
Decentralized and Secure Multimedia Sharing Application over
Named Data Networking∗

Ashlesh Gawande, Jeremy Clark, Damian Coomes, Lan Wang†
University of Memphis

{agawande,jclark2,dmcoomes,lanwang}@memphis.edu

Abstract
Named Data Networking (NDN) thrives in peer-to-peer data shar-
ing scenarios, through naming data and decoupling data from its
containers. Meanwhile, social media applications have come un-
der increased criticism for excessive centralization and opacity.
We present npChat, an Android application that allows users to
capture and share multimedia with friends in a secure and fully
decentralized way, while still giving users complete control over
their data. We propose using namespaces owned by users instead of
a shared application namespace and establish trust using multiple
trust models. We use an application-level pub-sub model to share
friend information and publish data, as well as a per-object access
control scheme to share content with selected friends. Our evalua-
tion demonstrates the application’s data sharing performance and
low overhead in various scenarios.

CCS Concepts
• Networks → Social media networks; Mobile ad hoc networks; •
Human-centered computing → Mobile phones;

Keywords
Named Data Networking, Decentralized Social Media Applications,
Information Centric Networks
ACM Reference Format:
Ashlesh Gawande, Jeremy Clark, Damian Coomes, Lan Wang. 2019. De-
centralized and Secure Multimedia Sharing Application over Named Data
Networking. In ICN ’19: Conference on Information-Centric Networking, Sep-
tember 24–26, 2019, Macao, China. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3357150.3357402

1 Introduction
The Named Data Networking (NDN) architecture has great poten-
tial in improving the robustness and performance of data distri-
bution, especially when the network environment is challenging
and when peer-to-peer data sharing is desirable. For example, in
comparing HTTP and NDN content retrieval, NDN shows promise
∗This work was supported by NSF CNS-1629769.
†Damian Coomes has graduated from the University of Memphis.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICN ’19, September 24–26, 2019, Macao, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6970-1/19/09. . . $15.00
https://doi.org/10.1145/3357150.3357402

in lossy environments, performing 4 times better than the HTTP
implementation [31]. As another example, nTorrent [17], an NDN
version of BitTorrent, showed nearly a 50% reduction in network
traffic and faster download speeds compared to BitTorrent.

While performance improvement is an important reason for
developing the NDN architecture, we believe an equally important
reason is that NDN has the necessary architectural building blocks,
such as retrieving data using names and schematized trust based on
data names, to support fully decentralized applications. Removing
the need to rely on a central entity to store and serve data, provide
user information, and control access to content will significantly
improve users’ privacy and security, and prevent the dominance of
a few application service providers which is common today.

We believe more research effort needs to be focused on design-
ing a framework and the specific mechanisms to support decen-
tralization in NDN applications. To this end, we designed an NDN
application named npChat (NDN Photo Chat) that provides similar
functionality as today’s media-sharing based social networking ap-
plications without requiring any centralized service providers, and
implemented it on the Android platform over NFD Android [20]).
This application-driven exercise aims to shed some light on var-
ious aspects of developing a fully decentralized application. The
major contributions of this work include identifying the specific
requirements for a fully decentralized application, and designing
and implementing NDN-based mechanisms to enable users to dis-
cover other users in the local network and through mutual friends,
build friendship via multi-modal trust establishment mirrored from
the real world, subscribe to friends’ multimedia data updates via
pub-sub, and control access to their own published media. We hope
that the design patterns in this application will provide a reference
for developing other decentralized applications.

2 Design

A good NDN application for social networking needs to include
the basic functionality that users have come to expect from such
an application. However, our goal is not to simply replicate the
functionality, but rather to break away from the typical central-
ized design and implementation of such applications by taking
advantage of NDN’s architectural features (Section 2.1). Therefore,
npChat provides the major functions that are common in popu-
lar social networking applications such as Facebook, Instagram,
SnapChat, and WeChat (Section 2.2), but it realizes these functions
without relying on a single shared namespace, a centrally managed
data service, a single user directory, a specific trust model/anchor, or
a single access control point, as we will describe in Section 2.3 to
Section 2.9.

19

https://doi.org/10.1145/3357150.3357402
https://doi.org/10.1145/3357150.3357402
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3357150.3357402&domain=pdf&date_stamp=2019-09-24

ICN ’19, September 24–26, 2019, Macao, China A. Gawande et al.

2.1 Requirements
Our goal is to achieve a fully decentralized application de-
sign in terms of data storage, communication, trust establish-
ment, and access control. Below we elaborate our design require-
ments derived from this goal.

First, since giving users, not third parties, exclusive control over
their own data is important for ensuring the users’ privacy and
other rights, the application should enable each user to store
and serve his/her data. In other words, there is no single entity
that collects and serves all the users’ data (even if such a service is
provided from many distributed data centers). Note, however, that
the above requirement does not mean that all the data produced
by a user must be stored in the user’s phone. In fact, the user can
set up a personal repo for better data availability and persistence.
By “personal repo", we mean either a persistent storage device
owned by the user running NDN repository software, or such a
storage service hosted by a provider chosen by the user, which is
independent of whoever provides the application.

Second, the application should not rely on a user directory
maintained by a single entity, which contains all users’ informa-
tion, even if the directory is stored in a distributed manner. Having
such a directory at the core of the application means that, when the
directory is unavailable, the application will not function properly.
Moreover, the entity that maintains the directory can easily infer
users’ activities as it is queried by users to find new friends and
the directory may contain additional user-specific information, e.g.,
location and time when a user is online.

Third, the application should not depend on specific in-
frastructure support, other than the basic NDN forwarding
functionality, for transferring itsmessages. For example, there
should be no specialized nodes or application-specific state in the
network to forward the application’s messages. Furthermore, the
application should be able to operate in an ad hoc environment,
e.g., over WiFi Direct, as long as the devices support such commu-
nication modes. The less our application depends on specialized
routers, peers, or other infrastructure components, the more robust
it becomes in face of network and user dynamics.

Fourth, our design should allow users to establish trust re-
lationships and authenticate each other’s data without rely-
ing solely on a pre-defined trust anchor. In the real world, we
often derive our trust from a variety of sources, such as authorities
defined by existing management structures, reputation reported
by a trusted agency based on past observed behavior (e.g., a credit
score), and judgement of people we trust. Some applications can
work very well using a single trust source, while others may benefit
from multiple sources especially when the operating environment
may change dynamically over time.

Finally, access to a user’s content should be controlled by
the user, not another entity. The user should be able to control
who among his/her friends can access a piece of his/her content
without relying on a third party to enforce this access restriction.

