
ar
X

iv
:1

80
5.

03
47

6v
1

 [
cs

.D
S]

 9
 M

ay
 2

01
8

Tight bounds for undirected graph exploration

with pebbles and multiple agents∗

Yann Disser†1, Jan Hackfeld2, and Max Klimm3

1Graduate School CE, TU Darmstadt, Germany

disser@mathematik.tu-darmstadt.de
2School of Business and Economics, HU Berlin, Germany

{jan.hackfeld|max.klimm}@hu-berlin.de

November 6, 2018

Abstract

We study the problem of deterministically exploring an undirected and initially unknown
graph with n vertices either by a single agent equipped with a set of pebbles, or by a set of
collaborating agents. The vertices of the graph are unlabeled and cannot be distinguished
by the agents, but the edges incident to a vertex have locally distinct labels. The graph is
explored when all vertices have been visited by at least one agent. In this setting, it is known
that for a single agent without pebbles Θ(logn) bits of memory are necessary and sufficient to
explore any graph with at most n vertices. We are interested in how the memory requirement
decreases as the agent may mark vertices by dropping and retrieving distinguishable pebbles,
or when multiple agents jointly explore the graph. We give tight results for both questions
showing that for a single agent with constant memory Θ(log logn) pebbles are necessary
and sufficient for exploration. We further prove that using collaborating agents instead of
pebbles does not help as Θ(log log n) agents with constant bits of memory each are necessary
and sufficient for exploration.

For the upper bounds, we devise an algorithm for a single agent with constant memory
that explores any n-vertex graph using O(log logn) pebbles, even when n is not known a
priori. The algorithm terminates after polynomial time and returns to the starting vertex.
Since an additional agent is at least as powerful as a pebble, this implies that O(log logn)
agents with constant memory can explore any n-vertex graph. For the lower bound, we show
that the number of agents needed for exploring any graph with at most n vertices is already
Ω(log logn) when we allow each agent to have at most O(log n1−ε) bits of memory for any
ε > 0. This also implies that a single agent with sublogarithmic memory needs Θ(log logn)
pebbles to explore any n-vertex graph.

1 Introduction

The exploration of unknown graphs subject to space or time bounds is a fundamental problem
with applications to robot navigation, Internet crawling, and image recognition. Its pivotal
role within the theory of computation stems from the fact that it is a natural abstraction of
a process of computing where nodes correspond to states, edges correspond to possible state
transitions, and the goal is to find an accepting state when starting in a given initial state. Single
agent exploration then corresponds to computing with a single processing unit while exploration

∗Results concerning exploration with pebbles appeared in preliminary form in [17].
†Supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate

School CE at TU Darmstadt.

1

http://arxiv.org/abs/1805.03476v1

with multiple agents corresponds to parallel computing. In this context, graph exploration and
traversal problems have proven to be useful to study the relationship between probabilistic and
deterministic space-bounded algorithms [35].

The time and space complexity of undirected graph exploration by a single agent is fairly
well understood. Aleliunas et al. [2] showed that a random walk of length n5 log n visits all
vertices of any n-vertex graph with high probability. When n is known, it is thus possible to
use a counter that keeps track of the number of steps taken to obtain a probabilistic algorithm
that explores any graph of size n in polynomial time and O(log n) space with high probability.
In a breakthrough result, Reingold [32] showed that the same time and space complexity can
be achieved by a deterministic algorithm. Both the randomized algorithm of Aleliunas et al.
and the deterministic algorithm of Reingold work for anonymous graphs where vertices are
indistinguishable. Logarithmic memory is in fact necessary to explore all anonymous graphs
with n vertices; see Fraigniaud et al. [22].

Already the early literature on graph exploration problems is rich with examples where ex-
ploration is made feasible or the time or space complexity of exploration by a single agent can be
decreased substantially by either allowing the agent to mark vertices with pebbles or by cooper-
ating with other agents. For instance, two-dimensional mazes can be explored by a single agent
with finite memory using two pebbles [36, 8, 7], or by two cooperating agents with finite memory
[7], while a single agent with finite memory (and even a single agent with finite memory and a
single pebble) does not suffice [9, 25]. Directed anonymous graphs can be explored in polyno-
mial time by two cooperating agents [5] or by a single agent with Θ(log log n) indistinguishable
pebbles and O(n2∆ log n) bits of memory [4, 21], where ∆ is the maximum out-degree in the
graph. Note that a single agent needs at least Ω(n log∆) bits of memory in this setting even if it
is equipped with a linear number of indistinguishable pebbles [21] and it needs exponential time
for exploration if it only has a constant number of pebbles and no upper bound on the number
of vertices is known [4].

Less is known regarding the complexity of general undirected graph exploration by more than
one agent or an agent equipped with pebbles. The only result in this direction is due to Rollik [33]
showing that there are finite graphs, henceforth called traps, that a finite set of k agents each with
a finite number s of states cannot explore. Fraigniaud et al. [24] revisited Rollik’s construction
and observed that the traps have Õ(s ↑↑ (2k + 1)) vertices, where a ↑↑ b := aa

.. a

with b levels
in the exponent and Õ suppresses lower order terms. Fraigniaud et al. also gave an improved
upper bound of Õ(s ↑↑ (k + 1)). While it is a rather straightforward observation that an agent
with s states and p pebbles is less powerful than a set of p + 1 agents with s states each, no
better bounds for a single agent with pebbles were known. Even more striking is the lack of any
non-trivial upper bounds for the exploration with several agents or the single agent exploration
with pebbles for undirected graphs. Specifically, there was no algorithm known that explores
an undirected graph with sublogarithmic space when more than one agent and/or pebbles are
allowed.

1.1 Our results

We give tight bounds for both the space complexity of undirected graph exploration by a single
agent with pebbles, as well as by a set of cooperating agents.

1.1.1 Results for exploration with pebbles

For the exploration of a graph by a single agent with constant memory, we show that Θ(log log n)
distinguishable pebbles are necessary and sufficient to explore all undirected anonymous graphs
with at most n vertices.

Our proof of the upper bound is constructive, i.e., we devise an algorithm that explores
any graph with n vertices using O(log log n) pebbles (Corollary 9). Our algorithm terminates

2

after having explored the graph and returns to the starting vertex. We further show that the
exploration time, i.e., the number of edge traversals of the agent, is polynomial in the size of the
graph. Our algorithm does not require n to be known and gradually increases the number of
used pebbles during the course of the algorithm such that for any n-vertex graph at most f(n)
pebbles are used where f(n) ∈ O(log log n).

For a lower bound we show that a single agent with sublogarithmic memory (more precisely
O((log n)1−ǫ) bits of memory for an arbitrary constant ǫ > 0) already needs Ω(log log n) pebbles
for exploring every graph with n vertices (Corollary 25). Our results fully characterize the tradeoff
between the memory and the number of pebbles of an agent needed for exploration. It turns out
that this tradeoff is governed by two thresholds. When the agent has Ω(log n) bits of memory,
no pebbles are needed at all. But as soon as the memory is O((log n)1−ǫ) already Ω(log log n)
pebbles are needed to explore all n-vertex graphs. On the other hand, with Ω(log log n) pebbles
already a constant number of bits of memory are sufficient for exploration.

1.1.2 Results for multi-agent exploration

For collaborative graph exploration, we show that Θ(log log n) agents with constant memory are
necessary and sufficient to explore all undirected anonymous graphs with at most n vertices.

We first make the rather straightforward observation that a set of p+1 agents with a constant
set of states each can reproduce the exploration by a single agent with a constant number of states
and p pebbles in the following way. One of the agents replicates the moves of the single agent while
the others do not move independently and simply act as pebbles (Lemma 2). This observation
allows to rephrase our single agent exploration algorithm with O(log log n) pebbles as a multi-
agent exploration algorithm with O(log log n) agents and constant memory each (Corollary 10).
As a perhaps surprising result, we show that this is optimal in terms of the asymptotic number
of agents. To prove this lower bound, we construct a family of graphs with O(s2

5k
) vertices that

trap any set of k agents with s states each (Theorem 23). Our construction exhibits dramatically
smaller traps with only a doubly exponential number of vertices compared to the traps of size
Õ(s ↑↑ (2k + 1)) and Õ(s ↑↑ (k + 1)) due to Rollik [33] and Fraigniaud et al. [24], respectively.
As a consequence of our improved bound on the size of the trap, we are able to show that, even
if we allow O((log n)1−ǫ) bits of memory for an arbitrary constant ǫ > 0 for every agent, the
number of agents needed for exploration is at least Ω(log log n) (Theorem 24). This construction
also yields the lower bound for a single agent with pebbles, as p + 1 agents with O((log n)1−ǫ)
bits of memory each are more powerful than one agent with O((log n)1−ǫ) bits of memory and
p pebbles. Our results again allow to fully describe the tradeoff between the number of agents
and the memory of each agent. When agents have Ω(log n) memory, a single agent explores
all n-vertex graphs. For agents with O((log n)1−ǫ) memory, Ω(log log n) agents are needed. On
the other hand, when Ω(log log n) agents are available it is sufficient that each of them has only
constant memory.

1.2 Related work

Exploration algorithms were first designed for mazes which are finite anonymous subgraphs of
the two-dimensional grid where edges are labeled with their cardinal direction. Shannon [37]
constructed an actual physical device – Shannon’s mouse – that explores a 5 × 5 grid and uses
constant memory per vertex. Budach [9] gave a proof that no agent with finite memory can
explore any finite maze. Shah [36] proved that exploration is possible when the agent can
use five pebbles. Blum and Sakoda [8] reduced the number of pebbles to four, and Blum and
Kozen [7] showed that in fact two pebbles suffice. This result is tight as Hoffmann [25] proved
that one pebble does not suffice. Blum and Kozen [7] also showed that any maze can be explored
by two agents with finite memory. As a contrast, they showed that there are finite planar
cubic graphs that cannot be explored by three agents. Rollik [33] strengthened the latter result

3

showing that for any finite set of agents with finite memory there is a planar graph – a so-
called trap – that cannot be explored. For k agents, the trap is of order Õ(s ↑↑ (2k + 1)), where
a ↑↑ b := aa

.. a

with b levels in the exponent. This bound was improved by Fraigniaud et al. [24]
to Õ(s ↑↑ (k + 1)), and is further improved in this paper (see § 1.1.2).

Aleliunas et al. [2] showed that a random walk of length n5 log n explores any n-vertex graph
with high probability. By the probabilistic method, this implies the existence of a universal
traversal sequence (UTS) of polynomial length for regular graphs. A (n, d)-UTS is a sequence of
port numbers in {0, . . . , d− 1} such that an agent starting in an arbitrary vertex and following
the port numbers of the sequence explores every d-regular graph with n vertices. Using a counter
for the number of steps, this yields a log-space randomized algorithm constructing a UTS when
the number of vertices is known. Using Nisan’s derandomization technique [31], this gives a
deterministic algorithm with O(log2 n) memory. The length of the sequence, however, increases
to 2O(log2 n) = O(nlogn). Explicit constructions of UTS are only known for cycles (Istrail [26]) and
to date it remains open whether an UTS of polynomial length can be constructed deterministically
in log-space for general graphs.

As a remedy for the perceived difficulty of constructing a UTS, Koucký [28] introduced the
related concept of universal exploration sequences (UXS) where the next port number depends
on the port number of the edge to the previously visited vertex. Reingold [32] showed that an
(n, d)-UXS can be constructed deterministically in O(log n) space. A slight modification of his
algorithm allows to explore any (not necessarily) regular graph, thus, solving the undirected
s-t connectivity problem in log-space. Fraigniaud et al. [22] showed that Ω(log n) memory is
necessary to explore all graphs with up to n vertices. The set of graphs Gk that can be explored
by an agent with k states is increasing in the sense that there is polynomial h : N→ N such that
Gh(i) is strictly included in Gi, see Fraigniaud et al. [23].

Koucký [28] noted that 12n is a UXS for trees. As remarked by Diks et al. [16], this gives rise
to a perpetual tree exploration algorithm that runs forever, and eventually visits all vertices of
the tree. For the cases that the exploration algorithm is required to terminate they showed that
Ω(log log log n) bits of memory are needed. If the algorithm is even required to terminate at the
same vertex where it started, Ω(log n) bits of memory are needed. A matching upper bound for
the latter problem was given by Ambühl et al. [3].

Regarding the exploration time, Dudek et al. [18] showed that an agent provided with a
pebble can map an undirected graph in time O(n2∆). In a similar vein, Chalopin et al. [12]
showed that if the starting node can be recognized by the agent, the agent can explore the
graph in time O(n3∆) using O(n∆ log n) memory. Exploration with the objective of minimizing
the exploration time also has been studied in terms of competitive analysis. In this context an
exploration algorithm for an edge weighted graph is called c-competitive if the sum of the weights
of the edges traversed by the algorithm is at most c times that of an optimal offline walk. If
the task is to visit all vertices of a vertex-labeled weighted graph and an agent learns about all
neighbors when arriving at a node, a nearest neighbor greedy approach is Θ(log n)-competitive
[34]. Algorithms with constant competitive ratios are only known for planar graphs [27] and,
more generally, graphs with bounded genus [30].

Exploration becomes considerably more difficult for directed graphs, where random walks
may need exponential time to visit all vertices. Without any constraints on memory, Bender et
al. [4] gave an O(n8∆2)-time algorithm that uses one pebble and explores (and maps) am unla-
beled directed graph with maximum degree ∆, when an upper bound on the number n of vertices
is known. For the case that such an upper bound is not available, they proved that Θ(log log n)
pebbles are both necessary and sufficient. Concerning the space complexity of directed graph
exploration, Fraigniaud and Ilcinkas [21] showed that Ω(n log∆) bits of memory are necessary to
explore any directed graph with n vertices and maximum degree ∆, even with a linear number
of pebbles. They provided an O(n∆ log n)-space algorithm for terminating exploration with an
exponential running time using a single pebble. They also gave an O(n2∆ log n)-space algorithm

4

running in polynomial time and using O(log log n) indistinguishable pebbles. According to Ben-
der et al. [4] at least Ω(log log n) pebbles are necessary in this setting. For the exploration time of
labeled directed graphs, where the task is to traverse all edges, the competitive ratios achievable
by online algorithms are closely related to the deficiency of the graph [15, 1, 19]. If, on the other
hand, the agent learns about all neighbors when arriving at a node and has to visit all vertices
of the graph, the best possible competitive ratio is Θ(n), even for Euclidean planar graphs [20].

Further related is the problem of exploring geometric structures in the plane, see, e.g., [10, 11]
for the exploration of simple polygons and [6, 14] for the exploration of other geometric terrains.

1.3 Techniques and outline of the paper

In § 2, we fix notation and introduce the agent model. We give formal proofs of the intuitive
facts that for undirected graph exploration an additional agent (with two states) is more powerful
than a pebble, and a pebble is more powerful than a bit of memory (Lemmas 1 and 2).

Our main positive result is presented in § 3 where we give a single agent exploration algorithm
that explores any n vertex graph with O(log log n) pebbles and O(log log n) bits of memory. In
light of the lemmata presented in § 2, we obtain as direct corollaries that (a) a single agent
with O(log log n) pebbles and constant memory can explore any n-vertex graph and (b) a set of
O(log log n) agents with constant memory each can explore any n-vertex graph.

