
ar
X

iv
:1

80
4.

05
83

9v
4

 [
cs

.D
C

]
 5

 N
ov

 2
01

9

BigDL: A Distributed Deep Learning Framework for Big Data

Jason (Jinquan) Dai
Intel Corporation

Yiheng Wang∗

Tencent Inc.

Xin Qiu
Intel Corporation

Ding Ding
Intel Corporation

Yao Zhang∗

Sequoia Capital

Yanzhang Wang
Intel Corporation

Xianyan Jia∗

Alibaba Group

Cherry (Li) Zhang
Intel Corporation

Yan Wan∗

Alibaba Group

Zhichao Li
Intel Corporation

Jiao Wang
Intel Corporation

Shengsheng Huang
Intel Corporation

Zhongyuan Wu
Intel Corporation

Yang Wang
Intel Corporation

Yuhao Yang
Intel Corporation

Bowen She
Intel Corporation

Dongjie Shi
Intel Corporation

Qi Lu
Intel Corporation

Kai Huang
Intel Corporation

Guoqiong Song
Intel Corporation

ABSTRACT

This paper presents BigDL (a distributed deep learning framework

for Apache Spark), which has been used by a variety of users in

the industry for building deep learning applications on production

big data platforms. It allows deep learning applications to run on

the Apache Hadoop/Spark cluster so as to directly process the pro-

duction data, and as a part of the end-to-end data analysis pipeline

for deployment and management. Unlike existing deep learning

frameworks, BigDL implements distributed, data parallel training

directly on top of the functional compute model (with copy-on-

write and coarse-grained operations) of Spark. We also share real-

world experience and "war stories" of users that have adoptedBigDL

to address their challenges(i.e., how to easily build end-to-end data

analysis and deep learning pipelines for their production data).

CCS CONCEPTS

• Theory of computation → Distributed algorithms; • Com-

puting methodologies→ Neural networks.

KEYWORDS

distributed deep learning, big data, Apache Spark, end-to-end data

pipeline

ACM Reference Format:

Jason (Jinquan) Dai, YihengWang, XinQiu, DingDing, Yao Zhang, Yanzhang

Wang, Xianyan Jia, Cherry (Li) Zhang, Yan Wan, Zhichao Li, Jiao Wang,

Shengsheng Huang, Zhongyuan Wu, Yang Wang, Yuhao Yang, Bowen She,

∗Work was done when the author worked at Intel

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SoCC ’19, November 20-23, Santa Cruz, CA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

Dongjie Shi, Qi Lu, Kai Huang, and Guoqiong Song. 2019. BigDL: A Dis-

tributed Deep Learning Framework for Big Data . In SoCC ’19: ACM Sympo-

sium of Cloud Computing conference, Nov 20–23, 2019, Santa Cruz, CA.ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Continued advancements in artificial intelligence applications have

brought deep learning to the forefront of a new generation of data

analytics development; as the requirements and usage models ex-

pand, new systems and architecture beyond existing deep learning

frameworks (e.g., Caffe [1], Torch [2], TensorFlow [3], MXNet [4],

Chainer [5], PyTorch [6], etc.) have inevitably emerged. In partic-

ular, there is increasing demand from organizations to apply deep

learning technologies to their big data analysis pipelines.

To support these new requirements, we have developed BigDL,

a distributed deep learning framework for big data platforms and

workflows. It is implemented as a library on top of Apache Spark

[7], and allows users to write their deep learning applications as

standard Spark programs, running directly on existing big data

(Apache Hadoop [8] or Spark) clusters. It supports an API similar

to Torch and Keras [9] for constructing neural network models (as

illustrate in Figure 1); it also supports both large-scale distributed

training and inference, leveraging the scale-out architecture of the

underlying Spark framework (which runs across hundreds or thou-

sands of servers efficiently).

BigDL provides an expressive, "data-analytics integrated" deep

learning programming model; within a single, unified data anal-

ysis pipeline, users can efficiently process very large dataset us-

ing Spark APIs (e.g., RDD [10], Dataframe [11], Spark SQL, ML

pipeline, etc.), feed the distributed dataset to the neural network

model, and perform distributed training or inference on top of

Spark. Contrary to the conventional wisdom of the machine learn-

ing community (that fine-grained data access and in-place updates

are critical for efficient distributed training [3]), BigDL provides

large-scale, data parallel training directly on top of the functional

computemodel (with copy-on-write and coarse-grained operations)

http://arxiv.org/abs/1804.05839v4
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SoCC ’19, November 20-23, Santa Cruz, CA J. Dai et al.

Figure 1: The end-to-end text classification pipeline (including data loading, processing, training, prediction, etc.) on Spark

and BigDL

of Spark. By unifying the execution model of neural network mod-

els and big data analytics, BigDL allows new deep learning algo-

rithms to be seamless integrated into production data pipelines,

which can then be easily deployed, monitored and managed in a

single unified big data platform.

BigDL is developed as an open source project1; over the past

years, a variety of users in the industry (e.g., Mastercard, World

Bank, Cray, Talroo, UCSF, JD, UnionPay, Telefonica, GigaSpaces,

etc.) have built their data analytics and deep learning applications

on top of BigDL for a wide range of workloads, such as transfer

learning based image classification, object detection and feature

extraction, sequence-to-sequence prediction for precipitation now-

casting, neural collaborative filtering for recommendations, etc. In

this paper, we focus on the execution model of BigDL to support

large-scale distributed training (a challenging system problem for

deep learning frameworks), as well as empirical results of real-

world deep learning applications built on top of BigDL. The main

contributions of this paper are:

• It presents BigDL, a working system that have been used by

many users in the industry for distributed deep learning on

production big data systems.

• It describes the distributed execution model in BigDL (that

adopts the state of practice of big data systems), which pro-

vides a viable design alternative for distributed model train-

ing (compared to existing deep learning frameworks).

• It shares real-world experience and "war stories" of users

that have adopted BigDL to address their challenges (i.e.,

1https://github.com/intel-analytics/BigDL

how to easily build end-to-end data analysis and deep learn-

ing pipelines for their production data).

