
Query-based Interactive Recommendation by Meta-Path and
Adapted Attention-GRU

Yu Zhu∗
Alibaba Group

Hangzhou, China
zy143829@alibaba-inc.com

Yu Gong∗
Alibaba Group

Hangzhou, China
gongyu.gy@alibaba-inc.com

Qingwen Liu
Alibaba Group

Hangzhou, China
xiangsheng.lqw@alibaba-inc.com

Yingcai Ma
Alibaba Group

Hangzhou, China
yingcai.myc@alibaba-inc.com

Wenwu Ou
Alibaba Group

Hangzhou, China
santong.oww@taobao.com

Junxiong Zhu
Alibaba Group

Hangzhou, China
xike.zjx@taobao.com

Beidou Wang
State Key Laboratory of CAD&CG,

Zhejiang University
Hangzhou, China

beidou.wang@gmail.com

Ziyu Guan
Xidian University

Xi’an, China
zyguan@xidian.edu.cn

Deng Cai
State Key Laboratory of CAD&CG,

Zhejiang University
Hangzhou, China
dcai@zju.edu.cn

ABSTRACT
Recently, interactive recommender systems are becoming increas-
ingly popular. The insight is that, with the interaction between users
and the system, (1) users can actively intervene the recommenda-
tion results rather than passively receive them, and (2) the system
learns more about users so as to provide better recommendation.

We focus on the single-round interaction, i.e. the system asks
the user a question (Step 1), and exploits his feedback to gen-
erate better recommendation (Step 2). A novel query-based in-
teractive recommender system is proposed in this paper, where
personalized questions are accurately generated from mil-
lions of automatically constructed questions in Step 1, and the
recommendation is ensured to be closely-related to users’
feedback in Step 2. We achieve this by transforming Step 1 into
a query recommendation task and Step 2 into a retrieval task.
The former task is our key challenge. We firstly propose a model
based on Meta-Path to efficiently retrieve hundreds of query candi-
dates from the large query pool. Then an adapted Attention-GRU
model is developed to effectively rank these candidates for rec-
ommendation. Offline and online experiments on Taobao, a large-
scale e-commerce platform in China, verify the effectiveness of
our interactive system. The system has already gone into pro-
duction in the homepage of Taobao App since Nov. 11, 2018 (see
https://v.qq.com/x/page/s0833tkp1uo.html on how it works online).
Our code and dataset are public in https://github.com/zyody/QueryQR.
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’19, November 03–07, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

CCS CONCEPTS
• Information Search and Retrieval→ information filtering.

KEYWORDS
Recommender Systems, Meta-Path, Attention-GRU, Wide&Deep
Learning

ACM Reference Format:
Yu Zhu, Yu Gong, Qingwen Liu, Yingcai Ma, Wenwu Ou, Junxiong Zhu,
Beidou Wang, Ziyu Guan, and Deng Cai. 2019. Query-based Interactive
Recommendation by Meta-Path and Adapted Attention-GRU. In CIKM ’19:
ACM International Conference on Information and Knowledge Management,
November 03–07, 2019, Beijing, China. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Interactivity plays an important role in influencing user experience
in daily life. For example, compared to watching TV, most children
prefer playing with the smartphone or tablet. One main reason is
that, children can only passively receive TV shows from TV (with
few interactions when they change channels), while they have lots
of interactions with the smartphone or tablet when, for example,
playing mobile games.

It is the same case with recommender systems (RS). Intuitively,
by introducing the interactivity in RS (i.e. users interact with RS),
users can actively intervene the recommendation results rather
than passively receive them. In addition, the system will learn more
about users so as to provide better recommendation. Both will im-
prove the user experience. However, how to utilize the interactivity
to improve the recommendation performance has not been well
studied in the past decades.

There is an increasing number of works [2, 6] concentrating on
interactive RS recently. Personal assistants learn users’ preferences
by conversing with users [14]. Users’ interests can also be mined
by questionnaires [8]. Reinforcement learning [2] /multi-armed
bandit [16]/active learning [21] methods focus on balancing the

ar
X

iv
:1

90
7.

01
63

9v
1

 [
cs

.I
R

]
 2

4
Ju

n
20

19

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CIKM ’19, November 03–07, 2019, Beijing, China Zhu et al.

Question
Generation

User
Feedback

Item
Recommendation

Module 1 Module 2 Module 3

Figure 1: The Question&Recommendation framework.

explore-exploit tradeoff in RS. They learn users’ preferences by
recommending explored items and acquiring their feedback. How-
ever, personal assistants and reinforcement learning/multi-armed
bandit/active learning methods usually need multi-round inter-
actions to well learn users, thus users who want quick&accurate
recommendations would not be satisfied. The questionnaires are
often manually generated and not well personalized. These issues
prevent the above methods from being the best fit for interactive
recommendation tasks.

Single-round interaction and automatically generating person-
alized questions are promising solutions to the aforementioned
challenges. A framework for the single-round interactive RS is
proposed in [6], which contains three main modules as shown in
Figure 1. Specifically, when a user browses items in RS, the system
would generate a question to consult him about what his interest is
(Module 1). Once his feedback is obtained (Module 2), the system
could then provide more accurate recommendation (Module 3).