2.2 Overview
Our application supports the following functionality. First, an
npChat user can make a new friend by scanning another user’s
identity information (encoded in a QR code). He/she can also send a

Figure 1: Discovering npChat Users via Multicast Face

Figure 2: Discovering npChat Users via DNS-SD

Friend Request to a remote user who can either accept or reject the
request. Second, one can discover new users to befriend by finding
other npChat application instances on the local area network and
collecting each friend’s Friend List. Third, a user can share content,
such as photos and videos, with his/her friends. This may be called
a story, feed, or some other name depending on the specific appli-
cation. Fourth, such content may be restricted to specific friends,
and it may be accessible only for a certain time period.

2.3 Local Active User Discovery
Our application discovers other npChat instances running in the
same local network. This discovery process serves three purposes:
(1) after discovering any active friends, npChat subscribes to those
friends’ feeds so that it can retrieve their published data and receive
any future data; (2) if the local network does not support multicast,
then the discovery process creates unicast links and routes toward
the active friends; (3) if any discovered user is not a friend yet, that
user is added to a list of potential friends (see Section 2.6 about
making new friends). As we will show in this section, our design
avoids relying on a central server for discovering and storing all
users to the extent possible.

20

Decentralized and Secure Multimedia Sharing App over NDN ICN ’19, September 24–26, 2019, Macao, China

Typically a wireless interface can be associated with either an
Access Point or Wifi Direct but not both at the same time1, so we
outline the discovery process in each case below.

WiFi Direct In the WiFi Direct mode, NFD Android uses the
“NDN Over WiFi Direct Protocol" [10] to discover all the name
prefixes registered at the other NFD instances in the same WiFi
Direct network and establishes appropriate unicast routes to them.
This means that NFDwill be able to route to any other npChat user’s
data in the WiFi Direct network via unicast routes. However, as the
discovery protocol in NFD Android is opaque to the application,
the application still needs to identify the specific npChat users and
their name prefixes, so we still run the same user discovery process
as outlined below.

Infrastructure-based Local Area Network NDN currently
does not have a standard local discovery mechanisms for applica-
tions, so we decided to develop our own mechanisms. There are
three possible cases. First, in networks that support multicast traf-
fic to NFD’s port, npChat first tries to discover other users through
NFD’s multicast face directly and use it for subsequent communi-
cation. As seen in Figure 1, the app sends Interests with the user’s
prefix over this face at startup in the namespace /localhop/discovery.
Upon receiving this Interest from another user, npChat responds
with Data containing its user’s prefix. The probing user’s prefix
is stored and any routes to that user are created over the multi-
cast face. Second, many networks block multicast traffic except
for a few important ports so the above mechanism will not work.
However, some of them allow multicast for network service dis-
covery based on the DNS-SD mechanism [6], as printers and other
devices depend on DNS-SD to publish their services. Therefore, we
have incorporated a discovery mechanism based on DNS-SD in
our app, which is illustrated in Figure 2. Third, for networks that
block all multicast traffic, we plan to use NDN Neighbor Discovery
Service (NDND) [22] which allows NDN nodes to discover each
other through a rendezvous server.

One obvious question remains for discovering users not in the
local network. As we will present in Section 2.6, each npChat user
optionally shares a Friend List containing the latest information
(e.g., name prefix, key/certificate, and online/offline status) about
that user’s friends. This is one way for that user’s friends who
subscribe to this Friend List to learn about other users that may
not be in their local network (note that only this user’s friends can
subscribe to the Friend List). Alternatively, it is possible to use the
NDND service to collect all the npChat user information globally,
but this will lead to a centralized user list that we want to avoid
(Section 2.1), so we will use NDND only in a local area network
for discovering local users. We will offer more justification for our
decisions in Section 2.6.

Note that for this work, we assume that if a user wants to com-
municate with users not currently on the local network, the user’s
device needs to connect to an (overlay) NDN wide area network,
e.g., the NDN testbed. As such, npChat does not create tunnels to
those users directly, but relies on NFD to establish the necessary
routes toward the wide area network to reach them.

1WiFi Ad Hoc mode requires rooting an Android phone, so it is not supported by NFD
Android.

2.4 Naming
A straight-forward design for naming user data is to put a com-
mon application name prefix, e.g., /com/npChat, before the user
name. However, such a design requires some entity to apply for and
manage this application namespace, which goes against our goal
of decentralization. Therefore, our design lets each user publish
his/her npChat data under a namespace owned by the user. For
example, suppose Jane Doe on AT&T’s network owns the names-
pace /net/att/JaneDoe, and she chose the user name janedoe123
when she first started npChat, then her content will be published
under /net/att/JaneDoe/npChat/janedoe123. As another exam-
ple, John Smith at U. Memphis (/edu/memphis/JohnSmith/) with
the npChat user name jsmith will have the name prefix /edu/
memphis/JohnSmith/npChat/jsmith for his data.

Every user needs a public/private key pair for signing his/her
npChat data, and the key name is under the user’s npChat names-
pace. If we use <UserPrefix> to represent a user’s namespace for
npChat (e.g., /net/att/JaneDoe/npChat/janedoe123), then the
user’s npChat key will be named /<UserPrefix>/KEY/<KeyId>.
Section 2.5 describes how the users authenticate each other’s key
to establish a trust relationship.

In addition to the above namespaces, we also need to have names-
paces for the PSync library [33] to sync users’ data. We will present
the naming scheme for PSync in Section 2.7.

2.5 Trust Model
In order to verify the authenticity of received data, an npChat user
must be able to verify the authenticity and signing privilege of
the key that signed the data, i.e., the key indeed belongs to the
user that claimed to have generated the named data and the key is
authorized to sign the data. The “trust” in this key’s authenticity
and signing privilege is typically derived using a trust model speci-
fied in the application [29]. Our application requires npChat data
to have the name format /<prefix>/npChat/<user>/... and
it must be signed by the user’s npChat key named /<prefix>
/npChat/<user>/KEY/<KeyId>. The question is how to authenti-
cate this npChat key. A common trust model is a hierarchical one
with a pre-defined trust anchor (e.g., NLSR’s trust model for verify-
ing routing data [28]). This type of hierarchical trust model can be
used by AT&T npChat users to verify Jane Doe’s key. More specifi-
cally, Jane’s npChat key should be signed by her AT&T namespace
key, which in turn should be (recursively) signed by the key be-
longing to AT&T’s namespace management authority (i.e., the trust
anchor). However, John Smith with a namespace from U. Memphis
may not be able to authenticate Jane’s AT&T key if he does not
have or trust the AT&T trust anchor. In this case, a web-of-trust-
like model such as [30] may work better by allowing the users to
endorse other members with various trust levels.