2 MOTIVATION

A lot of efforts in the deep learning community have been focusing

on improving the accuracy and/or speed of standard deep learn-

ing benchmarks (such as ImageNet [12] or SQuAD [13]). For these

benchmarks, the input dataset have already been curated and ex-

plicitly labelled, and itmakes sense to run deep learning algorithms

on specialized deep learning frameworks for best computing effi-

ciency. On the other hand, if the input dataset are dynamic and

messy (e.g., live data streaming into production data pipeline that

require complex processing), it makes more sense to adopt BigDL

to build the end-to-end, integrated data analytics and deep learn-

ing pipelines for production data.

As mentioned in Section 1, BigDL has been used by a variety of

users in the industry to build deep learning applications on their

production data platform. The key motivation for adopting such

a unified data analytics and deep learning system like BigDL is to

improve the ease of use (including development, deployment and

operations) for applying deep learning in real-world data pipelines.

In real world, it is critical to run deep learning applications di-

rectly on where the data are stored, and as a part of the end-to-end

data analysis pipelines. Applying deep learning to production big

data is very different from the ImageNet [12] or SQuAD [13] prob-

lem; real-world big data are both dynamic and messy, and are pos-

sibly implicitly labeled (e.g., implicit feedbacks in recommendation

applications [14]), which require very complex data processing;

furthermore, instead of running ETL (extract, transform and load)

BigDL: A Distributed Deep Learning Framework for Big Data SoCC ’19, November 20-23, Santa Cruz, CA

and data processing only once, real-world data analytics pipeline

is an iterative and recurrent process (e.g., back-and-forth develop-

ment and debugging, incremental model update with new produc-

tion data, etc.). Therefore, it is highly inefficient to run these work-

loads on separate big data and deep learning systems (e.g., process-

ing data on a Spark cluster, and then export the processed data to a

separate TensorFlow cluster for training/inference) in terms of not

only data transfer, but also development, debugging, deployment

and operation productivity.

One way to address the above challenge is to adopt a "connector

approach" (e.g., TFX [15], CaffeOnSpark [16], TensorFlowOnSpark

[17], SageMaker [18], etc.), which develops proper interfaces to

connect different data processing and deep learning components

using an integrated workflow (and possibly on a shared cluster).

However, the adaptation between different frameworks can im-

pose very large overheads in practice (e.g., inter-process communi-

cation, data serialization and persistency, etc.). More importantly,

this approach suffers from impedance mismatches [19] that arise

from crossing boundaries between heterogeneous components. For

instance, many of these systems (such as TensorFlowOnSpark) first

use big data (e.g., Spark) tasks to allocate resources (e.g., Spark

worker nodes), and then run deep learning (e.g., TensorFlow) tasks

on the allocated resources. However, big data and deep learning

systems have very different distributed execution model - big data

tasks are embarrassingly parallel and independent of each other,

while deep learning tasks need to coordinate with and depend on

others. For instance, when a Spark worker fails, the Spark system

just relaunch the worker (which in turn re-runs the TensorFlow

task); this however is incompatible with the TensorFlow execution

model and can cause the entire workflow to block indefinitely.

The Big Data community have also started to provide better sup-

port for the "connector approach". For instance, the barrier exe-

cution mode introduced by Project Hydrogen [20] provides gang

scheduling [21] support in Spark, so as to overcome the errors

caused by different execution models between Spark and existing

deep learning frameworks (as described in the preceding paragraph).

On the other hand, this does not eliminate the difference in the two

execution models, which can still lead to lower efficiency (e.g., it

is unclear how to apply delay scheduling [22] to gang scheduling

in Spark, resulting in poorer data locality). In addition, it does not

address other impedance mismatches such as different parallelism

behaviors between data processing and model computations (e.g.,

see Section 5.1).

BigDL has taken a different approach that directly implements

the distributed deep learning support in the big data system (namely,

Apache Spark). Consequently, one can easily build the end-to-end,

"data-analytics integrated" deep learning pipelines (under a unified

programming paradigm, as illustrated in Figure 1), which can then

run as standard Spark jobs to apply large-scale data processing and

deep learning training/inference to production dataset within a

single framework. This completely eliminates the impedance mis-

match problems, and greatly improves the efficiency of develop-

ment and operations of deep learning applications for big data.

3 BIGDL EXECUTION MODEL

This section describes in detail how BigDL support large-scale, dis-

tributed training on top of Apache Spark. While it has adopted the

standard practice (such as data parallel training [23], parameter

server and AllReduce [3] [24] [25] [26]) [27]for scalable training,

the key novelty of BigDL is how to efficiently implement these

functionalities on a functional, coarse-grained compute model of

Spark.

The conventional wisdom of the machine learning community

is that, fine-grained data access and in-place data mutation are crit-

ical to support highly efficient parameter server, AllReduce and dis-

tributed training [3]. On the other hand, big data systems (such as

Spark) usually adopts a very different, functional compute model,

where dataset are immutable and can only be transformed into new

dataset without side effects (i.e., copy-on-write); in addition, the

transformations are coarse-grained operations (i.e., applying the

same operation to all data items at once).

Figure 2: A Spark job consists of many Spark tasks; the dri-

ver node is responsible for scheduling and dispatching the

tasks to worker nodes, which runs the actual Spark tasks.

Algorithm 1 Data-parallel training in BigDL

1: for i = 1 to M do

2: //"model forward-backward" job

3: for each task in the Spark job do

4: read the latest weights;

5: get a random batch of data from local Sample partition;

6: compute local gradients (forward-backward on local model

replica);

7: end for

8: //"parameter synchronization" job

9: aggregate (sum) all the gradients;

10: update the weights per specified optimization method;

11: end for

BigDL is implemented as a standard library on Spark and has

adopted this functional compute model; nevertheless, it still pro-

vides an efficient "parameter server" style architecture for efficient

distributed training (by implementing an AllReduce like operation

directly using existing primitives in Spark).

SoCC ’19, November 20-23, Santa Cruz, CA J. Dai et al.

Figure 3: The "model forward-backward" spark job, which computes the local gradients for each model replica in parallel.

