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ABSTRACT
Improving the e�ciency of dispatching orders to vehicles is a re-
search hotspot in online ride-hailing systems. Most of the existing
solutions for order-dispatching are centralized controlling, which
require to consider all possible matches between available orders
and vehicles. For large-scale ride-sharing platforms, there are thou-
sands of vehicles and orders to be matched at every second which is
of very high computational cost. In this paper, we propose a decen-
tralized execution order-dispatching method based on multi-agent
reinforcement learning to address the large-scale order-dispatching
problem. Di�erent from the previous cooperative multi-agent re-
inforcement learning algorithms, in our method, all agents work
independently with the guidance from an evaluation of the joint
policy since there is no need for communication or explicit co-
operation between agents. Furthermore, we use KL-divergence
optimization at each time step to speed up the learning process and
to balance the vehicles (supply) and orders (demand). Experiments
on both the explanatory environment and real-world simulator
show that the proposed method outperforms the baselines in terms
of accumulated driver income (ADI) and Order Response Rate (ORR)
in various tra�c environments. Besides, with the support of the
online platform of Didi Chuxing, we designed a hybrid system to
deploy our model.
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1 INTRODUCTION
With the booming of mobile internet, it becomes feasible and
promising to establish the modern large-scale ride-hailing systems
such as Uber, Didi Chuxing and Ly� which allow passengers book
routes with smartphones and match available vehicles to them
based on intelligent algorithms. To some extent, these ride-hailing
systems improve the e�ciency of the transportation system.

In ride-hailing systems, a key point is how to dispatch orders
to vehicles to make the system work more e�ciently and generate
more impact. We illustrate the order-dispatching in Figure. 1, where
one can see that the algorithm used by the decision maker is critical
for �nding suitable matches because the result of order-dispatching
has direct in�uences on the platform e�ciency and income.

�e general strategies of automatically order-dispatching sys-
tems are tominimize thewaiting time and taxi cruising time through
route planning or matching the nearest orders and vehicles [4, 5,
11, 23]. In recent research, another approach to solve the order-
dispatching problem is to leverage combinatorial optimization [25]
to improve the success rate of order-dispatching [39]. It makes
a signi�cant improvement in the online test, but it su�ers from
high computational cost, and strongly relies on appropriate feature
engineering. More importantly, the above strategies are myopic:
they may �nd suitable matches in the current stage, but ignore the
potential future impact.

In this paper, we focus on developing a method to maximize the
accumulated driver income (ADI), i.e., the impact of orders served
in one day, and the order response rate (ORR), i.e., the proportion
of served orders to the total orders in one day. Intuitively, match-
ing vehicles with high-price orders can receive high impact at a
single order-dispatching stage. However, if the served orders re-
sult in the mismatch between the orders and vehicles in the near
future, it would harm the overall service quality in terms of ORR
and the long-term ADI. Hence, in order to �nd a balance between
the long-term ADI and ORR, it is necessary to develop an order-
dispatching algorithm which takes the future supply and demand
into consideration.

Xu et al. [37] proposed a planning and learning method based on
decentralized multi-agent deep reinforcement learning (MARL) and
centralized combinatorial optimization to optimize the long-term
ADI and ORR. �e method formulates the order-dispatching task
into a sequential decision-making problem and treats a vehicle as
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an agent. However, for centralized approaches, a critical issue is
the potential ”single point of failure” [18], i.e., the failure of the cen-
tralized authority control will fail the whole system [16]. Another
two related work using multi-agent to learn order-dispatching is
based on mean-�eld MARL [13] and knowledge transferring [35].

�ere are some challenges to be solved when we apply the MARL
to the real-time order-dispatching scenario. First, handling the non-
stationary environment in MARL is a major problem, which means
that all agents learn policies concurrently, while each individual
agent does not know the policies of other agents [10]. �e state
transition in a multi-agent environment is driven by all agents
together, so it is important for agents to have knowledge about
other agents’ policies. In the order-dispatching scenario, we only
care about the idle status of a vehicle since they are available for
order-dispatching. However, as the duration of each order is non-
deterministic, compared to the traditional multi-agent scenarios
which have deterministic time interval, it is di�cult to learn the
interactions between agents in successive idle states, which makes
many MARL methods including opponent modeling [2, 26] and
communication mechanism [7] hard to work well. Second, the
number of idle vehicles keeps changing during the whole episode,
i.e., there will always be some vehicles ge�ing o�ine or online,
thus the general MARL methods which require �xed agent number
cannot be directly applied in such a case [6, 40].