We believe that for a social networking application with many
users from different communities, rather than letting the appli-
cation choose a specific trust model, it is better to allow users
to establish trust relationships using any trust models and trust
sources they have available, as different models/sources may work
in different situations. For example, Jane Doe and another npChat
user with an AT&T namespace can use their AT&T trust model
to establish trust, while Jane Doe and John Smith may be able to

21

/com/npChat
/net/att/JaneDoe
janedoe123
/net/att/JaneDoe/npChat/janedoe123
/edu/memphis/JohnSmith/
jsmith
/edu/memphis/JohnSmith/npChat/jsmith
/edu/memphis/JohnSmith/npChat/jsmith
<UserPrefix>
/net/att/JaneDoe/npChat/janedoe123
/<UserPrefix>/KEY/<KeyId>
/<prefix>/npChat/<user>/...
/<prefix>/npChat/<user>/KEY/<KeyId>
/<prefix>/npChat/<user>/KEY/<KeyId>

ICN ’19, September 24–26, 2019, Macao, China A. Gawande et al.

Figure 3: Procedure for Establishing Friendship Relationship in Person

establish trust through a web-of-trust-like model. This multi-modal
approach closely resembles the trust establishment in a human
world, which helps to grow a social network and makes it resilient.
For this reason, we study how to establish trust through mul-
tiple means in this work. More specifically, we incorporate the
following mechanisms in our design.

(1) personal verification: two users meet in person to verify
each other’s identity and obtain each other’s key after the
verification;

(2) hierarchical trust: each user can supply one or more hi-
erarchical trust schemas with fixed trust anchor(s) to the
application. For example, John Smith can provide U. Mem-
phis’s trust schema through configuration to the application,
which can be used to verify the keys from npChat users at
U. Memphis;

(3) mutual-friend based trust: if two users have a mutual
friend in npChat, then they can establish trust. For example,
if Jane Doe and John Smith are both friends of Richard Roe,
then they can trust each other’s key after verifying the cor-
responding certificates issued by Richard to Jane and John
(Section 2.6).

Note that the objective of this paper is not to propose new trust
models, but rather to investigate the feasibility of supporting mul-
tiple trust models and the associated complexities. Therefore, the
novelty of this work lies in the process for the application to es-
tablish trust with the uncertainty of multiple trust models and
certificates per user (Section 2.6). In our future work, we will con-
sider more complex trust models such as partial trust based on the
number of mutual friends.

2.6 Making Friends
As introduced in Section 2.5, we experiment with three types of
trust in npChat, and in this section, we describe how users make
friends using these trust models. Before proceeding further, we
want to clarify the distinction between the two terms “trust” and
“friendship” in this work. Trust here refers to the acceptance of some

key/data after applying the relevant authentication method, while
friendship refers to two users’ willingness to connect with each
other to share data in the application. Friendship is built on trust,
but trust does not require friendship. Once two users accept their
friendship, they issue certificates to each other by signing the new
friend’s key. Note that issuing a certificate is a very basic operation
in NDN, as every user signs every piece of data (including keys)
that he/she produces.

We first present the procedure for two users to establish friend-
ship in person (see Figure 3). In this case, users A and B can scan
each other’s QR codes containing their self-signed certificate to
become friends. Upon scanning B’s QR code, A signs B’s key to is-
sue B a certificate (CERTA(KeyB)) which confirms their friendship.
It then begins serving the certificate under the name /<prefixA>
/certs/<PrefixB>/KEY/<KeyIdB> for B to fetch. In other words,
A encapsulates B’s certificate using A’s name prefix so that B’s In-
terest for the certificate will arrive at A instead of being consumed
by B. Similarly, B issuesA a certificate to confirmA as a friend. They
then fetch the newly issued certificate from each other. This series
of exchanges establish a friendship relationship between the two
users so that each can subscribe to the other’s data to receive all
the data published in the other’s feeds (Section 2.7). Each user can
also select the other as a recipient when sharing access controlled
content (Section 2.8).

Before we present the procedure for two users who cannot meet
in person to become friends, we need to first explain how one can
discover other users to befriend. In the simplest situation, one may
get the other user’s information (e.g., name prefix) through an out-
of-band channel, e.g., a phone call. Otherwise, one can discover
other users in the local network using the discovery mechanisms
described in Section 2.3. In addition, each user optionally publishes
information about their own friends in a feed called “Friend List”.
This way, user A, who is a friend of user B, may be able to find user
C who is a friend of B but not a friend ofA yet. Each user maintains
a list of potential friends using information collected by the local
discovery mechanisms and that from his/her friends’ Friend Lists.

22

/<prefixA>/certs/<PrefixB>/KEY/<KeyIdB>
/<prefixA>/certs/<PrefixB>/KEY/<KeyIdB>

Decentralized and Secure Multimedia Sharing App over NDN ICN ’19, September 24–26, 2019, Macao, China

Figure 4: Procedure for Establishing Friendship Relationship over a Network

This list will increase over time as a user gains more friends and
visits more places.

Although the above does not guarantee the discovery of every
npChat user, this is unlikely to be a major problem because there are
usually enough people to befriend within two social-network hops
and within the physical local network (note that this set expands
as one gains more friends). In fact, Mislove et. al. [18] studied
the growth of the Flickr network and discovered that over 80%
of new links in the network connect users that were only two
hops apart, meaning that friend-of-a-friend was the major source
of new links in a social network. Moreover, one can meet new
npChat friends in person and have out-of-band mechanisms to
share potential friends’ information. We believe that, compared to
using a server to collect all user information centrally, our design
decision is a reasonable trade-off for the various benefits gained
from decentralization.

Now we present the procedure for two users A and B connected
over a network to establish friendship remotely (see Figure 4). A
first sends a Friend Request to B using the Interest /<PrefixB>
/friend-request/<TrustType>/<CertNameA> signed by A’s key.
This signature prevents other users from pretending to be A. Note
that because each user may have multiple certificates issued by
different trust sources, there is a name component <TrustType> in
the Friend Request to specify which type of trust source Awants to
use and a name component <CertNameA> to include the name of the
corresponding certificate. When B receives the Friend Request from
A, he/she first retrieves A’s certificate if it has not been retrieved
before. Then B uses the specified TrustType to validate A’s key
usingA’s certificate andA’s Interest usingA’s key, decides whether
to accept the request, and then responds to A’s request with a Data
packet signed by B’s key. Similar toA’s Friend Request, B’s response
contains the TrustType and B’s certificate name for A to verify the
response. If B’s response is valid and the decision is to accept A’s
request, then they will proceed to retrieve the new certificate issued
by each other.

Below we explain howAmay choose the TrustType for establish-
ing trust with B. If A and B have the same namespace, e.g., AT&T
namespace, then A can use “hierarchical trust” as the TrustType
and include his/her AT&T issued certificate in the request. On the
other hand, if A and B do not have a shared name space, but A
learned of B from a mutual friendC , thenA can use “mutual friend”
as the TrustType and include the certificate C issued to A in the
request.