Our work is also based on this framework. Now we describe our
design in terms of the three modules, respectively.

Question Generation:We transform the question generation task
into a query recommendation task. For example, in Figure 2 (a),
four queries “Hat", “Scarf", “Glove" and “Socks” are recommended
to the user, corresponding to the questions “Do you want to buy a
hat/scarf/glove/socks?". We choose to generate questions based on
queries due to the following three considerations:

• Queries are typed by users, in order to find their preferred
items. Therefore, queries reflect users’ potential preferences.
• The questions generated in [6] are topic-based. Compared
to topics, queries can capture more fine-grained preferences.
• The search log has plenty of queries. These queries arewidely
distributed and cover almost all preferences from different
users in various circumstances (e.g. different seasons).

After filtering queries with low frequency, millions of queries are
collected from the search log. To recommend queries (from the large
query pool) that can best reflect users’ preferences in an efficient
fashion, various important information in e-commerce websites
should be well exploited, including (1) heterogeneous relations
among different objects (users, items, queries, etc.); (2) rich features
of these objects, e.g. the text and category (Dresses, Smartphones,
etc.) information of items and queries; (3) the sequential informa-
tion, action types (click, purchase, etc.) and timestamps of users’
behaviors. Inspired by [7], we split query recommendation into two
stages: Candidate Generation and Ranking. Specifically, we firstly
propose a model based on Meta-Path [27] to efficiently generate
hundreds of query candidates from the large query pool, with the
help of heterogeneous relations. Then an adapted Attention-GRU

Hat > Scarf >

Glove > Socks >

You may want: Results for “Scarf”:

(a) Question generation by
recommending four queries;
User feedback by clicking “Scarf”

(b) Item recommendation
based on user feedback

Figure 2: The system generates 4 queries to consult the user
about whether he wants a hat/scarf/glove/socks. He answers
“Yes, I want a scarf” by clicking “Scarf”. Then personal-
ized item recommendation is performed based on the query
“Scarf”.

[5] model is developed to effectively rank these candidates, by utiliz-
ing all the information described above. In this way, high efficiency
and accurate recommendation are both achieved.
User Feedback: As shown in Figure 2 (a), the user answers “Yes, I
want a scarf" by clicking “Scarf" or “No, I do not want them" by
ignoring them.
Item Recommendation: Finally, as shown in Figure 2 (b), items
are recommended based on the clicked query and the user’s histor-
ical behavior. Actually, this can be seen as a classical personalized
retrieval task, and many successful algorithms in the information
retrieval area could be adopted. In this way, the recommendation
(i.e. the retrieved results) is ensured to be closely-related to users’
feedback (i.e. query).

Apart from the motivated example in Figure 2, we show some
other possible user cases to give a better understanding of our
system:
• After the user clicking some items about trips to Tokyo, he
is recommended with queries “Hotel in Tokyo”, “Flight to
Tokyo”, “Travelling bag” and “Toiletries”.
• After buying a Nikon camera, he is shown with “Memory
card”, “Lenses”, “Camera battery” and “Protection cases for
camera”.
• After favoring a pair of shoes, he is shown with “Nike shoes”,
“Adidas shoes”, “Sneakers” and “Leather shoes”.

Since item retrieval algorithms in most e-commerce platforms
are mature, we directly adopt them as the models in Item Recommen-
dation. Therefore, query recommendation in Question Generation is
our key challenge. We will focus on it in the rest of our paper.

This paper’s contributions are outlined as follows.
• We design a novel query-based interactive RS. Compared
to state-of-the-art interactive RS, e.g. [6], our system can
accurately generate personalized questions from millions

Query-based Interactive Recommendation by Meta-Path and Adapted Attention-GRU CIKM ’19, November 03–07, 2019, Beijing, China

of automatically constructed questions (since we have mil-
lions of queries) and item recommendation is ensured to be
closely-related to users’ feedback, which result in better user
experience in interactive RS.
• We propose a solution by Meta-Path and adapted Attention-
GRU for query recommendation. This solution follows a
Candidate Generation and Ranking schema. We introduce
Meta-Path into the Candidate Generation stage and cus-
tomize the calculation of meta path scores, so that query
candidates can be efficiently generated considering hetero-
geneous relations and the procedure is more explainable. We
introduce Attention-GRU into the Ranking stage and pro-
pose two important modifications on Attention-GRU, which
significantly improves its ranking performance.
• We conduct extensive offline and online experiments on a
large-scale e-commerce platform, i.e. Taobao. The experi-
mental results (especially the response from online users)
prove the effectiveness of our query-based interactive RS.

2 RELATEDWORK
2.1 Interactive RS and Query Recommendation
[9, 14] are excellent surveys on interactive RS. How we differ from
the most relevant works are described in Introduction. In addition,
compared to [6], our solution in Question Generation is based on
queries and is carefully designed to improve its efficiency and ef-
fectiveness. Meanwhile, we transform Item Recommendation into a
retrieval task so that we can address it by adopting existing retrieval
algorithms.