For the algorithm, we use the concept of universal exploration sequences due to Koucký [28].
One of our main building blocks is the algorithm of Reingold [32] that takes n and d as input
and deterministically constructs an exploration sequence universal to all d-regular graphs using
O(log n) bits of memory. The general idea of our algorithm is to run Reingold’s algorithm with
a smaller amount of seed memory a. As the seed memory is substantially less than O(log n),
the algorithm will, in general, fail to explore the whole graph. We show, however, that the
algorithm will visit 2Ω(a) distinct vertices (Lemma 5). Reinvoking Reingold’s algorithm allows us
to deterministically walk along these vertices in the order of exploration of Reingold’s algorithm.
Using this traversal, we encode additional memory by placing a subset of pebbles on the vertices
along the walk. Having boosted our memory this way, we run again Reingold’s algorithm, this
time with more memory, and recurse. At some recursion depth, running Reingold’s algorithm
with a∗ bits of memory will visit less than 2Ω(a∗) distinct vertices. We show that this can only
happen when the graph is fully explored which allows to terminate the algorithm when this event
occurs. Unwrapping all levels of recursion then also allows to return to the starting vertex. The
ability of our algorithm to terminate and return to the starting vertex after successful exploration,
stands in contrast to Reingold’s algorithm that is only able to terminate when being given the
number n of vertices as input.

There are a couple of technical difficulties to make these ideas work. The main challenge is
that the memory generated by placing pebbles along a walk in the graph is implicit and can only
be accessed and altered locally. To still make use of the memory, we do not work with Reingold’s
algorithm directly but consider an implementation of Reingold’s algorithm on a Turing machine
with logarithmically bounded working tape. We show that the tape operations on the working
tape can be reproduced by the agent by placing and retrieving the pebbles on the walk. This
allows to use the memory encoded by the pebble positions for further runs of Reingold’s algorithm.
In each recursion, we only need a constant number of pebbles and additional states. We further
show that O(log log n) recursive calls are necessary to explore an n-vertex graph so that the total
number of pebbles needed is O(log log n).

A second challenge is that Reingold’s algorithm produces a UXS for regular graphs which
our graph need not be. A natural approach to circumvent this issue is to apply the technique
of Koucký [29] that allows to locally view vertices with degree d as cycles of 3d subvertices with
degree 3 each. Unfortunately, this approach requires O(log d) bits of memory if we keep track of
the current subvertex which may exceed the memory of our agent. To circumvent this issue, we
store the current subvertex only implicitly and navigate the graph in terms of subvertex index

5

offsets instead of the actual subvertex indices.
Our general lower bound is presented in § 4. Specifically, we show that for a set of cooperative

agents with sublogarithmic memory of O((log n)1−ε) for some constant ε > 0, Ω(log log n) agents
are needed to explore any undirected graph with n vertices. In light of our reduction presented in
§ 2, this implies that an agent with sublogarithmic memory needs Ω(log log n) pebbles to explore
any n-vertex graph.

To prove the lower bound, we use the concept of an r-barrier. Informally, an r-barrier is a
graph with two special entry points such that any subset of up to r agents with s states cannot
reach one entry point when starting from the other. Moreover, a set of r + 1 agents can explore
an r-barrier, but the agents can only leave the barrier via the same entry point. We recursively
construct an r-barrier by replacing edges by (r − 1)-barriers. A set of r agents traversing this
graph needs to stay close to each other to be able to traverse the barriers and make progress.
However, if the agents stay close to each other, the states and relative positions of the agents
become periodic relatively quickly, and we can use this fact to build an r-barrier. By carefully
bounding the size of the r-barriers in our recursive construction, we obtain a trap of size O(s2

5k
)

for any given set of k agents with at most s states each. The size of the trap directly implies
that the number of agents with at most O((log n)1−ε) bits of memory needed for exploring any
graph of size n is at least Ω(log log n).

2 Terminology and model

2.1 The graph

Let G = (V,E) be an undirected graph with n vertices to be explored by a single agent or a
group of agents. All agents start at the same vertex v0 ∈ V . We say that G is explored when
each vertex of G has been visited by at least one agent. Every graph considered in this paper
is assumed to be connected as otherwise exploration is not possible. We further assume that
the graph is anonymous, i.e., the vertices of the graph are unlabeled and therefore cannot be
identified or distinguished by the agents. To enable sensible navigation, the edges incident to a
vertex v have distinct labels 0, . . . , dv−1, where dv is the degree of v. This way every edge {u, v}
has two – not necessarily identical – labels called port numbers, one at u and one at v.

2.2 The agents

We model an agent as a tuple A = (Σ, Σ̄, δ, σ∗) where Σ is its set of states, Σ̄ ⊆ Σ is its set
of halting states, σ∗ ∈ Σ is its starting state, and δ is its transition function. The transition
function governs the actions of the agent and its transitions between states based on its local
observations. Its exact specifics depend on the problem considered, i.e., whether we consider a
single agent or a group of agents and whether we allow the agents to use pebbles. Exploration
terminates when a halting state is reached by all agents.

2.2.1 A single agent without pebbles

The most basic model is that of a single agent A without any pebbles. In each step, the agent
observes its current state σ ∈ Σ, the degree dv of the current vertex v and the port number at
v of the edge from which v was entered. The transition function δ then specifies a new state
σ′ ∈ Σ of the agent and a move l′ ∈ {0, . . . , dv − 1}∪{⊥}. If l′ ∈ {0, . . . , dv − 1} the agent enters
the edge with the local port number l′, whereas for l′ = ⊥ it stays at v. Formally, the transition
function is a partial function

δ : Σ× N× N→ Σ× (N ∪ {⊥}),

(σ, dv , l) 7→ (σ′, l′).

6

Note that the transition function only needs to be defined for l with l < dv and degrees dv that
actually appear in the class of graphs considered. It is standard to define the space requirement
of an an agent with states Σ as log |Σ| as this is the number of bits needed to encode every state,
see, e.g., Cook and Rackoff [13].

2.2.2 A single agent with pebbles

We may equip the agent A with a set P = {1, . . . , p} of unique and distinguishable pebbles.
At the start of the exploration the agent is carrying all of its pebbles. As before, the agent
observes in each step the degree dv of the current vertex v and the port number from which
v was entered. In addition, the agent has the ability to observe the set of pebbles PA that it
carries and the set of pebbles Pv present at the current vertex v. The transition function δ then
specifies the new state σ′ ∈ Σ of the agent, and a move l′ ∈ {0, . . . , dv − 1} ∪ {⊥} as before. In
addition, the agent may drop any subset Pdrop ⊆ PA of carried pebbles and pick up any subset of
pebbles Ppick ⊆ Pv that were located at v, so that after the transition the set of carried pebbles
is P ′

A = (PA \ Pdrop) ∪ Ppick and the set of pebbles present at v is P ′
v = (Pv \ Ppick) ∪ Pdrop.

Formally, we have

δ : Σ× N× N× 2P × 2P → Σ× (N ∪ {⊥})× 2P × 2P ,

(σ, dv , l, PA, Pv) 7→ (σ′, l′, P ′
A, P

′
v).

The transition function δ is partial as it is only defined for PA ∩ Pv = ∅. We assume that the
pebbles are actual physical devices dropped at the vertices so that no space is needed to manage
the pebbles, thus, the space requirement of the agent is again log |Σ|.

2.2.3 A set of agents without pebbles

Consider a set of k cooperative agents A1 = (Σ1, Σ̄1, δ1, σ
∗
1), . . . , Ak = (Σk, Σ̄k, δk, σ

∗
k) jointly

exploring the graph. We assume that all agents start at the same vertex v0. In each step, all
agents synchronously determine the set of agents they share a location with, as well as the states
of these agents. Then, all agents move and alter their states synchronously according to their
transition functions δ1, . . . , δk. The transition function of agent i determines a new state σ′ and
a move l′ as before. Formally, let

Σ−i = (Σ1 ∪ {⊥}) × · · · × (Σi−1 ∪ {⊥})× (Σi+1 ∪ {⊥})× · · · × (Σk ∪ {⊥})

denote the states of all agents potentially visible to agent Ai where a ⊥ at position j (or (j − 1)
if j ≥ i) stands for the event that agent Ai and agent Aj are located on different vertices. Then,
the transition function δi of agent Ai is a partial function

δi : Σi ×Σ−i × N× N→ Σi × (N ∪ {⊥}),

(σi,σ−i, dv , l) 7→ (σ′
i, l

′
i).

The overall memory requirement is
∑k

i=1 log |Σi|.

2.3 Relationship between agent models

In order to compare the capability of an agent A with s states and p pebbles to another agent A′

with s′ states and p′ pebbles or a set of agents A, we use the following notion: We say that the
walk of an agent A is reproduced by an agent A′ in a graph G, if the sequence of edges traversed
by A is a subsequence of the edges visited by A′ in G. Put differently, A traverses the same
edges as A′ in the same order, but for every edge traversal of A the agent A′ can do an arbitrary
number of intermediate edge traversals. Similarly, we say that a set of agents A reproduces the
walk of an agent A in G, if there is an agent A′ ∈ A such that A′ reproduces the walk of A in G.

We first formally show the intuitive fact that pebbles are more powerful than memory bits.

7

Lemma 1. Let A be an agent with s states and p pebbles exploring a set of graphs G. Then
there is an agent A′ with six states and p+ ⌈log s⌉ pebbles that reproduces the walk of A on every
G ∈ G and performs at most three edge traversals for every edge traversal of A.

Proof. As the set of graphs G that can be explored by an agent with s states and p pebbles is
non-decreasing in s, it suffices to show the claimed result for the case that s is an integer power
of two. Let A = (Σ, Σ̄, δ, σ∗) be an agent with a set of p pebbles P and s = |Σ| = 2r, r ∈ N states
exploring all graphs G ∈ G. In the following, we construct an agent A′ = (Σ′, Σ̄′, δ′, σ∗′) with
six states Σ′ = {σ∗′, σcomp, σ̄halt, σback−1, σback−2, σswap}, one halting state Σ̄′ = {σ̄halt}, and a
set P ′ of |P ′| = p + r pebbles. The general idea is to let A′ store the state of A by dropping
and retrieving the additional r pebbles. To this end, we identify p of the pebbles of A′ with
the p pebbles of A and call the additional set of r pebbles P ′

Σ, i.e., P ′ = P ∪ P ′
Σ with |P | = p

and |P ′
Σ| = r, respectively. Since |P ′

Σ| = r and |Σ| = s = 2r, there is a canonical bijection
f : Σ→ 2P

′
Σ . Every edge traversal of agent A in a state σ, will be simulated by agent A′ in the

computation state σcomp while carrying the set of pebbles f(σ) plus the additional pebbles that
A is carrying. We need the additional states σback−1, σback−2, σswap to move all pebbles in P ′

Σ

encoding the state of A to the next vertex in some intermediate steps.
At the start of the exploration, A′ remains at the starting vertex and stores the starting

state σ∗ of agent A by dropping the set of pebbles (P ′
Σ\f(σ

∗)). Formally, we define the transition
from the starting state σ∗′ of agent A′ as

δ′(σ∗′, dv, l, P
′, ∅) = (σcomp,⊥, f(σ

∗) ∪ P, (P ′
Σ \ f(σ

∗)).

for all dv, l ∈ N.
Next, we define the transition function δ′ of A′ for the case that A′ is in its computing

state σcomp, i.e., we want to simulate the change of state of A and traverse the same edge. If
σ = f−1(PA′ ∩ P ′

Σ) is the current state of agent A and agent A transitions according to

δ(σ, dv , l, PA′ ∩ P,Pv ∩ P) = (σ′, l′, P ′
A, P

′
v) (1)

with σ′ ∈ Σ, l′ ∈ N and P ′
A, P

′
v ∈ 2P

′
, then we define

δ′(σcomp, dv , l, PA′ , Pv) =











(σcomp, l′, P ′
A ∪ f(σ′), P ′

v ∪ (P ′
Σ \ f(σ

′)) if l′ = ⊥ and σ′ /∈ Σ̄,

(σback−1, l
′, P ′

A ∪ f(σ′), P ′
v ∪ (P ′

Σ \ f(σ
′)) if l′ 6= ⊥ and σ′ /∈ Σ̄,

(σhalt, l′, P ′
A ∪ f(σ′), P ′

v ∪ (P ′
Σ \ f(σ

′)) else.

(2)

Note that before and after this transition the subset of pebbles from P ′
Σ carried by A′ encodes

the state of A via the bijection f . However, if A traverses an edge without entering a halting
state, we also need to fetch the remaining pebbles from P ′

Σ from the previous vertex to be able to
encode the state of A in the future. To this end, A′ switches to the state σback−1. The fetching
will be done in three steps: First, A′ drops all pebbles in f(σ′), moves to the previous vertex and
changes its state to σback−2. Formally, this means

δ′(σback−1, dv , l, PA′ , Pv) =
(

σback−2, l, PA′ \ P ′
Σ, Pv ∪

(

P ′
Σ ∩ PA′

))

for all dv, l ∈ N and PA′ , Pv ∈ 2P
′
with PA′∩Pv = ∅. Then it picks up the pebbles in (P ′

Σ \ f(σ
′)),

returns to the current vertex of A and changes its state to σswap, i.e.,

δ′(σback−2, dv, l, PA′ , Pv) =
(

σswap, l, PA′ ∪
(

P ′
Σ ∩ Pv

)

, Pv \ P
′
Σ

)

for all dv, l ∈ N and PA′ , Pv ∈ 2P
′
with PA′ ∩ Pv = ∅. Lastly, agent A′ swaps the set of carried

pebbles P ′
Σ \f(σ

′) and the set f(σ′) of pebbles on the current vertex by performing the transition

δ′(σswap, dv, l, PA′ , Pv) =
(

σcomp,⊥, PA′ ∪
(

P ′
Σ ∩ Pv

)

, Pv ∪
(

P ′
Σ ∩ PA′

))

8

for all dv, l ∈ N and PA′ , Pv ∈ 2P
′
with PA′ ∩ Pv = ∅.

A simple inductive proof establishes that the state σ of A in every step of the exploration of
a graph G ∈ G corresponds to the set of pebbles in P ′

Σ carried by A′ in its computation state
σcomp, i.e., σ = f−1 (PA′ ∩ P ′

Σ). Moreover, if agent A in state σ traverses an edge {v,w} from a
vertex v to a vertex w and does not move to a halting state, then A′ will traverse the edge {v,w}
three times and afterwards again the set of pebbles carried by A will correspond to PA′ ∩P and
the state of A to σ = f−1 (PA′ ∩ P ′

Σ). If A remains at the same vertex or moves to a halting
state then this transition is mirrored by a single transition of agent A′. In particular, agent A′

visits exactly the same vertices as A in every graph G ∈ G while performing at most three times
the number of edge traversals.

Next, we show the intuitive result that an additional agent is more powerful than a pebble.

Lemma 2. Let A be an agent with s states and p pebbles exploring a set G of graphs. Then,
there is a set A = (A0, . . . , Ap) of p+ 1 agents, where A0 has s states and all other agents have
two states, that reproduce the walk of A in every graph G ∈ G. Moreover, for every edge traversal
of A each agent in A performs at most one edge traversal.