3.1 Spark execution model

Similar to other Big Data systems (such as MapReduce [28] and

Dryad [29]), a Spark cluster consists of a single driver node and

multiple worker nodes, as shown in Figure 2. The driver is respon-

sible for coordinating tasks in a Spark job (e.g., task scheduling and

dispatching), while the workers are responsible for the actual com-

putation. To automatically parallelize the data processing across

the cluster in a fault-tolerant fashion, Spark provides a data-parallel,

functional compute model. In a Spark job, data are represented as

Resilient Distributed Dataset (RDD) [10], which is an immutable

collection of records partitioned across a cluster, and can only be

transformed to derive newRDDs (i.e., copy-on-write) through func-

tional operators like map, filter and reduce (e.g., see line 4 - 6 in

Figure 1); in addition, these operations are both data-parallel (i.e.,

applied to individual data partitions in parallel by different Spark

tasks) and coarse-grained (i.e., applying the same operation to all

data items at once).

3.2 Data-parallel training in BigDL

Built on top of the data-parallel, functional computemodel of Spark,

BigDL provides synchronous data-parallel training to train a deep

neural networkmodel across the cluster,which is shown to achieve

better scalability and efficiency (in terms of time-to-quality) com-

pared to asynchronous training [30]. Specifically, the distributed

training in BigDL is implemented as an iterative process, as illus-

trated in Algorithm 1; each iteration runs a couple of Spark jobs

to first compute the gradients using the current mini-batch (by a

"model forward-backward" job), and then make a single update to

the parameters of the neural network model (by a "parameter syn-

chronization" job).

The training data in BigDL are represented as an RDD of Sam-

ples (see line 6 in Figure 1), which are automatically partitioned

across the Spark cluster. In addition, to implement the data-parallel

training, BigDL also constructs an RDD ofmodels, each of which is

a replica of the original neural network model. Before the training,

both the model and Sample RDDs are cached in memory, and co-

partitioned and co-located across the cluster, as shown in Figure

3; consequently, in each iteration of the model training, a single

"model forward-backward" Spark job can simply apply the func-

tional zip operator to the co-located partitions of the two RDDs

(with no extra cost), and compute the local gradients in parallel for

each model replica (using a small batch of data in the co-located

Sample partition), as illustrated in Figure 3.

BigDL does not support model parallelism (i.e., no distribution

of the model across different workers). This is not a limitation in

practice, as BigDL runs on Intel Xeon CPU servers, which usually

have large (100s of GB) memory size and can easily hold very large

models.

3.3 Parameter synchronization in BigDL

Parameter synchronization is a performance critical operation for

data parallel distributed model training (in terms of speed and scal-

ability). To support efficient parameter synchronization, existing

deep learning frameworks usually implement parameter server or

AllReduce using operations like fine-grained data access and in-

place data mutation. Unfortunately, these operations are not sup-

ported by the functional compute model of big data systems (such

as Spark).

Algorithm 2 "Parameter synchronization" job

1: for each task n in the "parameter synchronization" job do

2: shuffle the nth partition of all gradients to this task;

3: aggregate (sum) these gradients;

4: updates the nth partition of the weights;

5: broadcast the nth partition of the updated weights;

6: end for

BigDL has taken a completely different approach that directly

implements an efficient AllReduce like operation using existing

primitives in Spark (e.g., shuffle, broadcast, in-memory cache, etc.),

so as to mimic the functionality of a parameter server architecture

(as illustrated in Figure 4).

• A Spark job has N tasks, each of which is assigned a unique

Id ranging from 1 to N in BigDL. After each task in the

"model forward-backward" job computes the local gradients

(as described in Section 3.2 and illustrated in Figure 3), it

BigDL: A Distributed Deep Learning Framework for Big Data SoCC ’19, November 20-23, Santa Cruz, CA

Figure 4: Parameter synchronization in BigDL. Each local gradient (computed by a task in the "model forward-backward" job)

is evenly divided into N partitions; then each task n in the "parameter synchronization" job aggregates these local gradients

and updates the weights for the nth partition.

evenly divides the local gradients intoN partitions, as shown

in Figure 4.

• Next, another "parameter synchronization" job is launched;

each task n of this job is responsible for managing the nth

partition of the parameters (as shown in Algorithm 2), just

like a parameter server does. Specifically, the nth partition

of the local gradients (computed by the previous "model

forward-backward" job) are first shuffled to task n, which

aggregates these gradients and applies the updates to the

nth partition of the weights, as illustrated in Figure 4.

• After that, each task n in the "parameter synchronization"

job broadcasts the nth partition of the updatedweights; con-

sequently, tasks in the "model forward-backward" job of the

next iteration can read the latest value of all the weights be-

fore the next training step begins.

• The shuffle and task-side broadcast operations described above

are implemented on top of the distributed in-memory stor-

age in Spark: the relevant tasks simply store the local gradi-

ents and updated weights in the in-memory storage, which

can then be read remotely by the Spark tasks with extremely

low latency.

The implementation of AllReduce in BigDL has similar perfor-

mance characteristics compared to Ring AllReduce from Baidu Re-

search [31]. As described in [31], the total amount of data trans-

ferred to and from every node is 2K(N-1)/N in Ring AllReduce

(where N is the number of nodes and K is the total size of the

parameters); similarly, in BigDL, the total amount of data trans-

ferred to and from every node is 2K. In addition, all the bandwidth

of every node in the cluster are fully utilized in both BigDL and

Ring AllReduce. As a result, BigDL can efficiently train large deep

neural network across large (e.g., hundreds of servers) clusters, as

shown in Section 4.3.

3.4 Discussions

While BigDL has followed the standard practice (such as data paral-

lel training and AllReduce operations) for scalable training, its im-

plementation is very different from existing deep learning frame-

works. By adopting the state of practice of big data systems (i.e.,

coarse-grained functional compute model), BigDL provides a vi-

able design alternative for distributed model training. This allows

deep learning algorithms and big data analytics to be seamless in-

tegrated into a single unified data pipeline, and completely elim-

inates the impedance mismatch problem described in Section 2.