Query recommendation in most previous works [13, 28] is to fa-
cilitate the search of web pages, locations, etc. They usually exploit
information, e.g. searched queries and clicked links, in search logs.
Ours is for item recommendation, and is based on both of search
and recommendation logs, including some special information in
e-commerce websites. Note that our framework is not limited to
queries and other objects (e.g. videos) can also be utilized to gener-
ate questions. Item recommendationwill then be based on behaviors
on these objects, instead of only the clicked queries. We will explore
it in our future work.

2.2 Meta-Path
Meta-Path [23] describes how two nodes in a graph are connected
via different types of paths. Specifically, given a directed graph G =
(V,E), where V = {V0,V1, · · · } is the node set, and E = {E0,E1, · · · }
is the edge set. A meta path P = V0

E0−→ V1
E1−→ · · ·

Ek−1−→ Vk in G
defines a complicated relation between V0 and Vk . Several works
[25, 26] exploit Meta-Path to improve the performance of RS. Corre-
sponding to RS, entities such as users and items construct the nodes,
and relations such as users consuming items are the edges. Many
recommendation algorithms can be represented by meta paths.
For example, item-based collaborative filtering (Item-CF) [22] and
Content-based recommendation (CBR) [19] can be represented by

meta paths: pI tem−CF /pCBR = u
Consume−→ i

Similar−→ i ′, indicat-
ing that user u consuming item i may also prefer a similar item
i ′ (the similarity is calculated by collaborative behaviors for Item-
CF and by item contents/attributes for CBR). Similarly, user-based

collaborative filtering (User-CF) [29] and Social-aware recommen-

dation (SR) [24] are represented by: pU ser−CF /pSR = u
Similar−→

u ′
Consume−→ i , indicating that u may favor what his similar users

(the similarity is calculated by collaborative behaviors for User-CF
and by social relations for SR) have consumed. [27] proposes a Meta-
Graph based recommendation method to capture more complex
semantics. Since there is no complex semantics in our task, thus
we use Meta-Path for simplicity. Compared to previous Meta-Path
models, we combine Meta-Path with Attention-GRU, instead of
using Meta-Path individually. Thus heterogeneous relations and
sequential behaviors are both considered for recommendation.

2.3 Attention-GRU
Attention-GRU [5] refers to GRU [4] with the attention schema [1].
It typically generates an output sequence y = (y1, · · · ,yT) from an
input sequence x = (x1, · · · ,xn), where x is usually encoded to a
sequential representation h = (h1, · · · ,hn) by an encoder. ym in y
is generated by:

αm = Attend(sm−1,h), (1)

дm =
n∑

k=1
αmkhk , (2)

sm = Recurrence(ym−1, sm−1,дm), (3)
ym ∼ Generate(ym−1, sm ,дm), (4)

where Attend and Generate are functions. sm is the hidden state.
αm is a vector whose entry αmk indicates the attention weight of
the k-th input. дm is called a glimpse [18]. Recurrence represents
the recurrent activation. In Attention-GRU, the recurrent activation
is GRU.

RNN solutions for behavior modeling are becoming increasingly
popular [10, 11]. The most related work to ours is [31]. Our main
difference lies in (1) we modify the attention schema in Attention-
GRU while [31] does not; (2) Besides behavior features extracted
by Attention-GRU, we also incorporate other valuable features
(e.g. features from Meta-Path) for recommendation in a non-trivial
fashion.

3 QUERY RECOMMENDATION
As described in Introduction, query recommendation is our key
challenge. Our solution contains two stages: Candidate Generation
and Ranking.

3.1 Meta-Path for Candidate Generation
Candidate Generation is to efficiently generate hundreds of query
candidates from the large query pool. As shown in Figure 3, we
design three types of meta paths to generate candidates: U2I2Q,
U2I2S2Q and U2I2C2Q.

U2I2Q: Based on search logs in previous days, we calculate the
conditional probability of query q given item i as follows:

P(q/i) = Count(q, i)
Count(i) , (5)

where Count(q, i) is the number of records that the retrieved items
contain i by searching q, and Count(i) is the number of all records

CIKM ’19, November 03–07, 2019, Beijing, China Zhu et al.

U2I2Q

U2I2C2Q

U2I2S2Q
user query

item

item

category

scenario

item

Figure 3: Three types of meta paths to generate query candi-
dates.

that i is retrieved. The insight is that, if q and i always co-occur
in search logs, then they are closely related. For a given user u, it
indicates that u could find his preferred queries by the meta path:

pU 2I2Q = u
Consume−→ i

P (q/i)
−→ q.

U2I2S2Q: U2I2S2Q contains two sub-procedures: I2S and S2Q. I2S
indicates that when user u consumes item i , it would activate a
scenario s , with P(s/i) calculated considering i’s title and category.
For S2Q, we derive the conditional probability of other items i ′
given s , i.e. P(i ′/s), based on i ′’s titles and categories. We then
obtain P(q/s) with the help of P(q/i ′) in Eq. (5). Finally, u could

find his preferred queries by the meta path: pU 2I2S2Q = u
Consume−→

i
P (s/i)
−→ s

P (q/s)
−→ q.

