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ABSTRACT
Customers make a lot of reviews on online shopping websites every
day, e.g., Amazon and Taobao. Reviews affect the buying decisions
of customers, meanwhile, attract lots of spammers aiming at mis-
leading buyers. Xianyu, the largest second-hand goods app in China,
suffering from spam reviews. The anti-spam system of Xianyu faces
two major challenges: scalability of the data and adversarial actions
taken by spammers. In this paper, we present our technical solutions
to address these challenges. We propose a large-scale anti-spam
method based on graph convolutional networks (GCN) for detect-
ing spam advertisements at Xianyu, named GCN-based Anti-Spam
(GAS) model. In this model, a heterogeneous graph and a homoge-
neous graph are integrated to capture the local context and global
context of a comment. Offline experiments show that the proposed
method is superior to our baseline model in which the information
of reviews, features of users and items being reviewed are utilized.
Furthermore, we deploy our system to process million-scale data
daily at Xianyu. The online performance also demonstrates the
effectiveness of the proposed method.

1 INTRODUCTION
Reviews of online shopping websites provide valuable information,
such as product quality and aftersales service. These reviews, which
straightforwardly influence purchase decisions of customers [19],
have become a target place for spammers to publish malicious
information. In our case, Xianyu, the largest second-hand goods
app in China, which facilitates daily sales of over 200,000 products
and achieves an annual Gross Merchandise Volume (GMV) over 13
billion dollars from August 2017 to July 2018, is also suffering from
spam reviews. These spam reviews need to be cleaned out because
they not only undermine experience of users but also provide a
hotbed for internet fraud.

Reviews at Xianyu differ from reviews in other e-commerce
websites in several aspects. For instance, at Amazon or Taobao,
reviews are usually made by customers who have bought the prod-
ucts, therefore review action usually happens after purchase. In
contrast, users have no idea about the quality and possible lowest
price of the second-hand goods. Thus reviews at Xianyu act as a
communication tool for buyers and sellers (e.g., query for details
and discounts) and review action usually happens before purchase,
as shown in Figure 1 and Figure 2. So instead of review the term
comment will be used in the rest of paper to underline the essential

*The first two authors contributed equally.

difference of spam types at Xianyu. Generally, there are two main
kinds of spam comments at Xianyu: vulgar comments and spam
advertisements. Given the fact that spam advertisements takes the
majority of spam comments, we focus on spam advertisements
detection in this work,.

The main challenges of spam advertisements detection are:

• Scalability: Large-scale data of Xianyu with over 1 billion
second-hand goods published by over 10 millions users.
• Adversarial Actions: Same as most risk control system, the
anti-spam system suffers from performance decay according
to adversarial actions taken by spammers.

Spammers normally take the following two adversarial tricks to
circumvent the anti-spam system:

• Camouflage:Using different expressions with similar mean-
ing. For example, “Dial this number for a part-time job” and
“Want to earn more money in your spare time? Contact me”
are both spam advertisements for the purpose of guiding
people to risky offline activities.
• Deforming the comments: Spammers replace some key-
words in the comments with rarely used Chinese characters
or typos deliberately. For example, “Add my vx", “Add my v"
and “Add my wx" all mean "Add my WeChat1 account".

These tricks bring some inconvenience but still understandable for
human readers. On the contrary, a big challenge for the anti-spam
system is to recognize various patterns designed by spammers.

At the same time, it’s noticed that the impact of adversarial ac-
tions can be alleviated by introducing the context of the comments.
We define the context into two categories: local context and global
context. The local context refers to the information from the pub-
lisher and the item related, while the global context refers to the
information offered by the feature distribution of all comments.

In this work, we present a highly-scalable anti-spam method
based on graph convolutional networks (GCN), dubbed GCN-based
Anti-Spam method (GAS).

In summary, the contributions of the work are listed below:

(1) We propose a GCN-based heterogeneous graph spam detec-
tion algorithm which works on a bipartite graph with edge
attributes at Xianyu. The designed model significantly out-
performs the baseline model and can be easily generalized

1WeChat is the largest messaging and social media app in China and one of the world’s
largest standalone mobile apps by monthly active users.
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Figure 1: Xianyu App: the main page (left) and the comment
area (right). The comment area highlighted with dashed rec-
tangle provides the main communication tool of Xianyu.

to a meta-path[23] based heterogeneous GCN algorithm for
various heterogeneous graphs and applications.

(2) Besides the heterogeneous graph which utilizes local context
of comments, we make use of global context and propose
GAS, which further improves the result.

(3) We deploy the proposed anti-spam model with distributed
Tensorflow framework to process million-scale comments
daily at Xianyu. According to offline experiments and online
evaluation, our system remarkably identifies much more
spam comments and alleviates the impact of adversarial
actions while satisfying the efficiency requirement.

The rest of the paper is organized as follows. Section 2 lists
the related work. In Section 3, we elaborate the proposed GAS
model. Offline and online experiments are presented in Section 4.
We introduce the implementation and deployment of the system at
Xianyu in Section 5. The work is summarized in Section 6.

