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Figure 1: The total pipeline of "Pailitao" (visual search application at Alibaba).

ABSTRACT
Graph-based approximate nearest neighbor search has attracted
more and more attentions due to its online search advantages. Num-
bers of methods studying the enhancement of speed and recall have
been put forward. However, few of them focus on the efficiency and
scale of offline graph-construction. For a deployed visual search
system with several billions of online images in total, building a
billion-scale offline graph in hours is essential, which is almost
unachievable by most existing methods.

In this paper, we propose a novel algorithm called Binary Dis-
tributed Graph to solve this problem. Specifically, we combine binary
codes with graph structure to speedup online and offline procedures,
and achieve comparable performance with the ones in real-value
based scenarios by recalling more binary candidates. Furthermore,
the graph-construction is optimized to completely distributed im-
plementation, which significantly accelerates the offline process
and gets rid of the limitation of memory and disk within a single
machine. Experimental comparisons on Alibaba Commodity Data
Set (more than three billion images) show that the proposed method
outperforms the state-of-the-art with respect to the online/offline
trade-off.
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1 INTRODUCTION
Recently, approximate nearest neighbor search (ANNS) has at-
tracted increasingly attentions in many applications, like data min-
ing, information retrieval and pattern recognition, to handle the
explosive growth of the data on the internet. In the last decades,
a lot of methods have been proposed from different aspects, such
as hashing-based algorithms [6, 7, 11, 13, 15, 20, 29, 30, 32, 33],
tree-based algorithms [3–5, 18, 24], quantization-based algorithms
[1, 2, 12, 17, 19, 23] and graph-based algorithms [8, 16, 21, 22, 26, 27].
Among them, graph-based approaches show superior performance
than others in terms of search efficiency and recall, which has been
demonstrated in many literatures [10, 16, 22]. One important rea-
son derives from the pre-calculated graph structure, which makes
the traversal rapidly converge to the nearest neighbors of a given
query, at the expensive cost of offline procedure.

At Alibaba, a typical scenario of ANNS is visual search. It has
been studied for many years, and gives birth to a successful intel-
ligence E-commercial application named “Pailitao”. “Pailitao”
is an innovative image search product based on deep learning and
large scale ANNS algorithms, which provides the function of “search
by images” via retrieving the photos taken by users. Figure 1 shows
its total pipeline. Unfortunately, the existing graph-based ANNS
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methods can hardly be used in “Pailitao” with two main reasons:
1) The data size of “Pailitao” is up to several billions in total.
Limited by the CPU memory size, it’s impractical to load all the
data into a single machine to build the graph; 2) Constructing a
billion-scale and high-quality offline graph is very time-consuming
for the most existing graph-based methods, usually more than 20
hours that is unaccepted in “Pailitao”.

Apparently the offline graph construction is a key factor to make
the graph-based ANNSmethods applied in practice. Compared with
the exact k nearest-neighbor (k-NN) graphs (a data connecting to
its k nearest neighbors), the approximate k-NN graphs are preferred
because of feasibility, and many efforts have been taken to optimize
building it with higher scalability and efficiency. One of the possible
solutions is based on ANNS algorithms [21, 22, 25, 34]. We can
regard each data as a query and find its approximate k-NNs by
searching the indexing structure that is constructed in advance. But
it’s still very time-consuming if we want to build a billion-scale
graph, because the ANNS process will be executed a billion times,
no matter we make the search distributed or not.

The divide-and-conquer methodology is another potential ap-
proach [26, 28], which usually consists of two stages: divide-and-
conquer and neighborhood propagation. In the first stage, one
recursively partitions the data set into small subsets to build many
subgraphs, and repeats it several times for finding more true neigh-
bors. Then in the second stage, refinement strategies (such as local
join or graph-based ANNS) are conducted for every data point to
expand its neighborhood on the base approximate neighborhood
graph obtained above. Due to the repetition of the first stage and
the infeasible distributed implement of refinement schemes, it also
suffers from high time complexity and memory limitation.