U2I2C2Q: In order to generate more query candidates, we further

construct the meta path: pU 2I2C2Q = u
Consume−→ i

P (c/i)
−→ c

P (q/c)
−→ q,

where P(c/i) = 1 if item i belongs to category c . P(q/c) is calculated
based on the knowledge graph.

We omit the description on how to calculate P(s/i), P(q/s) and
P(q/c) in detail since it is not the focus of this paper.MetaScore(q)
denotes the relation weight between u and q in terms of a certain
type of meta path, defined as:

MetaScore(q) =

∑
p∈U 2I 2Q

P (q/i) if q is generated by U2I2Q∑
p∈U 2I 2S2Q

P (s/i) × P (q/s) if q is generated by U2I2S2Q∑
p∈U 2I 2C2Q

P (c/i) × P (q/c) if q is generated by U2I2C2Q

.
(6)

We collectu’s recently consumed (clicked, purchased, favored, added-
to-cart) items as i . The weight of a meta path is the product of differ-
ent conditional probabilities along the meta path. The probability
product is used because, we assume that in Meta-Path, the observa-
tion on one node only depends on its previous node, i.e. following
the first-order Markov assumption. Taking a certain meta path
in U2I2S2Q as an example, its probability of occurrence P(i, s,q)
(item i , scenario s and query q are along the meta path) is equal
to P(i) × P(s/i) × P(q/s) according to the Markov assumption. P(i)
is assumed to be the same for all items recently consumed by the

target user. Therefore, P(s/i) × P(q/s) in Eq. (6) is proportional to
P(i, s,q). The other types of meta paths can be similarly analyzed.
There may exist multiple meta paths that link u and q, thus we sum
their weights to obtainMetaScore(q).

For a query candidate, we represent the output of Meta-Path by a
6-dimensional vector: [Type1, Score1,Type2, Score2,Type3, Score3].
If there exists at least one meta path belonging to U2I2Q that links
u and q, then we have Type1 = 1 and Score1 isMetaScore(q) with
respect to U2I2Q. Otherwise, we have Type1 = 0 and Score1 = 0.
Type2, Score2 are for U2I2S2Q and Type3, Score3 are for U2I2C2Q.

We calculate i → · · · → q relations, save i’s top-k queries with
the largest conditional probabilities and build index on i for each
type of meta path offline. Then in online recommendation, given
user u, query candidates can be efficiently generated according to
u’s consumed items by indexing. In our system, we set themaximum
number of query candidates for each type of meta path to be 200.
In this way, the total number of query candidates for each user
request is controlled to be less than or equal to 600 (since we have
three types of meta paths). Note that other relations apart from
the above three can also be incorporated in our Meta-Path model.
Compared to the embedding model for Candidate Generation in
[7], ours exploits heterogeneous relations to generate candidates,
is more explainable and is easier to implement.

3.2 Attention-GRU Based Model for Ranking
The Ranking stage is to effectively rank query candidates and top
queries are then recommended. We formulate it as a point-wise
ranking task. Specifically, a classifier is learned by exploiting var-
ious information in e-commerce websites. Then given user u, his
probability of preferring each query is predicted by the classifier
and queries are ranked by their probabilities. As shown in Figure 4,
there are 3 feature fields in our ranking model: user features, query
features and context features.

user features: This feature field contains users’ discrete features
(e.g. user id), continuous features (e.g. age) and behavior features.
We encode discrete features by embedding. Taking user id as an
example, the user set is denoted by U = {u1,u2, · · · ,uN }. uk ’s
one-hot vector is defined as ok ∈ {0, 1}N×1, with the k-th entry
equal to 1 and the other entries equal to 0. Then we obtain uk ’s
embedding ek as:

ek = E × ok . (7)

E ∈ RD×N contains the embeddings of all users, which is learned
from training. ok is used to look up the embedding of uk from E.
Behavior features are represented by the hidden state of our modi-
fied Attention-GRU, considering the text information, categories,
other discrete and continuous features of users’ consumed items.
The representation of text is not the focus of this paper, thus we
simply represent it by the mean of word embeddings. Categories
are discrete features, thus they are directly encoded by embedding.

query features:This feature field contains the text information, cat-
egories, Meta-Path features, other discrete and continuous features
of the query. Note that there is no explicit category information on
queries, thus we learn a model to predict the top 3 categories for
each query, and encode them by the mean of category embeddings.

