
Voiceye: A Multimodal Inclusive Development
Environment

Bharat Paudyal

DMT Lab, BCU

bharat.paudyal@bcu.ac.uk

Chris Creed

DMT Lab, BCU

chris.creed@bcu.ac.uk

Maite Frutos-Pascual

DMT Lab, BCU

maite-frutos@bcu.ac.uk

 Ian Williams

DMT Lab, BCU

ian.williams@bcu.ac.uk

ABSTRACT

People with physical impairments who are unable to use

traditional input devices (i.e. mouse and keyboard) are often

excluded from technical professions (e.g. web

development). Alternative input methods such as eye gaze

tracking and speech recognition have become more readily

available in recent years with both being explored

independently to support people with physical impairments

in coding activities. This paper describes a novel

multimodal application (“Voiceye”) that combines voice

input, gaze interaction, and mechanical switches as an

alternative approach for writing code. The system was

evaluated with non-disabled participants who have coding

experience (N=29) to assess the feasibility of the

application in writing HTML and CSS code. Results found

that Voiceye was perceived positively and enabled

successful completion of coding tasks. A follow-up study

with disabled participants (N=5) demonstrated that this

method of multimodal interaction can support people with

physical impairments in writing and editing code.

Author Keywords
Eye gaze tracking; Speech recognition; Assistive technology;

Programming tools.

CCS Concepts

• Human-centered computing~Interaction design~Systems

and tools for interaction design

INTRODUCTION
Programming involves multiple activities including

designing, writing, debugging, compiling and editing code

[39, 58]. In order to complete programming tasks,

developers typically have to use a keyboard and mouse as

the dominant input paradigm for controlling systems [28,

33, 52]. People with physical impairments (who are unable

to use these input devices) can therefore be excluded from

development work and the opportunity to have technical

careers in this area. Eye gaze tracking and speech

recognition are two technologies available to physically

impaired users that can support interactions with different

systems [7, 21, 36]. Both technologies have evolved rapidly

in recent years and have been explored independently for

supporting development work [1, 10, 13, 49].

For instance, the use of speech input has received recent

interest as an alternative input method within programming

environments [41, 52]. Tools such as these are presenting

new opportunities for programmers with physical

impairments through reducing the dependency on a

traditional keyboard [9, 46, 51]. However, voice based

coding tools are typically tailored for experienced coders

and are rarely evaluated with physically impaired users

[52]. Speech input also presents some limitations in a

coding scenario through known challenges such as

accurately detecting speech input [9, 28, 52, 64]. Moreover,

little work has investigated the optimal techniques for

selection and pointing tasks using a purely speech based

approach [53].

Similarly, studies have investigated the use of gaze as a

pointing device in coding environments [27, 50, 56]. There

has also been substantial activity around controlling

traditional and novel keyboard layouts via different gaze

techniques [8, 44]. In contrast to speech recognition, these

methods can potentially provide users with more control

when entering text or selecting different application features

(thus reducing the impact of incorrect speech input).

However, whilst gaze interaction can make systems

somewhat accessible, it has known limitations around the

selection of small targets [19, 65], the well-known Midas

touch issue [34, 36], and slow typing speeds [37, 40].

Several researchers have stated that the disadvantages of

each modality (speech and gaze) can be reduced when both

are combined into a multimodal approach [14, 42, 53, 65].

Initial work has explored the combination of both methods

in different applications such as word processors [8] and

creative software [36], as well as for controlling desktop

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Permissions@acm.org.

DIS '20, July 6–10, 2020, Eindhoven, Netherlands

© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6974-9/20/07…$15.00

https://doi.org/10.1145/3357236.3395553

environments [35, 53] and web browsing [55]. This type of

combined approach presents numerous opportunities to

make interactions more accessible for people with physical

impairments, although there has been a lack of work

exploring this form of multimodal interaction. It therefore

remains unclear what the optimal complimentary roles are

for each input method when utilized to support coding

activities. Moreover, the use of additional controls (e.g.

mechanical switches commonly used by people with

physical impairments) could also further support a

combined gaze and speech approach, although we have

little understanding around the feasibility of a system

integrating multiple methods of input in this context.

To address the lack of work in this area, we present a new

development application (“Voiceye”) that combines eye

gaze, voice, and mechanical switches as an approach for

writing HTML and CSS code. The system uses voice input

for verbal commands such as selecting, navigating, and

removing code – as well as for dictating longer forms of

non-code text (e.g. comments). Gaze is used to provide a

more controlled approach to write code via an on-screen

keyboard – to address issues with slow typing speeds we

integrated Emmet [26] as a novel approach that enables

users to write HTML/CSS code via a shorthand notation.

Emmet is also widely used in industry to support more

efficient coding workflows. The application was evaluated

in an initial user study with non-disabled participants

(N=29) where results have shown that it was perceived

positively and enabled successful completion of different

coding tasks. A follow-up study was conducted with five

physically impaired programmers where the application

again received positive feedback and enabled participants to

write code during a web development activity.

The primary contributions of this work are threefold: (1) a

novel multimodal coding environment enabling people with

physical impairments to write code, (2) a user study

demonstrating the usability of the system and new insights

into this form of multimodal interaction, and (3) validation

of this approach highlighting that people with physical

impairments can effectively write code.

RELATED WORK

Coding via Speech Interaction

Voice based coding methods have been explored to

investigate their potential to support writing code [11, 23,

49, 52]. Researchers have examined taking natural language

or pseudo code as voice input and converting it into code in

applications such as NaturalJava [48], VoiceCode [23], and

VoiceGrip [22]. More recently, Gordon [29] created a new

programming language where users provide vocal input in

the form of pseudo code which is then converted into full

syntax. Ayub and Saleem [3] developed a system that

enabled users to generate C++ code through verbalization

of the language’s syntax and semantics (i.e. “see out”

generates the code “cout<<”). Patel and Patel [46] also

used the same approach to explore the potential for Java

programming via speech control.

In terms of HTML and CSS coding, Modak et al. [43] and

Chadha et al. [16] investigated the generation of webpages

through natural language speech input. However, their

system has some limitations in terms of including attributes

such as “class” and “id”, as well as other common HTML5

elements (e.g. figcaption, header, etc.) Similar work has

been explored by Bajwa et al. [4], although their system

only supports the creation of HTML forms via text.

Figure 1: Screenshot of the Voiceye interface when the speech recognizer has been activated. The spinner indicates that the

recognizer is listening for speech input. The text “type freelance developer” has been issued by the user in this example. The

user’s gaze is also hovering over the “w” key (resulting in visual feedback through the red background).