In this paper, we propose a novel graph-based ANNS algorithm
named Binary Distributed Graph (BDH) to solve the above problems.
The main contributions of our work are outlined as follows:

• We integrate binary codes with graph structure, which of-
fers the efficient comparison in both online search and of-
fline building procedure with Hamming distance, and attains
comparable performance with the ones in real-value based
scenarios by recalling more binary candidates.

• A fully distributed graph-construction process is proposed,
including single-pass divide-and-conquer algorithm based
on binary clustering and the optimization of neighborhood
propagation for distributed deployment, which can be eas-
ily implemented under MapReduce framework without the
limitation of memory and disk within a single machine.

• Experiments on the billion-scale Alibaba Commodity Data
Set show that our algorithm outperforms the state-of-the-art
with respect to the online/offline trade-off. What’s more, we
successfully make the graph-based ANNS method deployed
in “Pailitao” come true.

The rest of this paper is organized as follows. Section 2 reviews
recent literatures on graph-based ANNS algorithms. We present our
proposed approach in Section 3. Experimental results and analysis
are demonstrated in Section 4. Finally, we make conclusions in
Section 5.

2 RELATEDWORK
Generally speaking, graph-based ANNS methods comprise two
parts: offline graph building and online search. Different algorithms
usually construct the graphs with various properties which result in
different search performance. In this section, we present a few pop-
ular approaches, especially, with their offline graph-construction
process.

2.1 𝑘-Nearest Neighbor Graph
It represents a series of methods, which refers to Kgraph [8] here.
Wei Dong et al. propose an efficient algorithm called NN-Descent
(NND) for approximate k-NN graph construction, following simple
principle: “a neighbor of a neighbor is also likely to be a neighbor” (we
call it neighbor principle for short). It’s noted that NND is suitable
for large-scale applications where the data is located throughout the
network, since it does not depend on any shared global index, and
only needs local search. Nevertheless, when implementing it under
a distributed framework like Spark, we find it is not fast as expected.
As an iterative-oriented algorithm, NND needs to exchange many
pair-data between different nodes within each iteration, which is
not friendly to distributed design, and evenmakes it performworser
than a single machine.

2.2 Navigable Small World Graph
Navigable small world graph (NSW) [21] builds a navigable small
world graph with a variation of greedy search to solve the approxi-
mate k-nearest neighbor search problem, where nodes correspond-
ing to data point, edges to relations between them. Interestingly, it
provides a very simple way to construct the NSW graph: inserting
elements in random order and connecting them up to 𝑀 closest
neighbors from the previously built graph. Although insertion and
𝑘-NN search can be done in parallel, we need to conduct the search
𝑁 times in total, which takes very long for a billion-scale graph
building.

2.3 Hierarchical Navigable Small World Graph
As the most accomplished version of graph-based approaches, hier-
archical navigable small world graph (HNSW) [22] selects a series
of nested subsets of database vectors to construct the hierarchical
structure. The sizes of the layers decrease with logarithmic scal-
ing, beginning with the base layer that contains the whole dataset,
ending up with the first layer of just one point. Besides, there is
a neighborhood graph in each of these layers. The top-to-down
search finding the nearest neighbor (marked as 𝐴) of the query
within one layer goes down the next layer to continue the search
from 𝐴, except for the base layer, which performs a hill-climbing
strategy.

As Yuri Malkov et al. claim in [22], the apparent shortcoming
of HNSW lies in the loss of the possibility of distributed search in
the graph-construction process, due to the complex hierarchical
structure. Even if we succeed in distributing it finally, it also suffer
from the same issue as NSW.

2.4 Fast Approximate Nearest Neighbor Graph
[16] presents the design of an ideal graph structure by pruning the
edges of each node to approximate the intrinsic dimensionality of
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Figure 2: The data flow of single-pass divide-and-conquer in MapReduce pipeline.

the local manifold-like structure, which leads to efficient search-
ing. In order to get high recall for query locating anywhere, fast
approximate nearest neighbor graph (FANNG) improves the search
algorithm with backtracking. Specifically, it goes back to the second
closest vertex that is kept in a priority-queue if it fails to find new
closer one.