Query-based Interactive Recommendation by Meta-Path and Adapted Attention-GRU CIKM ’19, November 03–07, 2019, Beijing, China

i1 i2 ……

Mean of word embeddings
(words in the item title and

queries with the largest P(q/i))

Other discrete and
continuous features

in

Behavior features
(Hidden state of
Attention-GRU)

Embedding of
discrete features,

e.g. user id

Concatenate

Other discrete and
continuous features

Mean of word embeddings
(words in the query)

Concatenate

Embedding of
category

Concatenate 3 feature fields

Fully connected layer: output 50 dimensions

Fully connected layer: output 2 dimensions

Softmax layer: output 2 dimensions Label

Calculate the loss/Evaluation

Meta-Path features
(6-dimensional vector from

Candidate Generation)

Continuous features,
e.g. age

Mean of category embeddings
(top 3 categories predicted by

a model)

Seasons,
Special days,

…

Concatenate

User feature field Query feature field Context feature field

Modeling users’ behaviors by modified Attention-GRU
(details in section 2.3 and 3.2)

Figure 4: Attention-GRU based model to rank query candidates.

Meta-Path features are the 6-dimensional vector obtained from
Candidate Generation.

context features: This feature field contains seasons, special days,
etc., which also influence the ranking performance.

The concatenation of these feature fields are the input of a 3-
layer neural network (2 fully connected layers and 1 softmax layer).
Loss/evaluation is calculated based on its output and the label.
Some features capture the system bias, e.g. for the feature of special
days, users are more likely to click queries in Shopping Festivals
than in normal days. Some features capture the bias on users or
queries, e.g. for the feature of user id, some active users prefer
to click most queries. Similarly, queries with popular categories
tend to be clicked by most users. Other features capture users’
personalized preferences on queries, e.g. the text information of
a user’s consumed items models his preference by text. Then if
the query also contains similar text, he would probably prefer this
query. Different from linear models, neural network used in our
framework not only captures the bias of unary features (i.e. the bias
on system, users and items), but also well models the interaction
among features (e.g. users’ personalized preferences on queries) by
non-linear activation functions.

Our ranking model is inspired by the Wide&Deep model [3].
Obtaining behaviour features from Attention-GRU in Figure 4 can

be regarded as the deep component in [3] while the other fea-
tures construct the wide component. However, our model and the
Wide&Deep model in [3] share some key differences. For the deep
component, we use the hidden state of our modified Attention-
GRU as features while [3] regards the final score of Deep Neural
Network (DNN) [12] as the feature. Thus our model exploits users’
sequential behaviors for recommendation while [3] cannot. For the
combination of the wide and deep components, [3] combines them
by logistic regression while we use a 3-layer neural network to
model them, so that the interaction among features in wide and
deep components can be better captured.

Modified Attention-GRU
Now we describe our modified Attention-GRU in detail. Following
the denotations in section 2.3, xk corresponds to item ik in Figure 4.
T is equal to 1, thus we havem = 1 in Eq. (1) ∼ (4). y0 corresponds
to the query. s0 is the hidden state of y0. We use bidirectional GRU
to output h = (h1, · · · ,hn), with hk defined as:

−→
hk = GRU (xk ,

−−−→
hk−1), (8)

←−
hk = GRU (xk ,

←−−−
hk+1), (9)

hk = [
−→
hk ,
←−
hk]. (10)

CIKM ’19, November 03–07, 2019, Beijing, China Zhu et al.

The concatenation of hk (containing the information of ik) and s0
(containing the query information) is the input of a neural network,
and its output is the attention weight α1k . Finally, we use s1 in Eq.
(3) to represent behavior features in Figure 4. Our modifications on
Attention-GRU are based on the following two motivations:
• Different action types (click, purchase, favor, add-to-cart)
reflect users’ different preferences on items, e.g. generally a
user purchasing an item indicates he is more interested in
the item than if he clicks it. The design of attention weight
should consider different action types.
• The earlier an action happens, the less it affects query recom-
mendation. Thus the time decay of different actions should
also be modeled in attention weight.

Following these motivations, as shown in Figure 5, we replace h in
Eq. (1) with h′ = (h′1, · · · ,h

′
n), where h′k is defined as:

h
tmp
k = Al × hk , (11)

h′k = h
tmp
k ⊗ △tϵk , s .t . ϵ ≤ 0. (12)

Suppose we have hk ∈ Rd×1, then we define Al ∈ Rd×d , where l
indicates whether ik is clicked (l = 1), purchased (l = 2) , favored (l =
3) or added-to-cart (l = 4). We use matrix multiplication to model
different action types in Eq. (11), since in this way the interaction
between the action type and ik is explicitly captured. △tk is the
time interval between the time when the action on ik happens
and the time for query recommendation. ϵ is an exponential decay
on △tk . ⊗ indicates that each entry in h

tmp
k is multiplied by △tϵk .

Constraint ϵ ≤ 0 in Eq. (12) ensures that the earlier an action on ik
happens, the smaller h′k will be. Correspondingly, ik ’s influence on
query recommendation will also be smaller. Al and ϵ are learned
from training. Constraint ϵ ≤ 0 is handled by using the projection
operator [20], i.e. if we have ϵ > 0 during training iterations, we
reset ϵ = 0. Note that our two modifications can be generalized to
other attention models, by replacing their hk with our h′k as shown
in Eq. (11) and Eq. (12).