Furthermore, this also makes it easy to handle failures, resource

changes, task preemptions, etc., which are expected to be norm

rather than exception in large-scale systems.

Existing distributed deep learning frameworks (e.g., TensorFlow,

MXNet, Petuum [26], ChainerMN [32], etc.) have adopted an archi-

tecture where multiple long-running, stateful tasks interact with

others formodel computation and parameter synchronization, usu-

ally in a blocking fashion to support synchronous distributed train-

ing. While this is optimized for constant communications among

the tasks, it can only support coarse-grained failure recovery by

completely starting over from previous (e.g., a couple of epochs

before) snapshots.

In contrast, BigDL runs a series of short-lived Spark jobs (e.g.,

two jobs per mini-batch as described earlier), and each task in the

job is stateless, non-blocking, and completely independent of each

SoCC ’19, November 20-23, Santa Cruz, CA J. Dai et al.

other; as a result, BigDL tasks can simply run without gang sched-

uling. In addition, it can also efficiently support fine-grained fail-

ure recovery by just re-running the failed task (which can then re-

generate the associated partition of the local gradient or updated

weight in the in-memory storage of Spark); this allows the frame-

work to automatically and efficiently address failures (e.g., cluster

scale-down, task preemption, random bugs in the code, etc.) in a

timely fashion.

While AllReduce has been implemented in almost all existing

deep learning frameworks, the implementation in BigDL is very

different. In particular, existing deep learning frameworks usually

implement the AllReduce operation using MPI-like primitives; as

a result, they often create long-running task replicas that coor-

dinate among themselves with no central control. On the other

hand, BigDL has adopted a logically centralized control for dis-

tributed training [33]; that is, a single driver program coordinates

the distributed training (as illustrated in Algorithm 1). The driver

program first launches the "model forward-backward" job to com-

pute the local gradients, and then launches the "parameter syn-

chronization" job to update the weights. The dependence between

the two jobs are explicitly managed by the driver program, and

each individual task in the two jobs are completely stateless and

non-blocking once they are launched by the driver.

4 EVALUATION

This section evaluates the computing performance and scalability

of neural network training in BigDL. In addition, while we do not

report inference performance results in this section, Section 5.1

shows the comparison of a real-world object detection inference

pipeline running on BigDL vs. Caffe (and as reported by JD.com,

the BigDL inference pipeline running on 24 Intel Xeon servers

is 3.83x faster than Caffe running on 5 servers and 20 GPU cards).

4.1 Experiments

Two categories of neural network models are used in this section

to evaluate the performance and scalability of BigDL, namely, neu-

ral collaborative filtering (NCF) and convolutional neural network

(CNN), which are representatives of theworkloads that BigDLusers

run in their production Big Data platform.

Neural Collaborative Filtering (NCF) [34] is one of most com-

monly used neural network models for recommendation, and has

also been included in MLPerf [35], a widely used benchmark suite

formeasuring training and inference performance ofmachine learn-

ing hardware, software, and services. In our experiments, we com-

pare the training performance of BigDL (running on Intel Xeon

server) vs. PyTorch (running on GPU).

In addition, deep convolutional neural networks (CNNs) have

achieved human-level accuracy and are widely used for many com-

puter vision tasks (such as image classifications and object detec-

tion). In our experiments, we study the scalability and efficiency of

training Inception-v1 [36] on ImageNet dataset [37] in BigDL with

various number of Intel Xeon servers and Spark task; the results

for other deep convolutional models, such as Inception-v3 [38] and

ResNet50 [39], are similar. We do not include results for RNN (re-

current neural networks) training in this section, because it actu-

ally has better scalability compared to CNN training. This is be-

cause RNN computation is much slower than CNN, and therefore

the parameter synchronization overhead (as a fraction of model

compute time) is also much lower.

4.2 Computing Performance

To study the computing performance of BigDL, we compare the

training speed of the NCFmodel using BigDL and PyTorch. MLPerf

has provided a reference implementation of the NCF program [40]

based on PyTorch 0.4, which trains amovie recommender using the

MovieLens 20Million dataset (ml-20m) [41], a widely used bench-

mark dataset with 20 million ratings and 465,000 tags applied to

27,000 movies by 138,000 users. It also provides the reference train-

ing speed of the PyTorch implementation (to achieve the target

accuracy goal) on a single Nvidia P100 GPU.

We have implemented the same NCF program using BigDL 0.7.0

and Spark 2.1.0 [42]. We then trained the program on a dual-socket

Intel Skylake 8180 2.5GHz server (with 56 cores in total and 384GB

memory), and it took 29.8 minutes to converge and achieve the

same accuracy goal.

Figure 5: The training performance of NCF using the BigDL

implementation is 1.6x faster than the reference PyTorch

implementation, as reported by MLPerf [43].

As reported by MLPerf, the training performance of NCF using

theBigDL implementation is 1.6x faster than the reference PyTorch

implementation [43] (as shown in Figure 5). While this only com-

pares the training performance of BigDL on a single CPU server to

PyTorch on a single GPU, it shows BigDL provides efficient imple-

mentations for neural network model computation (forward and

backward). We will study the scalability and efficiency of the dis-

tributed training in BigDL in Section 4.3 and 4.4.

4.3 Scalability of distributed training

In the machine learning community, it is commonly believed that

fine-grained data access and in-place data mutation are critical for

efficient distributed training, and mechanisms like Spark’s RDDs

would impose significant overheads [3]. In this section, we show

that BigDL provides highly efficient and scalable training, despite

BigDL: A Distributed Deep Learning Framework for Big Data SoCC ’19, November 20-23, Santa Cruz, CA

it is built on top of the coarse-grained functional compute model

and immutable RDDs of Spark.

The scalability of distributed training in BigDL is determined

by the efficiency (or overheads) of its parameter synchronizations.

We first study the parameter synchronization overheads in BigDL

by running ImageNet Inception-v1 model training using BigDL

on various number of Xeon servers (dual-socket Intel Broadwell

2.20GHz, 256GB RAM and 10GbE network) [44]. As shown in Fig-

ure 6, the parameter synchronization overheads, measured as a

fraction of the averagemodel computation (forward and backward)

time, turn out to be small (e.g., less than 7% for Inception-v1 train-

ing on 32 nodes) in BigDL.