Proof. Let A = (Σ, Σ̄, δ, σ∗) be an agent with |Σ| = s and a set P = {1, . . . , p} of p pebbles
exploring all graphs G ∈ G. We proceed to construct a set A = {A0, . . . , Ap} of p + 1 agents
Ai = (Σi, Σ̄i, δi, σ

∗
i), i ∈ {0, . . . , p} that reproduces the walk of A on all graphs G ∈ G. In this

construction, agent A0 represents the original agent A while every agent Ai for i > 0 represents
a pebble.

For agent A0, we set Σ0 = Σ, Σ̄0 = Σ̄, and σ∗
0 = σ∗. For every agent Ai with i ∈ P , we set

Σi = {ci, di}, Σ̄i = Σi, and σ∗
i = ci. Intuitively, the state ci simulates that pebble i is carried

and di simulates that the pebble is dropped. In every step, we let agent A0 and the agents
Ai corresponding to a carried pebble do the same transitions as agent A. Agents that are not
sharing their current vertex with A0 remain at their vertex and in their state. Let σ−i,j for
i, j ∈ {0, . . . , p} with i 6= j denote the state of agent Aj visible to agent Ai, i.e., σ−i,j = σj if
Ai and Aj share the same vertex and σ−i,j = ⊥ otherwise. Specifically, to define the transition
functions δi(σi,σ−i, dv , l) for i ∈ {0, . . . , p}, σi ∈ Σi, σ−i ∈ Σ−i and dv, l ∈ N, we first compute

δ(σ0, dv , l, {i ∈ P : σ−0,i = ci}, {i ∈ P : σ−0,i = di}) = (σ′
0, l

′, P ′
A, P

′
v)

with σ′
0 ∈ Σ, l′ ∈ N, and P ′

A, P
′
v ∈ 2P . We then set

δ0(σ0,σ−0, dv , l) = (σ′
0, l

′)

and

δj(σj,σ−j , dv , l) =











(σj ,⊥) if σ0 = ⊥

(cj , l
′) if σ0 6= ⊥ and j ∈ P ′

A

(dj ,⊥) if σ0 6= ⊥ and j ∈ P ′
v

for all j ∈ P .
To finish the proof, fix a graph G ∈ G and consider the transitions of agent A and the set of

agents A in G. A simple inductive proof shows that after i transitions, the state and position of
agent A equals the state and position of agent A0, the position of agent Aj equals the position
of pebble j and σj = cj if and only if pebble j is carried by A for all j ∈ P . This implies the
claim.

Note that, for ease of presentation, we allow agents to make transitions even when they are
in one of their halting states. We need this property in the proof above to show that two-state
agents are more powerful than pebbles (cf. Lemma 2) in general. However, this reduction only

9

needs agents to make transitions from their halting states to other halting states, and only when
colocated with another agent that has not yet reached a halting state. Furthermore, our main
algorithm for single-agent exploration with pebbles that we devise in § 3 has the special property
that the agent A0 returns to the starting vertex carrying all pebbles after having explored the
graph. Thus, for our algorithm it is not necessary that agents can make transitions from halting
states as we could add an additional halting state to the two-state agents to which they transition
once exploration is complete and A0 has returned to the starting vertex.

3 Exploration algorithms

In this section, we devise an agent exploring any graph on at most n vertices with O(log log n)
pebbles and O(log log n) memory. By the reductions between the agents’ models given in § 2
this implies that (a) an agent with O(log log n) pebbles and constant memory can explore any
n-vertex graph and (b) that a set of O(log log n) agents with constant memory each can explore
any n-vertex graph.

For our algorithm, we use the concept of exploration sequences (Koucký [28]). An exploration
sequence is a sequence of integers e0, e1, e2, . . . that guides the walk of an agent through a graph G
as follows: Assume an agent starts in a vertex v0 of G and let l0 = 0. Let vi denote the agent’s
location in step i and li the port number of the edge at vi leading back to the previous location.
Then, the agent follows the exploration sequence e0, e1, e2, . . . if, in each step i, it traverses
the edge with port number (li + ei) mod dvi at vi to the next vertex vi+1, where dvi is the
degree of vi. An exploration sequence is universal for a class of undirected, connected, locally
edge-labeled graphs G if an agent following it explores every graph G ∈ G for any starting
vertex in G, i.e., for any starting vertex it visits all vertices of G. For a set M , we further use
the notation M∗ :=

⋃∞
i=1M

i to denote the set of finite sequences with elements in M . The
following fundamental result of Reingold [32] establishes that universal exploration sequences
can be constructed in logarithmic space.

Theorem 3 ([32], Corollary 5.5). There exists an algorithm taking n and d as input and pro-
ducing in O(log n) space an exploration sequence universal for all connected d-regular graphs on
n vertices.

Reingold’s result implies in particular that there is an agent without pebbles and O(nc) states
for some constant c that explores any d-regular graph with n vertices when both n and d are
known. We further note that Reingold’s algorithm can be implemented on a Turing machine that
has a read/write tape of length O(log n) as work tape and writes the exploration sequence to a
write only output tape, see [32, § 5] for details. For formal reasons the Turing machine in [32]
additionally has a read-only input tape from which it reads the values of n and d encoded in
unary so that the space complexity of the algorithm is actually logarithmic in the input length.
For our setting, it is sufficient to assume that n and d are given as binary encoded numbers on
the working tape of length O(log n), as we care only about the space complexity of exploration
in terms of the number of vertices n.

As a first step, we show in Lemma 4 how to modify Reingold’s algorithm for 3-regular graphs
to yield a closed walk containing an exponential number of vertices in terms of the memory used.
Afterwards, we extend this result to general graphs in Lemma 5.

Lemma 4. For any z ∈ N, there exists a O(log z)-space algorithm producing an exploration
sequence w ∈ {0, 1, 2}∗ such that for all connected 3-regular graphs G with n vertices the following
hold:

1. an agent following w in G explores at least min{z, n} distinct vertices,

2. w yields a closed walk in G,

10

Algorithm 1 Turing machine M computing exploration sequence for 3-regular graphs.

for t ∈ {1, . . . , 2a} do

if t ≤ a
run M0 for t steps to obtain element et of the exploration sequence generated by M0

output et
else if t = a+ 1

output 0
else if t ≥ a+ 2

run M0 for 2a+ 2− t steps to obtain element e2a+2−t of exploration sequence of M0

output −e2s+2−t mod 3

3. the length of w is bounded by zO(1).

Proof. By Theorem 3, there is a Turing machine M0 with a tape of length O(log z) producing a
universal exploration sequence e1, e2, . . . for any 3-regular graph on exactly 4z vertices. Let cM0

be the number of configurations of M0 and a := 12zcM0 + 1. Here the number of configurations
of M0 is the number of possible combinations of Turing state, tape contents and head position
of M0.

The Turing machine M producing an exploration sequence w with the desired properties is
given in Algorithm 1. By construction, the sequence w produced by M is

e1, e2, . . . , ea, 0, (−ea mod 3), (−ea−1 mod 3), . . . , (−e2 mod 3).

We first show that this sequence corresponds to a closed walk in any 3-regular graph. Let an
agent A start at a vertex v0 in some graph 3-regular G, follow the exploration sequence w, and,
for i ∈ {1, . . . , a}, let vi be the vertex reached after following w up to ei. Then the offset 0 takes
the agent back from va to va−1 and afterwards −ei mod 3 takes agent A from vi−1 to vi−2. Thus,
at the end the agent returns to v0, which yields the second claim.

Moreover, the number of configurations cM0 of the Turing machine M0, i.e., the number of
possible combinations of state, head position, and tape contents, is bounded by zO(1), because
the working tape has length O(log z). Hence, the length of w, i.e., 2a = 2 · (12zcM0 + 1), is
also bounded by zO(1), which yields the third claim. As the auxiliary variable t ranges from 1
to 2a and running the Turing machine M0 for t steps can be implemented in O(log z) space, the
Turing machine M can be implemented to run in O(log z) space.

It is left to show is that an agent following w in an arbitrary connected 3-regular graph with n
vertices explores at least min{z, n} vertices. For the sake of contradiction, assume there exists
some 3-regular graph G on n vertices so that an agent A starting in a vertex v0 and following
the exploration sequence w produced by M only visits a set of vertices V0 with |V0| < min{z, n}.
Let G0 be the subgraph of G induced by V0. Note that, since |V0| < n by assumption, at least
one vertex in G0 has degree less than 3. We now extend G0 to a connected 3-regular graph
with 4z vertices as follows. First, we let G1 be the graph G0 after adding an isolated vertex if
V0 is odd and we let V1 be the vertex set of G1. We further let G2 be a cycle of length 4z − |V1|
with opposite vertices connected by an edge. Note that 4z and |V1| are even and G2 is 3-regular.
As long as G1 contains at least one vertex of degree less than 3, we delete an edge {w,w′}
connecting opposite vertices in the cycle in G2 and for w and then w′ add an edge from this
vertex to a vertex of degree less than 3 in G1 (possibly the same). This procedure terminates
when all vertices in G1 have degree 3, since G2 contains 4z−|V1| ≥ 3z ≥ 3|V1| vertices and there
cannot be a single vertex of degree 2 left in G1, as this would mean that the sum of all vertex
degrees in G1 is odd. The labels in {0, 1, 2} at both endpoints of every edge not in G0 are chosen
arbitrarily. Let H be the resulting 3-regular graph with 4z vertices containing G0 as induced
subgraph.

11

v w
1

0

(a) Original graph G.

v, 0

2
1

0

v, 1 2
1

0

v, 2
2

1

0

v, 3

2
1

0

v, 4
2

1
0

v, 5

2

1

0
w, 0

2

0
1

w, 1

2

01

w, 2

2

0
1

w, 3

2

0

1
w, 4 2

0

1

w, 5
2

0
1

w, 6

2

0 1

w, 7

2

0

1

w, 82
0

1

(b) 3-regular graph Greg.

Figure 1: Example for the transformation of a graph G to a 3-regular graph Greg. A vertex v of
degree 2 is transformed to a cycle containing 6 vertices and for the edge {v,w}, three edges are
added to the graph.

By construction, the walk of an agent A starting in H at v0 and following w is the same as
the walk in G starting in v0 and following w. In particular, the agent A does not explore H. Let
now A0 be an agent following the exploration sequence w0 produced by M0 starting in vertex
v0 in H. As the first a values of w and w0 coincide, the walk of agent A0 in H up to step a
is the same as that of agent A. Recall that a = 3 · 4zcM0 + 1. This implies that in the first a
steps there must be a vertex v in H visited twice by agent A0 (there are 4z vertices in H) and
in both visits, the label to the previous vertex (there are 3 possible labels) is the same and the
Turing machine M0 producing the exploration sequence w0 is in the same configuration (there
are cM0 possible configurations) in both visits. But this implies that the behaviour of A0 in H
becomes periodic and it only visits the set of vertices already visited in the first a steps, i.e., the
set of vertices V0. We conclude that A0 does not explore H, contradicting that w0 is a universal
exploration sequence for all 3-regular connected graphs on 4z vertices.

We proceed to give a similar result for non-regular graphs.

Lemma 5. For any z ∈ N, there exists a O(log z)-space algorithm producing an exploration
sequence w ∈ {−1, 0, 1}∗ such that for all connected graphs G with n vertices the following hold:

1. an agent following w in G explores at least min{z, n} distinct vertices,

2. w yields a closed walk in G,

3. the length of w is bounded by zO(1).

Proof. Let Mreg be the Turing machine of Lemma 4 with a tape of length bounded by O(log z)
producing a universal exploration sequence wreg ∈ {0, 1, 2}

∗ such that an agent following wreg in
some 3-regular graph with n vertices visits at least min{3z2, n} distinct vertices.

To prove the statement, we transform this universal exploration sequence for 3-regular graphs
to a universal exploration sequence universal for general graphs by using a construction taken
from Koucký [29, Theorem 87]. In this construction, an arbitrary graph G with n vertices is
transformed into a 3-regular graph Greg as follows: We replace every vertex v of degree dv by a
circle of 3dv vertices (v, 0), . . . , (v, 3dv − 1), where the edge {(v, i), (v, i + 1 mod 3dv)} has port
number 0 at (v, i) and port number 1 at (v, i + 1 mod 3dv), see also Figure 1 for an example of
this construction. For any edge {v,w} in G with port number i at v and j at w, we add the three
edges {(v, i), (w, j)}, {(v, i + dv), (w, j + dw)}, {(v, i+2dv), (w, j +2dw)} with port numbers 2 at
both endpoints to Greg.

12

Algorithm 2 Turing machine M computing exploration sequence for arbitrary graphs.

1: output 0, 0
2: i← 0
3: while Mreg has not terminated do

4: obtain next offset wreg(i) from Mreg

5: compute edge label li in Greg

6: if li = 0
7: output 1, 0
8: else if li = 1
9: output −1, 0

10: else if li = 2
11: output 0

12: i← i+ 1

Observe that there are only two labelings of edges in Greg, edges with port number 2 at both
endpoints and edges with port numbers 0 and 1. In particular, one port number of an edge can
be deduced from the other port number. As a consequence, given the previous edge label and
the edge offsets from the exploration sequence wreg produced by Mreg, the next edge label can be
computed without knowing the edge label of the edge by which the vertex was entered. In other
words, we can transform the sequence of edge label offsets given by wreg to a traversal sequence,
i.e., a sequence of absolute edge labels l0, l1, . . . of Greg.

We proceed to define the Turing machine M producing an exploration sequence w ∈ {−1, 0, 1}∗

with the desired properties as shown in Algorithm 2. First of all, note that the next edge label
li in Greg can be computed from the last edge label in Greg and the offset wreg(i) in constant
space (line 5 of Algorithm 1). Thus, M can be implemented in O(log z) space. By assumption,
the length of the exploration sequence produced by Mreg is bounded by zO(1). Hence, also the
length of the exploration sequence produced by M is bounded by zO(1).

Let Areg be an agent following wreg in Greg and A be an agent following the exploration
sequence w produced by M in G. What is left to show is that A traverses G in a closed walk and
visits at least min{z, n} distinct vertices. In order to show this, we first establish the following
invariants that hold after every iteration i of the while-loop in Algorithm 2:

1. If agent Areg is at vertex (vi, ai) in Greg after i steps, then after following the exploration
sequence output by M up to the end of iteration i agent A is at vi and ai mod dvi is the
label of the edge to the previous vertex.

2. If (vi, ai) is visited by Areg in Greg, then in G both vi and the neighbor incident to the edge
with label (ai mod dvi) are visited by A.

We show the invariants by induction. The starting vertex of Areg in Greg is (v0, 0) and the
starting vertex of A in G is v0. Note that at the beginning the Turing machine M outputs 0,0 so
that in G agent A visits the neighbor of v0 incident to the edge 0 and then returns to v0. Thus,
both invariants hold before the first iteration of the while-loop.

