensitive to
the alignment of data [11]. Maleki et al. [19] discussed this issue when implementing TSVC
but ultimately decided to always provide the alignment and aliasing information with the
tests. Consider the example in Listing 4, consisting of a single loop that accesses three
different arrays.

Listing 4. Example with Array Attributes.

Depending on the compiler visibility of the array declarations in the context of the loop,
it may or may not be able to infer the aliasing and alignment attributes. The built-in
__assume_aligned statement can help the compiler in assigning the correct attribute
values. However, this is rarely used, and such built-ins are compiler specific.

To generate our modified test suite, we use the preprocessor infrastructure described in Sec-
tion 3.1 to supply (or withdraw) the desired contextual information into templates of the TSVC
benchmark suite. Not every information class is expected to be present on every TSVC test. In
such cases, the code generated by the preprocessor infrastructure will remain unmodified. The
test-information coverage across 138 TSVC tests is as follows:

• Information classes (1) and (4) are present across all 138 tests.
• Information class (2) is present across 67 of these tests.
• Information class (3) is present across 29 of these tests.

3.3 Quantifying Vectorization Efficiency

The metric used to assess the efficacy of auto-vectorizing compilers is the vector efficiency η,
defined as the ratio between the elapsed time Et to execute a specific test t with and without
auto-vectorization. Thus,

η =
E0

t

Ev̂

t

, (1)

where Ev̂

t
and E0

t
are the vectorized and nonvectorized execution times for the test t , respec-

tively. Although runtimes with and without the vectorization of benchmarks provide a measure of

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

Evaluating Auto-Vectorizing Compilers through Objective Withdrawal 40:9

success, comparing runtime performance across a combinations of tests (with specific categoriza-
tions), platforms, and compilers leads to a high-dimensional space, resulting in a large amount of
data, which is further increased by the notion of withdrawing or supplying different classes of
information at compile time. For this reason, the results are presented with statistical measure-
ments on multiple data aggregations from the benchmark values. We define the following set of
parameters for the data aggregation:

(1) T is a category of similarly structured tests following the categorization provided in previ-
ous TSVC implementations. Our analysis uses the LLVM benchmark suite [18] categories,
which are linear dependence, indirect addressing, equivalencing, loop rerolling, packing,
searching, recurrences, reductions, crossing thresholds, expansion, node splitting, loop re-
structuring, statement reordering, symbolics, control flow, global data flow, and induction
variable propagation.

(2) i is a class of information that is withdrawn from the compiler (by default, all other in-
formation classes are exposed to the compiler). I is the set that includes the four classes
presented in Section 3.2 plus an instance with all four information classes withdrawn at
the same time. None of the given classes is a direct representation of the original TSVC
benchmark. This is because the information classes are not consistently present across the
test suite.

(3) a is an architecture on which the evaluation is being carried out, andA is the set containing
all evaluated architectures.

(4) c is a compiler on which the evaluation is being carried out, andC is the set of all evaluated
compilers.

With these parameters being defined, let Et,c,a,i be the elapsed time of a specific test t when
the compiler c and the architecture a is used, with information of class i being exposed at compile
time. The vectorization efficiency under these circumstances is expressed as follows:

η(t , c,a, i) =
E0

t,c,a,i

Ev̂

t,c,a,i

, (2)

For a given categoryT , an average vector efficiency, ηT , can be given using the geometric mean
from all t ∈ T . Furthermore, the overall vectorization efficiency ηTotal is given by a geometric mean
across all categories. Using the mean of each category keeps a balanced representation of all cat-
egories in the final score regardless of the number of tests in each category.

ηT (c,a, i) = �
�

∏

t ∈T
η(t , c,a, i)�

�

1
size(T)

(3)

ηTotal (c,a, i) =
��
�

∏

T ∈Categories

ηT (c,a, i)��
�

1
size(Categories)

. (4)

3.4 Visualizing Vectorization Efficiency

As described in the previous section, it is possible to reduce the dimensionality of the results by
performing statistical analysis and data aggregation. However, the number of information classes
and the number of compiler-architecture combinations cannot be reduced any further. In the our
case, there are 17 loop categories and 16 compiler-architecture pairs. As such, any attempt to
compare the vectorization efficiency of the compilers across all of the loop categories becomes
visually challenging. For this reason, we developed a new plot type, which we refer to as the vector
efficiency spectrum. This chart provides an intuitive representation, not only for comparing the

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

40:10 S. Siso et al.

Table 1. Systems Used for Evaluation

ScafellPike SKL ScafellPike KNL Panther

Processor Intel Xeon Intel Xeon Phi IBM Power8
Skylake Knight’s Landing

Model Gold 6142 7210 8335-GTA
Architecture x86 (64 bit) x86 (64 bit) pcc64le
Number of Cores 2 × 16 64 2 × 8
Core Frequency 2.6GHz 1.3GHz 3.86GHz
Vector ISA AVX-2 and AVX-512 AVX-512 (KNL) VMX/AltiVec
Vector Length 256 and 512 bits 512 bits 128 bits
Memory 128GB 109GB 512GB
L1 D Cache 32K 32K 64K
L2 Cache 1,024K 1,024K 512K
L3 Cache 22,528K — 8,192K
OS Linux 3.10 Linux 3.10 Linux 3.10
Compilers Used GCC 8.1.0 GCC 8.1.0 GCC 8.1.0

Clang 6.0.0 Clang 6.0.0 Clang 6.0.0
Intel 2018u4 Intel 2018u4 IBM XLC 13.5
PGI 2018.4 PGI 2018.4 PGI 2018.4

vectorization efficiency of a given compiler in the absence of information but also for offering an
approach for assessing their relative efficiencies.