2 RELATEDWORK
Most existing spam detection methods focus on extracting robust
engineered features from review contents or reviewer behaviors.
[7] studied the duplication of review content to detect spam re-
views. They collected review centric, reviewer centric and product
centric features, and fed them to a logistic regression model. [17]
focused merely on the content of a review. The authors approached
the problem using three strategies as features in Naive Bayes and
SVM classifier. [13] summarized domain expert features for opin-
ion mining, then a set of elaborate designed features are used for
review classification task. These feature-centric methods ignore
relations between reviewers, goods and comments. However, based
on our observations, relations also play an important role in spam
detection. For example, spam advertisements are often published
by spammers in groups.

Based on similar observations, some scholars began to utilize the
graph information. The first graph-based spam detection method

was presented in [26]. They constructed the “review graph” with
three types of nodes — reviewers, stores, and reviews. Then re-
inforced the reviewer trustiness, store reliability and honesty of
review in a HITS[10] like way. Liang et al.[15] made use of two
graphs: one is the heterogeneous graph mentioned above, the other
one represents the supportive or conflict relationship between the
reviewers. Soliman[22] proposed a novel graph-based technique
that detects spam using graph clustering on a constructed user
similarity graph which encodes user behavioral patterns within its
topology. The NetSpam framework[21] defined different meta-path
types on review graph and used them in classification.

Recent years have witnessed a growing interest in developing
deep-learning based algorithms on graph, including unsupervised
methods[5, 12, 18] and supervised methods[6, 9, 11, 25]. One of the
most prominent progress is known as GCN[9], in which features of
nodes are aggregated from local neighbors. The “graph convolution”
operator is defined as feature aggregation of one-hop neighbors.
Through iterative convolutions, information propagates multiple
hops away in the graph. GCN achieves significant improvements
compared to previous graph-miningmethods such as DeepWalk[18].
After that, a great number of researchers have engaged in this area.
William et al.[6] proposed GraphSAGE, an inductive framework
that leverages node sampling and feature aggregation techniques to
efficiently generate node embeddings for unseen data, which breaks
the limitation of applying GCN in transductive settings. Graph
Attention Networks (GAT)[25] incorporates attention mechanism
into GCN. By calculating attention coefficients among nodes, GAT
allows each node to focus on the most relevant neighbors to make
decisions.

Most of the graph methods focus on the homogeneous graph,
while in many real-world applications, data can be naturally rep-
resented as heterogeneous graphs. Heterogeneous graphs were
seldom studied before and attract growing interests nowadays.
EAGCN[20] calculates heterogeneous node embeddings using at-
tention mechanism. This model focuses on the case where multiple
types of links connecting nodes in a graph. The author proposed to
use “multi-attention” — each attention function considers neigh-
bors defined only by a particular link type. Similarly, GEM[14]
focuses on the case where there are multiple types of nodes. The
author proposed an attention mechanism to learn the importance
of different types of nodes. Specifically, they divided the graph into
subgraphs by node types and calculated the contribution of each
subgraph to the whole system as attention coefficients.

Graph methods have been applied in many domains, e.g., recom-
mendation system[4, 27, 30, 31], chemical properties prediction[20],
healthcare[2], malicious accounts detection[14] and so on. In this
paper, a GCN-based method is first applied to the spam review
detection problem, to the best of our knowledge.

3 PROPOSED METHOD
In this section, we first present preliminary contents of graph con-
volutional networks, then we illustrate the anti-spam problem at
Xianyu. Finally, we will demonstrate our GAS method in two as-
pects: we first introduce how to extend GCN algorithm for hetero-
geneous graph and then illustrate GAS by further incorporating
global context.
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3.1 Preliminaries
Previous work[6, 9, 25] focus mainly on homogeneous graphs. Let
G = (V, E) be a homogeneous graph with node v ∈ V , edge
(v,v ′) ∈ E, node feature xv = h0v ∈ Rd0 for v ∈ V where d0
denotes the feature dimension of the node. The hidden state of node
v learned by the l-th layer of the model is denoted as hlv ∈ Rdl , dl
denotes the dimension of the hidden state at l-th layer.

The GCN-based methods follow a layer-wise propagation man-
ner. In each propagation layer, all the nodes update simultaneously.
As summarized in [28, 29], a propagation layer can be separated
into two sub-layers: aggregation and combination. In general, for a
GCN with L layers, aggregation and combination sub-layers at l-th
layer (l = 1, 2, · · · L) can be written as:

hlN (v) = σ
(
W l · AGG({hl−1v ′ ,∀v ′ ∈ N (v)})

)
(1)

hlv = COMBINE
(
hl−1v ,h

l
N (v)

)
(2)

where N (v) is a set of nodes adjacent to v , AGG is a function used
for aggregate embeddings from neighbors of node v , this function
can be customized by specific models, e.g., max-pooling, mean-
pooling[6] or attention based weighted summation[25].W l is a
trainable matrix shared among all nodes at layer l . σ is a non-linear
activation function, e.g., Relu. hlN (v) denotes the aggregated fea-
ture of node v’s neighborhood at l-th layer. COMBINE function is
used to combine self embedding and the aggregated embeddings of
neighbors, which is also a custom setup for different graph models,
e.g., concatenation as in GraphSAGE[6].