Note that, instead of a certificate name in the Friend Request
and Response, A and B can use a certificate bundle [26] if the cer-
tificate validation requires the retrieval of multiple certificates all
the way to the trust anchor. This may be useful when the nodes are
operating in an environment where it is difficult to retrieve those
other intermediate certificates. Another possible optimization is to
include A’s entire certificate in the Friend Request as an Interest
name component, but this change will make the Interest and Data
names much longer. Alternatively, the certificate can be an Interest
parameter, which will not lengthen the Interest name.

2.7 Data Publication and Subscription
Our application uses a pub-submodel where a user publishes his/her
content in multiple feeds, e.g., photo/video, location, Friend List,
and each friend of the user can subscribe to one or more of the feeds.
We use the partial sync mode in PSync [33] to realize this pub-sub
functionality.

Most existing ICN pub-sub designs, e.g., COPSS [5] andHoPP [13],
put subscription state in the network through routing or forward-
ing. In contrast, PSync pub-sub keeps state only in end nodes. More
specifically, the PSync library uses name components in Interest/-
Datamessages to encode both subscribers’ subscription information
and producers’ data set state, so that such information can be car-
ried in PSync packets without using routing or forwarding state.
More specifically, PSync uses an Invertible Bloom Filter [11] to rep-
resent the state of a data set, which allows efficient set difference
determination. In the partial sync mode, it also uses a Bloom Filter

23

/<PrefixB>/friend-request/<TrustType>/<CertNameA>
/<PrefixB>/friend-request/<TrustType>/<CertNameA>
<TrustType>
<CertNameA>

ICN ’19, September 24–26, 2019, Macao, China A. Gawande et al.

to represent a subscriber’s subscription list. This approach suits
edge applications especially well as the intermediate nodes may be
mobile or transient, making it difficult to keep subscription state
inside the network.

When a user chooses to publish a piece of data, e.g., a photo,
npChat encrypts the data, segments it, signs the segments using the
user’s private key, and loads the signed segments into the applica-
tion’s content cache to satisfy incoming interests. npChat then uses
the PSync library to publish the data name to all the subscribers of
this particular feed. More specifically, suppose <UserPrefix> is a
publisher’s name prefix, then each subscriber sends a Sync Interest
/<UserPrefix>/sync/<SubscriptionList>/<IBF> periodically
to the publisher which stays pending at the publisher.Whenever the
publisher produces new data for a particular feed, it will send a Sync
Data packet in response to each pending Sync Interest, contain-
ing the name /<UserPrefix>/<feed>/<seqno>. Each subscriber
then sends an Interest to fetch the data for /<UserPrefix>/<feed>
/<seqno> which contains the actual data name, e.g., the photo’s
name, and any related access control information. The subscribers
then fetch the data and decrypt it using the corresponding key (see
Section 2.8 about access control).

2.8 Access Control

A user’s feed can be accessed only by his/her friends. This control
is enforced by encrypting all the feed data using a symmetric key
created by this user and shared with all the friends. Whenever a
friend is removed, npChat creates a new key and distributes the
key to each friend by encrypting it with the friend’s public key. In
addition, the user may want to choose specific friends with whom
to share a particular piece of content. As the set of friends who
are granted access may differ for each data object in this case, we
use a different symmetric key to encrypt each data object for such
content, which also ensures forward secrecy.

The process for sharing data with selected friends is as follows.
To prevent unauthorized friends from getting the data encryption
key (let’s call it “content key"), it is encrypted using each authorized
recipient’s public key. The set of authored friends is then distributed
through PSync along with the name of the shared content (see
Section 2.7). Upon receiving this information, each recipient in
the set of authorized friends fetches both the filename and the
encrypted content key, decrypts the content key and then decrypts
the data using the content key. Even if an unauthorized friend
retrieves the encrypted data, he/she will not be able to decrypt the
content key and thus cannot decrypt the data.

We anticipate that this functionality is typically used to share
content with a small set of selected friends. When the set of autho-
rized friends is large, the overhead of encrypting and distributing
the content key may be high if it changes for every shared data
object. In this case, if the set of authorized friends is stable, we can
use the same content key for all the data objects shared with them,
so this key needs to be distributed only once - similar to the feed
encryption. However, whenever the set membership changes, we
need to change this key and redistribute it. This is one of our future
research issues along with more sophisticated access control.

2.9 Privacy
One privacy concern related to NDN applications is the use of
application names in routing, in-network caching, and security.
Note that many incorrectly assume all NDN names are clear human-
readable text, but this does not have to be the case. If names are
sensitive, the producer can obscure them by encrypting or hashing
them, as long as only the authorized consumers know how to apply
the same operations to derive these encrypted/hashed names. There
are more sophisticated approaches. For example, ANDANA is a Tor-
like framework for NDN proposed by DiBenedetto et. al. to provide
anonymity through onion routing [7]. Tourani et. al. also proposed
an NDN name anonymization scheme to not only stop leakage of
identity but also stop censorship by ISPs [27]. We would like to
point out that npChat can take advantage of any name anonymity
techniques developed for NDN.

A specific privacy concern for npChat is the sharing of Friend
List, which helps discovering potential friends and growing the
network. This is an optional feature in the application, so a user
can turn it off to stop sharing the list with his/her friends. To en-
courage friends to share this information, the app may introduce
some incentives, e.g., a user can earn some credit when the sharing
of his/her Friend List results in another user discovering a new
potential friend. What specific incentives to introduce is an open
issue. Regardless of the specific incentive mechanims, our evalua-
tion shows that even if only 20% of the users share their Friend List,
the social network can still grow at a good rate (see Section 4.1).

3 Implementation
We have implemented the npChat application based on the de-
sign described in Section 2. It currently supports discovering local
users, making friends using different trust models, and sharing of
photos/files with all or selected friends.

3.1 GUI and Functions
npChat’s main screen provides access to four primary activities
available to users: Camera, Files, Friends, and See Photos. The
Camera activity opens the Android device’s camera and, upon
taking a photo, allows the user to choose whether to save and
publish or just save the photo. The Files activity lets the user share
any files on the device and browse received non-photo files. The
Friends activity is where the user can scan other user’s QR codes,
display their own code, send remote friend requests, and view a list
of of their current friends. Received photos can be viewed in the
See Photos activity.

3.2 npChat and NFD Android
npChat is supported by NFD Android which runs the C++ NFD
implementation via Java Native Interface (JNI). The app uses the
jNDN [19] and jNDN-management [21] libraries to connect to NFD
Android via a TCP face and send management commands to NFD.
In addition, NFD Android’s GUI can be used to create faces, register
routes, and check NFD’s status.