Now assume that before iteration i both invariants hold. We show that then they also hold
after iteration i. If agent Areg is at the vertex (v, a) after i − 1 steps and the edge traversed
by Areg in step i has label 0, i.e., li = 0, then Areg moves to vertex (v, (a + 1) mod 3dv) by the
definition of Greg, see also Figure 1. By assumption, agent A is at vertex v in G and the last
edge label is a mod dv. Thus, if agent A follows the exploration sequence 1, 0 output by M in
iteration i (line 7 of Algorithm 2), then it first traverses the edge labeled (a+1) mod dv and then
returns to v. This means that after iteration i, the current vertex of A in G is v and the edge
label to the previous vertex is (a + 1) mod dv = ((a + 1) mod 3dv) mod dv . Moreover, agent A

13

visited both v and the neighbor of v incident to the edge with label (a+ 1) mod dv. Thus, both
invariants hold after iteration i in this case.

The case that li = 1 is analogous except that edges with label li = 1 in Greg lead from a
vertex (v, a) to a vertex (v, (a− 1) mod 3dv). The equivalent movement of A in G is achieved by
the sequence −1, 0 (line 9 in Algorithm 1).

So assume that agent Areg in step i traverses an edge with label li = 2 from a vertex (v, a)
to a vertex (v′, a′). This means that there is an edge {v, v′} in G with port number a mod dv at
v and port number a′ mod dv′ at v′. By assumption, at the beginning of iteration i agent A is
at v and a mod dv is the label of the edge to the previous vertex. So if A follows the exploration
sequence 0 output in iteration i (line 11 of Algorithm 2), then it moves to v′. Now the label to
the previous vertex at v′ is a′ mod dv′ and A visited both v and v′ so that both invariants hold
again.

Finally, for the second property in the lemma, we know that the traversal of agent Areg in
Greg is a closed walk by Lemma 4 and hence the traversal of A in G also is a closed walk by the
first invariant.

What is left to show is that A visits at least min{z, n} distinct vertices in G. If Greg has at
most 3z2 vertices, then Areg visits all vertices in Greg by assumption and thus A also visits all
vertices in G by the second invariant. Otherwise, we know that Areg visits at least 3z2 distinct
vertices in Greg. Note that this implies z < n as Greg contains at most 3n(n− 1) vertices.

Assume, for the sake of contradiction, that A visits less than z vertices in G. Let V̄reg be the
set of vertices visited by Areg in Greg. As |V̄reg| ≥ 3z2 by assumption, at least one of the two
following cases occurs:

1. The cardinality of V̄ := { v | (v, j) ∈ V̄reg for some j } is at least z.

2. There is a vertex v̄ in G such that Mv̄ := { j | (v̄, j) ∈ V̄reg } has cardinality ≥ 3z.

We show that both cases lead to a contradiction.
Note that by the second invariant agent A visits all vertices in V̄ . Thus, if |V̄ | ≥ z, then A

visits at least z distinct vertices in G, a contradiction.
Assume the second case occurs and let v̄ in G be a vertex such that |Mv̄| ≥ 3z. Then we

have |{j mod dv̄ | j ∈ Mv̄| ≥ z implying that agent A visits at least z neighbors of v̄ in G by
the second invariant. This again is a contradiction.

To make the results above usable for our agents with pebbles, we need more structure regard-
ing the memory usage of the agent. To this end, we formally define a walking Turing machine
with access to pebbles which we will refer to as a pebble machine. Formally, we can view such a
walking Turing machine as a specification of the general agent model with pebbles described in
§ 2.2.2, where the states of the agent correspond the state of the working tape, the position of
the head, and the state of the Turing machine.

Definition 6. Let s, p,m ∈ N. An (s, p,m)-pebble machine T = (Q, Q̄, P,m, δin, δTM, δout, q
∗)

is an agent A = (Σ, Σ̄, δ, σ∗) with a set P = {1, . . . , p} of p pebbles and the following properties:

1. The set of states is Σ = Q×{0, 1}m×{0, . . . ,m−1}, where each state consists of a Turing
state, the state of the working tape of length m, and a head position on the tape.

2. In the initial state σ∗ the Turing state is q∗, the head position is 0, and the tape has 0 at
every position.

3. The agent’s transition function δ : Σ × N × N × 2P × 2P → Σ × (N ∪ {⊥}) × 2P × 2P is
computed as follows:

(a) The agent first observes its local environment according to the function δin : Q× N×
N× 2P × 2P → Q that maps a vector (q, dv , l, PA, Pv) consisting of the current Turing

14

state, the degree dv of the current vertex, the label l of the edge leading back to the
vertex last visited, the set PA of carried pebbles and the set Pv of pebbles located at the
current vertex to a new Turing state q′.

(b) The agent does computations on the working tape like a regular Turing machine ac-
cording to the function δTM : Q×{0, 1} → Q×{0, 1}×{left, right} that maps the tuple
consisting of the current Turing state and the symbol at the current head position (q, a)
to a tuple (q′, a′, d) meaning that the machine transitions to the new state q′, writes
a′ at the current position of the head and moves the head in direction d; this process
is repeated until a halting state q̄ ∈ Q̄ is reached (note that we only consider Turing
machines that eventually halt).

(c) It performs actions according to the function δout : Q̄×2P ×2P ×N×N→ 2P ×2P ×N

that maps a tuple (q, PA, Pv) containing the current Turing state q, the set of carried
pebbles PA and the set of pebbles Pv at the current vertex v to a tuple (P ′

A, P
′
v , l

′)
meaning that it drops and retrieves pebbles such that it carries P ′

A, leaves P ′
v at v and

takes the edge locally labeled by l′.

When considering a pebble machine T = (Q, Q̄, P,m, δin, δTM, δout) we will call the Turing
states Q simply states and we will call the set of states Σ of the underlying agent model configu-
rations. As the configuration of a pebble machine is fully described by the (Turing) state q ∈ QT ,
the head position, and the state of the working tape, it has sm2m configurations. We further
call a transition of the agent according to the transition function δTM a computation step. Note
that an agent remains at the same vertex and only changes its configuration when performing a
computation step.

In the following theorem, we explain how to place pebbles on a closed walk and use them as
additional memory.

Theorem 7. There are constants c, c′ ∈ N, such that for every (s, p, 2m)-pebble machine T there
exists a (cs, p + c,m)-pebble machine T ′ with the following properties:

1. For every graph G with n < 2m/c′ vertices, the pebble machine T ′ explores G in a closed
walk, collects all pebbles, returns to the starting vertex and terminates. The overall number
of edge traversals and computation steps needed by the pebble machine T ′ is bounded by
2O(m).

2. For every graph G with n ≥ 2m/c′ vertices, T ′ reproduces the walk of T in G while the
positions of p of the p+ c pebbles correspond to the positions of the p pebbles of T . For the
initialization, T ′ needs 2O(m) edge traversals and computations steps. Afterwards, the num-
ber of edge traversals and computation steps needed by the pebble machine T ′ to reproduce
one edge traversal or computation step of T is bounded by 2O(m).

Proof. The general idea of the proof is that T ′ places the constant number of additional pebbles
on a closed walk ω in order to encode the tape content of the pebble machine T . Using these
pebbles, T ′ can also count the number of distinct vertices on the closed walk ω. If the closed
walk is too short, then T ′ already explored the graph and the first case occurs. Otherwise, the
closed walk is long enough to allow for a sufficient number of distinct positions of the pebble and
we are in the second case of the statement of the theorem.

Let Q be the set of states of T . We define the set of states of T ′ to be Q×Q′ for a set Q′, i.e.,
every state of T ′ is a tuple (q, q′), where q corresponds to the state of T in the current step of
the traversal. The pebble machine T ′ observes the input according to δin and performs actions
according to δout just as T , while only changing the first component of the current state. T ′

uses p pebbles in the same way as T and possesses a set {pstart, ptemp, pnext, p0, p1, . . . , pc−4} of
additional pebbles. The pebble pstart is dropped by T ′ right after observing the input according
to δin in order to mark the current location of T during the traversal. The purpose of the pebbles

15

p0 p1 p2 p3

0 0 0 0 0 01 1 1 1 1 1

(a) Tape memory

0 1 2 3

45

67

p0

p1

p2

p3
pstart

(b) Memory encoded by pebbles

Figure 2: Memory encoding by pebbles on a closed walk. The state of the tape of length 2m = 12
in (a) is encoded by the position of the c − 3 = 4 pebbles in (b). The number of the vertices
corresponds to the order of first traversal by the closed walk ω starting in 0. The position of
each pebble encodes m1 = 3 bits.

ptemp and pnext will be explained later. The other pebbles {p0, p1, . . . , pc−4} are placed along a
closed walk ω to simulate the memory of T , while the states Q′ and the tape of T ′ are used to
manage this memory.

To this end, we divide the tape of T ′ into a constant number c0 of blocks of size m/c0 each.
In the course of the proof, we will introduce a constant number of variables to manage the
simulation of the memory of T with pebbles. Each of these variables is stored in a constant
number of blocks. The constant c0 is chosen large enough to accommodate all variables on the
tape of T ′. By Lemma 5, there is a constant c1 such that for any r ∈ N there is a Turing machine
M with at most c1 states and a tape of length c1 · r outputting an exploration sequence that
gives a closed walk of length at most 2c1·r visiting at least min{2r, n} vertices in any graph with
n vertices. Let m1 := m/(c0c1) and let m0 ∈ N be such that for all m′ ∈ N with m′ ≥ m0 we
have c1 ≤ 2m

′/c0 and 2m
′/c0 > 2m′.

In the following, we show how the simulated memory is managed by providing algorithms
in pseudocode (see Algorithms 3 to 6). These can be implemented on a Turing machine with a
constant number of states cAlg. Let c = max

{

22m0 , 2c0c1 + 3, cAlg

}

and c′ := c0c1. Note that c
only depends on the constants c0, c1 and cAlg, but not on m or p. It is without loss of generality
to assume m ≥ m0, because, for m < m0, we can store the configuration of the tape of T in the
states Q′ of T ′, since c ≥ 22m0 .

We proceed to show that the computations on the tape of length 2m performed by T according
to the transition function δTM can be simulated using the pebbles {pstart, ptemp, p0, p1, . . . , pc−4}.
The proof of this result proceeds along the following key claims.

1. We can find a closed walk ω containing 2m1 distinct vertices so that c− 3 pebbles placed
along this walk can encode all configurations of the tape of T .

2. We can move along ω while keeping track of the number of steps and counting the number
of distinct vertices until we have seen 2m1 distinct vertices.

3. We can read from and write to the memory encoded by the placement of the pebbles
along ω.

4. If the closed walk ω starts at vertex v and T moves from vertex v to vertex v′, we can move
all pebbles to a closed walk ω′ starting in v′ while preserving the content of the memory.

1. Finding a closed walk ω. Lemma 5 yields a Turing machine Mwalk with c1 states and a
tape of length m/c0 that produces an exploration sequence corresponding to a closed walk ω
that contains at least min{n, 2m1} distinct vertices and has length at most 2c1m1 = 2m/c0 . We
use a variable Rwalk of size m/c0 for the memory of Mwalk, which is initially assumed to have all

16

Algorithms 3 Auxiliary functions for moving along the closed walk ω.

function Step()
traverse edge according to value of exploration sequence output by Mwalk

Rsteps ← Rsteps + 1

function FindPebble(pi)
while not observe(pi) do

Step()

function Restart()
FindPebble(pstart)
Rsteps ← 0
Rid ← 0
Rwalk ← 0

Algorithm 4 Moving along the closed walk ω while updating Rsteps and Rid.

function NextDistinctVertex()
if Rid = 2m1 − 1

Restart()
return

Rid ← Rid + 1
R′

steps ← Rsteps

repeat

Step()
R′

steps ← R′
steps + 1

drop(ptemp)
R′

walk ← Rwalk

Restart()
FindPebble(ptemp)
pickup(ptemp)
Rwalk ← R′

walk

until Rsteps = R′
steps

bits set to 0. If 2m1 > n, then the exploration sequence produced by Mwalk is a walk exploring G.
Note that by definition m/c′ = m1 so this happens exactly when the first case in the theorem
occurs. Below we will show how to count the number of unique vertices on the closed walk of
Mwalk. Hence, the pebble machine T ′ can initially walk along the closed walk ω counting the
number of distinct vertices. If this number is smaller than 2m1 , we know that we have visited
all vertices of G so that we can collect all pebbles and return to the pebble pstart, which has not
been moved and therefore marks the starting vertex of T . We show at the end of the proof that
this takes at most 2O(m) edge traversals and computation steps.

From now on, we can therefore assume that ω contains at least 2m1 distinct vertices. We
need to show that c − 3 pebbles placed along the walk ω can be used to encode all of the 22m

configurations of the tape of T . Figure 2 shows how each pebble encodes a certain part of the
tape of T . The idea is that each pebble can be placed on one of 2m1 different vertices, thus
encoding exactly m1 bits. We divide the tape of length 2m into 2m/m1 = 2c0c1 parts of size
m1 each, such that the position of pebble pi encodes the bits {im1, . . . , (i + 1)m1 − 1}, where
we assume the bits of the tape of T to be numbered 0, 1 . . . , 2m− 1. As c ≥ 2c0c1 + 3, we have
enough pebbles to encode the configuration of the tape of T .

2. Navigating ω. Let Rsteps be a variable counting the number of steps along ω and Rid be
a variable for counting the number of unique vertices visited along ω after starting in the vertex

17

Algorithms 5 Reading and changing positions of pebbles.

function GetPebbleId(pi)
Restart()
while not observe(pi) do

NextDistinctVertex()
return Rid

function PutPebbleAtId(pi,id)
FindPebble(pi)
pickup(pi)
Restart()
while id>0 do

id← id− 1
NextDistinctVertex()

drop(pi)

marked by pstart. Note that Rid gives a way of associating a unique identifier to the first 2m1

distinct vertices along ω. As m1 ≤ m/c0 holds, m/c0 tape cells suffice for counting the first 2m1

distinct vertices along ω. The overall number of steps along the closed walk is bounded by 2m/c0

and therefore m/c0 tape cells also suffice for counting the steps along ω.
It remains to show that we can move along the closed walk ω while updating Rsteps and Rid,

such that, starting from the vertex marked by pstart, the variable Rsteps contains the number of
steps taken and Rid contains the number of distinct vertices visited. Let drop(pi) denote the
operation of dropping pebble pi at the current location, pickup(pi) the operation of picking up pi
at the current location if possible, and let observe(pi) be “true” if pebble pi is located at the
current position. Consider the auxiliary functions shown in Algorithms 3. The function Step()
moves one step along ω and updates Rsteps accordingly. The function FindPebble(pi) moves
along ω until it finds pebble pi. The function Restart() goes back to the starting vertex marked
by pstart, sets both variables Rsteps and Rid to 0, and restarts Mwalk by setting the variable Rwalk

to 0. Finally, the function NextDistinctVertex() in Algorithm 4 does the following: If the
number of distinct vertices visited is already 2m1 , then we go back to the start. Otherwise, we
continue along ω until we encounter a vertex we have not visited before. We repeatedly traverse
an edge, drop the pebble ptemp, store the number of steps until reaching that vertex, then we
restart from the beginning and check if we can reach that vertex with fewer steps. If not, we
found a new distinct vertex. Note that we use the auxiliary variables R′

steps and R′
walk, which

both need a constant number of blocks of size m0/c0.
3. Reading from and writing to simulated memory. We show how to simulate the changes

to the tape of T by changing the positions of the pebbles along ω. The transition function δTM

of T determines how T does computations on its tape and, in particular, how T changes its
head position. We use a variable Rhead of size m/c0 to store the head position. By assumption,
m ≥ m0 and therefore 2m/c0 > 2m, i.e., the size of Rhead is sufficient to store the head position.
In order to simulate one transition of T according to δTM, we need to read the bit at the current
head position and then write to the simulated memory and change the head position accordingly.
Reading from the simulated memory is done by the function ReadBit() and writing of a bit b
to the simulated memory by the function WriteBit(b) (cf. Algorithms 6).