In this plot, we spatially map the efficiency values ηTotal (c,a, i) for different architecture-
compiler pairs as horizontal lines on two graphs placed next to each other. On the left spectrum,
we show the vectorization efficiency of different architecture-compiler pair when information for
category i is known at compile time. On the right spectrum, we show the vectorization efficiencies
for the same architecture-compiler pair when information for category i is withdrawn at compile
time. Although the lines have distinct color, due to the large number of lines, comparing them
becomes an arduous task. For this reason, we connect the lines representing the same compiler-
architecture pair across the spectra and to their entry in the legend.

4 EVALUATION

We tested five different compilers across three representative architectures (covering four different
vector ISAs, namely AVX-2, AVX-512 (Skylake), AVX-512 (KNL), and AltiVec) containing different
vector processing capabilities. Although there are references to SVE and RISC-V Vector Extensions
in the literature, to-date there are no production-ready implementations of these ISAs. As such,
they are not included in the evaluation process. We provide the details of the platforms, as well
as the compilers used on each platform, in Table 1. We have deliberately included vendor- and
platform-specific compilers in our evaluation.

The exact flags used for different compilers are provided in Table 2. The choice of flags are
compiler- and platform specific, but they have been chosen with aggressive optimization enabled
for each compiler. Additionally, for the AVX-512 (Skylake) platform, we included additional flags
that would prioritize the AVX-512 instruction set, wherever permitted. However, the compilers
are free to use the AVX-2 instructions as appropriate. In addition to these flags, we included a
request for detailed vectorization reports to be generated, whenever they are available, along with
the assembly code. This files assissted us in the analysis of the results. In all of the cases, we
repeated all scalar and vector tests five times and took the smallest reported value to minimize
any unnecessary perturbation, such as the ones from the operating system.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

Evaluating Auto-Vectorizing Compilers through Objective Withdrawal 40:11

Table 2. Compiler Flags Used in the Evaluation

Compiler Vectorization Disabled Vectorization Enabled

GNU -march=$ISA -O3 -ffast-math -march=$ISA -O3 -ffast-math
-fno-tree-vectorize (-mprefer-vector-width=512 on Skylake-avx512)

Intel -x$ISA -O3 -fp-model fast=2 -x$ISA -O3 -fp-model fast=2
-no-vec (-qopt-zmm-usage=high on skylake-avx2)

Clang -march=$ISA -O3 -ffast-math -march=$ISA -O3 -ffast-math
-fno-vectorize

IBM -O3 -qhot=novector:fastmath -O3 -qhot=fastmath
-qnoaltivec -qsimd=noauto

PGI -tp=$ISA -O3 -fast -fastsse -tp=$ISA -O3 -fast -fastsse
-Mnovect

5 RESULTS

In this section, we present the results of our exhaustive evaluation covering the modified TSVC and
a selection of application-level proxy kernels. In Section 5.1, we present the results of TSVC when
different classes of information are withdrawn at compile time. We show the resulting impact using
vectorization efficiency. For easier interpretation of the results, we utilize the vector visualization
spectrum charts outlined in Section 3.4. Then, in Section 5.2, we introduce the test categorization
of TSVC to provide a closer look into the strengths and weaknesses of modern compiler auto-
vectorization capabilities when all of the information classes are provided to the compiler. Finally,
to ensure that the approach is relevant for real-world applications, we evaluate the vectorization
efficiency of compilers on six application-level proxy kernels. The relevant results are presented
in Section 5.3.

5.1 TSVC with Information Classes on Current Architectures and Compilers

As discussed in Section 3.2, we separated the type of information that is available to compilers
into the four classes defined in Section 3.2. We consider each of these information classes in turn,
and we measure two scenarios, when the information under consideration is fully supplied to the
compiler and when the information is withdrawn at compile time. Information belonging to all
other classes remain fully supplied. We show the vectorization efficiency of different compilers
for each of the cases in Figure 3. Each vectorization spectrum chart has two parts, the one when
with the information supplied at compile time on the left and the second with the information
withdrawn on the right.

In addition to withdrawing each of the classes independent of each other, we also provide the
case where all classes of information are supplied or withdrawn at the same time in Figure 4.

The geometric mean variation between supplying and withdrawing information at compile time
is shown in Table 3. The vector efficiency improvements seen in the table as positive values are the
same as the gain observed by following a spectrum line from right to left in the associated vector
spectrum chart. The negative values are efficiency reductions of having the information supplied
at compile time.

The overall observation here is that exposing information improves the mean vectorization per-
formance of compilers when compared against the case where all classes of information are fully
withdrawn. In addition to this general observation, the following case-specific observations can
be made:

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

40:12 S. Siso et al.