Other approaches have investigated the potential of

dictating code directly [9, 1, 49, 60, 52]. For instance, Begel

and Graham [10] developed a code dictation tool (SPEED)

to support people with Repetitive Strain Injury (RSI) in

writing code [9]. Similarly, Rosenblatt et al. [52]

investigated dictation of code with people who have upper

limb mobility impairments. Moreover - VoiceCode [1],

TalonVoice [60], and a new approach developed by Rudd

[49] are existing vocal programming systems targeted for

experienced programmers with RSI. These applications and

approaches hold potential for disabled coders, although they

might be cumbersome for novice programmers as they have

to learn new non-natural voice commands (e.g. in

VoiceCode, users have to utter the phrase ‘snake shark

attribute accessor’ to type attr_accessor).

Coding via Gaze Interaction

There has been significant research activity around gaze

interaction and its potential in creating accessible

applications for people with physical impairments [7, 36,

38]. In particular, there has been substantial work around

different eye typing techniques [17, 40], as well its use in

supporting the selection of small targets [6, 42, 57],

document navigation [47], drawing [31, 32], and web

browsing [38, 47]. However, little work to date has focused

on using gaze to support programming activities.

Initial work has explored its use as a pointing device in

coding environments - for instance, EyeDe [27] is a gaze

supported IDE that provides support for features such as

navigating to a function, tabbing between documents, and

opening source files. Similarly, Radevski et al. [50]

developed EyeNav which combines gaze and keyboard

shortcuts to support common development activities related

to code selection, page scrolling, and single character

movement. CodeGazer [56] is a gaze based system that

supports users with coding navigation tasks such as “go to

definition” and “find all usages”

Whilst there has been significant research exploring how to

make standard gaze typing tasks more efficient [37, 40, 44],

there has still been little work investigating the optimal

approaches for writing code. Moreover, mainstream

development environments (e.g. Visual Studio Code [62])

contain lots of small icons and interface elements that are

difficult to select via gaze interaction [19, 42]. The majority

of research studies to date investigating the use of gaze

input for navigating, writing, and selecting code have also

not involved the use of physically impaired coders. Further

work is therefore required to explore accessible

development approaches for disabled coders.

Coding via Gaze and Speech Interaction

A number of researchers have suggested that the

combination of gaze and voice can be an intuitive

interaction solution in a number of scenarios [25, 30, 36,

55]. Research studies have started to explore the

combination of voice and gaze in non-programming fields

[8, 14, 36, 53, 55] where gaze is typically used as a pointer

for interaction and speech input for issuing commands and

performing interface selections. In terms of multi-modal

interaction in a programming environment, TalonVoice [60]

uses both gaze and voice to enable people with limited or

no use of their hands to write code, although it is mostly

targeted for experienced programmers. In this application

voice is used for typing code (as well as issuing commands)

whereas gaze is used for cursor control and zooming into

areas of code. Apart from TalonVoice, which also lacks

academic evaluation, no other studies have been conducted

exploring the combination of voice and gaze to support

development work. Moreover, no studies have investigated

the potential of additional input methods to further support

a combined speech and gaze approach (e.g. the use of

mechanical switches for performing selections).

APPLICATION DESIGN

To address the lack of research exploring the potential of

multimodal interaction approaches to facilitate coding

activities for disabled users, we developed a code editor

(Voiceye) that can be operated using the combination of

gaze, speech input, and mechanical switches. Voiceye is a

desktop-based application developed using Electron.js [24]

that enables writing and editing HTML/CSS code via gaze

interaction, whilst voice input is used for dictating long text

(e.g. comments) and performing commands such as

selecting, deleting, and navigating code. It is built on top of

CodeMirror [18] – an open source JavaScript based code

editor which provides standard features such as syntax

highlighting, search, replace, and code indentation.

Voiceye consists of four components: an automatic speech

recognizer (using Microsoft’s Azure Speech service [59]), a

rule-based syntax grammar, an onscreen keyboard

(controlled via gaze input), and two mechanical switches –

one for performing selections on buttons within the

interface (e.g. a virtual keyboard key) and the other for

toggling activation of the voice recognition system. As the

user speaks, the prototype converts speech to text and

performs a check against the rule based syntax grammar

listed in Table 1. Appropriate actions are then triggered

based on the spoken command. The onscreen keyboard

allows users to type code via fixating on characters of

interest and then completing the selection by pressing one

of the designated mechanical switches.

The main interface was informed through the design of

existing mainstream development environments (e.g. Visual

Studio Code [62], Atom [2], Brackets [12], etc.). These

applications typically display the line numbers by default

on the left-side of the interface with the code included in the

main interface area (with features such as syntax formatting

enabled). We adopted a similar interface, along with a

theme similar to the default one used in Visual Studio Code

(Figure 1). The QWERTY keyboard layout is the most

common one used in eye typing studies [37, 44]. This

layout is therefore integrated into the application with keys

that are 110x110px in size to support more comfortable

Tasks Speech Commands Description Example Code / Utterances Example Output

Code Entry “Type” Entering new text. <p>∎</p>

Speech: “Type welcome”

<p>welcome∎</p>

Navigation “Go to {line

number}”

Navigating

between the lines

of code.

Speech: “Go to 17” Cursor placed at start of line 17.

“Left/Right” Navigate one

position left/right.
<main∎class="main">

Speech: “left”

< ∎main class="main">

* “Left/Right

{number}”

To navigate x

positions left/right.
padding: 4px ∎ 2px 3px 4px;

Speech: “Left 2”

∎padding: 4px 2px 3px 4px;

“Up/Down” Navigate one line

up/down.

8. <div class=”main”>

9. ∎<h1>User</h1>

10. </div>

Speech: “Up”

8. ∎<div class=”main”>

9.<h1>User</h1>

10.</div>

“End of Line” Navigate to the end

of current line.
∎<h1>User</h1>

Speech: “End of line”

<h1>User</h1>∎

Selection “Select” Select one /multiple

elements of code.
padding: 4px∎2px 3px 4px;

Speech: “Select Select”

padding: 4px 2px 3px ∎ 4px;

“Select {line

number}”

Select a single line. 8. ∎<nav>

9. <div>header </div>

10. </nav>

Speech: “Select 9”

8. <nav>

9. <div>header </div>∎

10. </nav>

“Select {line

number} to {line

number}”

Select multiple

lines.
12. ∎<div>

13. …

20. </div>

Speech: “Select 12 to 20”

12. <div>

13. …

20. </div>∎

“Select {property}” Select attributes

and values.
<img∎src=”abc.png”

height=”20px”>

Speech: “Select property”

<img src=”abc.png”∎

height=”20px”>

Deletion “Delete line {line

number}”

Delete a single line. 12. ∎<nav>

13. <div>header</div>

14. </nav>

Speech: “Delete line 13”

12. <nav>

13. ∎</nav>

“Delete line {line

number} to {line

number}”

Delete multiple

lines.