To study the scalability of the distributed training of BigDL on

very large-scale Intel Xeon clusters, Cray have run ImageNet Inception-

v1model training using BigDL 0.3.0 with various node counts (start-

ing at 16 nodes and scaling up to 256 nodes) [45]. Each node is

a dual-socket Intel Broadwell 2.1 GHz (CCU 36 and DDR4 2400)

server; the learning rate and Spark’s executor memory are set to

0.10 and 120 GB respectively in the experiments.

Figure 6: Overheads of parameter synchronization (as a

fraction of average model computation time) of ImageNet

Inception-v1 training in BigDL [44].

Figure 7: Throughput of ImageNet Inception-v1 training in

BigDL 0.3.0 reported by Cray, which scales almost linearly

up to 96 nodes (and continue to scale reasonably up to 256

nodes) [45].

Figure 8: Overheads of task scheduling and dispatch (as

a fraction of average computation time) for ImageNet

Inception-v1 training in BigDL [46].

Figure 7 shows the throughput of ImageNet Inception-v1 train-

ing; the training throughput scales almost linearly up to 96 nodes

(e.g., about 5.3x speedup on 96 nodes compared to 16 nodes), and

continue to scale reasonably well up to 256 nodes [45]. The results

show that, even though BigDL implements its parameter server

architecture directly on top of Spark (with immutable RDDs and

coarse-grained functional operations), it can still provide efficient

distributed training on large clusters.

4.4 Efficiency of task scheduling

As described in Section 3.4, BigDL needs to run a very large num-

ber of shot-lived tasks on Spark (e.g., the ImageNet Inception-v1

training may run 100s of thousands of iterations and 100s of tasks

in parallel per iteration, while each task runs for just a couple of

seconds); as a result, the underlying Spark framework needs to

schedule a very large number of tasks across the cluster in a short

period of time, which can potentially become a bottleneck on large

clusters. For instance, Figure 8 shows that the overhead of launch-

ing tasks (as a fraction of average model computation time) in Ima-

geNet Inception-v1 training on BigDL, while low for 100-200 tasks

per iteration, can grows to over 10% when there are close to 500

tasks per iteration [46].

To address this issue, in each training iteration BigDLwill launch

only a single (multi-threaded) task on each server, so as to achieve

high scalability on large clusters (e.g., up to 256 machines, as de-

scribed in Section 4.3). To scale to an even larger number (e.g., over

500) of servers, one can potentially leverage the iterative nature of

model training (in which the same operations are executed repeat-

edly). For instance, group scheduling introduced by Drizzle [47], a

low latency execution engine for Spark, can help schedule multi-

ple iterations (or a group) of computations at once, so as to greatly

reduce scheduling overheads even if there are a large number of

tasks in each iteration, as shown in Figure 8 (which ran on AWS

EC2 using r4.x2large instances) [46].

5 APPLICATIONS

Since its initial open source release (on Dec 30, 2016), BigDL users

have built many deep learning applications on Spark and big data

SoCC ’19, November 20-23, Santa Cruz, CA J. Dai et al.

Figure 9: End-to-end object detection and image feature extraction pipeline (using SSD and DeepBit models) on top of Spark

and BigDL [48].

platforms. In this section, we share the real-world experience and

"war stories" of our users that adopts BigDL to build the end-to-

end data analysis and deep learning pipelines for their production

data.

Figure 10: Throughput of GPUclusters andXeon clusters for

the image feature extraction pipeline benchmarked by JD;

the GPU cluster consists of 20 NVIDIA Tesla K40 cards, and

the Xeon cluster consists of 1200 logical cores (with each In-

tel Xeon E5-2650 v4 2.2GHz server running 50 logical cores)

[48].

5.1 Image feature extraction using object
detection models

JD.com has built an end-to-end object detection and image feature

extraction pipeline on top of Spark and BigDL [48], as illustrated

in Figure 9.

• The pipeline first reads hundreds ofmillions of pictures from

a distributed database into Spark (as an RDD of pictures),

and then pre-processes the RDD of pictures in a distributed

fashion using Spark.

• It then uses BigDL to load a SSD [49] model (pre-trained in

Caffe) for large scale, distributed object detection on Spark,

which generates the coordinates and scores for the detected

objects in each of the pictures.

• It then generates the RDD of target images (by keeping the

object with highest score as the target, and cropping the

original picture based on the coordinates of the target), and

further pre-processes the RDD of target images.

• Finally it uses BigDL to load a DeepBit [50] model (again

pre-trained in Caffe) for distributed feature extraction of the

target images, and stores the results (RDD of extracted ob-

ject features) in HDFS.

Previously JD engineers have deployed the same solution on a 5-

node GPU cluster with 20 NVIDIA Tesla K40 following a "connec-

tor approach" (similar to CaffeOnSpark): reading data from HBase,

partitioning and processing the data across the cluster, and then

running the deep learning models on Caffe. This turns out to be

very complex and error-prone (because all of the data partition-

ing, load balancing, fault tolerance, etc., need to be manually man-

aged). In addition, it also reveals an impedance mismatch of the

BigDL: A Distributed Deep Learning Framework for Big Data SoCC ’19, November 20-23, Santa Cruz, CA

Figure 11: End-to-end precipitation nowcasting workflow (using sequence-to-sequencemodels) on Spark and BigDL [45].

Figure 12: Predicting precipitation patterns for the next hour (i.e., a sequence of images for the future time steps of the next

hour) on Spark and BigDL [45].

"connector approach" (HBase + Caffe in this case) - reading data

from HBase takes about half of the time in this solution (because

the task parallelism is tied to the number of GPU cards in the sys-

tem, which is too low for interacting with HBase to read the data).