First, let us consider the two auxiliary functions GetPebbleId(pi) and PutPebbleAtId(pi,
id) (cf. Algorithms 5). As the name suggests, the function GetPebbleId(pi) returns the unique
identifier associated to the vertex marked by pi. Recall that vertices are indistinguishable. Here,
unique identifier refers to the number of distinct vertices on the walk ω before reaching the
vertex marked with pi for the first time. Given an identifier id, we can use the function
PutPebbleAtId(pi, id) for placing pebble pi at the unique vertex corresponding to id. By
the choice of our encoding, if Rhead = i · m1 + j with j ∈ {0, . . . ,m1 − 1}, then the j-bit of

18

Algorithms 6 Reading and writing one bit for the simulated memory.

function ReadBit()
i← ⌊Rhead/m1⌋
j ← Rhead −m1 · i
id← GetPebbleId(pi)
return j-th bit of id (in binary)

function WriteBit(b)
i← ⌊Rhead/m1⌋
j ← Rhead −m1 · i
id← GetPebbleId(pi)
if b = 1 and ReadBit() = 0

id← id + 2j

else if b = 0 and ReadBit() = 1
id← id− 2j

PutPebbleAtId(pi,id)

the binary encoding of the position of pebble pi encodes the contents of the tape cell specified
by Rhead. Thus, for reading from the simulated memory, we have to compute i and j and de-
termine the position of the corresponding pebble in the function ReadBit(). For the function
WriteBit(b), we also compute i and j. Then, we move the pebble pi by 2j unique vertices
forward if the bit flips to 1 or by 2j unique vertices backward if the bit flips to 0.

4. Relocating ω. When T moves from a vertex v to another vertex v′, the walk ω and
the pebbles on it need to be relocated. Recall that T ′ marked the current vertex v with the
pebble pstart. After having computed the label of the edge to v′, T ′ drops the pebble pnext at v′.
Then T ′ moves the pebbles placed along the walk ω to the corresponding positions along a new
walk ω′ starting at v′ in the following way. We iterate over all c− 3 pebbles and for each pebble
pi we start in v, determine the identifier id of the vertex marked by pi via GetPebbleId(pi),
pick up pi, move to pnext and place pi on ω′ using the function PutPebbleAtId(pi, id). In this
call of PutPebbleAtId(pi, id) all occurrences of pstart are replaced by pnext. This way, we can
carry the memory simulated by the pebbles along during the graph traversal.

Thus, we have shown that in the second case T ′ can simulate the traversal of T in G while
using a tape with half the length, but c additional pebbles and a factor of c additional states.

Finally, we bound the number of edge traversals and computation steps in both cases. First,
we bound the number of edge traversals that T ′ needs for simulating one computation step of T .
Recall that T ′ needs at most 2m/c0 ≤ 2m edge traversals for moving once along the whole closed
walk ω. A call of the function Step() corresponds to one edge traversal, a call of FindPebble(pi)
thus corresponds to at most 2m edge traversals and also a call of Restart() corresponds to
at most 2m edge traversals. Moreover, one iteration of the loop in NextDistinctVertex()
accounts for at most 2m edge traversals and therefore executing the whole function results in
at most 2m · 2m = 22m edge traversals. This means that one call of GetPebbleId(pi) or
PutPebbleAtId(pi,id) incur at most 2O(m) edge traversals and this also holds for ReadBit()
and WriteBit(b). Hence, for every computation step performed by T according to δTM, the
pebble machine T ′ performs actions according to ReadBit() and WriteBit(b) and overall
does at most 2O(m) edge traversals. The above argument also shows that at most 2O(m) edge
traversals are necessary to count the number of distinct vertices on the closed walk ω at the
beginning.

Next, let us bound the number of edge traversals that T ′ needs for reproducing one edge
traversal of T . This means that we need to count how many edge traversals are necessary
to relocate all pebbles placed along the walk ω to the new walk ω′. For every pebble pi, we
call GetPebbleId(pi) which results in at most 2m edge traversals, we pick up pi and move

19

to pnext which again needs at most 2m edge traversals, and place pi on ω′ using the function
PutPebbleAtId(pi, id) which also needs 2m edge traversals. Overall, this procedure is done
for a constant number of pebbles and hence requires at most 2O(m) edge traversals.

Next we bound the number of computation steps of T ′ by using the bounds on the number
of edge traversals. Recall that the state of T ′ is a tuple (q, q′), where q corresponds to the state
of T . In the computation only the second component of the state of T ′ changes and therefore
there are only at most c possible states. The tape length and number of possible head positions
of the Turing machine is m. Since we may assume without loss of generality that m ≥ 2, we
can bound the number of distinct configurations of T ′ in each computation by 2O(m). Hence,
after every edge traversal T ′ does at most 2O(m) computation steps. This implies that in the
first case of the statement of the theorem, the number of computation steps is bounded by 2O(m)

because the number of edge traversals is bounded by 2O(m) as shown above. Similarly, in the
second case of the statement of the theorem the total number of computation steps after 2O(m)

edge traversals is bounded by 2O(m). Since m ≥ 2 this means that also the sum of computation
steps and edge traversals can be bounded by 2O(m) both for one computation step and one edge
traversal of T .

Finally, we show that by recursively simulating a pebble machine by another pebble machine
with half the memory but a constant number of additional pebbles we can explore any graph
with at most n vertices while using O(log log n) pebbles and only O(log log n) bits of memory.

Theorem 8. Any connected undirected graph on at most n vertices can be explored by an agent
in a polynomial number of steps using O(log log n) pebbles and O(log log n) bits of memory. The
agent does not require n as input and terminates at the starting vertex with all pebbles after
exploring the graph.

Proof. Let c, c′ ∈ N be the constants from Theorem 7. Let r ∈ N be arbitrary and consider
a (c, 0, c′2r+1)-pebble machine T (r) that simply terminates without making a computation step
or edge traversal. Applying Theorem 7 for the pebble machine T (r) gives a (c2, c, c′2r)-pebble
machine T

(r)
r with the following properties. If n < 22

r
, then T

(r)
r explores the graph and returns

to the starting vertex. If, on the other hand, n ≥ 22
r
, then T

(r)
r reproduces the walk of T (r)

(which in this case is of course trivial). Note that these properties hold even though the number
n of vertices is unknown and, in particular, not given as input to T

(r)
r .

Applying Theorem 7 iteratively, we obtain a (cr+2−i, (r + 1 − i)c, c′2i)-pebble machine T
(r)
i

for all i ∈ {0, . . . , r − 1} that reproduces the walk of T
(r)
i+1 or it already explores the given graph

and returns to the start vertex. For a graph G with n < 22
r
, T

(r)
r explores G and returns to the

start with all pebbles and terminates. Thus for such a graph G it does not matter which case

occurs when applying Theorem 7, as in both cases we can conclude that T
(r)
i for i ∈ {0, . . . , r−1}

explores the graph, returns with all pebbles to the start vertex and terminates.
If we have n ≥ 22

r
, then n ≥ 22

i
holds for all i ∈ {0, . . . , r − 1} and in particular T

(r)
0

reproduces the walk of T (r) in G, i.e., remains at the starting vertex and terminates.
The desired pebble machine T exploring any graph G withO(log log n) pebbles andO(log log n)

bits of memory works as follows: We have a counter r, which is initially 1 and is increased by one
after each iteration until the given graph G is explored. In iteration r, pebble machine T does

the same as the (cr+2, (r + 1)c, c′)-pebble machine T
(r)
0 until it terminates. The pebble machine

T terminates as soon as for some r ∈ N the pebble machine T
(r)
0 recognizes that it explored the

whole graph. This happens when r = ⌈log log n⌉+1. Hence, T uses at most O(log log n) pebbles.
Concerning the memory requirement of T , note that T needs to store the state of T

(r)
0 , the

tape content of T
(r)
0 and the current value of r. There are cr+2 states of the pebble machine T

(r)
0 ,

its tape length is c′ and r ≤ ⌈log log n⌉ + 1 in every iteration, so that T can be implemented
with O(log log n) bits of memory.

20

It is left to show is that the number of edge traversals of T in the exploration of a given
graph G with n vertices is polynomial in n. To this end, we first show that the number of edge
traversals of the pebble machine T

(r)
0 is bounded by nO(1) for all r ∈ {1, . . . , ⌈log log n⌉+1}. Let

r ∈ {1, . . . , ⌈log log n⌉+1} be arbitrary and let ti denote the sum of the number of edge traversals
and computation steps of T

(r)
i in the given graph G. The pebble machine T

(r)
r has a tape of

length of m = c′2r. Applying Theorem 7, we get that either T
(r)
r explores G and uses at most

2O(m) edge traversals and computation steps or T
(r)
r simulates the walk of a pebble machine that

does not make a single edge transition and uses at most 2O(m) edges traversals and computation
steps. In both cases, we obtain

tr ≤ 2O(2r) ≤ 2O(2log log n) = 2O(log n) = nO(1).

This shows the desired bound for tr. Furthermore, one computation step or one edge traversal
of T

(r)
i leads to at most 2O(c′·2i) = 2O(1)2i edge traversals and computation steps of T

(r)
i−1 by

Theorem 7. Hence, we obtain

ti−1 ≤ 2O(1)2iti ∀ i ∈ {1, . . . , ⌈log log n⌉+ 1}. (3)

By iterative application of Inequality 3, we obtain

t0 ≤ 2O(1)2it1 ≤ . . . ≤ 2O(1)
∑⌈log log n⌉+1

i=1 2i · t⌈log logn⌉+1 ≤ 2O(1)2⌈log log n⌉
· nO(1) ≤ nO(1).

Thus, the number of edge traversals t0 of T
(r)
0 is polynomial in n. As T performs at most nO(1)

edge traversals according to T
(r)
0 for at most ⌈log log n⌉+1 distinct values of r, the overall number

of edge traversals of T is also bounded by nO(1).

Since an additional pebble is more powerful than a bit of memory (Lemma 1), we obtain the
following direct corollary of Theorem 8.

Corollary 9. Any connected undirected graph on at most n vertices can be explored by an agent
in a polynomial number of steps using O(log log n) pebbles and constant memory. The agent does
not require n as input and terminates at the starting vertex with all pebbles after exploring the
graph.

Since an additional agent is more powerful than a pebble (Lemma 2), we obtain the following
direct corollary of Theorem 8 and Corollary 9.

Corollary 10. Any connected undirected graph on at most n vertices can be explored in polyno-
mial time by a set of O(log log n) agents with constant memory each. The agents do not require
n as input and terminate at the starting vertex after exploring the graph.

Remark 1. The agent in Theorem 8 requires O(log log n) bits of memory and the agents in
Corollaries 9 and 10 only O(1) bits of memory. An interesting question is how much memory is
necessary to fully encode the transition function

δ : Σ× N× N× 2P × 2P → Σ× (N ∪ {⊥})× 2P × 2P ,

of an agent (see § 2.2.2). Naively encoding it as a table with a row for every possible state, vertex
degree, previous edge label and possible combination of O(log log n) pebbles/agents at the current
vertex takes (log n)O(1) bits of memory.

However, we can obtain a much more compact encoding by exploiting the specific structure
of our algorithm: First of all, we never explicitly use the degree of the current vertex. Moreover,
the Turing machine from Lemma 5 that we internally use produces an exploration sequence of
the form {−1, 0, 1}∗. This means that our transition function can be expressed more concisely if
we would allow in our model to specify transitions relative to the label of the previous edge.

21

Furthermore, our algorithm only interacts with a constant number of pebbles in every level
of the recursion (cf. Theorem 7). We can express the state of T in the proof of Theorem 8 as
a vector, where each component encodes the state in a different level of the recursion. In every
transition, only two consecutive entries of this vector can change, as one level of recursion only
interacts with the level of recursion below to access the simulated memory.

Since there are only a constant number of states per recursive level, and only a constant num-
ber of pebbles involved, all transitions regarding two consecutive levels can be encoded in constant
memory. If we therefore explicitly encode all O(log log n) levels of recursion and additionally
allow to only give the edge label offset in the transition function, the entire transition function
can be encoded with O(log log n) bits of memory.

4 Lower bound for collaborating agents

The goal in this section is to obtain a lower bound on the number k of s-state agents needed
for exploring any graph on at most n vertices. To this end, we will construct a trap for a given
set of agents, i.e., a graph that the agents are unable to explore. The number of vertices of this
trap yields a lower bound on the number of agents required for exploration. The graphs involved
in our construction are 3-regular and allow a labeling such that the two port numbers at both
endpoints of any edge coincide. We therefore speak of the label of an edge and assume the set
of labels to be {0, 1, 2}.

Moreover, we call the sequence of labels l0, l1, l2, . . . of the edges traversed by an agent in a
3-regular graph G starting at a vertex v0 a traversal sequence and say that the agent follows the
traversal sequence l0, l1, l2, . . . in G starting in v0. Note that traversal sequences specify absolute
labels to follow, whereas exploration sequences give offsets to the previous label in each step.

The most important building block for our construction are barriers. Intuitively, a barrier
is a subgraph that cannot be crossed by a subset of the given set of agents. To define barriers
formally, we need to describe how to connect two 3-regular graphs. Let B be a 3-regular graph
with two distinguished edges {u, v} and {u′, v′} both labeled 0, as shown in Figure 3. An arbitrary
3-regular graph G with at least two edges labeled 0 can be connected to B as follows: We remove
the edges {u, v} and {u′, v′} from B and two edges labeled 0 from G. We then connect each
vertex of degree 2 in G with a vertex of degree 2 in B via an edge labeled 0.

Definition 11 (r-barrier). For 1 ≤ r ≤ k, the graph B is an r-barrier for a set of k s-state
agents A if for all graphs G connected to B as above, the following two properties hold:

1. For all subsets of agents A′ ⊆ A with |A′| ≤ r and every pair (a, b) in {u, v} × {u′, v′} the
following holds: If initially all agents A are at vertices of G, then no agent in the set A′

can traverse B from a to b or vice versa when only agents in A′ enter the subgraph B at
any time during the traversal. We equivalently say that no subset of r agents can traverse
B from a to b or vice versa.

B

v′

v

u′

u
0

0

BG

v′u′

vu

0

0

0

0

Figure 3: The r-barrier B on the left with two distinguished edges {u, v}, {u′, v′} can be con-
nected to an arbitrary graph G, as shown on the right.

22

v0

1

2 2

1

H2

H1

u′

2

v′2

u2

v2

u′

1

v′1

u1

v1

00

0

0

0

0

Figure 4: Constructing a trap given two k-barriers H1 and H2.

v

u

0 u′

v′

0

H H ′

v3

v4

v1

v2

v′3

v′4

v′1

v′2

l

l

l

l

0

0

Figure 5: A 1-barrier B for A for the case that l ∈ {1, 2}.