11. <section>

12. ∎<div>

13. …

20. </div>

21. </section>

Speech: “Delete line 12 to 20”

11. <section>

12. ∎</section>

“Delete selected” Delete highlighted

code.

padding:4px 2px 3px 4px;

Speech: “Delete selected”

padding: 4px 2px 3px∎;

Add

Comment

“Comment” Add single line

comment.
∎padding: 4px 2px 3px 4px;

Speech “comment”

/*padding: 4px 2px 3px 4px;*/ ∎

Table 1: List of main vocal commands used in Voiceye. “Vocal Commands” column contains key words/terms that are actually

spoken by users. Underlined text in “Example Code / Utterances” column includes example code to demonstrate how each speech

command functions. The action performed through each speech command is visualized in the “Example Output” column. ∎

denotes the position of cursor. * denotes new commands added after first user evaluation.

selection via gaze. The keyboard also included standard

delete, backspace, space, enter, shift/capslock, and tab keys.

A “char” key was also provided (“123?”) to toggle between

letters, numbers, and special characters. Arrow keys are

included that allow users to navigate through single

characters of text (speech provides word level navigation).

Early usability testing found that placing the keyboard at

the bottom of the screen resulted in the bottom keys being

problematic to select via gaze – 100px of padding was

therefore applied to the bottom of the keyboard to make all

keys easier to select.

To address the issues of slow typing speeds via gaze,

Emmet [26] was integrated into the system which allows

users to write HTML and CSS code using a shorthand

notation that is then expanded to full syntax. For example,

the user can type “div#menu.side” to generate the code

“<div id=”menu” class=”side></div>”. A number of

approaches were also considered for performing selections

(i.e. dwell time, speech commands, gaze gestures, etc.), but

we opted for mechanical switches that are commonly used

by people with physical impairments [20]. There have been

lack of studies investigating the use of switches as a

selection approach in a multimodal gaze application, so this

approach also presents an opportunity to explore users’

perceptions of this type of interaction approach.

Speech input can be activated using the designated switch –

upon selection a semi-transparent text area is displayed

above the keyboard, along with an animated spinner. When

the user speaks, the text the system has recognized is

displayed to the user to provide instant feedback. The

spinner provides a visual cue that the system is processing

the speech input. These interface elements were added after

initial usability testing on an earlier version where users

expressed frustration at not knowing if the system had

detected their input correctly. This typically resulted in a

delay to see if the system performed the correct action or

whether the user had to repeat the command.

The choice of vocal commands (Table 1) were informed

through Rosenblatt et al.’s [52] Wizard of Oz study with

coders, as well as their final choice of commands integrated

into the VocalIDE system. Additional commands were also

included such as “open/close keyboard”, “clear” (to clear

any highlighted words), and “undo/redo”.

EVALUATION

An evaluation was conducted with non-disabled

participants to investigate the feasibility of multimodal

interaction in a coding environment. This was crucial to

ensure that the multimodal approach was viable and

appropriate before moving onto evaluating the system with

disabled coders. A key requirement for using the

application is that all users are able to use gaze to type,

voice to control the interface, and operate switches for

selection and triggering the voice recognizer. It was

therefore felt that a first study with non-disabled

participants would provide an important and relevant

insight into the use of this multimodal approach for coding

purposes. It also provided an opportunity for identifying

areas where future improvements could be made through

iterative development work (prior to conducting evaluations

with physically impaired developers).

Participants

29 participants (two females) from a population of

university students were recruited with ages ranging from

19 to 45 years (M=27.9; SD=7.87). Nine were native

English speakers, whilst other native languages included

Urdu, Bengali, Malay, Romanian and French. 13

participants wore corrective lenses (10 glasses). Participants

completed a standard consent form before the test and were

not compensated. They were asked to self-assess their web

development skills, as well as experience in using

alternative input methods for interaction with computers.

Eight participants had prior experience in using an eye

tracker, whilst 20 had previous experience of using speech

recognition. 25 participants had some coding experience

with an average of 1.7 years (SD=4.02) whilst the other 4

had a basic understanding of HTML and CSS.

Apparatus

The study was conducted on a Windows 10 laptop (Intel®

Core(TM) i3-7100U CPU and 8GB RAM) using an

external 23-inch LCD monitor with 1920x1080 resolution.

Voiceye was installed on the machine - the Eye Tribe eye

tracker [61] was placed in front of the monitor on a tripod

(approximately 60cm from participants’ eyes). The Eye

Tribe provides an average accuracy of 0.5 to 1° of visual

angle and an operating range between 45-75cm. The

laptop’s built-in microphone was used to detect speech

input. Two 65mm Jelly Bean switches were placed in front

of the monitor and eye tracker (Figure 2) – the one on the

left was used to trigger keyboard selections and the one on

the right for activating the speech recognizer.

Procedure

Pre-Test: Participants were provided with an information

sheet containing details about the study and asked to

provide informed consent. They were also asked to

complete a pre-test questionnaire to collect demographic

information, as well as details on their level of experience

with software development and use of alternative input

methods. Participants were given a demonstration of the

prototype and encouraged to ask any clarifying questions. A

nine-point calibration process was then performed using the

Eye Tribe sensor. After successful calibration, participants

were asked to practice with the application for 5-10 minutes

to ensure that they could comfortably control the interface.

During the practice session they were asked to write HTML

and CSS code, navigate to different line numbers, select and

delete code, and edit syntax errors.

Main Test: After the practice session, participants started

working through the main tasks. The tasks chosen were

designed and categorized based on the web development

scenarios utilized by Rosenblatt et al. [52]. The main task

categories included Adding Code [ADD], Selecting Code

[SELECT], Deleting Code [DELETE], and Editing Code

[EDIT]. Each category consisted of 16 tasks of which 8

were related to HTML and the remaining 8 were focused

around CSS (64 in total). The EDIT tasks were informed by

the highest occurring HTML/CSS syntax errors made by

computing majors [45].

The ADD tasks for HTML included adding a new element

(e.g. <h1></h1>), a new element with single or multiple

properties (e.g. <div id="articles"></div>), creating

elements with child elements, writing HTML manually

without using Emmet, adding some paragraph text (e.g.

<p>Welcome to my Portfolio</p>), and creating a freeform

comment. ADD tasks for CSS included adding new empty

styles for classes (e.g. “.div {}”), styles with single and

multiple properties (e.g. “color: #000; background: #FFF”),

styles targeting children of an element (e.g. “.div>span”),

writing CSS manually without Emmet, and standard

freeform comments.