In GCN[9] and GAT[25], there are no explicit combination sub-
layers. Self information of v is introduced by replacing N (v) with
Ñ (v) in Eq.(1), where Ñ (v) = v ∪ N (v). Hence COMBINE step
actually happens inside of AGG step.

3.2 Problem Setup
Our purpose is to identify spam comments at Xianyu, which can be
formulated to an edge classification problem on a directed bipartite
graph with attributed nodes and edges.

Comments on Xianyu can be naturally represented as a bipartite
graph.G(U , I ,E) whereU is the set of user nodes (vertices), I is the
set of item nodes (vertices) and E is the set of comments (edges).
An edge e ∈ E from a user u ∈ U to an item i ∈ I exists if u
makes a comment e to i . Additionally, given a vertex v ∈ I ∪ U ,
let N (v) be the set of vertices in node v’s one-hop neighbors, i.e.
N (v) = {v ′ ∈ I ∪ U |(v,v ′) ∈ E}. In the bipartite graph case of
Xianyu, N (i) ∈ U and N (u) ∈ I . E(v) denotes the edges connected
to v . Let U (e) and I (e) denote the user node and item node of edge
e . This bipartite graph is named Xianyu Graph. See Figure 2 for a
real word example.

3.3 Heterogeneous Graph Convolutional
Networks on Xianyu Graph

As introduced in Section 3.1, in the GCN-based node classification
task on a homogeneous graph, node embedding from the last layer
is used as the input of a classifier.

Instead, we utilize the edge embedding from the last propagation
layer together with embeddings of the two nodes this edge links to.
We concatenate these three embeddings for the edge classification

Figure 2: Aminiature of XianyuGraph. In this setting, spam-
mer wants to mislead buyer to offline transactions, so he
post an eye-catching comment saying that he has a cheaper
phone for sale under many related items. I ,E,U represents
item nodes, comments, user nodes respectively. Here #1
stands for a specific WeChat account ID.

task as shown in Figure 3, where ze , zu and zi denote the edge, user
and item embedding, i.e., ze = hLe , zu = hLU (e) and zi = h

L
I (i).

We will concretely demonstrate how to tailor the standard GCN
for a bipartite graph with edge attributes. The keypoint is to cus-
tomize aggregation sub-layer and combination sub-layer in Eq.(1)
and Eq.(2).

3.3.1 Aggregation Sub-layer. Aggregation sub-layer in GCN treats
all kinds of nodes the same and ignores the edge attributes. To fit
the general framework Eq.(1) to Xianyu Graph, three aggregation
functions for each kind of entities (user, item, comment) are defined.

For a comment, i.e., an edge, the hidden state is updated as the
concatenation of previous hidden states of the edge itself and two
nodes it links to. So the aggregation sub-layer is defined as

hle = σ
(
W l
E · AGG

l
E (h

l−1
e ,h

l−1
U (e),h

l−1
I (e))

)
(3)

where

AGGl
E

(
hl−1e ,h

l−1
U (e),h

l−1
I (e)

)
= concat

(
hl−1e ,h

l−1
U (e),h

l−1
I (e)

)
(4)

For the user node u ∈ U and item node i ∈ I , besides the infor-
mation from neighbor nodes, the attributes of edges connected to
them are also collected. The aggregated neighbor embedding hlN (u)
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Figure 3: An illustration of GAS which incorporates two
graph models. Heterogeneous GCN which works on the
Xianyu Graph provides user, item, comment embeddings
zu , zi , ze , respectively. GCN which works on the homoge-
neous Comment Graph provides comment embeddingpe . In
GAS, these embeddings are concatenated together as the in-
put of the classifier: y = classi f ier (concat(zi , zu , ze ,pe )).

and hlN (i) are calculated as

hlN (u) = σ
(
W l
U · AGG

l
U (H

l−1
I E )

)
hlN (i) = σ

(
W l
I · AGG

l
I (H

l−1
U E )

) (5)

where

H l−1
I E =

{
concat(hl−1i ,h

l−1
e ),∀e = (u, i) ∈ E(u)

}
H l−1
U E =

{
concat(hl−1u ,h

l−1
e ),∀e = (u, i) ∈ E(i)

} (6)

The two kinds of nodes maintain different parameters (W l
U ,W

l
I )

and different aggregation functions (AGGl
U ,AGG

l
I ).

As for the specific forms of AGGl
U and AGGl

I , we adapt the
attention mechanism:

AGGl
U (H

l−1
I E ) = ATTNU

(
hl−1u ,H l−1

I E

)
AGGl

I (H
l−1
U E ) = ATTNI

(
hl−1i ,H

l−1
U E

) (7)

ATTN here is a function f : hkey × Hval → hval which maps
a feature vector hkey and the set of candidates’ feature vectors
Hval to an weighted sum of elements in Hval . The weights of
the summation, i.e. attention values are calculated by the scaled
dot-product attention [24].