2. Whenever a subset of agents A′ ⊆ A with |A′| = r + 1 enters the subgraph B during the
traversal, all agents in A′ leave B either via u and v or via u′ and v′ if no other agents
visit B during this traversal. In other words, the set of agents A′ cannot split up such that
a part of the agents leaves B via u or v and the other part via u′ or v′.

A k-barrier immediately yields a trap for a set of agents.

Lemma 12. Given a k-barrier with n vertices for a set of k agents A, we can construct a trap
with 2n+ 4 vertices for A.

Proof. Let H1 and H2 be two copies of a k-barrier for the set of agents A with distinguished
edges {ui, vi}, {u

′
i, v

′
i} of Hi. We connect the two graphs and four additional vertices, as shown

in Figure 4. If the agents start in the vertex v0, then none of the agents can reach u′1 or v′1 via
the k-barrier H1 or via the k-barrier H2. Thus the agents A do not explore the graph. The
constructed trap for the set of agents A contains 2n+ 4 vertices.

Our goal for the remainder of the section is to construct a k-barrier for a given set of k agents
A and to give a good upper bound on the number of vertices it contains. This will give an upper
bound on the number of vertices of a trap by Lemma 12. The construction of the k-barrier is
recursive. We start with a 1-barrier which builds on the following useful result by Fraigniaud
et al. [24] stating that, for any set of non-cooperative agents, there is a graph containing an
edge which is not traversed by any of them. A set of agents is non-cooperative if the transition
function δi of every agent Ai is completely independent of the state and location of the other
agents, i.e., δi is independent of σ−i, see § 2.2.3.

Theorem 13 ([24, Theorem 4]). For any k non-cooperative s-state agents, there exists a 3-
regular graph G on O(ks) vertices with the following property: There are two edges {v1, v2} and
{v3, v4} in G, the former labeled 0, such that none of the k agents traverses the edge {v3, v4}
when starting in v1 or v2.

We proceed to generalize this construction towards arbitrary starting states and collaborating
agents.

23

Lemma 14. For every set of k collaborating s-state agents A, there exists a 1-barrier B with
O(ks2) vertices. Moreover, B remains a 1-barrier even if for all i ∈ {1, . . . , k} agent Ai starts
in an arbitrary state σ ∈ Σi instead of the starting state σ∗

i .

Proof. Let A = {A1, . . . , Ak}, let Σi be the set of states of Ai and let σ∗
i be its starting state.

For all i ∈ {1, . . . , k} and all σ ∈ Σi, we define agent A
(σ)
i to be the agent with the same behavior

as Ai, but starting in state σ instead of σ∗
i . That is, A

(σ)
i has the same set of states Σi as Ai and it

transitions according to the function δi of Ai. Moreover, let S := {A
(σ)
i | i ∈ {1, . . . , k}, σ ∈ Σi}.

Applying Theorem 13 for the set of agents S yields a graph H with an edge {v1, v2} labeled
0 and an edge {v3, v4} labeled l ∈ {0, 1, 2} so that any agent A

(σ)
i that starts in v1 or v2 does

not traverse the edge {v3, v4}. Let B be the graph consisting of two connected copies of H and
8 additional vertices, as illustrated in Figure 5. The edges {v1, v2} and {v′1, v

′
2} are replaced by

{v1, v
′
1} and {v2, v

′
2}, which are also labeled 0. The edges {v3, v4} and {v′3, v

′
4} with label l are

deleted and v3 and v4 are connected each to one of the two two-degree vertices of a diamond
graph by an edge with label l. The same connection to a diamond graph is added for v′3 and
v′4 as shown in Figure 5. The edge labels of the two diamond graphs are arbitrary. Since each
diamond graph has two vertices of degree three, each diamond graph has at least one edge with
label 0. We choose one edge with label 0 and call the end vertices u and v (resp. u′, v′). Note
that in Figure 5 we have l ∈ {1, 2}; for the case that l = 0 the edge {u, v} is the unique edge
between the two vertices that are not adjacent to v3 or v4.

We claim that B is a 1-barrier for A with the distinguished edges {u, v} and {u′, v′}. Assume
for the sake of contradiction, that the first property does not hold, i.e., there is a graph G that
can be connected to B via the pairs of vertices {u, v} and {u′, v′} so that if the agents A start
in G in an arbitrary state, there is an agent Aj that walks (without loss of generality) from u
to u′ in B while there are no other agents in B. Then Aj in particular walks from v′1 or v′2 to
v′3 or v′4 in H ′ and starts this walk in a state σ ∈ Σj. But the traversal sequence of Aj in H ′ is
the same as that of A

(σ)
j that starts at v′1 or v′2. This would imply that A

(σ)
i traverses the edge

{v3, v4} in the original graph H when starting in v1 or v2, which contradicts Theorem 13.
To prove the second property of a 1-barrier, assume that there is a set of two agents, such

that both enter B during the traversal and one of them exits B via u or v and the other via u′

or v′. But then again one of the agents must have traversed H starting in v1 or v2 in a state σ
and finally traversed the edge with label l incident to v3 or v4 or similarly in H ′ with v′1, v

′
2, v

′
3, v

′
4.

This leads to the same contradiction as above.
The whole proof does not use the specific starting states of the agents A and, in particular,

the definition of S is independent of the starting states of the agents. Consequently, B is a
1-barrier for A even if we change the starting states of the agents.

Since every agent has s states, we obtain that the cardinality of S is bounded by O(ks) and,
hence, the graph B has O(ks2) vertices by Theorem 13.

The proof of Theorem 13 in [24] uses the fact that when traversing a 3-regular graph the
next state of an s-state agent only depends on the previous state and the label l ∈ {0, 1, 2} of
the edge leading back to the previous vertex. Thus, after at most 3s steps, the state of the agent
and therefore also the next label chosen need to repeat with a period of length at most 3s. For
cooperative agents, however, the next state and label that are chosen may also depend on the
positions and states of the other agents. We therefore need to account for the positions of all
agents when forcing them into a periodic behavior. To this end, we will consider the relative
positions of the agents with respect to a given vertex v. For our purposes, it is sufficient to
define the relative position of an agent Ai by the shortest traversal sequence leading from v to
the location of Ai. This motivates the following definition.

Definition 15. The configuration of a set of k agents A = {A1, . . . , Ak} in a graph G with
respect to a vertex v is a (3k)-tuple (σ1, l1, r1, σ2, l2, r2, . . . , σk, lk, rk), where σi is the current
state of Ai, li is the label of the edge leading back to the previous vertex visited by Ai and ri is

24

B

u

v

u′

v′

a0

0

0

1

2 1

2
0

b0

0

0

1

21

2
0

a b
l l

Figure 6: An edge {a, b} labeled l is replaced with the gadget B(l) containing an r-barrier
B. Only the dotted edges incident to a0 and b0 that are not labeled l are part of the gadget.
Consequently, the gadget contains two vertices of degree 2. The vertices a and b are macro
vertices of the graph G(B).

the shortest traversal sequence from v to Ai, where ties are broken in favor of lexicographically
smaller sequences and where we set ri = ⊥ if the location of Ai is v.

In order to limit the number of possible configurations, we will force the agents to stay close
together. Intuitively, we can achieve this for any graph G by replacing all edges with (k − 1)-
barriers. This way, only all agents together can move between neighboring vertices of the original
graph G. To formalize this, we first need to explain how edges of a graph can be replaced by
barriers. Since our construction may not be 3-regular, we need a way to extend it to a 3-regular
graph.

Definition 16. Given a graph G, with vertices of degrees 2 and 3, we define the 3-regular
extension G as the graph resulting from copying G and connecting every vertex v of degree 2 to
its copy v′. As the edges incident to v and v′ have the same labels, it is possible to label the new
edge {v, v′} with a locally unique label in {0, 1, 2}.

Note that the 3-regular extension only increases the number of vertices of the graph by a
factor of 2. Given a 3-regular graph G and an r-barrier B for a set of k agents A with k ≥ r,
we replace edges of G using the following construction. First, for every l ∈ {0, 1, 2} we replace
every edge {a, b} labeled l with the gadget B(l) shown in Figure 6, and we call the resulting
graph G1(B). By construction, the labels of the edges incident to the same vertex in G1(B) are
distinct. However, certain vertices only have degree 2. We take the 3-regular extension of G1(B)
and define the resulting graph as G(B) := G1(B).

The graph G(B) contains two copies of G1(B). To simplify exposition, we identify each
vertex v with its copy v′ in G(B). Then, there is a canonical bijection between the vertices in G
and the vertices in G(B) which are not part of a gadget B(l). These vertices can be thought of
as the original vertices of G, and we call them macro vertices.

We now establish that the agents always stay close to each other in the graph G(B).

Lemma 17. Let G be a connected 3-regular graph and let B be a (k − 1)-barrier for a set of k
agents A with s states each. Then, the following statements hold for the graph G(B):

1. For all edges {v, v′} in G no strict subset A′ (A of the agents can get from macro vertex v
to macro vertex v′ in G(B) without all other agents also entering the gadget B(l) between
v and v′, where l ∈ {0, 1, 2}.

2. At each step of the walk of A in G, there is some macro vertex v such that all agents are
at v or in one of the surrounding gadgets B(0), B(1) and B(2).

Proof. For the sake of contradiction, assume that there is a strict subset of agents A′ (A that
walks from a macro vertex v in G(B) to a distinct macro vertex v′ without the other agents
entering the gadget between v and v′ at any time during the traversal. The graph G(B) contains
two copies of G1(B), but all vertices in the (k − 1)-barriers within G1(B) have degree 3. Thus,

25

v B(0)

B(1)

B(2)

Figure 7: A macro vertex v in a graph G(B) surrounded by the three gadgets B(0), B(1) and
B(2).

A′ must have traversed some (k − 1)-barrier B while only agents in A′ enter B at any time of
the traversal. This is a contradiction, as |A′| ≤ k − 1 and B is a (k − 1)-barrier. Therefore, the
agents A need to all enter the gadget between v and v′ to to get from a macro vertex v to a
distinct macro vertex v′. This shows the first claim.

For the second part of the claim, note that because of Property 2 for the barrier B the agents
cannot split up into two groups such that after the traversal of the gadget between v and v′ one
group is at v (or one of the vertices at distance at most 4 from v which are not part of the barrier
B) and the other group is at v′ (or one of the vertices at distance 4 from v′ which are not part
of the barrier B). This implies that if we consider the positions of the agents after an arbitrary
number of steps and let v be the macro vertex last visited by an agent in A, then all agents must
be located at v or one of the three surrounding gadgets.

We will frequently consider the configuration of A in a graph of the from G(B) with respect
to some macro vertex v. Recall from the definition that the graph G(B) contains two copies
of the graph G1(B) and actually there exists a macro vertex v and a copy v′. Thus, when we
talk about configurations of A in G(B) with respect to some macro vertex v, we mean that we
consistently choose one of the copies G1(B) and consider the configuration of A with respect to
the macro vertex in this copy.

Let B be a (k− 1)-barrier for a set of k cooperative s-state agents A = {A1, . . . , Ak} that all
start in some macro vertex v0 of G(B). Iteratively, define t0 = 0 and ti to be the first point in
time after ti−1, when one of the agents in A visits a macro vertex vi distinct from vi−1. Then vi
is a neighbor of vi−1 in G and by Lemma 17, all agents are at vi or one of the incident gadgets.
The sequence of macro vertices v0, v1, . . ., which is a sequence of neighboring vertices in G, yields
a unique sequence of labels l0, l1, . . . of the edges between the neighboring vertices in G, which
we call the macro traversal sequence of A starting in vertex v0 in G(B). Note that the macro
traversal sequence may be finite.

Consider the traversal sequence l0, l1, . . . of a single agent in a 3-regular graph G and the
traversal sequence l′0, l

′
1, . . . of the same agent in another 3-regular graph G′. If the state of the

agent and label of the edge to the previous vertex in G after i steps is the same as the state
in G′ after j steps, then the traversal sequences coincide from that point on, i.e., li+h = l′j+h

holds for all h ∈ N. The reason is that the graphs we consider are 3-regular and the label of
every edge {u, v} is the same at u and at v. Therefore, once the state and label to the previous
vertex are the same, the agent makes the same transitions as it can gain no new information
while traversing the graph. We want to obtain a similar result for a set of agents. However, in
general it is not true that if the configuration of a set of agents in a graph G after i steps is the
same as after j steps in G′, then the next configurations and chosen labels of each agent coincide.
This is because an agent can be used to mark a particular vertex and this can be used to detect

26

differences in two 3-regular graphs G and G′. For instance, one agent could remain at a vertex
v while the other one walks in a loop that is only part of one of the graphs and this may lead to
different configurations. That is why we consider graphs of the form G(B). In these graphs, all
macro vertices look the same, as they are surrounded by the same gadgets, and the agents have
to stay close together, making it impossible for the agents to detect a loop that is part of one
of the graphs, but not the other. This intuition is formally expressed in the following technical
lemma.

Lemma 18. Let B be a (k − 1)-barrier for a set of k s-state agents A, and let G and G′ be
two 3-regular graphs. Let v0, v1, . . . be the sequence of macro vertices visited by A in G(B), let
l0, l1, . . . be the corresponding macro traversal sequence, let t0 = 0, and let ti be the first time
after ti−1 that an agent in A visits vi. Let v′0, v

′
1, . . . and l′0, l

′
1, . . . and t′i be defined analogously

with respect to G′(B). If there are t ∈ {ti, . . . , ti+1 − 1} and t′ ∈ {t′j , . . . , t
′
j+1 − 1} for some

i, j ∈ N, such that after t steps in G(B) the configuration of A with respect to vi is the same as
after t′ steps in G′(B) with respect to v′j , then:

• li+h = l′j+h holds for all h ∈ N,

• the configuration of A in G(B) after ti+h steps with respect to vi+h is the same as configu-
ration of A in G′(B) after t′j+h steps with respect to v′j+h for all h ∈ N, h > 0.

Proof. In order to simplify the notation of the proof, we abuse notation and overwrite the defini-
tion of ti and t′j by setting ti := t, t′j := t′. By induction on h ∈ N, we show that the configuration
of A after ti+h steps in G(B) with respect to vi+h is the same as the configuration of A after t′j+h

steps in G′(B) with respect to v′j+h. The induction step also shows that we have li+h = l′j+h for
all h ∈ N.

For h = 0 we have by assumption (and as we redefined ti and t′j) that after ti steps in G(B)
the configuration of A with respect to vi is the same as after t′j steps in G′(B) with respect to v′j .

Now, assume that the statement holds for some h ∈ N. The idea of the proof is that, in
between visits to macro vertices, the agents behave the same in the two graphs and, in particular,
they traverse the same gadget B(l) in both settings in such that li+h = l′j+h.