In addition, we believe that a higher ORR usually means a higher
ADI, and if we can maintain a higher long-term ORR, we will get
a higher long-term ADI. With regard to the correctness of this
point, we also conducted a corresponding experimental analysis in
Section 4.2.2.

To the best of our knowledge, this is the �rst work that utilizes
this character to improve both ORR and ADI. In detail, we propose a
centralized learning and decentralized execution MARL method to
solve the above challenges with an extension of Double Q-learning
Network [20] with Kullback-Leibler (KL) divergence optimization.
Besides, the KL-based backward learning optimization method also
speeds up the agents learning process with the help of others’.
Considering the large scale of agents, and they are homogeneous,
we learn only one network using parameter sharing, and share
learning experiences among all agents at the training stage, as that
in [30, 40]. To address the non-stationary action space problem, in
our implementation, the input of deep Q-learning network consists
of the state and selected action.

Extensive experiments with di�erent tra�c and order condi-
tions and real-world simulation experiments are conducted. �e
experimental results demonstrate that our method yields a large im-
provement on both ADI and ORR compared to the baseline methods
in various tra�c environments. We also claim the proposed method
is highly feasible to be deployed on the existing order-dispatching
platform.

2 RELATEDWORK
Taxi-order Dispatching. �ere have been several GPS-based

order-dispatching systems to enhance the accuracy, communica-
tions, and productivity of taxi dispatching [14, 15, 23]. �ese sys-
tems do not o�er detailed dispatching algorithms, which means

matchidle vehicles passengers

vehicle list order list

pack up

decision-making 
platform

Figure 1: Ride-hailing order-dispatching process

these platforms are more like information sharing platforms, help-
ing vehicles choose orders to serve by o�ering orders information.
Other automatic order-dispatching methods [12, 19] focus on re-
ducing the pick-up distance or waiting time by �nding the nearest
orders. While these methods usually fail to reach a high success
rate on order-dispatching and ignore many potential orders in the
waiting list which may be more suitable for vehicles. Zhang et
al. [39] proposed a centralized control dispatching system based
on combinatorial optimization. Although it is a simple method,
the requirement of computing all available order-vehicle matches
can be of much high computational cost in a large-scale taxi-order-
dispatching situation. Moreover, it requires appropriate feature
engineering. �us it greatly increases the system implementation
di�culty and human e�orts of applying the method in a practical
situation.

Multi-agent Reinforcement Learning. Multi-agent reinforce-
ment learning has been applied in domains like collaborative deci-
sion support systems. Di�erent from the single agent reinforcement
learning (RL), multi-agent RL needs the agents to learn to cooper-
ate with others. It is generally impossible to know other policies
since the learning process of all agents is simultaneous. �us for
each agent, the environment is non-stationary [3]. It is problem-
atical that directly apply the independent reinforcement learning
methods into the multi-agent environment. �ere are several ap-
proaches proposed to relieve or address this problem, including
sharing the policy parameters [8], training the Q-function with
other agents’ policy parameters [31], centralized training [17] and
opponent modeling [2, 26]. Besides, there are also some methods
which use explicit communication to o�er a relatively stationary
environment for peer agents [7, 9, 30]. In the large-scale multi-
agent systems, the non-stationary problem will be ampli�ed. To
address this problem, Yang et al. [38] proposed a novel method
which converts multi-agent learning into a two-player stochastic
game [28] by applying mean �eld theory in multi-agent reinforce-
ment learning to make it possible in large-scale scenarios. Since the
mean-�eld MARL method only takes a mean �eld on states/actions
input into consideration, it ignores the agent interactions. Our
proposed method provides another way to enable large-scale multi-
agent learning and retain the interactions between agents, which
makes agents receive global feedback from the next moments and
adjust their strategies in time. Furthermore, our proposed method



provides a backward stationary learning method and has a rapid
reaction to the feedback from the environment.

Multi-agent Taxi Dispatching. A lot of previous work models
the taxi dispatching into multi-agent learning, like [1], it divides
the city into many dispatching areas, and regards an area as an
agent, then uses self-organization techniques to decrease the total
waiting time and increase the taxi utilization. NTuCab [27] is a
collaborative multi-agent taxi dispatching system which a�empts
to increase custom satisfaction more globally, and it can dispatch
multiple orders to taxis in the same geographical regions. NTuCab
thinks that it is not feasible to compute the shortest-time path for
each of a possibly large number of available taxis nearby a customer
location since it is computationally costly. We follow these se�ings
in our proposed model and divide the city into many dispatching
regions. Each dispatching region is controlled in a given distance,
which indirectly limits the maximum waiting time. �e NTuCab
achieves a signi�cant improvement in reducing the wait time and
taxi cruising time, but it is also a computational cost method. Xu et
al. [37] proposed a learning and planning method based on MARL
and combinatorial optimization recently, and some other methods
[16, 24, 36] focus on �eet management to improve the ADI or de-
crease the waiting time. But considering the current operational
ride-sharing scenarios, it is hard to perform �eet management for
it is impossible to force drivers to designated regions. �e men-
tioned MARL method[37] is an independent MARL method, which
ignores the interactions between agents. However, it is a consensus
to consider that the agent interactions have a positive impact on
making optimal decisions. Our proposed method considers the
interaction between agents by applying constraints on the joint
policies using KL-divergence optimization, and the experiments
demonstrate that the proposed method outperforms baselines on
all metrics in di�erent tra�c environments.