NFD Android supports WiFi Direct and creates a TCP or UDP
face towards the NFD running on every other node connected to
the same WiFi Direct network. Moreover, it communicates with
each peer NFD to obtain the set of prefixes registered in that NFD
and automatically creates routes towards those prefixes using the

24

<UserPrefix>
/<UserPrefix>/sync/<SubscriptionList>/<IBF>
/<UserPrefix>/<feed>/<seqno>
/<UserPrefix>/<feed>/<seqno>
/<UserPrefix>/<feed>/<seqno>

Decentralized and Secure Multimedia Sharing App over NDN ICN ’19, September 24–26, 2019, Macao, China

peer as the next hop. This eliminates the need for users to manually
create these routes.

3.3 Local User Discovery
We use the UDP multicast face created by NFD Android to send
periodic NDN Interests for local user discovery (see Section 2.6).
Other users on the same network can respond to such Interests
with their user prefix information. User prefixes discovered in this
manner are saved in persistent storage and can be viewed by the
user as potential friends. If the network does not support multicast
to NFD’s port, we use Network Service Discovery (NSD) [3], which
is Android’s implementation of DNS-SD, to discover local users.
We encapsulated NSD functionality in the NSDHelper class, which
handles creating faces and routes upon discovery of other npChat
instances. It also handles destroying a face upon notification that
the corresponding service no longer exists.

3.4 Prefix Registration and Routes
npChat registers the prefix /<UserPrefix>/npChat/<username>
and filters Interests under several sub prefixes. The sub-prefix
/metadata is used to publish meta information for fetching files,
e.g., file name and list of authorized users. The /file sub-prefix is
for publishing data from files (note that photos are served as files
too). In addition, the app serves certificates issued to friends under
/certs, encryption keys under /keys, and user’s friend list un-
der /friends. Finally, it uses /friend-request to receive remote
friend requests.

For outgoing Interests to another user, the app installs routes
based on how the user is discovered. If the user is found by our NDN-
based discovery mechanism, npChat registers that user’s routes on
the multicast face created by NFD. If the user is discovered by the
DNS-SD discovery mechanism, npChat creates a unicast face to the
user’s IP address, and registers the corresponding routes on that
face. Otherwise, i.e., the other user is not on the local network, we
still need to implement an Identity Manager for NFD Android in
order to connect to a wide area network (e.g., the NDN testbed).

3.5 Making Friends
As mentioned in Section 2.6, friends can be made in person by using
a QR code. A QR code generator and a QR scanner, via the ZXing
library [2], have been implemented for the purposes of facilitating
in person friend registration. Upon logging in as a new user, the
app generates an RSA public/private key pair, and creates a PIB
(Public Information Base) and a TPM (Trusted Platform Module)
to store the keys in persistent storage. It then encodes the user’s
username and self-signed certificate in the form of a QR code.

If the two users cannot meet in person, our app generates a
signed Friend Request and Response, and uses the ValidatorConfig
from jNDN to load the trust anchor and trust schema for verifying
received messages.

3.6 Pub-Sub, Data Sharing, and Access Control
A file selection activity was created to allow users to publish files
stored on their device. Publishing a file also creates a QR code which
encodes the data name. Other phones are able to fetch files by its
name or by scanning the corresponding QR code. Users are also
able to use the camera to take pictures, save them, and use a similar

file selection activity to publish photos. For access control, we use
Java’s cipher library for encrypting the file and the jNDN library
for encrypting the symmetric key. We then use the jNDN library to
segment the file into 8,000-byte packets and sign those packets.

The PSync library provides the functions to create full sync
producer, partial sync producer, and consumer objects. Similar to
NFD Android’s approach, we cross-compiled PSync for Android
and wrote a JNI interface to make PSync available on Android.
npChat creates a partial sync producer to publish the user’s new
data information and uses multiple consumer objects to subscribe
to the data feeds of the user’s friends.

Whenever npChat receives a notification of new data published
by a friend, it uses jNDN’s SegmentFetcher to fetch all the data
segments. By using the public key that was exchanged upon friend-
ship acquisition, npChat can verify that the data segments are
actually from the friend. If the stored friend’s public key does not
match the signature, the data packet is dropped and the user is
notified within the app. The current publicly available Segment-
Fetcher implementation waits to retrieve each segment until it has
received and verified the previous one, which is quite inefficient.
As such, it is being updated to use a dynamic window based on the
additive-increase/multiplicative-decrease (AIMD) algorithm so that
the consumer can pipeline its Interest packets. As we will show
in the next Section, this pipelining implementation significantly
improves the data transfer performance.

The content key for encrypting a user’s published file is a 256-bit
Advanced Encryption Standard (AES) symmetric key generated
with the Java Cipher API. Encryption is performed using the AES
algorithm in Cipher Block Chaining (CBC) with PKCS5 Padding.
CBC requires a random initialization vector which is generated and
prepended to the encrypted file before it is segmented into packets.

4 Evaluation
In this section, we evaluate important features in npChat including
its ability to communicate under multiple network conditions, the
trust model, access control, and use of NFD’s Content Store. We
simulated the growth of friends in the npChat network, compared
file transfer speeds under all three supported network conditions,
measured the time it takes users to become friends, demonstrated
the retrieval of data from the content store of another user after
the producer is disconnected from the network.

In the real experiments, we used three Android phones: two
first-generation MotoX with a Dual-core 1.7 GHz CPU running
Android 6.0.1 and one Nexus 5X with a Hexa-core 1.4 GHz CPU
running Android 8.0. For the access point, we used a Tenda AC1900
wireless router to connect all devices using 802.11n. We ran each
experiment 5 times and present the average results.

4.1 Simulating npChat network growth
We wrote a simple network simulation where each node is a poten-
tial npChat user and each bidirectional link represents friendship.
In [18], authors studied the growth of the Flickr social network and
observed that a user creates one out-degree link per day for every
227 out-degree links it already has. As mentioned in Section 2.6,
they also found that more than 80 percent of the new links are
within 2 hops of the user (friends of friends). In our simulation,
we randomly assign 200 users to 10 organizations and bootstrap

25

/<UserPrefix>/npChat/<username>
/metadata
/file
/certs
/keys
/friends
/friend-request

ICN ’19, September 24–26, 2019, Macao, China A. Gawande et al.

Figure 5: Average number of friends per user for 200 nodes
under various levels of Friend List sharing

the social network by letting each user send a Friend Request (out-
degree link) to another randomly chosen user (in-degree link) in the
same organization. Users who sent requests to each other became
friends. Then for each day, each user decides if it will establish
a new out-degree link with a probability of 1/227 multiplied by
the number of out-degree links that user has. If a user decides to
establish a new out-degree link, with 80% probability, the link will
connect to a user who is in the same organization (local discovery)
or a friend of friend and, with 20% probability, the link will connect
to a user who is not in the potential friend list, i.e., not in the same
organization and not a friend of friend, in order to simulate making
friends with such a user in person.