Fig. 3. TSVC vector efficiency spectrums for each information class.

Fig. 4. TSVC vector efficiency spectrum when all classes are exposed or withdrawn simultaneously.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

Evaluating Auto-Vectorizing Compilers through Objective Withdrawal 40:13

Table 3. Percentage Variation of Vectorization Efficiency (Expressed as Geometric Mean) When

Information Is Supplied at Compile Time

Information Class Platform Compilers

GNU Intel Clang IBM PGI
AltiVec 0.1 — 0.3 0.1 –0.2

Conditional AVX-2 –1.3 –3.5 0.6 — 1.2
Parameters AVX-512 (Skylake) –2.4 –2.4 0.7 — –1.0

AVX-512 (KNL) –0.9 –4.4 1.2 — –0.7

AltiVec –1.6 — 0.4 –0.5 3.3
Loop Bounds AVX-2 –1.4 4.0 0.0 — 7.4
Parameters AVX-512 (Skylake) –0.9 2.5 1.9 — 6.0

AVX-512 (KNL) –0.3 7.3 –0.1 — 7.5

AltiVec 6.9 — 8.3 2.6 5.2
Index AVX-2 11.5 2.9 6.6 — 14.2
Parameters AVX-512 (Skylake) 12.9 5.4 11.6 — 15.9

AVX-512 (KNL) 17.6 8.3 12.3 — 20.2

AltiVec –0.5 — 0.0 –0.2 18.2
Variable AVX-2 2.9 10.1 0.1 — 39.9
Attributes AVX-512 (Skylake) 6.1 11.2 0.0 — 42.4

AVX-512 (KNL) 7.5 14.3 –0.8 — 47.3

AltiVec 5.7 — 11.3 2.2 22.1
All AVX-2 15.7 35.9 8.4 — 52.1
Parameters AVX-512 (Skylake) 17.2 38.9 14.4 — 62.7

AVX-512 (KNL) 25.2 58.5 17.5 — 64.8

(1) In almost all of the cases, hiding information from the compilers reduces their effective
vectorization efficiency. The most significant exception to this is the case of Conditional
Parameters. Withdrawing the conditional parameters yields better performance and im-
proves the average auto-vectorization efficiency across all compilers except the Clang
compiler. This counterintuitive auto-vectorization improvement when compilers have less
contextual information comes mainly from two distinct issues. First, the Intel compiler
does not vectorize the tests S261, S253, S3251, S254, and S1251 (all from the Expansion cat-
egory) when the conditional parameter values are supplied to the compiler; however, these
same tests are vectorized when the information is hidden. Looking at the compiler opti-
mization reports with the supplied information, we found that each of these loops raises
a “vector dependence prevents vectorization” remark. A manual inspection of the loops
shows that they have no actual dependencies, or, in the cases where they have dependen-
cies, those could have been been easily resolved by reordering the relevant statements in
the body of the loop. This issue only appears on the Intel compiler and for this specific
loop structure.

Additionally, the GNU and PGI compilers have a negative outlier on test S276 on all
x86 platforms. Listing 5 shows the source for S276, where the cp_n1 parameter is exposed
or withdrawn from the compiler. Looking at the assembly code produced by both com-
pilers, we can see that the GNU compiler generates a scalar branching implementation
when all conditional parameters are known at compile time. However, when the condi-
tional expression contains parameters unknown at compile time, the generated code is

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

40:14 S. Siso et al.

significantly different: the compiler generates vector code using the vcmpltps,
vmaskmovps, and vmovups instructions. The vcmpltps instruction is a SIMD version of the
“less than” operation. The vmaskmovps and vmovups instructions are the masking opera-
tion in AVX-2 and AVX-512, respectively. Given that the compiler is capable of generating
both AVX-2 and AVX-512 instructions, we believe that it is just a heuristic issue where the
compiler chose to go with the worst-performing implementation for the compile-time-
known case.

The PGI case is, however, different from these. In both scenarios, PGI produces a similar
vectorized implementation using the blendvps (SIMD conditional copy) operation. How-
ever, when the parameters are known at compile time, it chooses to distribute the value of
the conditional with a vextractf128 and multiple vpshufd operations in every loop, whereas
it generates a pure vector version when the parameter is unknown. These additional op-
erations add a significant overhead that reduces the vectorization performance. It is also
worth noting that PGI does not generate AVX-512 instructions inside this loop, and, in
fact, it defaults to the AVX-2 implementation for all x86 platforms.

Listing 5. Source Code of TSVC Test S276.

(2) Exposing Loop Bounds Parameters provides some moderate improvements with the In-
tel (2.5% to 7.3%) and PGI (3.3% to 7.5%) compilers. But this has also a marginal overall
negative impact (between –0.3% and –1.6%) on the GNU compiler.

When analyzing the regressions on the GNU compiler, we find that tests S276 and S115
make significant negative contributions to the score with supplied information. For in-
stance, in the AVX-2 platform, the tests are not vectorized when the information is sup-
plied but have a vector efficiency of ×3.9 and ×4.7, respectively, when the loop bounds
values are withdrawn.