3 METHODOLOGY
In this section, we �rst give a de�nition of order-dispatching from
a perspective of multi-agent reinforcement learning process, and
then discuss the main challenges when applying the MARL method
for order-dispatching, and give our methods.

3.1 Order-dispatching as a Markov Game
We regard the order-dispatching task as a sequential decision task,
where the goal is to maximize the long-term ADI and ORR per
day. According to the characters of the practical environment, each
vehicle can only serve the surrounding orders, thus we model the
order-dispatching task using Partially Observable Markov Decision
Process (POMDP) [29] in multi-agent se�ings. With the multi-agent
se�ings, we can decompose the original global order-dispatching
task into many local order-dispatching tasks, and transform a high-
dimensional problem into multiple low-dimensional problems.

�e POMDP framework to the multi-agent order-dispatching
problem can be formulated as a tuple 〈S,P,A,R,G,N ,γ 〉, where
S, P, A, R, G, N , γ represent the sets of states, state transition
probability function, sets of action spaces, reward functions, set of
grids, the number of agents and the future reward discount factor
respectively.

For each agent i , Si ∈ S, Ai ∈ A, Ri ∈ R represent the state
space, action space and reward function respectively, and Gi ∈ G
represents the grid which the agent in. �e state transition occurs
a�er the decision making, i.e. agents executed their actions, then
the state St of environment at time t transform to St+1 at time
t + 1, and agents will get rewards given by the environment. Based
on the above de�nitions, the main purpose of each agent is to learn
to maximize the cumulative reward Gt :T from t to T

maxGt :T = max
T∑
t=0

γ t rt (st ,at ) , where at ∼ πθ (st ) .

In reinforcement learning, the πθ (·) parameterized with θ repre-
sents the policy with respect to the state at time t .

It is common to divide the city into regional dispatch areas
[16, 27]. In our se�ings, we use a grid-world to represent the real
world and divide the real world into several order-dispatching re-
gions. Each grid represents an individual order-dispatching region
which contains some orders and vehicles, and we regard vehicles as
agents here. Based on the above MARL se�ings, we specify the de�-
nitions of the order-dispatching task as follows from amathematical
perspective.

• State: �e state input used in our method is expressed as
a four elements tuple, namely, S = 〈G,N ,M,Ddest〉. Ele-
ments in the tuple represent the grid index, the number of
idle vehicles, the number of valid orders and the distribu-
tion of orders’ destinations respectively. �e distribution of
order’s destination is a mean over the destination vectors
of orders in grid G, which roughly re�ects the overall the
orders information. In our se�ings, agents in the same grid
share the same state.

• Action: �e action input used in our method is expressed
as A = 〈Gsource,Gdest,T ,C〉. Elements in the tuple repre-
sent the source grid index, target grid index, order duration,
and price respectively. We regard the set of orders in the
grid j at time t as the candidate actions of the agent i . Since
agents are homogeneous, so agents in grid j share the same
action space. In practice, sometimes there is no order in
some regions. Under the se�ing of MARL, agents need to
select orders at each timestep, but some grids may not have
orders, so in order to ensure the feasibility and sustainabil-
ity of the MDP, we arti�cially add some virtual orders
whose Gsource = Gdest, and set the price C to 0. When idle
vehicles select these virtual orders, it means they will stay
where they are.
• State Transition: �e agent which serves one order will

migrate to the destination grid given by the taken order
a�er T time step, where T is de�ned with the served order
duration, then the state of agent will be updated to the
newest state, namely, the stage of destination grid.

• Reward: �e reward function is very important for rein-
forcement learning to a great extent which determines the
direction of optimization. Because of the goal of learning
is to �nd a solution which maximizes the ADI with high
ORR, so we design a reward function which is proportional
to the price of each order.