3.3.2 Combination Sub-layer. After aggregating the neighbors’
information, we follow a combination strategy in [6] for the user

and item nodes as

hlu = concat
(
V l
U · h

l−1
u ,h

l
N (u)

)
hli = concat

(
V l
I · h

l−1
i ,h

l
N (i)

) (8)

Where V l
U and V l

I denote trainable weight matrices for user node
and item node, the hlu and hli are the user hidden state and item
hidden state of l-th layer.

The whole algorithm is described in Algorithm 1. Note that
this method can actually be generalized to a meta-path based het-
erogeneous graph convolutional network algorithm for various
heterogeneous graphs with edge attributes. In detail, for a meta-

path P in the form of A0 R0
−→ A1 · · ·Al−1 Rl−1−→ Al

Rl−→ · · · R
L−1
−→ AL ,

where Al and Rl corresponds to the node type and edge type on
P . For a node v of type Al at l-th layer on P , the aggregation and
combination process can be written as:

H l−1
Al−1El−1 =

{
concat

(
hl−1v ′ ,h

l−1
e

)
∀e ∈ (v,v ′) ∈ ERl−1 (v)

}
hlNAl−1 (v)

= σ
(
W l
Al−1→Al · AGG

l
Al−1→Al

(
H l−1
Al−1El−1

))
hlv = concat

(
V l
Al · h

l−1
v ,h

l
NAl−1 (v)

) (9)

where ERl−1 (v) denotes edges link to v with edge type Rl−1 and
NAl−1 (v) denotes neighbor nodes of v with node type Al−1. In our

case and a 2-layer setting, two implicit meta-paths areU
E−→ I

E−→
U and I

E−→ U
E−→ I .

3.3.3 Time-related sampling strategy. With the proposed aggre-
gation sub-layer and combination sub-layer, either a whole-batch
training strategy or a mini-batch training strategy can be conducted.
The whole-batch training, which needs to update all the entities
in one iteration, is impractical on massive data due to time con-
sumption. Considering the scale of Xianyu Graph, the mini-batch
training strategy is more suitable. For each item/user node, we
sample a fixed number of neighbors to form a mini-batch feeding
matrix as [30] does. Different from their random sampling strategy,
we leverage time information and propose a time-related sampling
as shown in Figure 4.

We summarize the sampling strategy in the following:
• When the number of candidates is greater than the number
of samples, i.e. M , we choose the closest M comments in
terms of time.
• When the number of candidates is less thanM , we pad them
with placeholders, and ignore all the computations related
to these placeholders.

Our sampling strategy is more reasonable than random sampling
in two aspects. First, choosing closest comments is more reasonable
than random subsampling since closest comments are more related
to the comment to be identified. In the meanwhile, padding is
more reasonable than resampling because comments posted under
a second-hand good are often sparse. Padding avoids changing
neighborhood distribution compared to resampling. In this way, we
achieve a comparable result with a small M thus saving training
time as well as reducing memory consumption.
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Algorithm 1: Heterogeneous Graph Convolutional Networks
on Xianyu Graph.
Input: Set of edges Eb ⊂ E, number of layers L, functions

U (Eb ) and I (Eb ) which map Eb to the user nodes and
the item nodes Eb linked, respectively. Xianyu Graph
G(U , I ,E)

Output: Hidden states of the L-th layer, include the hidden
states of edges: ze ,∀e ∈ Eb , the hidden states of
users: zu ,∀u ∈ U (Eb ) and the hidden states of items:
zi ,∀i ∈ I (Eb )

. begin
El ← Eb ;
U l ← U (Eb ) ;
I l ← I (Eb ) ;
// Sampling ;
for l = L, · · · , 1 do

U l−1 ← U l ;
I l−1 ← I l ;
for u ∈ U l do

U l−1 ← U l−1 ∪ SAMPLING(N (u)) ;
end
for i ∈ I l do

I l−1 ← I l−1 ∪ SAMPLING(N (i)) ;
end

end
// Go through neural network ;
for l = 1, · · · ,L do

for e ∈ El do
hle = σ

(
W l
E · AGG

l
E (h

l−1
e ,h

l−1
U (e),h

l−1
I (e))

)
;

end
for u ∈ U l do
H l−1
I E ←

{
concat(hl−1i ,h

l−1
e ),∀e = (u, i) ∈ E(u)

}
;

hlN (u) ← σ
(
W l
U · AGG

l
U (H

l−1
I E )

)
;

hlu = concat
(
V l
U · h

l−1
u ,h

l
N (u)

)
;

end
for i ∈ I l do
H l−1
U E ←

{
concat(hl−1u ,h

l−1
e ),∀e = (u, i) ∈ E(i)

}
;

hlN (i) ← σ
(
W l
I · AGG

l
I (H

l−1
U E )