Performance issues surrounding the test case S276 have also been discussed in (1). In
this case, the variable LEN (Listing 5) represents the loop bound whose value information
has been withdrawn. As for loop S115, it is worth noting that this benchmark represents
a triangular iteration space through a 2D array with an offset (Listing 6). When the pa-
rameters for the loop bounds bp_n1 and LEN 2 are known, the compiler is able to ensure
the condition j < i and discards the possible data dependencies in the accesses to array a.
However, with LEN 2 having a value of 256, the compiler considers that the triangular loop
is too small for a vectorized implementation and resorts to a scalar implementation. When
the loop bounds parameters values are withdrawn, the compiler uses a multiversioning
strategy to resolve possible data dependency issues. With no information about the itera-
tion length, the compiler generates a vectorized version for the no-data-dependency case,
which turns out to be more efficient.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

Evaluating Auto-Vectorizing Compilers through Objective Withdrawal 40:15

Listing 6. Source Code of TSVC Test S115.

(3) Exposing Index Parameters provides significant auto-vectorization improvements, espe-
cially on the PGI (5.2% to 20.2%), GNU (6.9% to 17.6%), and Intel (6.6% to 12.3%) compilers.

(4) Variable Attributes information also provides significant auto-vectorization improve-
ments for the overall TSVC test, especially, on the Intel (10.1% to 14.3%) and PGI (18.2%
to 47.3%) compilers. Only the Clang compiler shows a negligible impact when supply-
ing variable attributes. In fact, this compiler only exploits the restrict keyword when it
is associated to function arguments [13]. This represents one of the main weaknesses in
Clang vectorization, as shown in Figure 3(d); when array attributes are supplied, it has
the worst vectorization efficiency, expressed as geometric mean, on each x86 platform,
whereas when the information is withdrawn, it has the second best geometric mean on
the same platforms.

(5) When all parameters are hidden from the compiler, the auto-vectorization performance
decreases substantially in comparison to the vectorization achieved when all contextual
information is given. This is true across all compiler-platform pairs. We observe that the
IBM, GNU, and Clang compilers are the least sensitive to the information differences,
with variation of 2.2% (5.6% to 25.2%) and (8.4% to 17.5%) respectively. Meanwhile, the
Intel compiler shows a variation between 15.9% and 58.5% and the PGI compiler being the
most sensitive with performance variation from 22.1% to 64.8%.

(6) In general, the geometric means of the auto-vectorization efficiencies are directly corre-
lated with the underlying vector lengths. This is readily observable in the vectorization
spectrum charts. For instance, spectral lines for the AVX-512 (KNL and Skylake) platforms
achieve better efficiency compared to the AVX-2- and AltiVec-based platforms. Further-
more, when compilers are supplied with additional information, platforms with longer
vector lengths show the largest difference in auto-vectorization improvement. For exam-
ple, the GNU compiler gets 5.7% on AltiVec when all parameters are given at compile time,
whereas it improves the overall performance by 25.2% under the same conditions in the
AVX-512 (KNL) platform.

5.2 TSVC Loop Categories with Optimistic Information Supplied

In the previous section, we analyzed the impact of information withdrawal on the modified TSVC
using the aggregated vectorization efficiency metric. However, TSVC can also be subdivided into
17 categories of different loops structures. Although our macro-based testing infrastructure is able
to produce the same analysis separately for each of the categories, the space limitations do not al-
low us to discuss all of them here in detail. We therefore limit our analysis of the TSVC categories
to the case where the maximum amount of information is supplied consistently. This case is useful
to determine the best auto-vectorization performance achievable of modern compilers and archi-
tectures, but as we argue in this article, we believe that there are relevant additional insights that
can be obtained with the information withdrawal analysis.

Figures 5 and 6 present the TSVC results with contextual information always supplied to each of
the compilers and vector platforms. Again, the metric used in these figures is the geometric mean

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

40:16 S. Siso et al.

Fig. 5. Vectorization efficiency of each TSVC category when all information is supplied to the compilers

(AltiVec and AVX-2).

of the vector efficiencies. This metric provides insight about the auto-vectorization capabilities
of the compilers, but it should not be used as a metric to asses which compiler gets the absolute
best performance, as the scalar effects are being purposely normalized. Several observations can
be made from these results:

(1) All compilers, regardless of the target vectorization ISA, show similar auto-vectorization
behavior: the loop categories that cannot be vectorized by the Clang compiler on the
AVX-2 and AVX-512 (Skylake and KNL) ISAs are the same. However, the differences in
performance across architectures (for a given compiler) and compilers (for a given archi-
tectural platform) are clearly noticeable.

(2) Platforms with longer vector lengths deliver better vectorization performance. This is as
expected, with longer registers being able to deliver (theoretically) better performance.
However, this makes the performance gap between the vectorized and nonvectorized ver-
sions more significant. When directly comparing the two AVX-512 platforms, it appears
that the KNL platform offers slightly better auto-vectorization performance than the Sky-
lake platform. This is true in most of the cases. We believe that this is due to significant
improvement in the Intel compiler’s capability to perform Reduction operations. However,
this does not take into account the scalar performance of each platform and thus is not a
measure of the overall best performance.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

Evaluating Auto-Vectorizing Compilers through Objective Withdrawal 40:17

Fig. 6. Vectorization efficiency of each TSVC category when all information is supplied to the compilers

(AVX-512 (KNL) and AVX-512 (Skylake)).