The graphs G(B) and G′(B) locally look the same to the agents in vi+h and v′j+h as both
macro vertices are surrounded by the same gadgets, as shown in Figure 7. Formally, there
is a canonical graph isomorphism γ from the induced subgraph of G(B) containing vi+h and
all surrounding gadgets to the induced subgraph of G′(B) containing v′j+h and all surrounding
gadgets. Moreover, γ respects the labeling and maps vi+h to v′j+h. As the configuration of A
after ti+h steps with respect to vi+h is the same as the configuration of A after t′j+h steps with
respect to v′j+h, the isomorphism also respects the positions of all the agents. As vi+h+1 is the
first macro vertex visited after vi+h, all agents are at vi+h or any of the surrounding gadgets
until the agents A reach vi+h+1 by Lemma 17. The same holds for v′j+h and v′j+h+1. Iteratively,
for c = 0, 1, . . . the following holds until the agents reach the next macro vertex vi+h+1 or v′j+h+1:

1. For every agent A ∈ A, the state of A and the edge label to the previous vertex after ti+h+c
steps in G(B) is the same as the state of A and the edge label to the previous vertex
after t′j+h + c steps in G′(B).

2. The isomorphism γ maps the position of every agent A ∈ A after ti+h + c steps in G(B)
to the position of A after t′j+h + c steps in G′(B).

This implies that macro vertices vi+h and vi+h+1 are connected with the same gadget as v′j+h

and v′j+h+1, i.e., li+h = l′j+h. Furthermore, there is c̄ such that ti+h+1 = ti+h + c̄ and t′j+h+1 =
t′j+h + c̄. Moreover, the configuration of A with respect to vi+h+1 after ti+h+1 steps is the same
as with respect to v′j+h+1 after t′j+h+1 steps.

27

Let 2 ≤ r ≤ k. In order to construct an r-barrier B′ for a set A of k cooperative s-state
agents given an (r − 1)-barrier B, we need to examine the behavior of all subsets of r agents.
There are

(k
r

)

subsets of r agents and the behavior of two different subsets of r agents may be

completely different. We denote these
(k
r

)

subsets of r agents by A
(r)
1 , . . . ,A

(r)

(kr)
.

Assume, we have an (r − 1)-barrier B for a set of k agents A. For 1 ≤ j ≤
(k
r

)

, consider
the behavior of only the subset of agents A

(r)
j in a graph of the form G(B). Let v0, v1, . . . be

the sequence of macro vertices, l0, l1, . . . the corresponding macro label sequence, t0 = 0, and ti
be the first time after ti−1 that an agent in A

(r)
j visits vi. Between steps ti−1 and ti all agents

are located at vi−1 or one of the surrounding gadgets B(0), B(1), B(2) by Lemma 17. Thus, the
number of possible locations of the agents can be bounded in terms of the size of the gadgets
B(0), B(1), and B(2). In addition, every agent has at most s states. Therefore the number of
configurations of A

(r)
j with respect to vi between steps ti−1 and ti can also be bounded in terms

of s and the size of the gadgets. In particular, this bound is independent of the specific subset
of agents A

(r)
j . For a sufficiently large number of steps, a configuration must repeat and, by

applying Lemma 18 for G = G′, the macro label sequence becomes periodic. The other crucial
property that follows from Lemma 18 is that the macro label sequence is independent of the
underlying 3-regular graph G. As a consequence, we may denote by αB the maximum over all
j ∈

{

1 . . .
(k
r

)}

of the number of steps in the macro label sequence until A
(r)
j is twice in the same

configuration in G(B) with respect to two macro vertices, i.e., there are a, b ≤ αB such that the
configuration of A

(r)
j at ta with respect to va is the same as at tb with respect to vb. Note that

the value of αB depends on the size of the barrier B and thus also on the values of s and r.
Given the definition of αB, we are now in position to present the construction of an r-barrier

given an (r−1)-barrier. We will later bound αB and, thus, the size of the r-barrier in Lemma 21.

Theorem 19. Given an (r − 1)-barrier B with n vertices for a set A of k agents with s states
each, we can construct an r-barrier B′ for A with the following properties:

1. We have B′ = H(B) for a suitable 3-regular graph H.

2. If {u, v} and {u′, v′} are the two distinguished edges of B′, then any path from u or v to u′

or v′ contains at least 3 distinct barriers B.

3. The r-barrier B′ contains at most O(
(k
r

)

· n · α2
B) vertices.

Proof. For j ∈
{

1, 2, . . . ,
(

k
r

)}

, consider a subset of r agents A
(r)
j starting at a vertex v0 in a

graph G(B). Let t0 = 0 and for i = 1, 2, . . . iteratively define ti to be the first point in time
after ti−1, when an agent in A

(r)
j visits a macro vertex vi distinct from vi−1. Then v0, v1, . . . is

the macro label sequence of A
(r)
j in G(B) with a corresponding macro label sequence l0, l1,

After at most αB steps, the agents in A
(r)
j are twice in the same configuration with respect to two

macro vertices, i.e., there are a, b ∈ N with a < b ≤ αB such that after ta steps the configuration
of A

(r)
j with respect to va is the same as after tb steps with respect to vb. Note that αB is a

bound on the maximum possible number of steps until the configuration repeats and therefore
independent of the specific subset of agents A

(r)
j . The possible configurations of A at times

t0, t1, . . . can hence be enumerated x1, . . . , xαB
.

By Lemma 18, the configuration of the set of agents A
(r)
j uniquely determines the next label

in the macro label sequence of A
(r)
j , independently of the underlying graph G. We can therefore

define a single agent Āj whose state corresponds to the configuration of the set of agents A
(r)
j

and whose label sequence is the macro label sequence of A
(r)
j . More precisely we define Āj as

follows: The set of states of Āj is {σ1, . . . , σαB
}. Moreover, in state σh the agent Āj traverses the

edge labeled l and transitions to σh′ if the set of agents A
(r)
j in configuration xh at a time ti will

traverse the gadget B(l) to the next vertex vi+1 in the macro vertex sequence where it arrives
in configuration xh′ at time ti+1 (this means that l = li is the next label in the macro label
sequence of A

(r)
j in configuration xh). The starting state of Āj corresponds to the configuration,

28

H1vu
0

0

0

H2
H(kr) u′ v′

0

0

00

0

0

0

0

0

Figure 8: Connecting the graphs H1,H2, . . . ,H(kr)
to a graph H, yields the r-barrier H(B).

where all the agents in A
(r)
j are in their starting states and located at the same vertex. Note that

the transition function δ̄ of Āj described above is well-defined because, by Lemma 18, the next
label li in the macro label sequence of A

(r)
j only depends on the configuration of A

(r)
j at ti and is

independent of the underlying graph G. By construction, the macro traversal sequence of A
(r)
j

in G(B) is exactly the same as the traversal sequence of Āj in G, independently of the graph G.
Applying Lemma 14 for the single agent Āj , we obtain a 1-barrier Hj with O(α2

B) vertices that
cannot be traversed by Āj , irrespective of its starting state.

We now connect the graphs H1, . . . ,H(kr)
as shown in Figure 8, and we let H denote the

resulting graph. We first show that the graph B′ := H(B) is an r-barrier for A and and then
show the three additional properties in the claim.

For the first property of an r-barrier, assume, for the sake of contradiction, that there is a

subset of r agents A
(r)
j and some graph G connected to H(B) such that the agents A

(r)
j can

traverse H(B) from u to u′. Then there must be a consecutive subsequence w0, w1, . . . , wh of the

macro vertex sequence of A
(r)
j during the traversal of H(B) with the following properties: The

vertices w1, . . . , wh−1 are contained in Hj(B), w0 and wh are not contained in Hj(B), w1 and
wh−1 (as vertices in the 1-barrier Hj) are incident to different distinguished edges (i.e., {u, v} or

{u′, v′} in Fig. 5) of the 1-barrier Hj. Thus, the set of agents A
(r)
j starting in w0 in a suitable

configuration xi traverses the graph Hj(B) from w1 to wh−1. This means that for a suitable
graph G′ and starting state σi the agent Āj can traverse Hj. But this is a contradiction as we
constructed Hj as a 1-barrier for Āj using Lemma 14 and the 1-barrier Hj is independent of the
starting state of Āj .

For the second property of an r-barrier, let A′ ⊆ A be a set of agents with |A′| = r + 1.
Assume, for the sake of contradiction, that there is some graph G connected to H(B) such that
after the agents of A′ (and no other agents) enter H(B) a subset ∅ 6= A′

1 (A
′ leaves H(B) via

u or v and the other agents A′
2 := A′ \ A′

1 via u′ or v′. Since B is an (r − 1)-barrier, no set of
at most r − 1 agents can get from a macro vertex to a distinct macro vertex in H(B). Thus,
we must have |A′

1| ≥ r or |A′
2| ≥ r. Without loss of generality, we assume that the first case

occurs, which implies |A′
1| = r and |A′

2| = 1. For the single agent in A′
2 to leave H(B) via u′

or v′ at least r − 1 agents from A′
1 must be in a gadget adjacent to u′ or v′. But all these r − 1

agents afterwards leave H(B) via u or v and they need the remaining agent in A′
1 to even get to

a distinct macro vertex. But then the set of r agents A′
1 traverses the subgraphs Hj(B) for all

j ∈ {1, . . . ,
(

k
r

)

}, which again leads to a contradiction as in the proof for the first property (for j
such that A′

1 = A
(r)
j).

Finally, we obviously have B′ = H(B) for a 3-regular graph H by construction and the second
additional property follows from the fact that any path from u or v to u′ or v′ in H has length
at least 3. Further, each Hj contains O(α2

B) vertices and therefore H has at most O(
(k
r

)

· α2
B)

vertices. As B has n vertices, the number of vertices of B′ = H(B) is at most O(
(k
r

)

· n · α2
B),

where we use that H is 3-regular and therefore the number of edges of H that are replaced by a
copy of B is 3/2 times the number of its vertices.

We now fix a set of k agents A with s states each and let B1 be the 1-barrier given by
Lemma 14 and Br for 1 < r ≤ k be the r-barrier constructed recursively using Theorem 19.
Moreover, we let nr be the number of vertices of Br and αr := αBr−1 be the maximum number

29

Br−1

Br−2

v

Figure 9: Recursive structure of B(l) containing i-barriers for i ∈ {1, . . . , r − 1}.

of steps in the macro label sequence that a set of r agents from A can execute in a graph of the
form G(Br−1) until their configuration repeats.

We want to bound the number of vertices nk of Bk and thus, according to Lemma 12, also
the number of vertices of the trap for A. By Theorem 19, there is a constant c ∈ N such that
nr ≤ c

(

k
r

)

nr−1α
2
r . In order to bound nr, we therefore need to bound αr.

One possible way to obtain an upper bound on αr is to use Lemma 17 stating that there
always is a macro vertex v such that all agents are located at v or inside one of the surrounding
gadgets. Counting the number of possible positions within these three gadgets and states of
the agents then gives an upper bound on αr. For the tight bound in our main result, however,
we need a more careful analysis of the recursive structure of our construction and also need to
consider the configurations of the agents at specific times. We start with the following definition
and a technical lemma.

For j ∈ {1, . . . , r−1}, we say that a vertex w′ is j-adjacent to some other vertex w if there is
a path P from w to w′ that does not traverse a j-barrier Bj, i.e., P does not contain a subpath
leading from one vertex of the distinguished edge {u, v} to a vertex of the other distinguished
edge {u′, v′} in Bj. As a convention, every vertex w is j-adjacent to itself for all j ∈ {1, . . . , r−1}.
Note that a vertex w′ contained inside a j-barrier may be j-adjacent to some vertex w outside
the barrier if there is a path from w to w′ that does not traverse a distinct j-barrier.

Lemma 20. Let v be a macro vertex in G(Br−1). Then for j ∈ {1, . . . , r − 1} the number of
vertices that are j-adjacent to v is bounded by 24(r−j)nj .

Proof. In order to bound the number of j-adjacent vertices, we examine the recursive structure
of one of the gadgets B(l) incident to v, as shown in Figure 9. By Theorem 19 an (r − 1)-
barrier B′ for r ≥ 3 is constructed from a 3-regular graph H and an (r − 2)-barrier B such that
B′ = H(B). Hence, the gadget B(l), which contains the barrier Br−1, also contains many copies
of the barrier Br−2, which again contain many copies of the barrier Br−3 (if r ≥ 4) and so on.

We first observe that the distance from v to any j-adjacent vertex, which is not contained
in a barrier Bj, is at most 3(r − j) + 1. This observation is clear for j = r − 1 and follows
for r − 2, r − 3, . . . by examining the recursive structure given in Figure 9. As G(Br−1) is 3-
regular, there are at most 23(r−j)+1 such vertices. Moreover, any j-barrier Bj containing vertices
that are j-adjacent to v, in particular contains a vertex with a distance of exactly 3(r − j) to v.
As G(Br−1) is 3-regular, there are at most 23(r−j) vertices of distance exactly 3(r − j) from v
and therefore at most 23(r−j) different j-barriers, with nj vertices each, containing j-adjacent
vertices. Thus, there are at most 23(r−j)nj vertices that are j-adjacent to v and contained in a
barrier Bj. Overall, the number of j-adjacent vertices to v can therefore be bounded by

23(r−j)nj + 23(r−j)+1 ≤ 24(r−j)nj,

where we used nj ≥ 2 and j ≤ r − 1.

The idea now is to consider the configuration of the agents with respect to a macro vertex vi
exactly at the time t when at least ⌈r/2⌉ + 1 agents are ⌈r/2⌉-adjacent to vi. We then further

30

Br−j+1

Br−j

a

b

vi

Figure 10: An (r − j + 1)-barrier adjacent to vi containing (r − j)-barriers.

use the fact that it is not possible to partition the agents A into two groups A′ and A′′ with at
most i ≥ ⌈r/2⌉ agents each that are separated on any path by at least two i-barriers. This yields
the following bound on αr.

Lemma 21. Let A be a set of k agents, s ≥ 2 and r ∈ {2, . . . , k}. We then have

αr ≤ s7r
2
· n

⌈r/2⌉
⌈r/2⌉ · nr−1 ·

r−1
∏

j=⌈r/2⌉+1

nj.

Proof. Let A(r) ⊆ A be an arbitrary subset of r agents. In order to bound αr, we consider the
behaviour of this subset A(r) of agents in a graph of the form G(Br−1). We let v0 be the starting
vertex of the set of agents A(r) in G(Br−1) and let t0 = 0. Again, we iteratively define ti be the
first point in time after ti−1, when an agent in A(r) visits a macro vertex vi distinct from vi−1.

Because of the recursive structure of the barriers, see Figure 9, every macro vertex is sur-
rounded by ⌈r/2⌉-barriers and any path between two consecutive macro vertices vi−1 and vi
contains at least one barrier B⌈r/2⌉ (note that r ≥ 2 by assumption). In order to reach the

vertex vi after visiting vi−1, at least ⌈r/2⌉ + 1 agents from A(r) are necessary to traverse such
an ⌈r/2⌉-barrier. Thus, at some time t ∈ {ti−1, . . . , ti − 1} at least ⌈r/2⌉ + 1 agents must be at
a vertex that is ⌈r/2⌉-adjacent to vi, as otherwise the agents would not be able to reach vi.

The crucial observation at this point is that by Lemma 18 the number of possible configu-
rations at this time t also bounds αr, the number of possible steps in the macro label sequence
after which a configuration of A(r) with respect to a macro vertex must repeat. The reason is
that whenever the set of agents A(r) traverse a gadget B(l) there has to be a time t with the
properties described above.