4 OFFLINE EXPERIMENTS
4.1 Dataset
We firstly deploy our interactive RS in Taobao, using a heuristic
rankingmethod (we cannot use our rankingmodel since no training
data is available yet) to recommend queries. Then one day of data
is collected and preprocessed for training and testing. For each
instance <uid, qid, label>, label = 1 indicates that query qid is
clicked by user uid and label = 0 means that qid is shown to but
not clicked by uid. In addition, user features (behavior features are
constructed by uid’s recent 100 actions), query features and context
features are correspondingly collected. Finally, we have 3, 201, 231
users, 1, 464, 410 queries and 12, 897, 055 instances. 80% instances
are randomly selected for training and the remaining 20% are for
testing.

4.2 Compared Models and Evaluations
Our ranking model is compared with the following baselines.

Q&R: We denote the question ranking model in state-of-the-art
interactive RS [6] (replace its topics with queries) as Q&R.

h1’ h2’ hk’ hn’
query

s0

……

match

α1k

x1 x2 xk xn

h1 h2 hk hn
… …

hk’ = f (hk, Al, △tk)

……

Figure 5: Modified attention schema considering action
types and time decay.

FTRL: FTRL [17] is a linear model, with no feature interaction.
Behavior features in Figure 4 are not used since they cannot be
easily incorporated in FTRL. We manually design some interactive
features and behavior features for FTRL to ensure more fair com-
parisons.
Wide&Deep: Wide&Deep learning [3] is a popular learning frame-
work in industry. Here we compare our model with its famous
version described in [3]. Based on the discrete and continuous fea-
tures in Figure 4, we construct raw input features and transformed
features for the wide component, and use DNN to generate real-
valued vectors for the deep component. Finally, the wide and deep
components are combined by a logistic regression model. Refer to
[3] for more details.

The remaining baselines replace our modified Attention-GRU
with other RNN structures. We use the corresponding RNN struc-
tures to denote these baselines for simplicity.
GRU : GRU [4] is one of the best RNN architectures. Thus it is
selected to represent the original RNN structures, with timestamps
and action types not considered.
Attention-GRU : Similarly, we choose Attention-GRU [5] to repre-
sent RNN structures with the attention schema. Timestamps and
action types are not considered, either.
Time-LSTM: Time-LSTM [30] has achieved state-of-the-art per-
formance for sequential behavior modeling when timestamps exist
while action types are not known. We use its publicly available
python implementation1.
Attention-GRU-3M:Attention-GRU-3M [31] considers timestamps
and action types in sequential behavior modeling. However, its time
intervals are calculated between neighbor actions, which are differ-
ent from ours. In addition, we propose two important modifications
on the attention schema to better model timestamps and action
types. We use its publicly available python implementation2.

1https://github.com/DarryO/time_lstm
2https://github.com/zyody/Attention-GRU-3M

Query-based Interactive Recommendation by Meta-Path and Adapted Attention-GRU CIKM ’19, November 03–07, 2019, Beijing, China

50% training data 100% training data
AUC F1 AUC F1

Q&R 0.651 0.638 0.671 0.648
FTRL 0.647 0.635 0.669 0.644

Wide&Deep 0.651 0.639 0.673 0.650
GRU 0.655 0.642 0.676 0.653

Attention-GRU 0.661 0.649 0.683 0.662
Time-LSTM 0.664 0.651 0.684 0.666

Attention-GRU-3M 0.671 0.657 0.690 0.674
Our Model 0.682∗ 0.667∗ 0.699∗ 0.685∗

Table 1: Model Comparison (* indicates statistical signifi-
cance at p < 0.01 compared to the second best.)

AUC Gain
Random prediction 0.500 -

Add categories of the query 0.568 +0.068
Add categories of sequential items 0.604 +0.036

Add texts of sequential items and the query 0.620 +0.016
Add all features in Figure 4 0.683 +0.063

Add the modification in Eq. (11) 0.689 +0.006
Add the modification in Eq. (12) 0.699 +0.010

Table 2: Evaluation onDifferent Ingredients of Our Ranking
Model (Gain represents the improvement of current AUC
compared to the previous one.)

The number of units is set to 256 for all RNN-based structures.
The other hyper-parameters in all models are tuned via cross-
validation or set as in the original paper. We evaluate the perfor-
mance of different models by AUC and F1 score [15].

4.3 Results and Discussions
4.3.1 Model Comparison. As shown in Table 1, our proposedmodel
significantly outperforms all baselines. In comparison, Q&R pre-
dicts the query conditioned on a sequence of consumed items, with
features not carefully engineered. Moreover, it uses GRU, which is
inferior compared to our modified Attention-GRU. FTRL is a linear
model, with interactive features and behavior features manually
designed. However, it is difficult for FTRL to capture complex fea-
ture interactions and well model sequential behaviors. The DNN
used in Wide&Deep fails to model sequential behaviors, either. In
addition, its combination model, i.e. logistic regression, is linear,
which cannot well capture the interaction among features in the
wide and deep components. Attention-GRU performs better than
GRU due to the attention schema, but it is worse than our model,
which demonstrates that adding timestamps and action types in
behavior modeling can improve the ranking performance. Time-
LSTM fails to distinguish different action types. Attention-GRU-3M
considers timestamps and action types, but still performs worse
than our model, which proves the advantage on how we model
timestamps and action types.