3.2 Non-stationary Action Space
Traditional deep Q-learning network accepts a state input and out-
puts a vector of Q values whose dimension is equal to the dimension
of action space, i.e.,

dim
(
Q(s,A)

)
= dim

(
A

)
. (1)

It is correct when the action space is �xed, while it is problematic
in our se�ings. �ere is a fact that for the grid j , the orders produced
at time t are always di�erent from the orders produced at other
moments. It cannot ensure that the action space is consistent along
with the whole episode, so it is problematical to regard the orders
as an action while ignoring the distribution of the variant action
space. In our proposed method, we use the tuple 〈S,a〉 to represent
the input of Q-learning, then evaluate all available state-order pairs.

3.3 Action Selection Q-learning
For convenience, we name the Q-learning network with a state-
action input as action selection Q-learning shown in Figure 2.

For agent i , supposing there are M available orders, which re-
quiresM state-action evaluation. In the case of N agents, the com-
putational complexity will be O(N ·M). To decrease the original
complexity to O(M), we use parameter sharing and state sharing
mentioned in previous sections to achieve it.

From the perspective of agent i , we suppose that st denotes
the state at time t , at denotes the set of orders, then the Bellman
Equation in our se�ings can be expressed as

Q(st ,at ) = αQ(st ,at )+

(1 − α)
[
rt + γ · Eat+1∼π (st+1)[Q(st+1,at+1)]

]
, (2)

where γ ∈ [0, 1] is the discount factor, α is the step size. �e value
of the next timestep is a expectation of all available state-order
pairs. When the policy π (st+1) is greedy, then Eq. (2) represents
the traditional Q-learning algorithm.

To balance the exploitation and exploration, the Q values related
to the same orders set are converted into a biased strategy Boltzman
exploration

π (ajt | st ) =
eQ (st ,a

j
t )/τ∑

a jt ∈Ai
eQ (st ,a

j
t )/τ
, (3)

where τ is the temperature to balance the exploitation and explo-
ration.

3.4 KL Divergence Optimization
In the multi-agent system, the main method to relieve or overcome
the non-stationary problem is learning multi-agent communication
[6, 7, 9, 30], while most of them require a �xed agent number or
observations from other agents before making decisions. In the
order-dispatching case, explicit communication occurs between
agents is o�en time-consuming and di�cult to adapt. As illustrated
in Figure 3, supposing that triangles in each grid represent orders,
and dots represent vehicles. It shows that the order-dispatching pro-
cess of each grid at time t , and di�erent order has di�erent duration
of d , so the vehicles will arrive at the destination grids at di�erent
time, and vehicles serve di�erent orders will be assigned to di�erent

ReLU

%(s,a)

State	s

Action 0 ReLU

ReLU

ReLU

Figure 2: Action selectionQ-learning. Di�erent from the tra-
ditional Q-learning network, our model accepts both state
input and action feature vector. A�er embedding them re-
spectively, there is a concatenation followed by 2 dense lay-
ers which follows the embedding layers. �en the network
outputs a scalar value Q(s,a).

Grid i

Grid j
Grid p

Grid q

t+d1

t+d2

t+d3

Figure 3: Grid-based order-dispatching. Supposing that tri-
angles in each grid represent orders, and dots represent ve-
hicles. It shows that the order-dispatching process of each
grid at time t , and di�erent order has di�erent duration of d ,
so the vehicles will arrive at the destination grids at di�er-
ent time, and vehicles serve di�erent orders will be assigned
to di�erent grids, then it is hard to form continuous interac-
tions and communication between vehicles. For these two
reasons, applying the communication mechanism or learn-
ing others’ policies is not a good choice.

grids, then it is hard to form continuous interactions and communi-
cation between vehicles. Also, it o�en su�ers from computational
cost, especially in large-scale se�ings. Taking the aforementioned
reasons, we introduce a centralized training method using KL diver-
gence optimization, which aims to optimize the agents’ joint policy
and try to match the distribution of vehicles with the distribution
of orders.

Notice that we have two goals need to achieve in our proposed
method: (1) maximize the long horizontal ADI; (2) optimize the
order response rate. If there are always enough vehicles in the



dispatching grid, it is easy to decrease the rate of idle vehicles and
improve the order response rate, also the long horizontal ADI, while
there is a fact that we cannot control the distribution of orders. So
we want to make the order and vehicle distribution as similar as
possible through �nding feasible order-vehicle matches. We do not
require explicit cooperation or communication between agents, but
an independent learning process with centralized KL divergence
optimization.