)
;

hli = concat
(
V l
I · h

l−1
i ,h

l
N (i)

)
;

end
end
for e ∈ Eb do

ze = h
L
e ;

zu = h
L
U (e) ;

zi = h
L
I (e) ;

end
end

Figure 4: Time-related sampling strategy. Suppose {e0, e1, e2}
form a batch of comments to be identified. To update the em-
bedding of e0, embeddings of item i0 and user u0 need to be
calculated first. Without loss of generality, suppose we set
the max number of samplesM = 2. For the item side, 2 com-
ments whose publish time are closest to the publish time of
e0 will be chosen from {e3, e4, e5}, suppose e3, e4 are chosen,
then {e3,u1} and {e4,u2} will be aggregated to i0. Similarly,
for the user side, e.g., {e6, i1} with a padded placeholder will
be chosen to aggregate to u0.

3.3.4 Incorporate Graph Networks with Text Classification Model.
The text in comments should be converted into an embedding
before being merged with user and item features. TextCNN[8] is
a satisfactory text classification model that balance effectiveness
and efficiency. Therefore we employ the TextCNN model to get
comment embedding and integrate it to our graph neural network
model as an end-to-end classification framework.

Specifically, we useword embedding pre-trained byword2vec[16]
as the input of TextCNN. The output of TextCNN is then used as
the embedding of the comment. In detail,

h0e = TextCNN(w0,w1,w2, · · · ,wn ) (10)

wherewi represents word embedding of i-th word of comment e ,
and h0e is the initial embedding of comment e in Eq.(3). Therefore
the parameters of TextCNN are trained together with others in the
model described in Section 3.3.

3.4 GCN-based Anti-Spam model
Spam comments at Xianyu are often deformed by malicious spam-
mers as a countermove to our spam detection system. For example,
deliberate typos and abbreviations are used to circumvent our de-
tection. These spams have minor impact for human to read but
often confuse our NLP model. Especially when spams are posted
by different users and under different items. Obviously, the local
context can not help in this situation. Intuitively, for this kind of
spams, we want to find some supplementary information from the
whole graph like “How many similar comments on the whole site
and what do they mean?".

5



It’s noticed that even if increasing the number of propagation
layers help nodes capture the global context, the noise introduced
can not be ignored, as other researchers reported[9, 11]. Experi-
ments in Section 4.1 show that the performance can hardly benefit
from increasing the number of propagation layers in our case.

Therefore, we takes a shortcut way to capture global context
of nodes. More specifically, we construct a homogeneous graph
named Comment Graph by connecting comments with similar
contents. In this way, the edges(comments) in the heterogeneous
Xianyu Graph now become vertices in Comment Graph. See Figure
5 for a real world case of Comment Graph.

Figure 5: Aminiature ofCommentGraph, inwhich "wechat",
"wecha" and "v" all mean WeChat account and #2, #3, #4, #5,
#6 stand for different account IDs, all the comments in this
subgraph are spam advertisements.

As demonstrated in [11], GCNs on homogeneous graph can be
viewed as a special form of Laplacian smoothing. Node classification
tasks can benefit from this theory based on the assumption that
nodes with same label are often grouped together in the graph, the
features of nodes can be smoothed by its neighbors, thus make the
classification task easier. Therefore an inductive GCN algorithm[6]
is performed on the constructed homogeneous Comment Graph to
learn the comment embedding.

By incorporating the inductive GCN which works on Comment
Graph with the heterogeneous GCN which works on Xianyu Graph
described in Section 3.3, we propose an algorithm called GCN-based
Anti-Spam(GAS) to train the model in an end-to-end manner. See
Figure 3 for the whole structure of GAS.

Comment embedding of e ∈ E learned by GCN from the Com-
ment Graph is denoted as pe . The final embedding of GAS is the
concatenation of pe and other embeddings learned from Xianyu
Graph,

y = classi f ier (concat(zi , zu , ze ,pe )), (11)

where ze , zu and zi denote the embeddings of e , U (e) and I (e)
learned by the proposed heterogeneous GCN model, respectively.

A non-trivial problem needed to be discussed is how to generate
Comment Graph, namely, how to identify similar comments. This
can be naively done by scanning all the comments, finding the
closest k peers of each. However, it is impractical for the O(|E |2)
time complexity. In practice, we use approximate KNN Graph
algorithm[3] to construct a graph based on K nearest neighbor
of nodes.

In detail, the Comment Graph is constructed as follows:
• Remove all the duplicated comments to avoid the trivial
solution, i.e., two comments with same content are always
most similar for each other.
• Generate comments embeddings by the method described
in [1].
• Obtain the similar comment pairs by employing the approx-
imate KNN Graph algorithm.
• Remove comment pairs posted by same user or posted un-
der same item, since the local context has been taken into
consideration on Xianyu Graph.

We assume in this way various spam reviews can be smoothed
by integrating features of their neighbors. An visualization of a
subset of training samples is provided to show that comments are
more separable after the smooth process, see Figure 6 for details.