However, the ideal graph construction has a high time complexity
𝑂 (𝑛2 log(𝑛)) and is extremely expensive for a large graph building.
Despite being accelerated with an efficient strategy [16], it still
needs to call the traverse-add function 50𝑁 times, where 𝑁 is the
dataset size. After that, a second stage is required to further boost
the graph. In addition, no distributed solution is provided.

3 BINARY DISTRIBUTED GRAPH
This section presents the formulation of our Binary Distributed
Graph (BDG) algorithm. First, we introduce the binary codes gen-
eration. Then, a completely distributed graph-construction pro-
cess is presented, including two main parts: single-pass divide-
and-conquer algorithm and distributed neighborhood propagation.
Finally, we show the search procedure and some algorithm details.
The notations are given below to facilitate our description.

Consider a dataset with 𝑛 samples {𝑙𝑖 , xi}𝑛𝑖=1, where x ∈ R𝑑
and 𝑙 represents the unique label for each data. Let 𝐵(𝑙𝑖 ) be the
approximate 𝑘-NN label set of 𝑖-th data, and 𝑅(𝑙𝑖 ) be the reverse
one that is defined as 𝑅(𝑙𝑖 ) = {𝑙 |𝑙𝑖 ∈ 𝐵(𝑙)}. Denote 𝑑 : R𝑑 ×R𝑑 → R
the similarity measure, we mainly consider the case 𝑑 = 𝑙2 and
𝑑 = 𝑙ℎ (Hamming Distance), which is commonly used in computer
vision applications, as well as “Pailitao”.

3.1 Generating Binary Codes
As described in [31], we first obtain the real-value representations
by CNN embeddings based on user click data. Then, the features are
mapped to the Hamming space to preserve their original locality
structures, which can be accomplished by a lot of ways, such as ITQ
[13], SH [29] and the hashing techniques based on deep learning [6,
15]. In practice, we adopt LPH [33] to learn a compact𝑑-dimensional
binary code y ∈ {0, 1}𝑑 .

Note that the usage of our binary codes is different from that
in Polysemous Code [9], where it is used for filtering the indexed
vectors. And the indexing algorithm in [9] is designed for real

value feature in essence. By contrast, we convert the query and
doc vectors to bits from the beginning to significantly promote the
efficiency both in offline and online processes.

3.2 Single-Pass Divide-And-Conquer
Similarly, we take advantage of the divide-and-conquer method-
ology to build a base approximate neighborhood graph. Unlike
others recursively splitting the space, we exploit a flat clustering
method like 𝑘-means, which can be distributed very easily. In order
to make full use of efficient Hamming Distance calculation, we
require the centers to be binary too. Given𝑚 centers, then we have
the following formulation:

𝐽 (𝑟, c) = min
𝑛∑︁
𝑖

𝑚∑︁
𝑗

𝑟𝑖 𝑗 ∥y𝑖 − c𝑗 ∥22 (1)

subject to : c𝑗 ∈ {0, 1}𝑑

where c𝑗 is the 𝑗-th center, and 𝑟𝑖 𝑗 = 1 if the 𝑖-th data belongs to c𝑗
(0 for otherwise). It is equivalent to Bk-means [14] in form, then a
similar but not identical updating strategy is put forward :
Assigning Step: fix c and optimize r. We assign each data to
its nearest center, just like 𝑘-means. Instead of building a multi-
index hash table for millions of clusters [14], we adopt exhaustive
comparisons among the centers, considering our limited number of
centers and the simple linear computation is easier to be distributed.
Updating Step: fix r and optimize c. Assuming there are 𝑝 data
points in center c𝑗 , then c𝑗 can be updated by:

c𝑗 = 𝑠𝑔𝑛(
𝑝∑︁
𝑖

x𝑖 ) (2)

As a clustering method, Bk-means is proposed to cluster huge
number of photos on a single machine [14]. Consequently, it in-
volves the total dataset and long iterations to make the loss value
small enough, leading it quite different from ours. What we need is
the binary centers, so we just down-sample a fraction of data to con-
duct Bk-means. Figure 3 shows that the loss function value descend
very quickly at the beginning, but decrease slowly after several
iterations. We set the number of iterations less than 10, which offers
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Figure 3: The values of loss function in Bk-means.

a good trade-off between time and accuracy. In addition, we imple-
ment our Bk-means in an iterative-oriented distributed framework
at Alibaba, instead of a single machine.