(3) Regarding the multiple TSVC categories:
(a) The Recurrences and Packing categories were not vectorized by any of the compilers

regardless of the underlying platform.
(b) The Statement Reordering and Searching categories also proved challenging for most

of the compilers. Statement Reordering was only vectorized by the PGI compiler on the
three x86 platforms. The Searching category was only vectorized by the Intel compiler
on x86 platforms and by the PGI compiler exclusively on AVX-2.

For instance, Listing 7 shows the source for test S331 from the Searching category.
In this example (and in all other tests), Intel was the only compiler that generated the
AVX-512 vpcmpud operation (integer SIMD comparison that creates a mask as result).
This has led the Intel compiler to be the only one to vectorize this particular test in
the two AVX-512 platforms.

Listing 7. Source Code of TSVC Test S331.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

40:18 S. Siso et al.

(c) The Loop Restructuring, Node Splitting, and Crossing Thresholds categories just get mar-
ginal vectorization efficiency (< ×1.3) scores.

(d) The Loop Rerolling, Indirect Addressing, Linear Dependence, Expansion, and Induction

Variables categories have moderate auto-vectorization efficiency (around 25% of the
theoretical peak performance of the platform). The Intel compiler struggled to vec-
torize Indirect Addressing and Expansion. However, it offered the best results for Loop

Rerolling and Linear Dependence.
(e) The Control Flow category is not vectorized on the AltiVec platform, but compilers

manage to get up to 40% of the theoretical peak vector performance on x86 platforms.
(f) Global Data Flow and Symbolics categories show good auto-vectorization results

across all platforms and compilers. The GNU compiler generally provided the best
vectorization for the former, and the Clang compiler offered the best vectorization for
the latter.

(g) Nearly all compilers excelled on the Reductions category regardless of the platform
and offered the best auto-vectorization efficiency. A closer examination of individual
tests showed that for some tests, even the theoretical maximum vector efficiency was
exceeded. An examination of TSVC test S311 (Listing 8), which represents a canonical
addition reduction example, shows that the vectorized version uses the appropriate
set of instructions, vector registers, and unrolling factors. For instance, for the ICC-
KNL compiler-platform case, the nonvectorized assembly (Listing 9) heavily relied
on the vaddss instructions, xmm registers, and unrolling factor of 2, whereas for the
vectorized assembly (Listing 10), vaddps instructions, zmm registers, and the unrolling
factor of 8 were used.

When executed on the AVX-512 (KNL) platform, the vectorized version is 30×
faster than the scalar version. The theoretical performance difference from the 512-
bit vaddps vectorization compared to the scalar vaddss instruction is 16×. We believe
that the remaining speedup could have come from achieving better instruction-level
parallelism on each addition operation, as pipelined arithmetic instructions have a
throughput that is bigger than one instruction per clock cycle. However, the scalar
version throughput could be limited by an insufficient unrolling factor or by limita-
tions stemming from the underlying microarchitectural aspects. Further analysis is
required to confirm this hypothesis.

5.3 Application Kernels

To verify that the proposed approach has a utility beyond synthetic benchmarks, we evaluated
the impact that supplying and withdrawing the same static information has on six proxy kernels.
Although they are not full-fledged applications, they represent typical computation units found
in diverse numerical applications. Additional evidence that supplying the additional information
at compile time has impact on more complex application can be demonstrated by multiple appli-
cations that recorded vector performance improvements by exploiting such information. For in-
stance, Henderson et al. [16] and Siso et al. [28] present two scientific applications that improved
the vector performance when length of the loop bounds was provided statically.

The choice of these six specific proxy kernels was motivated by the benchmarks used to evaluate
the OpenMP SIMD pragmas [17] and the ISPC programming language [22]. The implementations
are closely based on the ISPC C baseline implementations of these same kernels. However, not
all of these kernels have instances of each of the information classes described in Section 3.2,
and therefore this analysis is limited to four configurations (C1, C2, C3, and C4), representing the
following:

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

Evaluating Auto-Vectorizing Compilers through Objective Withdrawal 40:19

Listing 8. Source Code of TSVC Test S311.

Listing 10. Assembly Code from the Auto-

Vectorized S311 Test with ICC on the KNL Platform.

Listing 9. Assembly Code from the Scalar S311 Test

with ICC on the KNL Platform.

(1) Configuration C1: vectorization: disabled, information: withdrawn
(2) Configuration C3: vectorization: enabled, information: withdrawn
(3) Configuration C2: vectorization: disabled, information: supplied
(4) Configuration C4: vectorization: enabled, information: supplied.