After migrating the solution to BigDL, JD engineers can eas-

ily implement the entire data analysis and deep learning pipeline

(including data loading, partitioning, pre-processing, model infer-

ence, etc.,) under a unified programming paradigm on Spark. This

not only greatly improves the efficiency of development and de-

ployment, but also delivers about 3.83x speedup (running on about

24 Intel Broadwell 2.2GHz servers) compared to running the Caffe-

based solution on the GPU cluster (with 20 NVIDIA Tesla K40

cards), as reported by JD [48] and shown in Figure 10.

5.2 Precipitation nowcasting using Seq2Seq
models

Cray has built a precipitation nowcasting (predicting short-term

precipitation) application using a Seq2Seq [51]model (with a stacked

convolutional LSTMnetwork [52] as the encoder, and another stacked

convolutional LSTMnetwork as the decoder); the end-to-end pipeline

runs on Spark and BigDL [45], including data preparation, model

training and inference (as illustrated in Figure 11).

• The application first reads over a terabyte of raw radar scan

data into Spark (as an RDD of radar images), and then con-

verts it into an RDD of NumPy ndarrays.

• It then trains a sequence-to-sequencemodel, using a sequence

of images leading up to the current time as the input, and a

sequence of predicted images in the future as the output.

• After the model is trained, it can be used to predict, say, the

precipitation patterns (i.e., a sequence of images for the fu-

ture time steps) of the next hour, as illustrated in Figure 12.

Cray engineers have previously implemented the application us-

ing two separate workflows: running data processing on a highly

distributed Spark cluster, and deep learning training on another

GPU cluster running TensorFlow. It turns out that this approach

not only brings high data movement overheads, but also greatly

hurts the development productivity due to the fragmented work-

flow. As a result, Cray engineers chose to implement the solution

using a single unified data analysis and deep learning pipeline on

Spark and BigDL, which greatly improves the efficiency of devel-

opment and deployment.

5.3 Real-time streaming speech classification

GigaSpaces has built a speech classification application for efficient

call center management [53], which automatically routes client

calls to corresponding support specialists in real-time. The end-

to-end workflow is implemented using BigDL with Apache Kafka

SoCC ’19, November 20-23, Santa Cruz, CA J. Dai et al.

Figure 13: The end-to-end workflow of real-time streaming speech classification on Kafka, Spark Streaming and BigDL [53].

[54] and Spark Streaming [55] (as illustrated Figure 13), so as to

provide distributed realtime streaming model inference.

• When a customer calls the call center, his or her speech is

first processed on the fly by a speech recognition unit and

result is stored in Kafka.

• ASpark Streaming job then reads speech recognition results

from Kafka and classifies each call using the BigDL model

in real-time.

• The classification result is in turn used by a routing system

to redirect the call to the proper support specialist.

One of the key challenges for GigaSpaces engineers to imple-

ment the end-to-end workflow is how to efficiently integrate the

new neural networkmodels in the realtime stream processing pipeline,

and how to seamlessly scale the streaming applications from a

handful machines to thousands of nodes. BigDL allows neural net-

work models to be directly applied in standard distributed stream-

ing architecture for BigData (using Apache Kafka and Spark Stream-

ing), which can then efficiently scales out to a large number of

nodes in a transparent fashion. As a result, this greatly improves

the developer productivity and deployment efficiency of the end-

to-end streaming workflow.

6 RELATED WORK

Existing deep learning frameworks (such as TensorFlow, MXNet,

Petuum, ChainerMN, etc.) typically provide efficient parameter server

and/or AllReduce implementation (using fine-grained data access

and in-place data mutation) for distributed training. In contrast,

BigDL provides distributed training support directly on top of a

functional computemodel of big data systems (with copy-on-write

and coarse-grained operations), which is completely different from

the implementation in existing deep learning frameworks. This

provides a viable design alternative for distributed model training

by adopting the state of practice of big data systems, and makes

it easy to handle failures, resource changes, task preemptions, etc.,

in a more timely and fine-grained fashion.

As discussed in Section 2, to address the challenge of integrat-

ing deep learning into real-world data pipelines, there have been

many efforts in the industry that adopt a "connector approach"

(e.g., TFX, CaffeOnSpark, TensorFlowOnSpark, SageMaker, etc.).

Unfortunately, these frameworks can incur very large overheads

in practice due to the adaptation layer between different frame-

works; more importantly, they often suffer from impedance mis-

matches that arise from crossing boundaries between heteroge-

neous components. While efforts in the Big Data community (such

as Project Hydrogen in Spark) attempt to overcome some of these

issues brought by the "connector approach", they still do not ad-

dress the fundamental "impedancemismatch" problem (as discussed

in Section 2). By unifying the distributed execution model of deep

neural network models and big data analysis, BigDL provides a

single unified data pipeline for both deep learning and big data

analysis, which eliminates the adaptation overheads or impedance

mismatch.

7 SUMMARY

Wehave described BigDL, including its distributed executionmodel,

computation performance, training scalability, and real-world use

cases. It allows users to build deep learning applications for big

data using a single unified data pipeline; the entire pipeline can

directly run on top of existing big data systems in a distributed

fashion. Unlike existing deep learning frameworks, it provides ef-

ficient and scalable distributed training directly on top of the func-

tional compute model (with copy-on-write and coarse-grained op-

erations) of Spark. BigDL is a work in progress, but our initial ex-

perience is encouraging. Since its initial open source release on

Dec 30, 2016, it has received over 3100 stars on Github; and it has

enabled many users (e.g., Mastercard, World Bank, Cray, Talroo,

UCSF, JD, UnionPay, Telefonica, GigaSpaces, etc.) to build new an-

alytics and deep learning applications for their production data

pipelines.

REFERENCES
[1] Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and

Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor.
Caffe: Convolutional architecture for fast feature embedding. in Proceedings of
the 22nd ACM international conference on Multimedia. MM’14.

[2] Collobert, Ronan and Kavukcuoglu, Koray and Farabet, Clément. Torch7: A
matlab-like environment for machine learning. in BigLearn, NIPS workshop.
(2011).

[3] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu,
Y., and Zheng, X. Tensorflow: A system for large-scale machine learning. in Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation. OSDI’16.