Supposing at time t , the agents �nd a feasible order set Ot by
executing their policies, namely,

Ot ∼ {πθ, j (st ) | j = 1, . . . ,N } . (4)

Our purpose is to �nd an optimal order set O∗t . Focusing on
a certain grid j, it supposes that the policy πθ j at time t is param-
eterized by θ j . A�er all policies have been executed, we get the
newest distribution of vehicles Dvt+1, and the newest distribution
of orders is Do

t+1. �e KL divergence from Dvt+1 to D
o
t+1 shows

the margin between the joint policy Π at time t andDo
t+1, so the KL

optimization is actually �nding an optimal joint policy Π∗ which
has a minimal margin:

Π∗ = argΠ minDKL(Do
t+1 ‖ D

v
t+1(Π)) , (5)

where Π = {πθ, j | j = 1, ...,N }. For the convenience, we replace
DKL(Do

t+1 ‖ D
v
t+1(Π)) with DKL . We want to decrease the KL

divergence from the distribution of vehicles to the distribution of
orders to balance the demand and supply at each order-dispatching
grid. Formally, our KL policy optimization can be wri�en as:

min
θ
L =‖ Qθ (s,a) −Q∗ ‖2 (6)

s .t . DKL ≤ β , (7)

where β ∈ R. �en the objective function can be expressed as

min
θ
L =‖ Qθ (s,a) −Q∗ ‖2 +λDKL , (8)

where Q∗ is the target Q-value, λ ∈ R parameterizes the contribu-
tion of KL item. To formulate the relationship between minL and
θ j , we make some de�nitions of notations in advance. Considering
that there is N grids in total, nit+1 represents the number of idle
vehicles in grid i at time step t + 1, which can be formulated as
nit+1 =

∑N
j=1 c

j
t · πj→i , where c jt represents the idle driver number

at last time step t , πj→i represents the probability of dispatching
orders which from grid j to grid i to idle vehicles at time t , and these
vehicles will arrive at grid i at time t +1. qjt+1 is the rate of idle vehi-
cles in grid j which can be formulated into qjt+1 = n

j
t+1/

∑N
k=1 n

k
t+1.

pit+1 represents the rate of orders in grid i at time t + 1 here. Using

chain rule, we can decompose the gradient of DKL to θ as
∇θjDKL = ∇πjDKL · ∇θj πj

= −
( N∑
i=1

pit+1∇πj log
qit+1
pit+1

)
· ∇θi πj

=

N∑
i=1

pit+1∇πj log
1

qit+1
· ∇θj πj

=

N∑
i=1

pit+1
[
∇πj log

N∑
k=1

N∑
l=1

πl→kc
l
t − ∇πj log

N∑
k=1

πj→kc
j
t

]
· ∇θj πj

=

N∑
i=1

pi
[ ∇πj ∑N

k=1 πj→k (c
j
t +

∑N
l,j c

l
t )∑N

k=1
∑N
l=1 πl→kc

l
t

−
∇πj

∑N
k=1 πj→kc

j
t∑N

k=1 πj→kc
j
t

]
· ∇θj πj

= c jt

N∑
i=1

pit+1
[ 1∑N

k=1
∑N
l=1 πl→kc

l
t
− 1∑N

k=1 πj→kc
j
t

]
· ∇θj πj

= c jt

N∑
i=1

pit+1
[ 1
Nvehicle

− 1
nit+1

]
· ∇θj πj , (9)

whereNvehicle =
∑N
j=1 n

j
t+1. �e gradient ofπj toθ j is∇Q j (s,a)πj (a |

s) · ∇θQ(s,a). We use the δ =‖ Q −Q∗ ‖2, then the �nal gradient
of Lθ (s,a) to θ is calculated as

∇θ jL = ∇θ j δ + λ∇θ jDKL . (10)
For convenience, we give a summary for some important nota-

tions in Table 1.

Table 1: Important notations

N the number of grids
nit+1 the number of idle vehicles in grid i at time t + 1

c
j
t the number of idle vehicles in grid j at time t

πj→i the probability of dispatching orders which from grid
j to grid i to idle vehicle at time t

q
j
t+1 the rate of idle vehicles in grid j

pit+1 the rate of orders in grid i at time t + 1

4 EXPERIMENTS
We examine the correctness of our model in a toy grid-based order-
dispatching environment and the practicality of our model using
real-world data from three cities. Considering the constraint of a
grid-based environment, we did not comparewith order-dispatching
algorithms based on coordinate systems. To compare with existing
methods, and investigate the e�ectiveness of our method on the
metrics of ORR and ADI, we select three typical algorithms as base-
lines, namely, Independent Deep Q-learning Network (IL), Nearest
order-dispatching (NOD) and MDP respectively, and we will give a
brief description at the �rst.

• IL: A variant of Double DQN [33] which takes a tuple of
state and action as an input. Compared with our method,
the only di�erence in IL is that KL optimization is not used.