If we map each data point to its nearest center, the base ap-
proximate neighborhood graph generated will comprise𝑚 isolated
subgraphs, without connecting their neighborhoods lying in dif-
ferent subgraphs as shown in Figure 4(a). Hence, we find 𝑡 nearest
centers for every data to get more neighbors within a single divide-
and-conquer process. Compared with multiple random process
[28], our single-pass method can avoid redundant computations
as illustrated in Figure 4(b)(c). The overlaps between any two con-
secutive partitions lead to less and less benefits as the number of
random division increases. What’s worse, multiple random divide-
and-conquer will repeat the process many times, introducing ex-
tra non-ignorable computational cost. Moreover, considering each
center having different number of data, we fix the sum of points
(donated as 𝑐𝑜𝑎𝑟𝑠𝑒_𝑛𝑢𝑚) included in 𝑡 nearest centers to make the
computation not biased.

The single-pass divide-and-conquer process is executed inMapRe-
duce of three phases: Map + Reduce1 + Reduce2. Figure 2 shows the
data flow in details, where 𝐵′(𝑙𝑖 ) means another 𝑘-NN group of data
𝑙𝑖 , so does 𝐵′′(𝑙𝑖 ). The Map function gets the input data from the
database and compute their𝑚 nearest centers. Then it outputs the
key-values records, where key is the index of the centers and value
contains data feature and label. An extra flag (0/1) is required to

Figure 4:We compare ourmethodwith themultiple random
one. (a) maps data to its nearest center; (2) maps data to sev-
eral nearest centers; (3) shows the multiple random one.

Figure 5: We expand all the neighbors of data x. First floor
means the neighbors with depth = 0; Second floor means
depth = 1.

mark whether the center that the record belongs to is nearest. After
the Shuffle stage, the records with the same key will be merged
together. In the Reduce1 phase, we treat all the input records as
queries to search the records with 𝑓 𝑙𝑎𝑔 = 0. The output key is the
data label with its 𝑘-NN as the value. We merge all the records
having the same data label in the second Shuffle, and sort out the
final 𝑘-NN candidates in the function of Reduce2.

Taking account of the low data transmission efficiency of MapRe-
duce, we limit the number of clusters, which not only increases the
size of each center but also reduces the number of output records
generated in Map stage, to make the calculation intensive.

3.3 Distributed Neighborhood Propagation
Same as NND, neighborhood propagation also bases upon the neigh-
bor principle. But the existing methods are designed for single ma-
chine. Jing Wang et al. in [28], taking the neighborhood in the base
graph as starting points, execute the graph-based ANNS to refine
the neighbors, which is difficult to be performed for all the points in
a distributed and efficient pipeline. Besides, the local join strategy
in [26] exchanges the information between the neighbor pairs, and
it will also encounter the same problem as NND.

Why the above schemes can’t be distributed easily? To some
extent, they are complicated. We try to simplify the propagation.
Thanks to the high quality of the base graph, replacing depth-first
search with breadth-first one and increasing depth by one every
time becomes a sound approach. As displayed in Figure 5, we expand
all the first floor neighbors of data x in a flat way, then compare
x with all the neighbors of the second floor. This design is simple
yet friendly to distributed framework and can be repeated several
times for more true neighbors.

We show the data flow in Figure 6. Map function gets records like
[𝑙1, {𝑙3, 𝑙7, 𝑙16, ...}] as input, and maps it out as [𝑙3, 𝑙1], [𝑙7, 𝑙1], 𝑒𝑡𝑐 . Af-
ter the Shuffle stage, the key = 𝑙1 records will be merged, including
its original and reverse neighbors, where 𝑅(𝑙1) (1) means one re-
verse neighbor of 𝑙1, the same to 𝑅(𝑙1) (2) . Next, we calculate each
reverse neighbors with all the base neighborhood in the Reduce1
function. With the second Shuffle, all the neighbors (in the second
floor) of key = 𝑙1 will be together and be merge-sort out after the
Reduce2.
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Figure 6: The data flow of distributed neighborhood propa-
gation in MapReduce pipeline.