The SELECT tasks for both HTML and CSS involved

selecting elements/styles, lines, properties of

elements/styles, blocks of code (i.e. spanning multiple

lines), and specific words within a block of text. DELETE

tasks required removing elements/styles, lines,

element/style properties, a block of code, specific words

within a block of text, and a comment. Finally, EDIT tasks

included fixing typographical mistakes, addressing

unclosed element pairs, correcting comment syntax, and

fixing misidentified or “confused” constructs (e.g. declaring

<h1> instead of <title> within a header).

Participants were initially shown the “starting” code on

paper that would be seen upon starting the task. The final

completed code snippet was also shown to participants (on

paper) in order to help them clearly understand what code

or updates needed to be made. The researcher would outline

the actions required to complete the task – voice commands

and Emmet code related to the task categories were also

provided to participants.

Once they made the necessary updates and verbally stated

that they have completed the task, the researcher used a

keyboard shortcut to move onto the next task. Once all the

tasks for a particular category were completed (e.g. ADD

tasks) participants then moved onto the next category and

the process was repeated until all tasks were completed.

The task categories and tasks within each category were

randomized to reduce the potential impact of order effects.

The start time, end time, vocal commands, and gaze actions

(i.e. buttons clicked, position of gaze, etc.) were logged for

later analysis. Our aim in designing the study was not to

create a highly controlled evaluation, but instead to provide

structured tasks that encouraged participants to gain

experience in using the application.

Measures

Task Completion Time: Task completion times were

measured in milliseconds from when participants started

each task (i.e. after the researcher initiated the task via a

keyboard shortcut) until the task had been completed. This

measure was included to provide an indication of how long

coding tasks took using an alternative multimodal approach.

Usability and Cognitive Workload: Perceptions of usability

were measured through use of SUS [3] administered at the

end of the study. NASA-TLX [54] was used to rate

perceptions of workload.

Post-Test Questionnaire: To obtain qualitative feedback,

participants were presented with an online survey with

questions focused around their perceptions of using a

multimodal approach for writing code, their experiences in

using speech for issuing commands, how they found the use

of gaze and Emmet for writing syntax, and any suggestions

for future updates.

Figure 2: A participant performing the usability evaluation

Results

Task Completion Times

All participants completed the tasks with an average time of

41.10 min (SD = 12.04 min). The ADD tasks for both

HTML (7:15 min – SD = 2.10 min) and CSS (8:11 min –

SD = 4:41 min) took the longest to complete, along with

EDIT HTML tasks (7:48 min – SD = 2:57 min). The

average completion times for the other categories ranged

from 2:30 min (SD = 0.46 min) for SELECT CSS to 4:58

min (SD = 2:06 min) for the DELETE HTML category.

Usability and Workload

The Voiceye application received an average SUS score of

68.1 (SD = 20.8). The score can be labelled as OK

according to Bangor et al. [5]. An average NASA-TLX

score of 42.0 (SD = 20.1) was received for the application

indicating the prototype has a “somewhat high workload”.

Survey Analysis

Speech Interaction: 20 participants provided positive

responses around the use of voice for controlling the system

- comments focused around the voice being accurate, quick

and easy to use: “… the speech controlling system was

efficient and easy to use” (P15). Seven participants

commented that some of the routine commands were not

recognized and they had to sometimes repeat commands on

multiple occasions. P28 highlighted that they preferred

speech over gaze: “it was much quicker, more reliable and

allowed for shortcuts (such as end-of-line etc.) … with a

few extra commands I would not need to rely on the gaze-

based input as much”. However, P14 commented that they

found the interaction difficult as “…your eye would be

focused on the editor, not the prompt coming back so it

would take time to work out it had mis-heard you, then

break your focus look at what happened and repeat”.

Gaze Typing: 16 participants provided positive comments

about typing code via gaze stating that it was easy and

intuitive to use: “…it was reasonably quick and the

keyboard layout was intuitive” (P28). Five participants

commented they initially found it challenging, but that they

found it easier over time: “…it was harder in the beginning,

but I got used to it pretty quickly” (P22). Seven participants

commented that typing via gaze was “hard” or “difficult”

including three participants who stated accuracy and

calibration issues made the experience “frustrating” (P27,

P29, P30). 20 participants stated positive comments on the

use of Emmet when writing code via gaze. These positive

statements tended to emphasize that the approach was fast

and simple to use: “…it was really easy as it did not take

any time to write the code manually” (P4). Six participants

again commented that calibration and accuracy issues

influenced their coding experience via gaze: “it was a good

way of speeding up the workflow, but the eye tracker's low

accuracy made it tricky to be consistent.” (P28).

Overall Multimodal Approach: 19 participants provided

positive responses around their experience of using a

multimodal approach in a coding environment. These

participants described the approach as “simple” and “easy”

to use: “my overall experience was good, it was easy to use

and the functions were simple…” (P15). Further comments

re-emphasized participants’ overall positive perceptions of

the prototype and ability to complete the tasks – for

example, P17 commented that “…there is potential for this

tool to aid programmers in general; programmers using

multiple screen at home may benefit particularly from

talking to one screen and type-code on another screen -

allowing programmers to sift through data files/code”.

Future Improvements: Four participants suggested

including more voice commands to navigate around syntax:

“… the ‘right’ and ‘left’ options were very tedious to use. It

might be useful to have some sort of feature which allows

you to move several spaces in the left and right direction at

a time” (P6). Similarly, P28 commented that a larger range

of commands would be useful “… allowing for typing

individual letters, allowing jumping to specific columns

within a line and simplifying repetitive navigation tasks

(such as moving to words in the middle of lines)”. Eight

participants also emphasized the importance of ensuring the

gaze system is accurate and comfortable to use.

FOLLOW-UP STUDY

A follow-up study was conducted with five users with

physical impairments to explore their experiences in writing

HTML and CSS using Voiceye.

Voiceye (Version 2)

To address feedback from the first study around enhancing

syntax navigation, a new vocal command enabling users to

jump multiple positions within a line was added (e.g.

Left/Right x - “Left 5” would move the cursor five

positions to the left from the current position). Additionally,

several participants during the initial study commented on

the system’s misrecognition of some commonly used voice

commands like “delete” and “select”, so similar words were

added to the speech recognizer and then mapped to the

correct command (e.g. the system was often misrecognizing

a “delete” command as “de’lite’” – this “incorrect” term

was therefore added to the recognizer). Moreover, Wagner

and Gray [64] previously highlighted that non-native

English participants can yield more pronunciation errors, so

the system was updated to support the selection of different

English accents offered through Microsoft’s Azure Speech

service (to help further enhance recognition accuracy) [59].