Figure 7 shows the results obtained for each kernel, configuration, compiler, and architecture.
It usesC1 (Vectorization: Disabled, Information: Withdrawn) in each compiler platform as a base-
line to compute the speedup of the four different configurations. Each of the application kernels
shows distinct behaviors when additional information is provided. It is also worth noting that each
kernel’s particular implementation and the information that is supplied or withdrawn has an im-
pact to the obtained results. For this reason, we provide a brief description for each of the proxy
kernels and the aspects surrounding their implementation, together with the main performance
observations from each compiler:

• Binomial Options: This is an iterative pricing model often used in finance workloads.
The implementation can supply or withdraw the information pertaining to the number of
timesteps in the iterative procedure (loop bounds) and the array attributes ensuring the non-
aliasing of the arrays. In this kernel, the GCC and ICC compilers already vectorize the code
without any additional information provided at compile time. By contrast, the PGI compiler
auto-vectorizes the code only when the extra information is presented. The Clang and IBM
compilers were not able to auto-vectorize this kernel even when additional information is
presented.

• Black-Scholes: This is another pricing model used in financial workloads. The implemen-
tation computes the Black-Scholes formula for each option. In this case, the nonaliasing
attribute in multiple arrays is the only additional information that can be supplied to or
withdrawn from the compiler. In this kernel, the Clang compiler was able to auto-vectorize
the algorithm without the nonaliasing attributes. The ICC and PGI compilers were able to
vectorize the code when additional information was provided and obtained much higher
vectorization performance in the AVX-2 and AVX-512 (both Skylake and KNL) platforms.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

40:20 S. Siso et al.

Fig. 7. Compiler comparison of macrobenchmark kernels with multiple levels of information.

• Mandelbrot: This kernel computes the Mandelbrot set for a complex function f (z) = z2 + c
for nondiverging complex number z, z ∈ Z and z > 0. The algorithm is performed over a 2D
image, with the function f (z) computed for each pixel. The information withdrawn includes
the loop bounds and a number of arithmetic parameters that are part of the computation.
None of the compilers were able to auto-vectorize the Mandelbrot kernel, irrespective of
the amount of information provided at compile time. However, all compilers managed to
improve their scalar performance by a factor of at least 2 when additional information was
provided.

• Convolution: This kernel applies a convolution mask to a 2D image by sliding the mask
in a 2D space. The information supplied to or withdrawn from the compiler includes the

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

Evaluating Auto-Vectorizing Compilers through Objective Withdrawal 40:21

nonaliasing parameters, the size of the image, the size of the mask, and the values for the
mask. All of these parameters specify the bounds of different nested loops in the algorithm.
In the kernel, all compilers managed to obtain significant scalar speedups when the infor-
mation was supplied. Additionally, the Clang, GNU, and Intel compilers offered additional
auto-vectorization improvements on top of the performance gained by the scalar optimiza-
tions. This auto-vectorization is not observed on the same compilers when the information
is withdrawn.

• Small Matrix Multiplication: This kernel implements a straightforward ijk loop matrix
multiplication. Here we used the matrix dimensions of size 32, which is small enough to
minimize the memory constrains but sufficient enough to warrant reasonable amount of
vectorization. The extra information that could be given to the compiler are the matrix
sizes, which define the multiple loop bounds. In this kernel, the GNU and Clang compilers
were able to obtain some scalar performance advantage when supplied with compile-time
information. The Intel compiler has a small scalar performance decline. However, when the
auto-vectorization was enabled, these three compilers achieved considerable vectorization
performance using the additional information.

• Stencil Computation: This is a 3D stencil kernel that iteratively updates a voxel value
by computing the average of six neighboring voxels. Stencils are often the basis for mesh
or grid-based computations, such as finite-element or finite-difference methods. The only
useful information hidden or supplied at compile time for this particular implementation
is the aliasing attributes of the arrays. All compilers were able to auto-vectorize the stencil
computation without the nonaliasing information. However, the vectorization performance
improved when nonaliasing information was made available, except for the IBM compiler.
Interestingly, the AVX-2 vectorization performance was better than the performance for the
AVX-512 case in the same platform.

6 CONCLUSION

In this article, we have proposed a new methodology for evaluating the auto-vectorizing capability
of compilers. Our proposed methodology relies on objectively supplying or withdrawing useful
information at compile time. This approach is orthogonal to the one adopted by the original and
extended versions of the TSVC benchmarks [5, 19], where they have a fixed, and optimistic, amount
of contextual information available for the compiler to use at compile time. The new proposed
approach provides a complementary and more detailed mechanism to test modern vectorizing
compilers, as it is not only able to replicate the TSVC approach but also evaluates a range of
scenarios with varying degrees of supplied information.

We applied the method to TSVC and multiple application-level proxy kernels, and performed an
exhaustive evaluation on four vector architectures (AltiVec, AVX-2, AVX-512 (Skylake), AVX-512
(KNL)) using five compilers:(GNU, Clang, PGI, Intel, and IBM). We also devised a new visualization
mechanism, namely the vector efficiency spectrum, to present, interpret, and understand these
benchmarking results.

The first observation is that in modern compilers, the resulting performance from auto-
vectorization optimization is still far from the architectural peak performance. The reasons for
the suboptimal performance can either be ascribed to dependencies that prevent vectorization or
to the inability of the compilers to apply the targeted optimization. A second observation is that
the amount of useful information presented to the compiler at compile time is crucial in determin-
ing the performance of resulting vectorized code. The exact significance of each of the information
classes on the final performance varies across the different compilers and architectures tested. In
decreasing order of importance, these classes are the Index Parameters, followed by the Array

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

40:22 S. Siso et al.