We varied the percentage of users sharing their Friend Lists from
20% to 100% and let the simulation run until the average number
of friends per user reaches 50 (1/4 of the total user population).
Figure 5 shows that, the average of 50 friends per user was achieved
in 38 days with everyone sharing their Friend Lists, and it took
only 5 more days to reach the same number with only 20 percent
users sharing. This is because there is sufficient overlap between
the Friend Lists so that the union of those shared Friend List will
cover a sufficient percentage of the union of the private Friend Lists.
In other words, the social network will grow well even if only a
small percentage of users are willing to share their Friend Lists.

4.2 User Discovery
We evaluated our NDN-based local user discovery scheme using
the two MotoX’s and the Nexus 5X connected to a single access
point. After one user sent its Discovery Interest, the first response
was received in an average of 270ms. This means the existing users
discovered this new user in half of that time. This user continues to
discover the other users (besides the one that sent the first response)
through their periodic Discovery Interests sent every 3 seconds, so
it takes up to 4 seconds to discover all local users.

4.3 Making Friends
In order for users to become friends in person, they must establish
trust by exchanging and signing each other’s certificates. Our ex-
periment demonstrates how long it takes this exchange to occur by
recording the amount of time that passes from the users scanning

Figure 6: Remote Friendship Request Time between Devices
on Two Different Networks

each other’s QR codes until both users have received their certifi-
cates back via each NDN face type. Table 1 shows our experiment
results. As MotoX has a much slower processor than Nexus 5X, it
takes more than twice the time to issue a certificate compared to
the Nexus 5X. The transfer time for the certificate is similar for all
the three network connections (from 223ms to 228ms).

If two users cannot meet in person, trust and friendship must
be established remotely. For our evaluation, we connected each
MotoX to a Raspberry Pi running as an access point with NFD and
connected the Pi’s over Ethernet to simulate the activity for when
two users are on separate networks. Figure 6 shows that network
operation of fetching certificates takes the most time. We can elim-
inate this time by putting the certificate in the Friend Request as
mentioned in Section 2.6. Nevertheless, the overall process is quite
fast (much less than 1s).

4.4 Data Transfer in Different Network
Environments

To test file transfer times in different network environments, we
replicated each environment with two MotoX phones and a Wifi
router that supports DNS-SD and UDP multicast traffic. For the
TCP unicast connection, we disabled the multicast face in our app.
For the UDP multicast experiment, we disabled DNS-SD within
our app. Finally, to test Wifi Direct, we connected the two phones
directly using NFD’s Wifi Direct before launching our app.

Each test consisted of transferring a 1.1MB, 2.1MB, and 5.2MB
photo from one device to the other and recording the time from
which the producer updated the sync data until the consumer had
fetched the last segment. All tests were run first with the non-
pipelined version of the jNDN Segment Fetcher and then with the
AIMD pipelining version. As shown in Table 2, the transfer speeds
over an access point are similar for both unicast and multicast faces
through the AP, but WiFi Direct is noticeably slower, especially

26

Decentralized and Secure Multimedia Sharing App over NDN ICN ’19, September 24–26, 2019, Macao, China

Table 1: Making Friends in Person (scan each other’s QR code and fetch new certificate from each other over a local network).
Nexus 5X Certificate
Extraction

Nexus 5X Certifi-
cate Signing

MotoX Certificate
Extraction

MotoX Certificate
Signing

TCP Unicast
Transfer

UDP Multicast
Transfer

Wifi Direct
Transfer

2ms 30ms 3ms 76ms 223ms 226ms 228ms

Table 2: Data Transfer Time (seconds) in Different Network Environments
Data
Transfer

Transfer Mode No Pipelining Pipelining
File Size 1.1MB 2.1MB 5.2MB 1.1MB 2.1MB 5.2MB

NDN
Face
Type

TCP Link via AP 10.4 23.3 67.8 2.3 4.9 10.8
UDP Multicast via AP 10.2 22.6 70.0 2.9 4.7 10.2
TCP Link via WiFi Direct 12.3 115.8 203.4 3.3 5.2 14.8

Table 3: Access Control Cost: Data Encryption and Decryp-
tion Time (milliseconds) with Different Devices

Encryption Decryption
MotoX Nexus 5X MotoX Nexus 5X

1.1MB 53.9 10.1 10.2 4.2
2.1MB 80.1 10.4 11.7 4.6
5.2MB 144.3 10.9 19.2 5.7

with the non-pipelined Segment Fetcher which suffered from many
timeouts during the fetching process. Pipelining the Interests re-
duced the data transfer time significantly (by a factor of 21 in the
case of WiFi Direct and 2.1MB file size).

4.5 Access Control
For access control, the main overheard comes from encrypting
and decrypting the file. We recorded the time it took a MotoX
and a Nexus 5X to encrypt and decrypt 1.1MB, 2.1MB, and 5.2MB
photos. As can be seen in the results shown in Table 3, this adds
an insignificant amount of time to the process. If we assume the
MotoX is the producer and Nexus is the consumer, then the total
encryption and decryption time for a 5MB photo is 150ms, while
the data transfer time is between 10.2 and 14.8 seconds depending
on the network type (see Table 2). This means the access control
overhead in this case is no more than 1.5%.

4.6 Disconnections
The ability to retrieve data from other NDN nodes’ content stores is
an important part of the NDN architecture. To demonstrate how our
app takes advantage of this, we connected three phones to a single
access point and transferred a 509KB photo. We will refer to the
device (MotoX) that publishes the file as the Producer, the device
(Nexus 5X) that fetches the file from the Producer as Consumer
1, and the device (MotoX) that fetches the file from Consumer 1’s
content store as Consumer 2. As illustrated in Figure 7, in the first
test, the Producer publishes the file and both consumers receive
the updated sync data. Consumer 1 immediately fetches the file
and the Producer goes offline. Consumer 2 then begins to fetch
the file. Figure 8 illustrates the second test, where both consumers
immediately begin to fetch the file, but Consumer 2 disconnects
after fetching 5 packets and reconnects 4 seconds from initially
receiving the sync update, by which time Consumer 1 has finished
fetching the file and the Producer has disconnected.

Figure 7: Producer disconnects before Consumer 2 fetches
file.

Figure 8: Consumer 2 disconnects before finishing file trans-
fer.