Figure 6: Sample space visualization. Green points represent
non-spam comments, and red points represent spam com-
ments. Left: the original comment embeddings projected
into 2-D space by PCA directly; Right: the smoothed com-
ment embeddings (by averaging features of self and neigh-
bors) projected into 2-D space by PCA.

Model feature AUC F1 score
Raw embedding 0.9342 0.8332
Smoothed embedding 0.9373 0.8448

Table 1: Quantitative analysis of the effect of embedding
smoothing on the subset of training samples. It clearly
shows that sampleswith smoothed embedding aremore sep-
arable for our task.
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A quantitative analysis is also conducted to prove that comments
are more separable after the smooth process. Two logistic regression
models are trained and tested on raw embeddings and smoothed
embeddings in Figure 6. AUC and F1-score are reported in Table 1.
The results demonstrate that the linear separability of the samples
is improved after smooth process. This improvement indicates that
a classifier built on smoothed embedding will perform better.

4 EXPERIMENTS
In this section, we evaluate the performance of our proposedmethod
on true Xianyu dataset. First, we compare our method with several
models using the offline dataset, then the online performance on
Xianyu app is reported. Last, we present some real-world cases to
give insight into the proposed methods.

4.1 Offline Evaluation
4.1.1 Dataset. To evaluate the proposed method at Xianyu, we
construct a heterogeneous graph with overall 37,323,039 comments
published by 9,158,512 users on 25,107,228 items in a time period.
We collect 1,725,438 regular comments along with 74,213 spam
comments marked by human experts.

Training, validation and test set are randomly split with a ratio
of 6:1:3.

4.1.2 Comparing Methods. To compare our method with tradi-
tional review mining method, we follow the instructions in [13].
Specifically, we design lots of hand-made features for comment,
item and user(e.g. comment length, whether it is the first comment
of the item, whether it is the only comment of the item, cosine
similarity of the comment and item features, item price, number of
comments made by the user, etc.). To encode the comment content,
we calculate mutual information of each word. Top 200 words with
largest mutual information values are selected out and then used
to construct a binary value vector for each comment. Each entity
of this vector indicate whether a word occurs or not. Lastly, we
concatenate these features as the input of a GBDT model. We call
this model GBDT as an abbreviation.

Instead of binary value encoding based on mutual information,
a TextCNN model is also used to extract comment embedding.
The comment embedding is then concatenated with user and item
features described above as the input of a 2-layer MLP(Multilayer
Perceptron) model. This was the model deployed online at Xianyu,
thus it’s regarded as the baseline model, named TextCNN+MLP.

To demonstrate the effectiveness of global context introduced
by Comment Graph, we also compare the the model which only
utilize the local context Xianyu Graph as in Section 3.3. We call this
model GAS-local.

In summary, the experiment configurations are detailed below:

• GBDT: Domain expert features with GBDT model.
• TextCNN+MLP(baseline): TextCNN + user features + item
features with 2 layer MLP model.
• GAS-local-1: 1 propagation layer on Xianyu Graph(i.e., 1-hop
neighbors).
• GAS-local-2: 2 propagation layers on Xianyu Graph.
• GAS: GASmodel with 2 propagation layers on Xianyu Graph
and 1 propagation layer on Comment Graph.

The GBDT model is trained using 100 trees with a learning rate
of 0.05. For other models, the TextCNN structure used by all the
methods share the same hyperparameters, e.g., filter sizes are set to
{3, 4, 5} with 128 filters for each. All the methods except for GBDT
are trained for 8 epochs. The max number of sampling M is 16
for Xianyu Graph and the max number of sampling for Comment
Graph is set to 64. The TextCNN+MLPmodel is trained with a stand-
alone Tensorflow program and the learning rate is 0.001, while the
proposed methods are all trained in a distributed manner with 8
GPUs. The learning rate is set to 0.005 and the batch size is set to
128.

4.1.3 Result Analysis. We evaluate these methods in terms of AUC,
F1-score and recall at 90% precision. The metric recall rate at 90% pre-
cision is chosen since the detected spam reviews will be disposed in
practice. We must ensure high model precision to avoid disturbing
normal users. In our case, the precision over 90% is an essential
condition for a model to be deployed. so recall at 90% precision
becomes an essential criteria to compare different models.

method AUC F1 score recall@90% precision
GBDT 0.9649 0.7686 50.55%
TextCNN+MLP 0.9750 0.7784 54.86%
GAS-local-1 0.9806 0.8138 66.90%
GAS-local-2 0.9860 0.8143 67.02%
GAS 0.9872 0.8217 71.02%

Table 2: Result comparison of offline experiments in terms
ofAUC, F1-score and recall at 90% precisionwhich is denoted
as recall@90% precision.
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Figure 7: P-R chart of the offline evaluation. GAS, GAS-local-
1 and GAS-local-2 significantly perform better and GAS
gains further improvement compared to GAS-local-2.