Variable Attributes and then the Loop Bounds Parameters. Moreover, we found that supplying the
values in the Conditional Parameters class leads to an auto-vectorization reduction by all compil-
ers tested. Furthermore, when more than one class of information is withdrawn, these effects are
compounded, particularly with some application-level kernels.

There are two approaches to evaluate compiler auto-vectorization capabilities of compilers: one
is to assume that compilers have access to all information, and the other is being selective in
the amount of available information. The main advantage of the latter approach, which has been
proposed in this article, is that it is able to consider a broader set of scenarios found in scientific
applications. Therefore, the proposed approach provides a new set of evaluation tools that can
help compiler developers identify weaknesses in current compiler implementations and can assist
application developers to understand and plan which information to statically include or withdraw
in their code to maximize the performance of vectorizing compilers.

REFERENCES

[1] M. Alvanos and P. Trancoso. 2016. Video SIMDBench: Benchmarking the compiler vectorization for multimedia

applications. In Proceedings of the 2016 Euromicro Conference on Digital System Design (DSD’16). 168–175.

[2] Hossein Amiri, Asadollah Shahbahrami, Angela Pohl, and Ben Juurlink. 2018. Performance evaluation of implicit and

explicit SIMDization. Microprocessors and Microsystems 63 (2018), 158–168.

[3] Christian Bienia and Kai Li. 2009. PARSEC 2.0: A new benchmark suite for chip-multiprocessors. In Proceedings of

the 5th Annual Workshop on Modeling, Benchmarking, and Simulation.

[4] Maximilien B. Breughe and Lieven Eeckhout. 2013. Selecting representative benchmark inputs for exploring micro-

processor design spaces. ACM Transactions on Architecture and Code Optimization 10, 4 (Dec. 2013), Article 37, 24

pages.

[5] D. Callahan, J. Dongarra, and D. Levine. 1988. Vectorizing compilers: A test suite and results. In Proceedings of the

1988 ACM/IEEE Conference on Supercomputing (Supercomputing’88). IEEE, Los Alamitos, CA, 98–105.

[6] Juan M. Cebrian, Magnus Jahre, and Lasse Natvig. 2014. Optimized hardware for suboptimal software: The case for

SIMD-aware benchmarks. In Proceedings of the 2014 IEEE International Symposium on Performance Analysis of Systems

and Software (ISPASS’14). 66–75.

[7] Juan M. Cebrian, Magnus Jahre, and Lasse Natvig. 2015. ParVec: Vectorizing the PARSEC benchmark suite. Computing

97, 11 (2015), 1077–1100.

[8] Vivek Deshpande, Xing Wu, and Frank Mueller. 2012. Auto-generation of communication benchmark traces. SIG-

METRICS Performance Evaluation Review 40, 2 (Oct. 2012), 99–105.

[9] Johannes Doerfert, Brian Homerding, and Hal Finkel. 2019. Performance exploration through optimistic static pro-

gram annotations. In High Performance Computing. Springer, 247–268.

[10] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. 2013. The LINPACK benchmark: Past, present and future.

Concurrency and Computation: Practice and Experience 15, 9 (2013), 803–820.

[11] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. 2004. Vectorization for SIMD architectures with alignment

constraints. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementa-

tion (PLDI’04). ACM, New York, NY, 82–93.

[12] Jesse Z. Fang. 1997. Compiler algorithms on if-conversion, speculative predicates assignment and predicated code

optimizations. In Languages and Compilers for Parallel Computing, D. Sehr, U. Banerjee, D. Gelernter, A. Nicolau, and

D. Padua (Eds.). Springer, Berlin, Germany, 135–153.

[13] Hal Finkel. 2017. Restrict-qualified pointers in LLVM. Retrieved September 4, 2019 from https://llvm.org/devmtg/

2017-02-04/Restrict-Qualified-Pointers-in-LLVM.pdf.

[14] Jason E. Fritts, Frederick W. Steiling, Joseph A. Tucek, and Wayne Wolf. 2009. MediaBench II video: Expediting the

next generation of video systems research. Microprocessors and Microsystems 33, 4 (June 2009), 301–318.

[15] Zhangxiaowen Gong, Alexandru Nicolau, Josep Torrellas, Zhi Chen, Justin Szaday, David Wong, Zehra Sura, et al.

2018. An empirical study of the effect of source-level loop transformations on compiler stability. Proceedings of the

ACM on Programming Languages 2 (OOPSLA), 1–29. DOI:https://doi.org/10.1145/3276496

[16] Tom Henderson, Jhon Michalakes, Indraneil Gokhale, and Ashish Jha. 2015. Numerical weather prediction optimiza-

tion. In High Performance Parallelism Pearls Volume Two: Multicore and Many-Core Programming Approaches. MKF

Publishers, 7–23.