(a) The original recommendation set-
ting.

(b) Occasionally presenting the user
interface of our interactive RS, high-
lighted by the red rectangle.

Figure 6: A/B test setting. (a) is the original setting. Our in-
teractive RS is added in (b).

4.3.2 Contributions of Different Ingredients. We further conduct
experiments to evaluate the contributions of different ingredients
in our ranking model. As shown in Table 2, random prediction
achieves an AUC of 0.500. If we only use the query’s categories as
input, AUC reaches 0.568, which indicates the popularity of query’s
categories is useful for query recommendation.When the categories
of sequential items are added, AUC increases to 0.604, demonstrat-
ing that item categories and their sequential information contribute
to performance improvement. Adding the text information of se-
quential items and the query further increases AUC to 0.620, which
verifies the effectiveness of texts. Attention-GRUwith all features in
Figure 4 achieves an AUC of 0.683, proving the usefulness of other
features. Finally, our modifications on attention schema, i.e. Eq. (11)
and Eq. (12), obtain the AUC gain of 0.006 and 0.010, respectively,
which verifies the effectiveness of our two modifications.

5 ONLINE EXPERIMENTS
We now test real users’ response to our interactive RS in Taobao. In
this large-scale platform, there are over 1010 impressions and about
6×108 clicks on over 107 items from nearly 7×107 customers within
one normal day. A standard A/B test is conducted online, where one
adopts the original recommendation setting as shown in Figure 6 (a)
and the other occasionally presents the user interface of our interac-
tive RS as shown in Figure 6 (b). The appearance of interactive user
interfaces is controlled by an intention model, and often happens
after the user clicks some items and returns back to the homepage
of Taobao App. See https://v.qq.com/x/page/s0833tkp1uo.html on
how it works online. The same number (about 7 × 106 per day) of
users are randomly selected for each setting. We perform the online
experiments for five days, and the average impression number on

CIKM ’19, November 03–07, 2019, Beijing, China Zhu et al.

Impression Click GMV (CNY)
Original setting 1448730074 62956757 9261422

Add our interactive RS 1469132334 63361783 9532320
Improvement 1.41% 0.64% 2.93%

Table 3: Results ofOnline Experiments (Improvement is a rel-
ative growth ofAdd our interactive RS compared toOriginal
setting, e.g. 2.93% ≈ (9532320 − 9261422)/9261422.)

items (denoted as Impression), click number on items (denoted as
Click) and Gross Merchandise Volume (denoted as GMV) per day
are reported.

As shown in Table 3, by adding our interactive RS, Impression,
Click and GMV are all improved. A higher Impression and Click
indicates that users aremorewilling to browse and click items in our
interactive RS. The improvement of GMV is larger, because based
on users’ feedback, the system can well learn users’ shopping needs
and then satisfy them, which would lead to much more purchases.
Considering the platform’s traffic, 2.93% improvement on GMV
would result in a significant boost in revenue.

In our platform, if we increase the number of query candidates
generated by the Candidate Generation stage, both of users’ Click-
Through Rate (denoted as CTR) on queries and the response time
will increase. When the number is larger than 900, it will exceed
the system’s constraint on response time. CTR increases because
the model in the Ranking stage is more effective than the one
in the Candidate Generation stage. Some users’ preferred queries
may have low scores in Candidate Generation but will be correctly
ranked in Ranking. Therefore, users are more likely to find their
preferred queries with a larger candidate set and thus result in a
higher CTR. response time increases because more query candidates
lead to more predictions in the Ranking stage, which is obviously
more time consuming. Hence, we should carefully set the number
of query candidates to trade off the efficiency and effectiveness.
This also verifies the necessary of the Candidate Generation stage,
since it is impossible to rank millions of queries in the Ranking
stage within an acceptable time.

Our interactive RS has already gone into production on Taobao
since Nov. 11, 2018, with about 4.5× 107 active users per day. Users
will see the interactive user interfaces after clicking some items
and returning back to the homepage of Taobao App. The ranking
model is daily updated, which is initialized by the parameters in
the previous day and fine-tuned with the data obtained in the new
day. In this way, the model can not only remember old data but
also continuously fit the latest data to achieve better results.

6 CONCLUSION
In this paper, we propose a query-based interactive RS, which can
accurately generate personalized questions and recommend items
closely-related to users’ feedback. To ensure high efficiency and
remarkable effectiveness, we propose a model based on Meta-Path
for the Candidate Generation stage and an adapted Attention-GRU
model for the Ranking stage. Offline and online experiments verify
the effectiveness of our interactive RS. In future work, we will

explore more about the Item Recommendationmodule. Furthermore,
we would try to generate questions by other objects (e.g. videos),
besides queries, and recommend items according to users’ behaviors
on these objects to improve the user experience in interactive RS.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine

translation by jointly learning to align and translate. arXiv:1409.0473 (2014).
[2] Shi-Yong Chen, Yang Yu, Qing Da, Jun Tan, Hai-Kuan Huang, and Hai-Hong

Tang. 2018. Stabilizing reinforcement learning in dynamic environment with
application to online recommendation. In KDD. ACM, 1187–1196.