The results are shown in Table 2 and the PR curves are shown
in Figure 7. We can see that GAS-local-1, GAS-local-2 and GAS
outperform the GBDT and TextCNN+MLP model in our dataset.
This demonstrates the superiority of the proposed methods. The
comparison of GAS-local-1 and TextCNN+MLP shows that the
performance gain is significant attributed to the introduction of the
local context. The recall@90%precision is improved from 54.86%
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to 66.90%, which means 12.04% more spams can be detected and
removed from the app. When comparing GAS-local-2 and GAS-
local-1, the improvement is not prominent, which indicates the
performance lift by incorporating 1-hop local context dominates. It
may be due to the fact that besides the information introduced by
2-hop local context, noise is also introduced. As many authors had
reported[9, 11], the performance gain attenuates dramatically as
the hop increases. When comparing GAS and GAS-local-2, we can
see a further improvement which demonstrates the effectiveness of
incorporating of the global context. When precision is fixed to 90%,
compared to GAS-local-2, we detect extra 4% spam comments.

Overall, our proposedmethod outperforms the deployed baseline
system with a 4.33 F1-score lift. Crucially, under the fixed disposal
threshold of 90% accuracy, our method brings an extra recall of
16.16%.

4.2 Online Performance
We conduct online experiments on our platform as introduced in
Section 5. The goal of the experiment is to compare the number
of spam comments detected by different models at 90% precision
which is checked by human experts. Detected spam comments will
be clean out in production.

We deploy TextCNN+MLP, GAS-local-1 andGAS in our daily pro-
duction environment and compare their performance. As depicted
in Figure 8, the GAS-local-1 and GAS outperform TextCNN+MLP
consistently in terms of the amount of detected spam comments. On
the other hand, GAS outperforms GAS-local-1 consistently which
further demonstrates that the system benefits from the global con-
text introduced by the Comment Graph.
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Figure 8: Online evaluation result. The proposed meth-
ods consistently outperforms the GBDT and TextCNN+MLP
model at Xianyu.

4.3 Case Study
The spam comments detected by different methods are manually
checked.

4.3.1 GAS-local-1 vs. TextCNN+MLP. We first compare the false
negative samples of TextCNN+MLP (denoted as TextCNN+MLPFN )

and the samples in TextCNN+MLPFN recalled by GAS-local-1 (de-
noted as TextCNN+MLPFN∩GAS-local-1T P . The result is shown in
Table 3.

samples
average #spams
within 1 hop on
Xianyu Graph

TextCNN+MLPFN 2.60
TextCNN+MLPFN∩GAS-local-1T P 3.24

Table 3: Comparison of TextCNN+MLP and GAS-local-
1. Obviously, the samples recalled by GAS-local-1 from
TextCNN+MLPF N havemore “spam neighbors" in local con-
text.

We analyze extra spam samples covered by GAS-local-1, finding
that they are mostly similar advertisements published by the same
people or under the same item. For instance, a typical spam com-
ment is "check my profile photo for surprises", in which the spam
information is hidden in the profile photo (The image information
of profile photo is not used here because the profile photo is not
contained in the comment and the time cost of image processing
is high. Image information will be introduced in the future work).
These advertisements alone contains no specific keywords and are
not recognized by TextCNN+MLP. But GAS-local-1 correctly de-
tects these advertisements by associating the comment with other
comments published by this user.

4.3.2 GAS vs. GAS-local-1. Likewise, we compare the false nega-
tive samples of GAS-local-1 (denoted as GAS-local-1FN ) and the
samples in GAS-local-1FN recalled by GAS (denoted as GAS-local-
1FN∩GAST P . The result is shown in Table 4.

samples
average #spams
within 1 hop on
Xianyu Graph

average #spams
within 1 hop on
Comment Graph

GAS-local-1FN 2.23 17.23
GAS-local-1FN∩GAST P 3.53 36.68

Table 4: Comparison of GAS andGAS-local-1. Obviously, the
samples recalled by GAS from GAS-local-1F N have more
“spam neighbors" in global context.

In detail, we analyze the results and find that two kinds of spam
comments are more favoured by GAS compared to GAS-local-1:
• adversarial advertisements published by spammers
This kind of spam advertisements are deformed by spammers
with similar meaning (see Table 5 for a typical example).
As most of these spam reviews are not published by the
same account or under the same item, but connected to
each other on the Comment Graph. With the fixed disposal
threshold of 90% accuracy, they are not detected by GAS-
local-1 but captured by GAS which takes advantage of the
Comment Graph that introduces the global context. These
spams may published by a group of spammers, they may
collect many accounts and publish several advertisements
using each account.
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• coupon messages published by different users
This kind of coupon messages aim to lead people to another
app. Once someone use the invitation code in the message,
the publisher of the comment will be paid. Unlike the nor-
mal spammer that publishes a lot of similar comments under
different items, this kind of spam comments is published by
many different people, which may not be malicious spam-
mers. But these coupon messages actually disturb other cus-
tomers. This kind of publisher does not publish too much
reviews as malicious spammers do, and will not gather under
a particular item. That make it hard to recognize with only
local context through Xianyu Graph. By introducing Com-
ment Graph, this kind of similar comments group together,
which would be recognized by GAS.