3.4 Offline Infrastructure
Inspired by FANNG [16], we also prune our graphs to save the mem-
ory and boost the search, and add it into the distributed pipeline.

Figure 7: The offline infrastructure.

In “Pailitao”, a multi-replications and multi-shards index en-
gine architecture is adopted, which is not only good scalability, but
also robust fault-tolerant. Multi-shards mean multiple machines are
deployed to store the total data (including vectors, index structures
and other storage), each shard storing only a subset. As a result,
it is necessary to support the multi-shards graphs building during
the offline process.

As shown in Figure 7, we design the offline infrastructure to
make it capable of (1) building single or multi-shards graphs as
you wish; (2) building multi-shards graphs parallelly. Note that, the
Bk-means is implemented only once before splitting the dataset,
since the centers generated are not sensitive to different shards.

3.5 Search Procedure
Owing to the limited representations of binary codes, many dis-
criminative messages will be lost during the process of hashing,
which will bring about low recall inevitably.

Fortunately, we find that if we recall more binary candidates
than usual and rerank them with their real-value features, it will
provide the comparable performance with the start-of-the-art that
is in total real-value scenarios. Concretely, we rerank all the data
in the final candidate pool whose size is larger than target result
set. Recall will be improved at the cost of less than 1000 euclidean
distance calculations.

Our implementation of hill-climbing is similar to the ones in
the mainstream methods. Different from the hierarchical search
of HNSW, we randomly sample some points, and compare them
with the query for finding the nearest one, which is used as the
entry point of the graph-based search. These sampled points can be
regarded as “long-link” (corresponding to the high layers in HNSW),
and the global𝑘-NN graph structure we build offline (corresponding
to the base layer) is regarded as “short-link”. Experiments (see 4.4)
present if we recall dozens of nearest neighbors (for example, top
60) instead of the nearest one, the “short-link” will play more impor-
tant role than the “long-link”. And this, from another perspective,
explains the importance of offline global 𝑘-NN graph-construction.

3.6 Algorithm Details
(1) Data skew: In the single-pass divide-and-conquer stage, we

randomly map the dataset to different Reduce1 nodes, and
make each cluster contained in only one node. The data
skew may happen if one has too many clusters than others.
Therefore, we use a simple dynamic programming to shuffle



CIKM ’19, November 2019, Beijing, China Kang Zhao, et al.

Figure 8: Some samples of the fourteen datasets.

the data, so that the total amount of data included on different
nodes is close to each other.

(2) JNI: As we all know, Java is suitable for distributed computa-
tion. But it performs poorly than C++ in terms of efficiency,
especially in the case of large numbers of distance calcula-
tions. In order to further improve distributed performance,
we adopt JNI technique to speedup Hamming distance com-
putation.

(3) Propagation filter: In the execution of distributed neighbor-
hood propagation, we find the Shuffle process occupies the
most time, caused by its low efficiency of data transmission.
Actually, the base graph generated has a good quality of
neighborhoods, which means the majority of neighbors in
the second floor are not true ones, which are not necessary
for transmission. We filter the second floor with the max
distance between one point and its neighbors in the first
floor, accelerating Shuffle2 by more than 50%.

4 EXPERIMENTS
4.1 Datasets
We evaluate our BDG method on the fourteen commodity datasets
of “Pailitao”: shirts, dresses, pants, bags, shoes, accessories, snacks,
cosmetics, beverages, furnitures, toys, underdresses, digitals and
others, some of them are displayed in Figure 8. In our experi-
ments, images are represented as 512-dimensional real-value fea-
tures which are trained by datasets, and mapped into 512-bits. Then
we sample a subset from every dataset to enrich the diversity of
scale. More details are listed in Table 1.