[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[4] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv (2014).

[5] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. 2015. Attention-based models for speech recognition. In NIPS.
577–585.

[6] Konstantina Christakopoulou, Alex Beutel, Rui Li, Sagar Jain, and Ed H Chi. 2018.
Q&r: A two-stage approach toward interactive recommendation. In KDD. ACM,
139–148.

[7] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for
youtube recommendations. In Recsys. ACM, 191–198.

[8] Mehdi Elahi, Matthias Braunhofer, Francesco Ricci, and Marko Tkalcic. 2013.
Personality-based active learning for collaborative filtering recommender sys-
tems. In Congress of the Italian Association for Artificial Intelligence. Springer,
360–371.

[9] Chen He, Denis Parra, and Katrien Verbert. 2016. Interactive recommender
systems: A survey of the state of the art and future research challenges and
opportunities. Expert Systems with Applications 56 (2016), 9–27.

[10] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based recommendations with recurrent neural networks. In ICLR.

[11] Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos Tikk.
2016. Parallel recurrent neural network architectures for feature-rich session-
based recommendations. In RecSys. ACM, 241–248.

[12] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kings-
bury, et al. 2012. Deep neural networks for acoustic modeling in speech recogni-
tion. IEEE Signal processing magazine 29 (2012).

[13] Zhipeng Huang, Bogdan Cautis, Reynold Cheng, and Yudian Zheng. 2016. Kb-
enabled query recommendation for long-tail queries. In IJCAI. ACM, 2107–2112.

[14] Michael Jugovac and Dietmar Jannach. 2017. Interacting with recommenders:
overview and research directions. TiiS 7, 3 (2017), 10.

[15] Myunghwan Kim and Jure Leskovec. 2013. Nonparametric multi-group member-
ship model for dynamic networks. In NIPS. 1385–1393.

[16] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. In WWW. ACM,
661–670.

[17] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. 2013.
Ad click prediction: a view from the trenches. In KDD. ACM, 1222–1230.

[18] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. 2014. Recurrent models of
visual attention. In NIPS. 2204–2212.

[19] Michael J Pazzani and Daniel Billsus. 2007. Content-based recommendation
systems. In The adaptive web. Springer, 325–341.

[20] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. 2012. Making Gradient
Descent Optimal for Strongly Convex Stochastic Optimization. In ICML. 449–456.

[21] Neil Rubens, Mehdi Elahi, Masashi Sugiyama, and Dain Kaplan. 2015. Active
learning in recommender systems. In Recommender systems handbook. Springer,
809–846.

[22] Badrul Munir Sarwar, George Karypis, Joseph A Konstan, John Riedl, et al. 2001.
Item-based collaborative filtering recommendation algorithms. Www 1 (2001),
285–295.

[23] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks.
VLDB 4, 11 (2011), 992–1003.

[24] Jiliang Tang, Xia Hu, and Huan Liu. 2013. Social recommendation: a review.
Social Network Analysis and Mining 3, 4 (2013), 1113–1133.

[25] Xiao Yu, Xiang Ren, Quanquan Gu, Yizhou Sun, and Jiawei Han. 2013. Collabora-
tive filtering with entity similarity regularization in heterogeneous information
networks. IJCAI HINA 27 (2013).

Query-based Interactive Recommendation by Meta-Path and Adapted Attention-GRU CIKM ’19, November 03–07, 2019, Beijing, China

[26] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandel-
wal, Brandon Norick, and Jiawei Han. 2014. Personalized entity recommendation:
A heterogeneous information network approach. In WSDM. ACM, 283–292.

[27] Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. 2017. Meta-
graph based recommendation fusion over heterogeneous information networks.
In KDD. ACM, 635–644.

[28] Zhou Zhao, Ruihua Song, Xing Xie, Xiaofei He, and Yueting Zhuang. 2015. Mobile
query recommendation via tensor function learning. In IJCAI.

[29] Zhi-Dan Zhao and Ming-Sheng Shang. 2010. User-based collaborative-filtering
recommendation algorithms on hadoop. In 2010 Third International Conference
on Knowledge Discovery and Data Mining. IEEE, 478–481.

[30] Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng
Cai. 2017. What to do next: Modeling user behaviors by time-lstm. In IJCAI.
3602–3608.

[31] Yu Zhu, Junxiong Zhu, Jie Hou, Yongliang Li, BeidouWang, Ziyu Guan, and Deng
Cai. 2018. A Brand-level Ranking System with the Customized Attention-GRU
Model. In IJCAI. ACM, 3947–3953.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Interactive RS and Query Recommendation
	2.2 Meta-Path
	2.3 Attention-GRU

	3 Query Recommendation
	3.1 Meta-Path for Candidate Generation
	3.2 Attention-GRU Based Model for Ranking

	4 Offline Experiments
	4.1 Dataset
	4.2 Compared Models and Evaluations
	4.3 Results and Discussions

	5 Online Experiments
	6 Conclusion
	References