Figure 9 shows that Consumer 2 was able to successfully fetch
the files published by the Producer even after the Producer had
gone offline. In the first graph, Consumer 1 fetches the last segment
at around 1.5 seconds, the Producer disconnects at the 3-second
mark, and at 4 seconds, Consumer 2 comes online and is able to
fetch the file. In the second graph, Consumer 2 initially fetches some
segments and the disconnects at .2 seconds, Consumer 1 finishes
fetching at about .8 seconds, the Producer goes offline at 3 seconds,
and Consumer 2 comes back online at 4 seconds and is able to fetch
the remaining segments in the file.

5 Related Work

5.1 NDN Applications
A number of applications have been developed over NFD Android,
includingNDNFit [32], ChronoChat [25], andNDN-Whiteboard [12].
NDNFit collects health data on an Android device and publishes
this data. ChronoChat [25] allows users to form chatrooms to en-
able group messaging. NDN-Whiteboard enables users to share a
“whiteboard” on which they can draw together in real time. Another
application Now@ [4] implements a similar design to Twitter by
allowing users to subscribe to multiple namespaces under which
users can write posts. Compared to these previous efforts, our work

27

ICN ’19, September 24–26, 2019, Macao, China A. Gawande et al.

Figure 9: Consumer Retrieving Files after Producer Discon-
nects

puts more emphasis on decentralization in all aspects of the appli-
cation design.

5.2 Federated Social Media Applications
Federated social media applications such as Mastodon [15], GNU
Social [24], and Diaspora [8] have been gaining popularity. These
applications have the model of federated servers communicating
with each other to form a decentralized network. A user can create
an account on any of the existing servers or on a self hosted server.
Mastodon uses ActivityPub [1] for federation, so it can interact
with other applications that also use ActivityPub. It also supports
OStatus for compatibility with GNU Social. Diaspora uses its own
protocol for federation but allows feeds from Twitter, Facebook, etc.
to be integrated. Below are the major differences between npChat
and federated applications represented by Mastodon and Diaspora.

First, the administrator of a server may shut down the server at
any time, and none of the users on that server will be able to use
their application. This is a general problem of any federated systems.
npChat does not have this problem, as it is a fully decentralized.

Second, similar to Email, the ActivityPub protocol is based on
a push model where one user’s server (source server) posts media
content to another user’s server (destination server). This model
requires servers to be stable (almost always on), otherwise they will
not receive the content. Even if a user self hosts a server, this server
still needs to be on all the time to receive potential content. In
contrast, npChat users do not depend on stable servers. Whenever
a user becomes active, that user’s npChat will check whether there
is any new content published through PSync and pulls the content.
Even if the producer of the content is offline at that moment, npChat
can get the content as long as the content has been received by
another user or cached in the network.

Third, the administrator of a federated server in Mastodon has
access to all its users’ data (data is not encrypted on the server)
and keys [16]. In Diaspora, private messages are encrypted and
the symmetric key is encrypted using recipient’s public key [9].
However, the keys for a user are still stored on the server the user
chooses to use. In npChat, only authorized users can decrypt the
data shared with them since no other users have the symmetric key
used to encrypt the data.

Finally, in Mastodon, the trust on a user’s data is implicitly de-
rived from the trust of the server that hosts the user, as the user’s
data is signed with the user’s public key (by the server) and the
key is retrieved over SSL from the server. This trust model depends
highly on having these stable servers as trust sources. In contrast,
npChat allows the users to establish trust with each other directly
and derive trust from multiple sources, including stable trust an-
chors and mutual friends. Diaspora allows multiple signers for
each user’s public key and defines a mechanism for discovering
the signing keys. However, the specific authentication procedure is
outside of Diaspora’s scope. In npChat, the key authentication (and
trust establishment) is done automatically by the application using
the information provided in the Friend Request message, without
relying on a separate authentication protocol or process.

5.3 Solid Platform
Solid [23] aims to decouple data storage from social media applica-
tions. Each user’s data is stored in one or more PODs that can be
self hosted or provided by a third party. Unlike Mastodon or Dias-
pora, a Solid POD contains only users’ data, not application logic.
Applications can get authorization from a user to access the user’s
data. Some applications have been developed on the Solid platform,
such as Contacts [14] which allows users to manage contacts stored
on their PODs.

The objective of npChat is to develop a fully decentralized appli-
cation, so we focus more on application logic, not on data storage.
However, similar to Solid and unlike the existing federated applica-
tions, npChat does not couple storage with the application. In fact,
an npChat user can utilize the data storage hosted by any provider
– npChat can use the NDN Repo protocol to store the data on a
repo hosted by the provider. Whether a user in another application
can access the data depends on whether the npChat user shares
the data decryption key with that application/user. We will address
this issue in future application design.

6 Conclusion and Future Work
In this work, we explored the design and implementation of a fully
decentralized application over NDN. Our experience demonstrates
that it is feasible to develop such an application, but it requires new
approaches to designing the application namespace, establishing
trust, discovering potential friends, and performing pub-sub. In the
next step, we will investigate access control methods to scale to a
large and dynamic set of selected users to share content. We will
also explore more complex trust models, such as partial trust based
on the number of mutual friends. To increase usage, we will add
the functionality to connect users to the NDN testbed by finishing
the Identity Manager. Finally, we will improve the user interface
and publish our application on the Android Play store.

28

Decentralized and Secure Multimedia Sharing App over NDN ICN ’19, September 24–26, 2019, Macao, China

References
[1] ActivityPub. 2018. ActivityPub W3C Recommendation. https://www.w3.org/

TR/activitypub/
[2] Agustin Delgado, et al. 2011. ZXing (Zebra Crossing) barcode scanning library

for Java, Android. https://github.com/zxing/zxing
[3] Android Developers. [n. d.]. Use network service discovery. https://

developer.android.com/training/connect-devices-wirelessly/nsd
[4] Omar Aponte and Paulo Mendes. 2017. Now@ - Content Sharing Application

over NDN. In Proceedings of ACM ICN 2017.
[5] Jiachen Chen, Mayutan Arumaithurai, Lei Jiao, Xiaoming Fu, and KK Ramakr-

ishnan. 2011. COPSS: An efficient content oriented publish/subscribe system.
In Proceedings of the 2011 ACM/IEEE Seventh Symposium on Architectures for
Networking and Communications Systems. IEEE Computer Society, 99–110.

[6] Stuart Cheshire and Marc Krochmal. 2013. DNS-based service discovery. Technical
Report.

[7] Steven DiBenedetto, Paolo Gasti, Gene Tsudik, and Ersin Uzun. 2011. ANDaNA:
Anonymous named data networking application. arXiv preprint arXiv:1112.2205
(2011).

[8] Diaspora Foundation. 2019. diaspora. https://diasporafoundation.org/
[9] Diaspora Foundation. 2019. diaspora federation protocol: Encryption.

https://diaspora.github.io/diaspora_federation/federation/
encryption.html

[10] Allen Gongm. [n. d.]. NDN Over WiFi Direct Protocol Specification.
[11] Michael T Goodrich and Michael Mitzenmacher. 2011. Invertible bloom lookup

tables. In 2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, 792–799.