Whilst most users in the first study were able to effectively

control the system via the Eye Tribe device, we decided to

integrate the Tobii 4C sensor [63] (which provides a higher

level of accuracy and has a larger operating distance) to

address calibration issues reported by some users.

Participants: Five participants were recruited through the

support of the London RSI group [15] and existing links

within the research team. Participants had a mean age of

23.6 years (SD=7.3 years) with four being diagnosed with

Repetitive Strain Injury (RSI) and one with Cerebral Palsy.

Participants were asked to self-assess their level of

experience with web development skills and alternative

input methods (Table 2). Participants had 2.4 years (SD=1.5

years) of web development experience and three

participants had previously used speech recognition

technology for development work, whilst none had prior

experience of using eye gaze as an alternative interaction

approach. Only one participant was a native-English

speaker – the other native languages included Nepali,

Lithuanian, Polish and Spanish. Two participants wore

correctives lenses (all glasses).

Apparatus: The study was conducted on a Windows 10

laptop (Intel® Core(TM) i3-7100U CPU and 8GB RAM)

with the screen resolution set to 1920x1080px. The Tobii

4C eye tracker was used and attached to the bottom of the

screen via a magnetic connection. This sensor provides an

average accuracy of 0.4 to 0.9° of visual angle and an

operating range between 50-95cm. Two 65mm Jelly Bean

switches were again used for completing gaze-based

selections and for triggering the speech recognizer. The

equipment was set up on a table and tailored to participants’

needs (e.g. in terms of where the switches were placed).

Procedure: Institutional Review Board (IRB) approval was

initially obtained for the study. Evaluations were conducted

in either participants’ home or work environment (P1, P2,

P4 and P5) and at our research lab (P3). Participants were

initially given an information sheet and asked to provide

informed consent. A survey was then administered to

collect demographic information, details of impairments,

and information about their web development skills. Upon

completion of the survey, participants were given a guided

demonstration of the prototype by the researcher (via a

keyboard). The eye tracker calibration process was then

completed and participants were asked to practice using the

system for around 5-10 minutes.

The main task was designed around a real-world

development scenario in which a website had to be coded

using HTML and CSS. Participants were provided with a

screenshot of the website on paper to provide some context

around the task (Figure 3). They were also given a sheet

that included common voice commands, along with the

Emmet commands required to complete the task. The

Voiceye application was then started with a blank HTML

and CSS document opened by default. Participants were

asked to start working towards coding up the design using

the multimodal interaction approach. Moreover, upon

completing the activity, they were also asked to complete

the main task separately using their existing assistive

technology and code editor of choice (for comparative

purposes). Three participants (P1, P2, P3) were able to

complete this additional element of the study, whilst the

other two participants preferred to leave this due to the

potential discomfort it might cause them.

Figure 3: The design used for the follow-up study

Our aim with this study design was to give participants a

realistic coding activity that encouraged them to explore

and openly evaluate the application and interaction

approach (as opposed to conducting a highly controlled

study). There was no time limit set for the activity, although

participants were informed that they could take a break or

withdraw at any time if they experienced any fatigue,

tiredness, or discomfort. Sessions lasted between 65-130

minutes and participants were then asked to complete a

SUS form to assess the overall usability of Voiceye. They

then completed an online survey with questions focused

around exploring their experiences of using the system.

Finally, a semi-structured interview was conducted to

further investigate their perceptions of the application and

the multimodal coding approach used.

ID Age Impairments Technical Experience Challenges with Existing Tools

P1 21 (M) RSI (since 2017). Burning sensation in

wrists and forearms.

WD: 2 years; SRT: 1 year; EG: None;

IDE: Visual Studio; AT: Uses

VoiceCode and vertical mouse.

Limited HTML/CSS support in

VoiceCode; misrecognition of

speech input.

P2 38 (M) RSI (Since 2018); Pain in wrist,

fingertips.

WD: 5 years; SRT: 1 year; EG: None;

IDE: Web Storm; AT: Used Nuance

Dragon once – uses mouse/keyboard.

Issues with speech recognition

accuracy; experiencing severe

pain when using keyboard/mouse.

P3 20 (M) Epidermolysis bullosa (since birth);

gets blisters from friction and extreme

heat.

WD: 1 years; SRT: None; EG: None;

IDE: Dreamweaver; AT: Previously

used IntelliKeys – currently uses

standard keyboard and vertical mouse.

Experiences pain when typing via

keyboards (both standard and

IntelliKeys).

P4 18 (M) Mild Cerebral Palsy (since birth);

affected mobility; stiff limbs; difficulty

in typing.

WD: 1 years; SRT: None; EG: None;

IDE: Dreamweaver; AT: None.

Difficulty typing on keyboard and

using a mouse to control software

(due to mobility impairments).

P5 21 (M) RSI (Since 2019); Pain in left shoulder,

numbness in left arm and fingers.

WD: 3 years; SRT: 1 year; EG: None;

IDE: VSCode, Atom; AT: Uses

TalonVoice.

No standardized voiced

commands with TalonVoice;

voice recognition accuracy issues.

Table 2: Participant Details - WD = Web development; SRT = Speech Recognition Tools; EG = Eye Gaze; IDE = Integrated

Development Environment; AT = Assistive Technology

Results

Usability (SUS): Voiceye received an average SUS score of

74.0 (SD = 4.6) which can be labelled as good and usable

[5]. Four participants (P2, P3, P4 and P5) provided scores

of 70 or over, whilst a lower score was provided by P1

(67.5), which can be labelled as “OK” in terms of usability.

Coding with Voiceye: All participants were able to utilize

the features within Voiceye to write HTML and CSS code

starting from a blank file. P1 and P5 were able to add more

HTML elements (i.e. images, navigation, sections, etc.)

whilst P2 spent more time creating styles for CSS classes to

work on the presentation of the HTML (i.e. the code on the

right-side of Figure 4). The code on the left-side of Figure 4

shows a screenshot of the HTML written by P1 including

common page elements such as a header, navigation bar

with a menu, images, and some longer text blocks. P1, P2,

and P5 provided positive comments about the application in

that it was simple, intuitive, and easy to use. Participants P3

and P4 were also able to utilize Voiceye to write code,

although their final output typically incorporated fewer

HTML and CSS elements. Time spent on the coding

activity ranged from 15 minutes (P3) – 46 minutes (P2).