Let A1 denote the set of agents that are at a vertex that is ⌈r/2⌉-adjacent to vi at time t,
and let A2 := A

(r) \ A1. We claim the following: For j ∈ {1, . . . , |A2|}, there are at least (r− j)
agents that are located at a vertex which is (r − j) adjacent to vi.

For j = |A2|, we have r − j = |A1| > ⌈r/2⌉. Thus, the claim holds by definition of A1,
since there are r − j agents, namely the set of agents A1, which are located at vertices which
are ⌈r/2⌉-adjacent to vi and thus also (r − j)-adjacent to vi because r − j > ⌈r/2⌉.

Now, assume for the sake of contradiction that the claim holds for j, but not for j − 1. This
means that there is a subset of agents A′ ⊂ A(r) with |A′| = r− j such that all agents in A′ are
located at vertices which are (r− j)-adjacent to vi. But for j− 1 the claim does not hold, which
implies that all other agents A′′ := A(r) \ A′ are at vertices which are not (r − j + 1)-adjacent:
If there was an agent A ∈ A′′ at a vertex which is (r − j + 1)-adjacent, then A′ ∪ {A} would be
a set of (r− j + 1) agents which are all at (r− j + 1)-adjacent vertices, which is a contradiction
to the choice of j.

But the path between any pair of vertices (a, b), such that a is (r− j)-adjacent to vi and b is
not (r−j+1)-adjacent to vi, contains at least two (r−j)-barriers, see also Figure 10. The reason
is that r − j + 1 > ⌈r/2⌉ ≥ 1 and, by Theorem 19, any path from u or v to u′ or v′ contains
at least three (r − j) barriers. Thus the set of agents A′ and A′′ are separated by at least
two (r− j)-barriers on any path and |A′| ≤ r− j as well as |A′′| = j < r− j since j ≤ ⌈r/2⌉ − 1.

31

But then a set of at most r − j agents must have traversed a barrier Br−j or a set of at most
r− j− 1 agents must have traversed the gadget between two macro vertices in Br−j, which both
is a contradiction.

We now use the bound on the number of j-adjacent vertices from Lemma 20 together with the
claims to bound αr. By the claim above, we can enumerate the agents in A(r) as A1, A2, . . . , Ar

so that:

1. For j ∈ {1, . . . , |A1|}, Aj ∈ A1 and the location of Aj is ⌈r/2⌉-adjacent to vi.

2. For j ∈ {|A1|+ 1, . . . , r − 1}, Aj ∈ A2 and the location of Aj is j-adjacent to vi.

3. Agent Ar ∈ A2 is at vi or one of the surrounding gadgets by Lemma 17.

There are r! possible permutations of the agents and each agent has s possible states. Us-
ing Lemma 20, we can bound the number of possible locations at time t of the agents in A1

by (24(r−⌈r/2⌉)n⌈r/2⌉)
|A1|, the number of possible locations of the agents {A|A1|+1, . . . , Ar−1} by

∏r−1
j=|A1|+1 2

4(r−j)nj and the number of possible locations of Ar by 24nr−1. Overall, we can thus

bound the number of possible locations of the agents A(r) at t with respect to vi by

r! ·
(

24(r−⌈r/2⌉)n⌈r/2⌉

)|A1|





r−1
∏

j=|A1|+1

24(r−j)nj



 24nr−1

≤ r! ·
(

24r
)r
· n

|A1|
⌈r/2⌉ · nr−1 ·

r−1
∏

j=|A1|+1

nj ≤ 25r
2
· n

⌈r/2⌉
⌈r/2⌉ · nr−1 ·

r−1
∏

j=⌈r/2⌉+1

nj ,

where we used r! ≤ rr ≤ 2r
2

and nj−1 ≤ nj for all j ∈ {2, . . . , r − 1}.
In order to bound the number of configurations of the agents A(r) note that there are sr pos-

sible states of the agents and for each agent 3 possible edge labels to the previous vertex. Com-
bining these bounds with the above bound on the number of locations of the agents, we obtain
the following bound on the number of configurations of A(r) at t with respect to vi:

sr · 3r · 25r
2
· n

⌈r/2⌉
⌈r/2⌉ · nr−1 ·

r−1
∏

j=⌈r/2⌉+1

nj ≤ s7r
2
· n

⌈r/2⌉
⌈r/2⌉ · nr−1 ·

r−1
∏

j=⌈r/2⌉+1

nj.

Here we used s ≥ 2 and r ≥ 2. By the observation at the beginning of the proof, the number of
possible configurations of A(r) at t with respect to vi also bounds αr.

Using the bound on αr from Lemma 21, we can bound the number of vertices of the barriers.

Theorem 22. For every set of k agents A with s states each and every r ≤ k, there is an
r-barrier with at most O(sk·2

4·r
) vertices.

Proof. The existence of an r-barrier follows from Lemma 14 and Theorem 19 and we further have
the following bound on the number of vertices nr of Br for a sufficiently large constant c ∈ N:

n1 ≤ cks2 and nr ≤ c

(

k

r

)

nr−1α
2
r .

It is without loss of generality to assume s ≥ 2 since otherwise a trap of constant size can trivially
be found. Hence, we can plug in the bound on αr from Lemma 21. For the asymptotic bound,
we may assume c ≤ sk and we further have

(k
r

)

≤ 2k. We therefore get

nr ≤ sk · 2k · nr−1 ·
(

s7·r
2
)2
·
(

n
⌈r/2⌉
⌈r/2⌉

)2
· n2

r−1

r−1
∏

j=⌈r/2⌉+1

n2
j

≤ s2k+14r2 · n
(r+1)
⌈r/2⌉ · n

3
r−1

r−1
∏

j=⌈r/2⌉+1

n2
j . (4)

32

We proceed to show inductively that nr ≤ sk·2
4·r

holds for all r ∈ {1, . . . , k}. For r = 1, we
have n1 ≤ cks2 ≤ s4k ≤ sk·2

4
. Let us assume the claim holds for 1, . . . , r−1. From Inequality (4)

we obtain

nr ≤ s2k+14r2 ·
(

sk·2
4·⌈r/2⌉

)r+1
·
(

sk·2
4(r−1)

)3
·

r−1
∏

j=⌈r/2⌉

(

sk·2
4·j
)2

= s
2k+14r2+k·(r+1)·24·⌈r/2⌉+3·k·24(r−1)+2k

∑r−1
j=⌈r/2⌉+1

24·j
.

Thus, it is sufficient to bound the exponent. As r ≥ 2, we have
∑r−1

i=0 2
4·i = (24r − 1)/(24 − 1) ≤

2 · 24(r−1) as well as (r+1) · 24⌈r/2⌉ ≤ 4 · 24(r−1) and 2k+14r2 ≤ 2 · k · 24(r−1). Hence, we obtain

2k + 14r2 + k · (r + 1) · 24·⌈r/2⌉ + 3 · k · 24(r−1) + 2k
r−1
∑

j=⌈r/2⌉+1

24·j

≤ k ·
(

2 · 24(r−1) + 4 · 24(r−1) + 3 · 24(r−1) + 4 · 24(r−1)
)

≤ k · 24·r.

This shows nr ≤ sk·2
4r

, as desired.

The bound for the barriers above immediately yields the bound for the trap for k agents.

Theorem 23. For any set A of k agents with at most s states each, there is a trap with at
most O(s2

5k
) vertices.

Proof. We can always add additional unreachable states to all agents so that all of them have s
states. Theorem 22 yields a k barrier for a given set of k agents A with O(sk·2

4·k
) vertices. The

claim follows from the fact that k · 24·k ≤ 25·k and that a k-barrier with n vertices yields a trap
with O(n) vertices for A by Lemma 12.

Finally, we derive a bound on the number of agents k that are needed for exploring every
graph on at most n vertices.

Theorem 24. The number of agents needed to explore every graph on at most n vertices is at
least Ω(log log n), if we allow O((log n)1−ε) bits of memory for an arbitrary constant ε > 0 for
every agent.

Proof. Let A be a set of k agents with O((log n)1−ε) bits of memory that explores any graph on
at most n vertices. By otherwise adding some unused memory, we may assume that 0 < ε < 1
and that there is a constant c ∈ N such that all agents in A have s := 2c·(logn)

1−ε
states. We

apply Theorem 23 and obtain a trap for A containing O(s2
5·k

) vertices. As the set of agents A
explore any graph on at most n vertices, we have n ≤ O(1)s2

5·k
. By taking logarithms on both

sides of this inequality, we obtain

log n ≤ O(1) + 25k log s = O(1) + 25k · c · (log n)1−ε.

Multiplication by (log n)ε−1 on both sides and taking logarithms yields the claim.

As an additional agent is more powerful than a pebble (Lemma 2), we obtain the following
result as a direct corollary of Theorem 24.

Corollary 25. An agent with O((log n)1−ε) bits of memory for an arbitrary constant ε > 0 needs
Ω(log log n) pebbles to explore every graph with at most n vertices.

33

References

[1] S. Albers and M. R. Henzinger. Exploring unknown environments. SIAM J. Comput.,
29:1164–1188, 2000.

[2] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, and C. Rackoff. Random walks, universal
traversal sequences, and the complexity of maze problems. In Proc. 20th Annu. IEEE Symp.
Found. Comput. Sci. (FOCS), pages 218–223, 1979.

[3] C. Ambühl, L. Gąsieniec, A. Pelc, T. Radzik, and X. Zhang. Tree exploration with logarith-
mic memory. ACM Trans. Algorithms, 7(2):1–21, 2011.

[4] M. A. Bender, A. Fernández, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble:
exploring and mapping directed graphs. Inform. and Comput., 176(1):1 – 21, 2002.

[5] M. A. Bender and D. Slonim. The power of team exploration: Two robots can learn unlabeled
directed graphs. In Proc. 35th Annu. IEEE Symp. Found. Comput. Sci. (FOCS), pages 75–
85, 1994.

[6] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric terrain. SIAM
J. Comput., 26(1):110–137, 1997.

[7] M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to search
than graphs). In Proc. 19th Annu. IEEE Symp. Found. Comput. Sci. (FOCS), pages 132–
142, 1978.

[8] M. Blum and W. J. Sakoda. On the capability of finite automata in 2 and 3 dimensional
space. In Proc. 18th Annu. IEEE Symp. Found. Comput. Sci. (FOCS), pages 147–161, 1977.

[9] L. Budach. Automata and labyrinths. Math. Nachrichten, 86:195–282, 1978.

[10] J. Chalopin, S. Das, Y. Disser, M. Mihalák, and P. Widmayer. Mapping simple polygons:
How robots benefit from looking back. Algorithmica, 65(1):43–59, 2013.

[11] J. Chalopin, S. Das, Y. Disser, M. Mihalák, and P. Widmayer. Mapping simple polygons:
The power of telling convex from reflex. ACM Trans. Algorithms, 11(4):1–16, 2015.

[12] J. Chalopin, S. Das, and A. Kosowski. Constructing a map of an anonymous graph: Ap-
plications of universal sequences. In Proc. 14th Int. Conf. Principles Distributed Systems
(OPODIS), pages 119–134, 2010.

[13] S. A. Cook and C. W. Rackoff. Space lower bounds for maze threadability on restricted
machines. SIAM J. Comput., 9(3):636–652, 1980.

[14] X. Deng, T. Kameda, and C. H. Papadimitriou. How to learn an unknown environment. i:
The rectilinear case. J. ACM, 45(2):215–245, 1998.

[15] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. J. Graph Theory, 32:265–
297, 1999.

[16] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree exploration with little memory.
Journal of Algorithms, 51(1):38 – 63, 2004.

[17] Y. Disser, J. Hackfeld, and M. Klimm. Undirected graph exploration with Θ(log log n)
pebbles. In Proc. 27th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), pages 25–39,
2015.

34

[18] G. Dudek, M. Jenkin, E. E. Milios, and D. Wilkes. Robotic exploration as graph construction.
IEEE Trans. Robotics Automation, 7(6):859–865, 1991.

[19] R. Fleischer and G. Trippen. Exploring an unknown graph efficiently. In G. Brodal and
S. Leonardi, editors, Proc. 13th Annu. European Symp. Algorithms (ESA), volume 3669 of
LNCS, pages 11–22, 2005.

[20] K.-T. Foerster and R. Wattenhofer. Lower and upper competitive bounds for online directed
graph exploration. Theoret. Comput. Sci., 655:15–29, 2016.

[21] P. Fraigniaud and D. Ilcinkas. Digraphs exploration with little memory. In Proc. 21st Annu.
Sympos. Theoretical Aspects Comput. Sci. (STACS), pages 246–257, 2004.

[22] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a finite
automaton. Theoret. Comput. Sci., 345(2–3):331–344, 2005.

[23] P. Fraigniaud, D. Ilcinkas, and A. Pelc. Impact of memory size on graph exploration capa-
bility. Discrete Appl. Math., 156(12):2310–2319, 2008.

[24] P. Fraigniaud, D. Ilcinkas, S. Rajsbaum, and S. Tixeuil. The reduced automata technique
for graph exploration space lower bounds. Theor. Comp. Sci. Essays in Memory of Shimon
Even, pages 1–26, 2006.

[25] F. Hoffmann. One pebble does not suffice to search plane labyrinths. In Proc. 3rd Int. Symp.
Fundamentals of Computation Theory (FCT), pages 433–444, 1981.

[26] S. Istrail. Polynomial universal traversing sequences for cycles are constructible. In Proc.
20th Annu. ACM Symp. Theory Computing (STOC), pages 491–503, 1988.

[27] B. Kalyanasundaram and K. Pruhs. Constructing competitive tours from local information.
Theoret. Comput. Sci., 130:125–138, 1994.

[28] M. Koucký. Universal traversal sequences with backtracking. J. Comput. System Sci.,
65(4):717–726, 2002.

[29] M. Koucký. On Traversal Sequences, Exploration Sequences and Completeness of Kol-
mogorov Random Strings. PhD thesis, Rutgers, The State University of New Jersey, 2003.

[30] N. Megow, K. Mehlhorn, and P. Schweitzer. Online graph exploration: New results on old
and new algorithms. Theoret. Comput. Sci., 463:62–72, 2012.

[31] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[32] O. Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17, 2008.

[33] H. Rollik. Automaten in planaren Graphen. Acta Inform., 13:287–298, 1980.

[34] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II. An analysis of several heuristics for
the traveling salesman problem. SIAM J. Comput., 6:563–581, 1977.

[35] W. J. Savitch. Maze recognizing automata and nondeterministic tape complexity. J. Comput.
System Sci., 7:389–403, 1973.

[36] A. N. Shah. Pebble automata on arrays. Comput. Vision Graph., 3(3):236–246, 1974.

[37] C. A. Shannon. Presentation of a maze-solving machine. In Trans. 8th Conf. on Cybernetics,
pages 173–180, 1951.

35

	1 Introduction
	1.1 Our results
	1.1.1 Results for exploration with pebbles
	1.1.2 Results for multi-agent exploration

	1.2 Related work
	1.3 Techniques and outline of the paper

	2 Terminology and model
	2.1 The graph
	2.2 The agents
	2.2.1 A single agent without pebbles
	2.2.2 A single agent with pebbles
	2.2.3 A set of agents without pebbles

	2.3 Relationship between agent models

	3 Exploration algorithms
	4 Lower bound for collaborating agents