4.2 Evaluation Protocols and Baselines
The performance of offline and online processes are assessed respec-
tively. For offline, we compare the building time of different meth-
ods, and show both single and multiple shards time for our BDG.
Online search takes the brute-force results, based on real-value,
as ground truth to calculate the recall of ANNS. More specifically,
given a query, we use its real-value expression to obtain the 𝑘-NN
by exhaustive comparisons. Then the top𝑁 recall is computed as:

𝑟𝑒𝑐𝑎𝑙𝑙 (𝑁 ) = |𝐵𝑎𝑛𝑛𝑠 (𝑙) ∩ 𝐵𝑙𝑖𝑛𝑒𝑎𝑟 (𝑙) |
𝑁

(3)

where 𝐵𝑎𝑛𝑛𝑠 (𝑙) means the top𝑁 result is recalled by the ANNS
algorithm,𝐵𝑙𝑖𝑛𝑒𝑎𝑟 (𝑙) by the linear search, and |𝑆 | counts the number
of set 𝑆 . We also record the search time. All the algorithms of online
search are implemented in C++, compiled with same option used
in hnswlib, and ran on a Linux machine with Intel(R) Xeon(R) CPU
E5-2682 v4 2.50GHz and 512 GB memory.

Considering the relevance to our approach and the fairness
of comparison, we choose the following state-of-the-art methods,
which all provide Open Source Code:

• KGraph1: We perform the NND algorithm with its default
settings and use prune1 function (prune2 will significantly
increase the overhead of offline and is not recommended by
the author). Compiler options are revised (as stated above)
to make its search procedure faster;

1https://github.com/aaalgo/kgraph

https://github.com/aaalgo/kgraph
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Table 1: Introductions of the datasets, including dimension,
bits, the numbers of images and queries.

Dataset 𝑑 bits size of images size of queries
Shirts 512 512 300M 10000
Dresses 512 512 84M 10000
Pants 512 512 130M 10000
Bags 512 512 110M 10000
Shoes 512 512 150M 10000
Accessories 512 512 240M 10000
Snacks 512 512 20M 10000
Cosmetics 512 512 110M 10000
Beverages 512 512 24M 10000
Furnitures 512 512 59M 10000
Toys 512 512 46M 10000
Underdresses 512 512 25M 10000
Digitals 512 512 27M 10000
Others 512 512 1.5B 10000

• NSW2: The file I/O of nmslib is modified to adapt to our data
type. We set the NN number of the new add points 50, and
the number of neighbors is limited to 50 too.

• HNSW3: The hnswlib is an optimized version provided by
nmslib with better performance of HNSW, which is also
proved in our experiments.

• BDG: This is our method proposed in this paper. We limit the
number of neighbors no more than 50, and use the following
settings:𝑚 = 8192, 𝑐𝑜𝑎𝑟𝑠𝑒_𝑛𝑢𝑚 = 100000 if there is no other
declaration.

4.3 Offline Building Time
In order to maximize the performance of a single machine, we con-
struct the graph for HNSW, KGraph and NSW with forty threads,
and use no more than 2K cores in ODPS MR (the MapReduce frame-
work at Alibaba) to build BDG.

As shown in Table 2, our BDGmethod is the fastest on all datasets
and makes the billion-scale graph building no more than five hours,
proving its efficiency and scalability. Note that when the data size is
small (e.g. 50M), due to resources allocation and data transmission,
the time of BDG doesn’t change linearly. Besides, multi-shards costs
a little bit more than single one because of data splitting. Limited
by the memory of single machine, HNSW, KGraph and NSW all
suffer from failure on condition of too large dataset. By contrast,
our BDG is distributed designed, which will hold very large data
scale. Put aside the memory issue, HNSW performs better than
KGraph and NSW since it makes full use of graph-based ANNS to
speedup the building process and is well optimized in codes. KGraph
utilizes NND algorithm to avoid excessive distance calculation.
However, because of long iterations and frequent memory read-
write overhead for pair exchanging, it’s inferior to HNSW. The
slowest method is NSW, which is simple but ineffective, leading to
almost 2 hours for a 20M dataset. Our BDG method not only takes
advantage of large-scale distributed system, but also accelerates the

2https://github.com/nmslib/nmslib
3https://github.com/nmslib/hnswlib

Table 2: The offline building time of the fourteen datasets.