BigDL: A Distributed Deep Learning Framework for Big Data SoCC ’19, November 20-23, Santa Cruz, CA

[4] Chen, Tianqi and Li, Mu and Li, Yutian and Lin, Min and Wang, Naiyan and
Wang, Minjie and Xiao, Tianjun and Xu, Bing and Zhang, Chiyuan and Zhang,
Zheng. Mxnet: A flexible and efficient machine learning library for heteroge-
neous distributed systems. In Proceedings of Workshop on Machine Learning Sys-
tems (LearningSys) in The Twenty-ninth Annual Conference onNeural Information
Processing Systems (NIPS). (2015).

[5] Tokui, Seiya and Oono, Kenta and Hido, Shohei and Clayton, Justin Chainer: a
next-generation open source framework for deep learning in In Proceedings of
workshop on machine learning systems (LearningSys) in the twenty-ninth annual
conference on neural information processing systems (NIPS). (2015).

[6] Paszke, Adam and Gross, Sam and Chintala, Soumith and Chanan, Gregory and
Yang, Edward and DeVito, Zachary and Lin, Zeming and Desmaison, Alban and
Antiga, Luca and Lerer, Adam Automatic differentiation in pytorch. NIPS 2017
Autodiff Workshop. (2017).

[7] Apache spark Apache software foundation. (2014) (https://spark.apache.org).
[8] Apache hadoop Apache software foundation. (2006)

(https://hadoop.apache.org).
[9] Chollet,F.et al. Keras. (https://keras.io).
[10] Zaharia, Matei and Chowdhury, Mosharaf and Das, Tathagata and Dave, Ankur

and Ma, Justin and McCauley, Murphy and Franklin, Michael J and Shenker,
Scott and Stoica, Ion. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. in Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation. NSDI’12.

[11] Armbrust, Michael and Xin, Reynold S and Lian, Cheng and Huai, Yin and
Liu, Davies and Bradley, Joseph K and Meng, Xiangrui and Kaftan, Tomer and
Franklin, Michael J and Ghodsi, Ali and others. Spark sql: Relational data pro-
cessing in spark. in 2015 ACM SIGMOD international conference on management
of data. SIGMOD’15.

[12] Russakovsky,Olga andDeng, Jia and Su, Hao andKrause, Jonathan and Satheesh,
Sanjeev and Ma, Sean and Huang, Zhiheng and Karpathy, Andrej and Khosla,
Aditya and Bernstein, Michael and others. Imagenet large scale visual recogni-
tion challenge. International journal of computer vision(IJCV). (2015).

[13] Rajpurkar,P and Zhang,J and Lopyrev,K and Liang,P. Squad: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, EMNLP. (2016).

[14] Jawaheer,G and Szomszor,MandKostkova,P. Comparisonof implicit and explicit
feedback from an online music recommendation service. in proceedings of the 1st
international workshop on information heterogeneity and fusion in recommender
systems. (2010) HetRec’10.

[15] Baylor, D., Breck, E., Cheng, H.-T., Fiedel, N., Foo, C. Y., Haque, Z., Haykal, S.,
Ispir, M., Jain, V., Koc, L., Koo, C. Y., Lew, L., Mewald, C., Modi, A. N., Polyzo-
tis, N., Ramesh, S., Roy, S., Whang, S. E., Wicke, M., Wilkiewicz, J., Zhang, X.,
and Zinkevich, M. Tfx: A tensorflow-based production-scale machine learning
platform in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD’17.

[16] CaffeOnSpark. Yahoo. (2016) (https://github.com/yahoo/CaffeOnSpark).
[17] TensorflowOnSpark. Yahoo. (2017) (https://github.com/yahoo/TensorFlowOnSpark).
[18] Sagemaker. Amazon. (2017) (https://aws.amazon.com/sagemaker/).
[19] Lin, Jimmy and Ryaboy, Dmitriy Scaling big data mining infrastructure: the twit-

ter experience. ACM SIGKDD Explorations Newsletter 14(2). (December 2012).
[20] Reynold Xin. "project hydrogen: Unifying state-of-the-art ai and big data in

apache spark". spark + ai summit 2018.
[21] Gang scheduling. (https://en.wikipedia.org/wiki/Gang_scheduling/).
[22] Zaharia, Matei and Borthakur, Dhruba and Sen Sarma, Joydeep and Elmeleegy,

Khaled and Shenker, Scott and Stoica, Ion. Delay scheduling: a simple technique
for achieving locality and fairness in cluster scheduling. in Proceedings of the 5th
European conference on Computer systems,. EuroSys’10.

[23] Dean,J., Corrado,G., Monga,R., Chen,K., Devin,M., Mao,M., Ran-
zato,Marc’aurelio, Senior,A., Tucker,P., Yang,K., Le,Q.V., Ng,A.Y. Large scale
distributed deep networks. in Proceedings of the 25th International Conference
on Neural Information Processing Systems. NIPS’12.

[24] Li,M., Andersen,D.G., Park,J.W., Smola,A.J., Ahmed,A., Josifovski,V., Long,J.,
Shekita,E.J., and Su,B.-Y. Scaling distributed machine learning with the param-
eter server. in Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation. OSDI’14.

[25] Chilimbi,T., Suzue,Y., Apacible,J., and Kalyanaraman,K. Project adam: Building
an efficient and scalable deep learning training system. in Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation. OSDI’14.

[26] Xing,E.P., Ho,Q., Dai,W., Kim,J.-K.,Wei,J., Lee,S., Zheng,X., Xie,P., Kumar,A., and
Yu,Y. Petuum: A new platform for distributed machine learning on big data. Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining. KDD’15.

[27] Zhang,H., Zheng,Z., Xu,S., Dai,W., Ho,Q., Liang,X., Hu,Z., Wei,J., Xie,P., and
Xing,E.P. Poseidon: An efficient communication architecture for distributed
deep learning on gpu clusters. in 2017 USENIX Annual Technical Conference
(USENIX ATC 17). (2017).

[28] Jeffrey Dean, Sanjay Ghemawat Mapreduce: simplified data processing on large
clusters. Proceedings of the 6th conference on Symposium on Operating Systems

Design & Implementation,{OSDI}. (2004).
[29] Michael Isard,Mihai Budiu, Yuan Yu,Andrew Birrell, andDennis Fetterly. Dryad:

distributed data-parallel programs from sequential building blocks in Proceed-
ings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems
2007. EuroSys’07.