Coding with Existing Tools: P1 was able to write the

majority of the HTML code, as well as creating multiple

new CSS styles. However, P1 commented that he had to

“stress” his voice when using VoiceCode often due to

speech misrecognition – he was also only able to use one

hand with the keyboard resulting in a slower typing rate. P2

was able to write the key components of a HTML document

and create some new CSS styles, although he regularly

required breaks due to experiencing pain when typing. It

was also observed that both P1 and P2 had issues when

attempting to edit code with each commenting they found

editing incorrect syntax to be particularly cumbersome

using their existing tools. P3 was able to produce markup

for the basic components of a HTML document, although

only wrote a single CSS style. This was influenced through

P3’s comment that he found it challenging when having to

use multiple keys simultaneously (i.e. typing characters

such as “<” where use of the shift key is required).

Voiceye vs. Existing Tools: P1, P2 and P5 reported that

Voiceye was better than their existing coding tool and

provided positive comments about the multimodal

approach. In particular, P1 and P5 reported that the use of

eye gaze and voice gave them the opportunity to select

between the different input methods to fix errors when

typing code, which was not present in their current voice

based tool (i.e. TalonVoice and VoiceCode). Three

participants (P1, P2 and P3) highlighted that Voiceye

helped to remove the burden of using their hands when

pressing keys when using a keyboard and mouse interaction

approach “...the prototype helps take load off hands…”

(P1). P4 stated that he has never previously been exposed to

any assistive tools, but commented that Voiceye can be a

viable approach to support him with coding.

Speech Control: All five participants utilized voice to

perform coding activities and their comments focused

around the approach being natural and easy to use, as well

as commands being easily memorable. However, each

participant still experienced some minor issues with the

accuracy of the recognizer at times: “…I know it will not

recognise the programming languages, however the idea of

using it as a command is really good approach. It worked

well with slight issues (not recognizing...)” (P5). P4

reported that his stutter got worse when trying to type

longer text, but worked effectively with the main

commands. Two participants (P2, P4) commented that they

would like to see more voice commands (e.g. find/replace

and select/delete for selecting and deleting specific word(s)

within a line, rather than using left/right commands).

Typing Syntax via Gaze: Three participants (P3, P4, P5)

commented that gaze was a fast and easy approach for

writing code: “… frankly, I thought it would be slow to type

HTML … but with emit [sic] code, it was faster…” (P5).

Two participants (P1, P2) suggested that they would like to

see improvements in the accuracy of the gaze interaction,

although both were able to effectively use the system to

write code. P2 and P4 highlighted that using the switches

required some effort and could result in their hands

becoming tired over prolonged periods of interaction.

DISCUSSION

Previous studies have independently explored the potential

of gaze and speech input for writing code [9, 16, 27, 52,

56], although both approaches have been found to have

strengths and limitations (e.g. challenges around the

selection of small targets via gaze, speech recognition

issues, etc.). Researchers have highlighted that the

combination of speech and gaze could present a

complimentary and more effective method of interaction [7,

36, 53, 55], although there has been a lack of research to

date investigating the potential of this approach. This paper

has presented a new system (Voiceye) that integrates these

methods of interaction (in addition to mechanical switches)

to enable physically impaired developers to write code.

The results from two user evaluations were positive and

demonstrated the feasibility of combining gaze, speech, and

mechanical switch interaction for supporting development

work. The majority of participants from the first study

found coding via multimodal input controls to be an

intuitive and simple interaction approach. Physically

impaired coders from the second study also made similar

positive comments with several stating this approach

provided advantages over their existing assistive methods of

interaction. This combination of gaze and speech

interaction (supported with switch controls) demonstrates

how they can utilized together to help overcome some of

the limitations of each technology. In particular, writing

code via gaze interaction (using a common shorthand

notation) helps to address some of the misrecognition issues

around producing syntax via speech recognition. Similarly,

the use of speech input (using a fixed set of vocal

commands) for enabling actions such as the navigation,

selection, and deletion of code helps to overcome the issues

of activating small targets via eye gaze. This new

multimodal approach therefore provides key insights on the

potential of combining speech, gaze, and mechanical

switches for development work, as well as highlighting

future challenges to be addressed.

From a wider perspective, this research highlights how

multimodal interaction can support the control of systems,

although there is a lack of work examining the combination

of additional input methods to develop new assistive

solutions (e.g. mid-air gesturing, head tracking, facial

expression control, etc.). Also, as highlighted by P17

(during the first study), exploring the interplay of these new

multimodal approaches with different external displays and

configurations could hold much potential for both disabled

and non-disabled coders (e.g. in terms of one display being

optimized primarily for speech controlled activities, whilst

another could support different tasks aligned to an

alternative input method).

LIMITATIONS AND FURTHER WORK

A small number of participants across both studies

experienced issues around the accuracy of the eye tracker

when writing syntax (i.e. due to possible calibration drift)

and in terms of speech recognition for activating commands

(i.e. the recognizer misinterpreting commands). These are

known challenges with gaze [42, 57] and speech

interaction [10, 52, 64], although steps were taken to

mitigate their impact through using large selection targets

(110x110px) for gaze selection and through primarily using

speech input for short focused commands. However, it is

clear that for some users this method of interaction may

present issues, so it will be important in future work to

investigate making the interface more customizable to

support the individual requirements of disabled coders (e.g.

adjusting the size of targets, enabling users to define the

words used for key commands, etc.). A further limitation

was that the evaluation of the system focused primarily on

writing and editing code. Whilst this is an essential first

step, it will be important now to consider the multimodal

interface design for other key programming activities such

debugging, document control, source code navigation, and

auto-completion. Several participants also commented that

they would like additional vocal commands to be integrated

into the system (e.g. for navigating and editing code

through find/replace and select/delete commands).

CONCLUSION

We introduced a new application – Voiceye – that supports

people with physical impairments in writing HTML and

CSS code via a multimodal gaze, speech, and switch

approach. Voiceye is the first application to integrate these

different methods of input into a coding environment and to

investigate the potential of this approach to support disabled

coders. The paper also presented a novel approach to help

address the slow typing issues associated with gaze using a

common shorthand coding notation [26]. Participants

provided positive feedback about Voiceye with physically

impaired coders rating the application has having a good

level of usability. Participant comments also identified key

areas where future research will be important to help make

the application and multimodal development approaches

more accessible for disabled coders.

ACKNOWLEDGEMENTS

We are grateful to Microsoft for supporting this project

through an “AI for Accessibility” grant. We also thank

London RSI Support Center for supporting the recruitment

of physically impaired developers.

Figure 4: The HTML script on the left is written by P1, while the CSS script on the right was coded by P2.

REFERENCES

[1] Advanced Voice-Control, speech to code, program by

voice, stop RSI. Retrieved April 11, 2019 from

http://voicecode.io

[2] Atom. Retrieved January 29, 2020 from https://atom.io

[3] Mubbashir Ayub and Muhammad Asjad Saleem. 2012.