• NOD: Nearest-distance Order Dispatching (NOD) algo-
rithm, which dispatches orders to idle vehicles with consid-
ering the shortest distance. �e reason why we use NOD
as one of the baselines is that it is a fairly representative



algorithm which is used frequently and easy to implement
in practice. However, in our environment se�ing, because
there are reasonable regional division strategies (for ex-
ample, in our later real-world data experiments, the size
of the division area guarantees the maximum order wait-
ing time is 10 minute), we have no need to distinguish
the speci�c position of vehicles in the same dispatching
region. �at is to say, the principle of matching orders
based on distance is equivalent to random matching in our
environment se�ing.

• MDP: Proposed by Xu et al. [37], a planning and learning
method based on decentralized multi-agent deep reinforce-
ment learning and centralized combinatorial optimization.

Considering the fairness of experiments, we use the same reward
function for the reinforcement learning methods.

4.1 Model Settings
Our model is an extension of Double DQN with so� update. All
neural-based models used in our experiments are implemented by
the MLP with 2 hidden layers, and the active function used here
for all neural-based algorithm is recti�ed linear unit (ReLU). �e
replay bu�er stores experience tuples, which can be formulated into
〈st ,at ,At , st+1,At+1,∇πDKL〉. Elements of the tuple represent
the state of time t , action selected at time t , the action set at time
t , state at time t + 1, action set at time t + 1 and the �rst gradient
item of ∇θDKL, respectively. �e temperature is 1.0, discount factor
γ = 0.95 and learning rate is α = 10−4.

4.2 Particle Order-dispatching Experiment
�e grid-based order-dispatching environment showed in Figure 4
is implemented based on the multi-agent particle environment sup-
ported by Mordatch et al. [21]. �is toy environment abstracts
the real-world order-dispatching, where one grid represents one
dispatching region, and orders have the same duration. �e blue
particles and the red particles represent vehicles and orders respec-
tively. All of the blue particles and red particles sca�er in a 10 × 10
grid world. Each of the red particles owns a direction vector v and
a reward r , the direction vectorv = 〈#source, #tarдet〉 denotes a di-
rection from the source grid to the target grid. In this environment,
the order price is simpli�ed with Euler distance between grids, so
reward r is proportional to the Euler distance between #source and
#tarдet , i.e.,

r = 0.1× ‖ #source − #tarдet ‖2 . (11)

�e blue particles will get reward by picking red particles in
the same grid, one blue particle can only pick one red particle at
each time-step. Blue particles will migrate to the target grids given
by the red particles at the next timestep. In our se�ings, the time
horizon is T = 144. At t = 0, we produce the reds and blues using
speci�c distributions respectively. At the next timesteps from t = 1
to t = T − 1, there are some new red particles born with a speci�c
distribution with respect to the grid position and time, while there
is no new blue particles born expect t = 0, that means all blue
particle movements fully dependent on picking red particles. In
order to match the real world situation, the amount of blues is less
than the reds in our se�ings.

(a) (b)

Figure 4: �e toy order-dispatching environment. (a) �e
10x10 toy order-dispatching environment. Red particles and
blue particles represent orders and vehicles. (b) �emigrate
process of blue particles, where the dotted arrow indicates
that the red one is dispatched to the blue one, the solid ar-
row indicates that the blue one will migrate to another grid
at the next timestep. For the red particles in each grid, the
surrounding 8 grids are feasible destinations.

4.2.1 Influence of KL Divergence. In order to verify the feasibil-
ity of KL-divergence optimization, we adopt three cases correspond
to di�erent degree of order distribution changes. �e degree of
order distribution changes means the margin between two adjacent
order distributions. In the particle order-dispatching environment,
we generate orders with a given 2-dimensional Gaussian distribu-
tionN(µt ,σt ) at each timestep. To quantify and explicitly compare
the margin between order distributions at di�erent timesteps, we
can change µt at each timestep. �e degree of order distribution
changes is equivalent to the distance between adjacent order distri-
butions. Farther distance means a higher degree, that is, the greater
the degree of changes. In our experiment se�ings, the degree of
changes from low to high orders correspond to a distance of 1, 2, 4
grids respectively, Figure 5 shows an example of order distribution
changes, the distance between µt and µt+1 is 8 grid. Since the desti-
nations of orders are random, if we want to let vehicles serve more
orders at the next timestep, we need to let the algorithm learns to
pick suitable orders at current decision stage to assign the vehicles
to suitable grids, so that we can ensure that there is a be�er ORR at
next timestep. Intuitively, a long-term higher ORR corresponds to
a higher long-term ADI. Table 2 shows the performance at metrics
of ORR and ADI at di�erent degree of order distribution changes.