[30] Chen,J., Monga,R., Bengio,S., and Jozefowicz,R. Revisiting distributed synchro-
nous sgd. In International Conference on Learning Representations Workshop
Track. (2016).

[31] Gibiansky,Andrew. "bringing hpc techniques to deep learning".
(http://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/).

[32] Akiba,T., Fukuda,K., and Suzuki,S. Chainermn: Scalable distributed deep learn-
ing framework. Proceedings of Workshop on ML Systems in The Thirty-first An-
nual Conference on Neural Information Processing Systems (NIPS). (2017).

[33] Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Gold-
berg, Joseph E. Gonzalez, Michael I. Jordan, Ion Stoica. Rllib: Abstractions for
distributed reinforcement learning. International Conference on Machine Learn-
ing (ICML). (2018).

[34] He, Xiangnan and Liao, Lizi and Zhang, Hanwang and Nie, Liqiang and Hu, Xia
and Chua, Tat-Seng Neural collaborative filtering. in Proceedings of the 26th inter-
national conference on world wide web. International WorldWideWeb Conferences
Steering Committee. (2017).

[35] Mlperf. (https://mlperf.org/).
[36] Szegedy,C., Liu,W., Jia,Y., Sermanet,P., Reed,S., Anguelov,D., Erhan,D., Van-

houcke,V., and Rabinovich,A. Going deeper with convolutions in Computer Vi-
sion and Pattern Recognition (CVPR). (2015).

[37] Deng,J., Socher,R., Fei-Fei,L., Dong,W., Li,K., and Li,L.-J. Imagenet: A large-scale
hierarchical image database. in 2009 IEEE conference on computer vision and pat-
tern recognition(CVPR). (2009).

[38] Szegedy,C., Vanhoucke,V., Ioffe,S., Shlens,J., and Wojna,Z. Rethinking the incep-
tion architecture for computer vision in 2016 IEEEConference on Computer Vision
and Pattern Recognition (CVPR). (2016).

[39] He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, JianDeep residual
learning for image recognition. in Proceedings of the IEEE conference on computer
vision and pattern recognition. (2016).

[40] Reference ncf implementation using pytorch in mlperf.
(https://github.com/mlperf/training/blob/
master/recommendation/pytorch/README.md).

[41] Harper, F Maxwell and Konstan, Joseph A. "the movielens datasets: History and
context". ACM Trans. Interact. Intell. Syst. 5(4):19. (2015).

[42] Ncf implementation in bigdl. (https://github.com/mlperf/training_results_v0.5/tree
/master/v0.5.0/intel/intel_ncf_submission).

[43] Mlperf 0.5 training results. (https://mlperf.org/training-results-0-5).
[44] Jason (Jinquan) Dai, and Ding Ding. Very large-scale distributed deep learning

with bigdl. o’reilly ai conference, san francisco. (2017).
[45] Alex Heye, et al. "scalable deep learning with bigdl on the urika-xc soft-

ware suite". (https://www.cray.com/blog/scalable-deep-learning-bigdl-urika-xc-
software-suite/).

[46] Shivaram Venkataraman, et al. "accelerating deep learning training with bigdl
and drizzle on apache spark". (https://rise.cs.berkeley.edu/blog/accelerating-
deep-learning-training-with-bigdl-and-drizzle-on-apache-spark/).

[47] Venkataraman,S., Panda,A., Ousterhout,K., Armbrust,M., Ghodsi,A.,
Franklin,M.J., Recht,B., and Stoica,I. Drizzle: Fast and adaptable stream
processing at scale in Proceedings of the 26th Symposium on Operating Systems
Principles. SOSP’17.

[48] Jason (Jinquan) Dai, et al. Building large-scale image feature extraction with
bigdl at jd.com. (https://software.intel.com/en-us/articles/building-large-scale-
image-feature-extraction-with-bigdl-at-jdcom).

[49] Liu,W., Anguelov,D., Erhan,D., Szegedy,C., Reed,S.E., Fu,C.-Y., and Berg,A.C. Ssd:
Single shot multibox detector in ECCV. (2016).

[50] Lin, K., Lu, J., Chen, C.-S., and Zhou, J. Learning compact binary descriptors with
unsupervised deep neural networks. in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). (2016).

[51] Sutskever,I., Vinyals,O., and Le,Q.V. Sequence to sequence learning with neural
networks. in Proceedings of the 27th International Conference on Neural Informa-
tion Processing Systems. Vol. 2. NIPS’14.

[52] Shi,X., Chen,Z., Wang,H., Yeung,D.-Y., Wong,W.-k., and Woo,W.-c. Convolu-
tional lstm network: A machine learning approach for precipitation nowcasting.
in Proceedings of the 28th International Conference on Neural Information Process-
ing Systems. Vol. 1. NIPS’15.

[53] Rajiv Shah. Gigaspaces integrates insightedge platformwith intel’s bigdl for scal-
able deep learning innovation. (https://www.gigaspaces.com/blog/gigaspaces-
to-demo-with-intel-at-strata-data-conference-and-microsoft-ignite/).

[54] Apache Kafka. (https://kafka.apache.org/).
[55] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and

Ion Stoica. Discretized streams: fault-tolerant streaming computation at scale
in The Twenty-Fourth ACM Symposium on Operating Systems Principles. (2013)
SOSP’13.

	Abstract
	1 Introduction
	2 Motivation
	3 BigDL Execution Model
	3.1 Spark execution model
	3.2 Data-parallel training in BigDL
	3.3 Parameter synchronization in BigDL
	3.4 Discussions

	4 Evaluation
	4.1 Experiments
	4.2 Computing Performance
	4.3 Scalability of distributed training
	4.4 Efficiency of task scheduling

	5 Applications
	5.1 Image feature extraction using object detection models
	5.2 Precipitation nowcasting using Seq2Seq models
	5.3 Real-time streaming speech classification

	6 Related Work
	7 Summary
	References