A speech recognition based approach for development

in C++. IJCSNS 12, 10: 110-114

[4] Imran Bajwa, Waqar Aslam Sarwar, and Irfan Hyder

Syed. 2006. Speech Language Engineering System for

Automatic Generation of Web based User Forms. In

Proceedings of the International Conference on Man-

Machine Systems (ICOMMS 2006)

[5] Aaron Bangor, Philip Kortum, and James Miller. 2009.

Determining what individual SUS scores mean: Adding

an adjective rating scale. Journal of Usability Studies 4,

3: 114-123.

[6] Richard Bates and Istance Howell. 2002. Zooming

interfaces!: enhancing the performance of eye

controlled pointing devices. In Proceedings of the fifth

international ACM conference on Assistive

technologies, 119-126.

[7] Tanya René Beelders. 2011. Enhancing the user

experience for a word processor application through

vision and voice. Ph.D Dissertation. University of the

Free State.

[8] Tanya René Beelders and Pieter J. Blignaut. 2010.

Using vision and voice to create a multimodal interface

for Microsoft Word 2007. In Proceedings of the 2010

Symposium on Eye-Tracking Research & Applications,

173-176.

[9] Andrew Begel and Susan L.Graham. 2006. An

assessment of a speech-based programming

environment. In Proceedings IEEE Symposium on

Visual Languages and Human-Centric Computing,

116–120.

[10] Andrew Begel and Susan L.Graham. 2005. Spoken

programs. In Proceedings IEEE Symposium on Visual

Languages and Human-Centric Computing, 99–106.

[11] Andrew Begel. 2005. Programming by voice: A

domain-specific application of speech recognition. In

AVIOS speech technology symposium–SpeechTek West.

[12] Brackets - A modern, open source code editor that

understands web design. Retrieved January 29, 2020

from http://brackets.io

[13] Teresa Busjahn, Bednarik Roman, Andrew Begel,

Martha Crosby, James H. Paterson, Carsten Schulte,

Bonita Sharif, and Sascha Tamm. 2015. Eye

Movements in Code Reading: Relaxing the Linear

Order. In 2015 IEEE 23rd International Conference on

Program Comprehension, 255–265.

[14] Emiliano Castellina, Fulvio Corno, and Paolo

Pellegrino. 2008. Integrated speech and gaze control

for realistic desktop environments. In Proceedings of

the 2008 symposium on Eye tracking research &

applications, 79-82.

[15] Central London RSI Support Group - Home| Facebook.

Retrieved on January 30, 2020 from

https://www.facebook.com/CentralLondonRsiSupportG

roup

[16] Hashmeet Chadha, Satyam Mhatre, Unnati Ganatra,

and Sujata Pathak. 2018. HTML Voice. In 2018 Fourth

International Conference on Computing

Communication Control and Automation, 1–4.

[17] Tuhin Chakraborty, Sayan Sarcar, and Debasis

Samanta. 2014. Design and evaluation of a dwell-free

eye typing technique. In Proceedings of the extended

abstracts of the 32nd annual ACM conference on

Human factors in computing systems, 1573–1578.

[18] CodeMirror. Retrieved January 30, 2020 from

https://codemirror.net

[19] Chris Creed. 2018. Assistive technology for disabled

visual artists: exploring the impact of digital

technologies on artistic practice. Disability and Society

33, 7: 1103-1119.

[20] Chris Creed, Maite Frutos-Pascual, and Ian Williams.

2020. Multimodal Gaze Interaction for Creative

Design. In Proceedings of the ACM conference on

Human factors in computing systems (CHI).

[21] Chris Creed. 2016. Eye Gaze Interaction for

Supporting Creative Work with Disabled Artists. In

Proceedings of the 30th International BCS Human

Computer Interaction Conference, 1-3.

[22] Alain Desilets. 2001. VoiceGrip: A tool for

programming-by-voice. In International Journal of

Speech Technology, 103–116.

[23] Alain Désilets, David C. Fox, and Stuart Norton. 2006.

VoiceCode: An Innovative Speech Interface for

Programming-by-voice. In CHI ’06 extended abstracts

on Human factors in computing systems, 239–242.

[24] Electron - Build cross platform desktop apps with

JavaScript, HTML, and CSS. Retrieved January 29,

2020 from https://www.electronjs.org

[25] Monika Elepfandt and Martin Grund. 2012. Move it

there, or not?: The design of voice commands for gaze

with speech. In Proceedings of the 4th Workshop on

Eye Gaze in Intelligent Human Machine Interaction,1-

3.

[26] Emmet — the essential toolkit for web-developers.

Retrieved September 13, 2019 from

https://docs.emmet.io/

[27] Hartmut Glücker, Felix Raab, Florian Echtler, and

Christian Wolff. 2014. EyeDE: Gaze-enhanced

software development environments. In CHI'14

Extended Abstracts on Human Factors in Computing

Systems, 1555–1560.

[28] Benjamin M. Gordon and George F. Luger. 2012.

English for spoken programming. In 6th International

Conference on Soft Computing and Intelligent Systems,

and 13th International Symposium on Advanced

Intelligence Systems, 16–20.

[29] Benjamin M. Gordon and George F. Luger. 2012.

Progress in Spoken Programming. In 8th Student

Conference, 1–5.

[30] Dilek Hakkani-Tür, Malcolm Slaney, Asli

Celikyilmaz, and Larry Heck. 2014. Eye gaze for

spoken language understanding in multi-modal

conversational interactions. In Proceedings of the

2014 International Conference on Multimodal

Interaction, 263–266.

[31] Henna Heikkilä. 2013. EyeSketch: A drawing

application for gaze control. In Proceedings of the

2013 Conference on Eye Tracking South Africa, 71–

74.

[32] Anthony J. Hornof and Anna Cavender. 2005.

EyeDraw. In Proceedings of the SIGCHI conference

on Human factors in computing systems, 161-170.

[33] Thomas J. Hubbell, David D. Langan, and Thomas F.

Hain. 2006. A voice-activated syntax-directed editor

for manually disabled programmers. In Proceedings of

the 8th international ACM SIGACCESS conference on

Computers and accessibility, 205-212.

[34] Robert Jacob and Keith Karn. 2003. Eye tracking in

human-computer interaction and usability research:

Ready to deliver the promises. In The Mind's Eye,

573–605.

[35] Yvonne Kammerer, Katharina Scheiter, and Wolfgang

Beinhauer. 2008. Looking my way through the menu.

In Proceedings of the 2008 Symposium on Eye

Tracking Research & Applications , 213-220.