user_id item_id comment
8737661 12381953 This is the bonus I got

at Taobao, contact me and I will
teach you how to do that

8737661 26771502 Get Bonus from Taobao, I can teach you
420310 27063522 Contact me to to learn to get

the bonus from Taobao
653613 20374180 Teach you to get bonus: +V xxxxxx
8806574 20634558 Vx:xxxxxx to teach you to get bonus

Table 5: Examples of extra spams detected by GAS compared
to GAS-local, where “+V xxxxxx" and “Vx:xxxxxx" means
WeChat app account.

5 SYSTEM IMPLEMENTATION AND
DEPLOYMENT

In this section, we introduce the implementation and deployment
of the proposed GCN-based anti-spam method at Xianyu. We first
give an overview of the system and then elaborate on the modules
relevant to our method, especially the distributed Tensorflowmodel.

5.1 System Overview

Figure 9: System Overview.

In Figure 9, we show the architecture of the anti-spam platform
at Xianyu. The workflow is illustrated in the following:
• When a user comments on Xianyu App, the logs will be
stored on the MaxCompute platform, which is a data pro-
cessing platform for large-scale data warehousing. In prac-
tice, we choose the logs in the recent month to construct the
heterogeneous graph per day.
• Based on the logs, the KNN Graph is constructed daily on
the MaxCompute platform.
• A distributed Tensorflow implementation of GAS is em-
ployed to detect spams.
• The detected spams are removed from the app and the mali-
cious accounts may be disabled.
• RCP (Risk Check Platform) is used to check the complaints
from users being punished. The complaints reviewed and
supported by human experts will lead to punishment with-
drawal and be treated as mistakes of the model. The result of
RCP will be used as labeled samples for further optimization
of our model.

5.2 Implementation
We conduct a distributed implementation of the proposed method.
Considering the large scale data in Xianyu, i.e., billions of items,
millions of users and billions of comments, the parameter-server
architecture of Tensorflow is adopted to provide a distributed solu-
tion for storage, data-fetching, training and predicting. Specifically,
we use 8 parameter servers along with 8 workers, each worker
is equipped with an Nvidia V100 GPU card, 6 CPU cores, 32GB
memory. Parameter server has 2 CPU cores with 300 GB memory
each.

5.2.1 storage. First, the graph data must be stored and readily
available when the model needs to fetch the data from the graph.
The Xianyu Graph is enormous and thus impractical to be saved
in one machine, so the graph structure as well as the features of
vertices and edges are saved in parameter servers. Note that graph
structure is stored as adjacency list for memory efficiency.

A time-consuming step is data loading, which is both CPU-bound
(parse) and I/O-bound (fetch). To accelerate the loading process,
we split the adjacency list and feature matrices into several parts,
evenly scattered them to parameter servers to perform a distributed
loading task. Specifically, each worker is responsible for loading a
particular part of the table to fill the corresponding sub-matrix in pa-
rameter server. By this means, a linear acceleration ofO(#workers)
is reached for loading data.

Scatter adjacency list and feature matrix evenly to parameter
servers has another advantage: it helps balance the reading/writing
load for the upcoming training process.

5.2.2 data fetching. During the computation period, workers will
look up for necessary information on parameter server first, fetch
them, then perform computations locally. The parameter-server ar-
chitecture avoids memory overflow while leading to less efficiency.
Parameter server and workers are connected through the network
but network throughput is far slower than the memory access. In
our experiment, on each worker, there is about 41% time wasted
on fetching information from the server. To accelerate the lookup
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phase, we use cache mechanism on each worker, i.e., each worker
will cache the features and adjacency lists locally when perform-
ing a search on parameter server. Cache technique save about 30%
training time.

The adjacency lists and feature matrices are stored on param-
eter server. Even if we store a cache on each worker, frequently
accessing neighborhood and feature information of nodes from
CPU memory is not sufficient for GPU. So we follow the method
introduced in [30], which collects all the information that would be
involved in the current mini-batch then feeding it to GPU memory
at once. In this way, CPU-GPU communication during the computa-
tion is eliminated. Along with the producer-consumer mechanism
employed in [30], the GPU utilization is significantly improved.

Finally, the training time of the offline experiment described in
Section 4.1 is reduced to 2 hours for GAS.

6 CONCLUSION
The spam detection problem at Xianyu faces two main challeges:
scalability and adversarial actions. To address these two challeges,
we proposed an end-to-end GCN-based Anti Spam(GAS) algorithm
which incorporates the local context and the global context of com-
ments. The offline evaluation and online performance demonstrate
the effectiveness of our method at Xianyu. Real-world cases are
studied to further prove the effect of the different context intro-
duced which alleviates the impact of adversarial actions. Finally,
we elaborate on the implementation, deployment and workflow of
the proposed method at Xianyu.
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