4.2.2 Influence of λ. λ plays an important role in our method,
so it is necessary to investigate how it a�ects the performance at
di�erent degree of order distribution changes. In our experiments,
the value of λ ranges from 0.0 to 0.6 with stepping 0.05. When
λ = 0.0, it means our method is equivalent to IL. Figure 6 shows
curves at di�erent degree of order distribution changes.

4.2.3 Result Analysis. We train 300 episodes for all algorithms
in the three cases which are related to di�erent degrees of KL-
divergence. We compare the three baselines from metrics of ADI
and ORR. As shown in Table 2, it shows the average experimen-
tal results of 5 groups with di�erent random seeds. �e particle



Table 2: Performance comparison in terms of ADI and ORR with respect to NOD. We compare against with baselines in
three di�erent order distribution changes degree, namely, low, medium and high. KL-Based is our proposed method, which
outperforms all baselines on all metrics.

Order Distribution Divergence Low Medium High
Metrics ADI ORR ADI ORR ADI ORR

IL +12.5% +6.94% +11.5% +6.3% +6.68% +2.32%
MDP +14.5% +8.94% +13.3% +6.69% +7.28% +3.42%

KL-Based +25.12% +13.40% +20.94% +7.89% +13.47% +4.61%

Table 3: Performance comparison in terms of ADI and ORR
with respect toNOD.We compare against baselines using dif-
ferent datasets from three cities. KL-Based is our proposed
method, which outperforms all baselines on all metrics.

City City A City B City C
Metrics ADI ORR ADI ORR ADI ORR

IL +4.69% +1.68% +2.96% +1.11% +4.72% +2.05%
MDP +5.80% +1.89% +3.69% +2.63% +5.98% +2.14%

KL-Based +6.46% +3.07% +4.94% +3.30% +6.12% +3.01%
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Figure 5: Order distribution changes. From (a) to (d), the or-
der distribution of four consecutive timesteps in the 10 × 10
grid world is shown. �e distance of µt and µt+1 is 8 grids.

order-dispatching environment generates orders with random desti-
nations, that is, the probabilities of long and short orders appear are
equivalent in a grid. Although choosing long orders means higher
ADI, the degree of order distribution changes we set requires the
algorithm to choose more non-longest orders, thus ensuring both
higher ORR and long-term ADI. In the three di�erent degrees of
order distribution changes, our KL-based outperforms all baselines
on all metrics. It means our method can be�er counterweight the
margin of order distribution.

Figure 6 shows the learning curve of λ at di�erent degree of
order distribution changes. In the three cases of order dispatching
changes, our method achieves highest ORR at λ = 0.05, λ = 0.45,

λ = 0.5 respectively. �e results in Figure 6 also show that higher
ORR o�en corresponds to higher ADI. In practice, if there is a low
degree of order distribution changes, in order to achieve a higher
ORR, the algorithm needs to pick shorter orders, so that in the
future, agents in the closer regions can still serve more orders,
namely, higher ORR. When it comes to a high degree of order
distribution changes, the dispatching algorithm needs to perform
more greedy to achieve a higher ORR, that is, it prefers to pick
longer orders. Also, the result of Figure 6c shows our algorithm
achieves be�er performance on ORR and ADI than IL in the case of
a high degree of order distribution changes. �erefore, combined
with the results of Table. 2 and Figure 6, our method can �exibly
choose long or short orders.

4.3 Real World Data Experiments
4.3.1 Dispatching Simulator. Since our model is implemented

on the se�ing of dividing the city into many order dispatching
regions, so we conduct experiments on an open source grid-based
environment simulator provided by Didi Chuxing [16]. �e simula-
tor divides the city into N hexagonal grids which depends on the
size of the city. At each time t , the simulator provides a set of idle
vehicles and a set of available orders. Each order is featured with
its origin, destination, and duration, and vehicles in the same re-
gion share the same state. �e travel distance between neighboring
regions is approximately 2.2km and the time interval is 10min.

4.3.2 Data Description. �e real-world datasets provided by
Didi Chuxing include order and trajectories of vehicles informa-
tion of three cities in one month. �e order information includes
price, origin, destination, and duration. �e trajectories contain
the positions (latitude and longitude) and status (on-line, o�-line,
on-service). We divide the three cities into 182, 126, 112 hexagonal
grids respectively.

Result Analysis. We compare our model with three baselines
a�er 300 episodes training. As shown in Table 3, it lists the average
results of 5 groups experiments with di�erent random seeds. �e
real datasets contain more changes in the order distribution. From
the results, our method can still be�er discover the changes of
order distribution and improve the ORR and ADI via order-vehicle
distribution matching.