[36] Jan van der Kamp and Veronica Sundstedt. 2011.

Gaze and voice controlled drawing. In Proceedings of

the 1st Conference on Novel Gaze-Controlled

Applications, 1-8.

[37] Per Ola Kristensson and Keith Vertanen. 2012. The

potential of dwell-free eye-typing for fast assistive

gaze communication. In Proceedings of the

Symposium on Eye Tracking Research and

Applications, 241-244.

[38] Chandan Kumar, Raphael Menges, Daniel Müller, and

Steffen Staab. 2017. Chromium based framework to

include gaze interaction in web browser. In

Proceedings of the 26th International World Wide

Web Conference, 219–223.

[39] Thomas D. LaToza, Gina Venolia, and Robert

DeLine. 2006. Maintaining Mental Models: A Study

of Developer Work Habits. In Proceedings of the 28th

international conference on Software engineering,

492-501.

[40] Päivi Majaranta, Ulla-Kaija Ahola, and Oleg

Špakov. 2009. Fast gaze typing with an adjustable

dwell time. In Proceedings of the SIGCHI

Conference on Human Factors in Computing

Systems, 357-360.

[41] Rinor S. Maloku and Besart Xh Pllana. 2016.

HyperCode: Voice aided programming. IFAC-

PapersOnLine, 263–268.

[42] Darius Miniotas, Oleg Špakov, Ivan Tugoy, and I.

Scott MacKenzie. 2006. Speech-augmented eye

gaze interaction with small closely spaced targets.

In Proceedings of the 2006 Symposium on Eye

Tracking Research & Applications, 67-72.

[43] Sahil Modak, Sagar Vikmani, Suril Shah, and

Lakshmi Kurup. 2016. Voice driven dynamic

generation of webpages. In 2016 International

Conference on Computing Communication Control

and automation, 1–4.

[44] Martez E. Mott, Shane Williams, Jacob O.

Wobbrock, and Meredith Ringel Morris. 2017.

Improving dwell-based gaze typing with dynamic,

cascading dwell times. In Proceedings of the 2017

CHI Conference on Human Factors in Computing

Systems, 2558–2570.

[45] Thomas H. Park, Ankur Saxena, Swathi Jagannath,

Susan Wiedenbeck, and Andrea Forte. 2013.

Towards a Taxonomy of Errors in HTML and CSS.

In Proceedings of the ninth annual international

ACM conference on International computing

education research, 75–82.

[46] Rakesh Patel and Mili Patel. 2014. Hands free

JAVA (Through Speech Recognition).

[47] Marco Porta and Alessia Ravelli. 2009. WeyeB, an

eye-controlled web browser for hands-free

navigation. In 2009 2nd Conference on Human

System Interactions, 210–215.

[48] David Price, Ellen Rilofff, Joseph Zachary, and

Brandon Harvey. 2004. NaturalJava. In

Proceedings of the 5th International Conference on

Intelligent User Interfaces, 207–211.

[49] Tavis Rudd. 2013. Using Python to Code by Voice.

Retrieved September 17, 2019 from

https://pyvideo.org/pycon-us-2013/using-python-to-

code-by-voice.html

[50] Stevche Radevski, Hideaki Hata, and Kenichi

Matsumoto. 2016. EyeNav. In Proceedings of the

9th Nordic Conference on Human-Computer

Interaction, 1–4.

[51] Jean K. Rodriguez-Cartagena, Andrea C. Claudio-

Palacios, Natalia Pacheco-Tallaj, Valerie Santiago

González, and Patricia Ordonez-Franco. 2016. The

Implementation of a Vocabulary and Grammar for

an Open-Source Speech-Recognition Programming

Platform. In Proceedings of the 17th International

ACM SIGACCESS Conference on Computers &

Accessibility, 447–448.

[52] Lucas Rosenblatt, Patrick Carrington, Kotaro Hara,

and Jeffrey P. Bigham. 2018. Vocal Programming

for People with Upper-Body Motor Impairments. In

Proceedings of the Internet of Accessible Things, 1-

10.

[53] David Rozado, Alexander McNeill, and Daniel

Mazur. 2016. VoxVisio–Combining Gaze and

Speech for Accessible HCI. Resna 2016.

[54] Susana Rubio, Eva Díaz, Jesús Martín, and José M.

Puente. 2004. Evaluation of Subjective Mental

Workload: A Comparison of SWAT, NASA-TLX,

and Workload Profile Methods. Applied Psychology

53, 1: 61–86.

[55] Korok Sengupta, Min Ke, Raphael Menges,

Chandan Kumar, and Steffen Staab. 2018. Hands-

free web browsing. In Proceedings of the 2018

ACM Symposium on Eye Tracking Research &

Applications, 1–3.

[56] Asma Shakil, Christof Lutteroth, and Gerald

Weber. 2019. CodeGazer: Making Code Navigation

Easy and Natural with Gaze Input. In Proceedings

of the 2019 CHI Conference on Human Factors in

Computing Systems, 1-12.

[57] Henrik Skovsgaard, Julio C. Mateo, John M. Flach,

and John Paulin Hansen. 2010. Small-target

selection with gaze alone. In Proceedings of the

2010 Symposium on Eye-Tracking Research &

Applications, 145–148.

[58] Lindsey Snell and Mr Jim Cunningham. 2000.An

investigation into programming by voice and

development of a toolkit for writing voice-

controlled applications. M. Eng. Report, Imperial

College of Science, Technology and Medicine,

London.

[59] Speech to Text API | Microsoft Azure. Retrieved

January 30, 2020 from

https://azure.microsoft.com/en-

gb/services/cognitive-services/speech-to-text

[60] Talon 0.0.7.7 documentation. retrieved April 19,

2019 from

https://talonvoice.com/docs/index.html#document-

index

[61] The Eye Tribe. Retrieved January 29, 2020 from

https://theeyetribe.com/theeyetribe.com/about/index

.html

[62] Visual Studio Code - Code Editing. Redefined.

Retrieved January 29, 2020 from

https://code.visualstudio.com.

[63] Tobii Gaming | Eye Tracker 4C for PC Gaming.

Buy Now at €169. Retrieved January 29, 2020 from

https://gaming.tobii.com/tobii-eye-tracker-4c

[64] Amber Wagner and Jeff Gray. 2015. An Empirical

Evaluation of a Vocal User Interface for

Programming by Voice. In International Journal of

Information Technologies and Systems Approach,

47–63.

[65] Qiaohui Zhang, Atsumi Imamiya, X. Mao, and K.

Go. 2004. A gaze and speech multimodal interface.

In 24th International Conference on Distributed

Computing Systems Workshops, 2004. Proceedings,

208–213.