[12] Sumit Gouthaman, Peter Huang, and Peter Bankole. 2015. NDN-Whiteboard.
https://github.com/named-data-mobile/apps-NDN-Whiteboard

[13] Cenk Gündoğan, Peter Kietzmann, Thomas C Schmidt, and Matthias Wählisch.
2018. HoPP: Robust and Resilient Publish-Subscribe for an Information-Centric
Internet of Things. arXiv preprint arXiv:1801.03890 (2018).

[14] Essam Mansour, Andrei Vlad Sambra, Sandro Hawke, Maged Zereba, Sarven
Capadisli, Abdurrahman Ghanem, Ashraf Aboulnaga, and Tim Berners-Lee. 2016.
A demonstration of the solid platform for social web applications. In Proceedings
of the 25th International Conference Companion on World Wide Web. International
World Wide Web Conferences Steering Committee, 223–226.

[15] Mastodon. 2019. Mastodon documentation. https://docs.joinmastodon.
org/

[16] Mastodon. 2019. Mastodon Privacy. https://docs.joinmastodon.org/
usage/privacy/

[17] Spyridon Mastorakis, Alexander Afanasyev, Yingdi Yu, and Lixia Zhang. 2018.
nTorrent: Peer-to-Peer File Sharing in Named Data Networking. In ICCCN.

[18] Alan Mislove, Hema Swetha Koppula, Krishna P Gummadi, Peter Druschel, and
Bobby Bhattacharjee. 2008. Growth of the flickr social network. In Proceedings of
the first workshop on Online social networks. ACM, 25–30.

[19] NDN Project Team. 2013. jNDN: A Named Data Networking client library for
Java. https://github.com/named-data/jndn

[20] NDN Project Team. 2015. Android Implementation of NFD. https://github.
com/named-data-mobile/NFD-android

[21] NDN Project Team. 2015. jndn-management: Tools for managing an NDN for-
warding daemon. https://github.com/named-data/jndn-management

[22] Arthi Padmanabhan, Lan Wang, and Lixia Zhang. 2018. Automated Tunneling
Over IP Land: Run NDN Anywhere. (2018).

[23] Andrei Vlad Sambra, Essam Mansour, Sandro Hawke, Maged Zereba, Nicola
Greco, Abdurrahman Ghanem, Dmitri Zagidulin, Ashraf Aboulnaga, and Tim
Berners-Lee. 2016. Solid: A Platform for Decentralized Social Applications Based
on Linked Data.

[24] GNU Network Services. 2019. GNU Social. https://gnu.io/social/
[25] Tyler Vernon Smith, Alexander Afanasyev, and Lixia Zhang. 2017. ChronoChat

on Android. Technical Report. NDN.
[26] NDN Project Team. 2015. Certificate Bundle Design. https://redmine.

named-data.net/issues/2766
[27] Reza Tourani, Satyajayant Misra, Joerg Kliewer, Scott Ortegel, and Travis Mick.

2015. Catch me if you can: A practical framework to evade censorship in
information-centric networks. In Proceedings of the 2nd ACM Conference on
Information-Centric Networking. ACM, 167–176.

[28] Lan Wang, Vince Lehman, AKM Mahmudul Hoque, Beichuan Zhang, Yingdi Yu,
and Lixia Zhang. 2018. A secure link state routing protocol for NDN. IEEE Access
6 (2018), 10470–10482.

[29] Yingdi Yu, Alexander Afanasyev, David Clark, kc claffy, Van Jacobson, and Lixia
Zhang. 2015. Schematizing Trust in Named Data Networking. In Proceedings of
the 2nd International Conference on Information-Centric Networking.

[30] Yingdi Yu, Alexander Afanasyev, Zhenkai Zhu, and Lixia Zhang. 2014. An
Endorsement-base Key Management System for Decentralized NDN Chat Applica-
tion. Technical Report. UCLA.

[31] Haowei Yuan and Patrick Crowley. 2013. Experimental Evaluation of Content
Distribution with NDN and HTTP. In IEEE INFOCOM 2013 Mini-Conference.

[32] Haitao Zhang, Zhehao Wang, Christopher Scherb, Claudio Marxer, Jeff Burke,
and Lixia Zhang. 2016. Sharing mHealth Data via Named Data Networking.
In Proceedings of the 3rd ACM Conference on Information-Centric Networking.
142–147.

[33] M. Zhang, V. Lehman, and L. Wang. 2017. Scalable name-based data synchroniza-
tion for Named Data Networking. In IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications. 1–9. https://doi.org/10.1109/INFOCOM.2017.
8057193

29

https://www.w3.org/TR/activitypub/
https://www.w3.org/TR/activitypub/
https://github.com/zxing/zxing
https://developer.android.com/training/connect-devices-wirelessly/nsd
https://developer.android.com/training/connect-devices-wirelessly/nsd
https://diasporafoundation.org/
https://diaspora.github.io/diaspora_federation/federation/encryption.html
https://diaspora.github.io/diaspora_federation/federation/encryption.html
https://github.com/named-data-mobile/apps-NDN-Whiteboard
https://docs.joinmastodon.org/
https://docs.joinmastodon.org/
https://docs.joinmastodon.org/usage/privacy/
https://docs.joinmastodon.org/usage/privacy/
https://github.com/named-data/jndn
https://github.com/named-data-mobile/NFD-android
https://github.com/named-data-mobile/NFD-android
https://github.com/named-data/jndn-management
https://gnu.io/social/
https://redmine.named-data.net/issues/2766
https://redmine.named-data.net/issues/2766
https://doi.org/10.1109/INFOCOM.2017.8057193
https://doi.org/10.1109/INFOCOM.2017.8057193

	Abstract
	1 Introduction
	2 Design
	2.1 Requirements
	2.2 Overview
	2.3 Local Active User Discovery
	2.4 Naming
	2.5 Trust Model
	2.6 Making Friends
	2.7 Data Publication and Subscription
	2.8 Access Control
	2.9 Privacy

	3 Implementation
	3.1 GUI and Functions
	3.2 npChat and NFD Android
	3.3 Local User Discovery
	3.4 Prefix Registration and Routes
	3.5 Making Friends
	3.6 Pub-Sub, Data Sharing, and Access Control

	4 Evaluation
	4.1 Simulating npChat network growth
	4.2 User Discovery
	4.3 Making Friends
	4.4 Data Transfer in Different Network Environments
	4.5 Access Control
	4.6 Disconnections

	5 Related Work
	5.1 NDN Applications
	5.2 Federated Social Media Applications
	5.3 Solid Platform

	6 Conclusion and Future Work
	References