[17] Michael Klemm, Alejandro Duran, Xinmin Tian, Hideki Saito, Diego Caballero, and Xavier Martorell. 2012. Extending

OpenMP* with vector constructs for modern multicore SIMD architectures. In Proceedings of the 8th International

Conference on OpenMP in a Heterogeneous World (IWOMP’12). 59–72.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

https://llvm.org/devmtg/2017-02-04/Restrict-Qualified-Pointers-in-LLVM.pdf
https://llvm.org/devmtg/2017-02-04/Restrict-Qualified-Pointers-in-LLVM.pdf
https://doi.org/10.1145/3276496

Evaluating Auto-Vectorizing Compilers through Objective Withdrawal 40:23

[18] LLVM. 2018. LLVM Test-Suite: TSVC. Retrieved September 4, 2019 from http://llvm.org/svn/llvm-project/test-suite/

trunk/MultiSource/Benchmarks/TSVC/.

[19] Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong, and David A. Padua. 2011. An evaluation of vectorizing

compilers. In Proceedings of the 2011 International Conference on Parallel Architectures and Compilation Techniques

(PACT’11). IEEE, Los Alamitos, CA, 372–382.

[20] Olga V. Moldovanova and Mikhail G. Kurnosov. 2017. Auto-vectorization of loops on Intel 64 and Intel Xeon Phi:

Analysis and evaluation. In Parallel Computing Technologies, V. Malyshkin (Ed.). Springer, Cham, Switzerland, 143–

150.

[21] Simon Moll and Sebastian Hack. 2018. Partial control-flow linearization. In Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI’18). ACM, New York, NY, 543–556. DOI:
https://doi.org/10.1145/3192366.3192413

[22] M. Pharr and W. R. Mark. 2012. ispc: A SPMD compiler for high-performance CPU programming. In Proceedings of

the 2012 Innovative Parallel Computing Conference (InPar’12). 1–13.

[23] G. Ren, P. Wu, and D. Padua. 2005. An empirical study on the vectorization of multimedia applications for multimedia

extensions. In Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium. 89b.

[24] David F. Richards, Omar Aaziz, Jeanine Cook, Hal Finkel, Brian Homerding, Peter McCorquodale, Tiffany Mintz,

Shirley Moore, Abhinacv Bhatele, and Robert Pavel. 2018. FY18 Proxy App Suite Release. Milestone Report for the

ECP Proxy App Project. Retrieved September 4, 2019 from https://osti.gov.

[25] Christopher D. Rickett, Sung-Eun Choi, and Bradford L. Chamberlain. 2005. Compiling high-level languages for vector

architectures. In Proceedings of the 17th International Conference on Languages and Compilers for High Performance

Computing (LCPC’04). 224–237.

[26] Hideki Saito, Serge Preis, Nikolay Panchenko, and Xinmin Tian. 2016. Reducing the functionality gap between auto-

vectorization and explicit vectorization. In OpenMP: Memory, Devices, and Tasks, N. Maruyama, B. R. de Supinski, and

M. Wahib (Eds.). Springer, Cham, Switzerland, 173–186.

[27] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M. Girkar, and P. Dubey. 2012. Can traditional

programming bridge the Ninja performance gap for parallel computing applications? In Proceedings of the 2012 39th

Annual International Symposium on Computer Architecture (ISCA’12). 440–451.

[28] Sergi Siso, Luke Mason, and Michael Seaton. [n.d.]. Code modernization of DLMESO LBE to achieve good perfor-

mance on the Intel Xeon Phi. In Proceedings of the EMerging Technology Conference.15–18.

[29] Kevin Skadron, Margaret Martonosi, David I. August, Mark D. Hill, David J. Lilja, and Vijay S. Pai. 2003. Challenges

in computer architecture evaluation. IEEE Computer 36 (2003), 30–36.

[30] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Giacomo Gabrielli, Matt Horsnell, et al.

2017. The ARM scalable vector extension. IEEE Micro 37, 2 (March 2017), 26–39. DOI:https://doi.org/10.1109/mm.

2017.35

[31] Xinmin Tian, Hideki Saito, Serguei V. Preis, Eric N. Garcia, Sergey S. Kozhukhov, Matt Masten, Aleksei G. Cherkasov,

and Nikolay Panchenko. 2016. Effective SIMD vectorization for Intel Xeon Phi coprocessors. Scientific Programming

2015 (Jan. 2016), Article 1, 1 page.

[32] Andrew Waterman. 2016. Design of the RISC-V Instruction Set Architecture. Technical Report. Electrical Engineering

and Computer Sciences, University of California, Berkeley.

[33] Fahimeh Yazdanpanah. 2017. An approach for analyzing auto-vectorization potential of emerging workloads. Micro-

processors and Microsystems 49 (2017), 139–149.

[34] Bo Zhao, Wei Gao, Rongcai Zhao, Lin Han, Huihui Sun, and Yingying Li. 2015. Performance evaluation of NPB

and SPEC CPU2006 on various SIMD extensions. In Big Data Computing and Communications, Y. Wang et al. (Eds.).

Springer, 257–272.

Received January 2019; revised August 2019; accepted August 2019

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 40. Publication date: October 2019.

http://llvm.org/svn/llvm-project/test-suite/trunk/MultiSource/Benchmarks/TSVC/
http://llvm.org/svn/llvm-project/test-suite/trunk/MultiSource/Benchmarks/TSVC/
https://doi.org/10.1145/3192366.3192413
https://osti.gov
https://doi.org/10.1109/mm.2017.35
https://doi.org/10.1109/mm.2017.35