5 DEPLOYMENT
Taking both model se�ing in this paper and online platforms of
Didi Chuxing, we design a hybrid system and incorporate with
other components including routing planning technique [32] and
estimating time of arrival (ETA) [34] as illustrated in Figure 7.
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Figure 6: ORR and ADI performance under di�erent λ settings. �e horizontal axis represents di�erent λ, the le� and right
vertical axis represent ORR and ADI respectively.

As aforementioned mentioned in Section 3, there are several
assumptions prevent this model from deploying in real-world set-
tings: (i) vehicles in the same grid share the same se�ing, and
this isomorphic se�ing ignores the intra-grid information; (ii) this
paper adopts the grid-world map to simplify the real-world envi-
ronment which replace coordinate position information with grid
information. To address these issues, we adapt estimate travel time
techniques proposed in and incorporate with our action selection Q-
learning mentioned in Section 3.3. For example, the duration time
of each order in our model is regarded as one of the already known
order features. However, in the real-world scenario, each order’s
travel time obtained via the ETA model is dynamic and depends
on current tra�c and route conditions. Since coordinate position
information is taken into consideration in the ETA model, this hy-
brid system is able to deal with the assumption (ii) and feasible to
be deployed in real-world.

We extend the Matching System and the Routing System a�er
obtaining Q-value via the hybrid system as illustrated in Figure. 7.
Speci�cally, in each time slot, the goal of the real-time order dis-
patch algorithm is to determine the best matching between vehicles
and orders (see Figure 1) in the matching system and plan a routine
for drivers to serve the orders. Formally, the principle of Matching
System can be formulated as:

argmaxai j
m∑
i=0

n∑
j=0

Q(i, j)ai j , (12)

s .t .
m∑
i=0

ai j = 1, j = 1, 2, 3...,n

n∑
j=0

ai j = 1, i = 1, 2, 3...,m
(13)

where

ai j =

{
1, if order j is assigned to driver i
0, if order i is not assigned to driver i

where i ∈ [1, 2, ...,m] and j ∈ [1, 2, ...,n] present all idle drivers and
available orders at each time step respectively. Q(i, j) is the output
from hybrid system and represents the action-value function driver
i performing an action of serving order j. Note that constraints in
Eq. (13) guarantee that each driver will select one available real

orders or doing nothing while each order will be assigned to one
driver or stay unserved at each time step.

�is Matching System used in Xu et al. [37] and Wang et al.
[35] is implemented using Kuhn-Munkres (KM) algorithm [22].
In detail, they formulated Eq. (12) as a bipartite graph matching
problem where drivers and orders are presented as two set of nodes.
�en, each edge between order i and driver j is valued with Q(i, j),
and the best matches will be �ned using KM algorithm. Di�erent
from them, since we implemented our method based on assumption
(i), that is, there is no di�erence in the drivers in a same grid. So the
KM algorithm will degenerate into a sorting algorithm here. We
just need to select the topm orders with the highest Q(i, j) values.

Data: (2, 4)
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Q-learning
Estimate 

Travel time
Hybrid 
System

Matching
System

Routing
System

Simulator

Offline

Data: 
(2, 4)
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Figure 7: Illustration of deployment. �e hybrid system con-
sists of two modules, namely, Action Selection Q-learning
(ASQ) and Estimate Travel timemodules. �eASQwill inter-
act with simulator periodically, and it will be trained o�line
in the simulator. Matching System accepts value estimation
and outputs 〈vehicle, order〉 matches to Routing System.

Once the matching pairs of orders and vehicles has been selected
from the matching system, we then deliver these pairs with co-
ordinate information to the routing system. �e routing system
equipped with route planning techniques [32] allows drivers to
serve the order. �is process will give feedback, i.e. reward to the
hybrid system and help the whole system training to achieve be�er
performance.

6 CONCLUSIONS
In this paper, we proposed a multi-agent reinforcement learning
method for order-dispatching via matching the distribution of or-
ders and vehicles. Results on the three cases in the simulated



order-dispatching environment have demonstrated that our pro-
posed method achieves both higher ADI and ORR than the three
baselines, including one independent MARL method, one planning
algorithm, and one rule-based algorithm, in various tra�c environ-
ments. �e experiments on real-world datasets also show that our
model can obtain higher ADI and ORR. Furthermore, our proposed
method is a centralized training method and can be executed de-
centralized. In addition, we designed the deployment system of the
model with the support of the existing platform of Didi Chuxing. In
future work, we plan to deploy the model to do online tests through
the designed deployment system.
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