BDG HNSW KGraph NSW
#shards 1 20 —— —— ——
Shirts 1h 1.1h 5h × ×
Dresses 0.2h 0.23h 1.4h 7.3h ×
Pants 0.4h 0.44h 2.1h 11.3h ×
Bags 0.3h 0.32h 1.8h 9.6h ×
Shoes 0.4h 0.45h 2.5h 13h ×
Accessories 0.8h 0.87h 4h × ×
Snacks 0.1h 0.1h 0.3h 1.74h 1.83h
Cosmetics 0.3h 0.31h 1.8h 9.6h ×
Beverages 0.1h 0.1h 0.4h 2h 2.2h
Furnitures 0.2h 0.21h 1h 5.1h 5.4h
Toys 0.2h 0.2h 0.75h 4h 4.2h
Underdresses 0.1h 0.11h 0.4h 2.1h 2.28h
Digitals 0.1h 0.12h 0.45h 2.2h 2.47h
Others 5h 5.5h × × ×

Figure 9: The number of distance computations in “long-
link” and “short-link”.

procedure with Hamming distance. Consequently, the experimental
results demonstrate that our binary distributed strategy makes
sense.

Thanks to the distributed system, if we use more cores to con-
struct a billion-scale or larger graph, the building time will drop
almost linearly.

4.4 Online Search Performance
We first present the contributions between “long-link” and “short-
link” in search process. Taking HNSW as an example, by adjusting
the recall of top60, we record the number of distance computations
in “long-link” and “short-link” respectively, as illustrated in Figure 9.
It can be seen that, as the recall increases, the calculation of “short-
link” becomes more and more, but “long-link” is almost unchanged.
Even at the lowest recall, the proportion of “long-link” to “short-
link” is very low, let alone higher recall. The major role “short-link”
plays in online search proves that our concentration on offline
global 𝑘-NN graph building is reasonable.

https://github.com/nmslib/nmslib
https://github.com/nmslib/hnswlib
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Figure 10: Recall-time curves on bags, furnitures, digitals and snacks.

Figure 11: Recall-time curves with different (a) 𝑚 and (b)
𝑐𝑜𝑎𝑟𝑠𝑒_𝑛𝑢𝑚.

In Figure 10, we choose four datasets to plot the recall-time
curves of top60 with increasing the candidate pool size. It is clear
that our BDG gets comparable performance with HNSW. The poor
behaviors of KGraph and NSW have something to do with their
codes, not well optimized as HNSW. On the other hand, the quality
of their graphs makes it difficult to reach the nearest neighbor when
given a query. By recalling more binary candidates and reranking
them with real-value features, our BDG method obtains high re-
call as real-value ones. In consideration of both online and offline
performance, our approach is superior to other state-of-the-art
methods.

4.5 Parameters Tuning
During the offline graph-construction of our BDG, there are many
parameters that will affect the final quality of graphs, especially
the number of clusters𝑚 and the exhaustive comparison limitation
𝑐𝑜𝑎𝑟𝑠𝑒_𝑛𝑢𝑚 in the single-pass divide-and-conquer stage. To facili-
tate the exhibition of impact, we use binary linear search as ground
truth instread.

Figure 11(a) shows three curves with different𝑚, and Figure 11(b)
with different 𝑐𝑜𝑎𝑟𝑠𝑒_𝑛𝑢𝑚. Obviously, the more center there are,
the higher recall will be, so does 𝑐𝑜𝑎𝑟𝑠𝑒_𝑛𝑢𝑚. When we partition

Table 3: Comparisons with the former search algorithm in
"Pailitao".

#recall top1 top10 top20 top40 top60 time(ms)
Former 98.47% 98.22% 98.03% 97.85% 97.70% 10
Now 99.63% 99.33% 99.03% 98.58% 98.18% 2

the space into more parts, the loss function value of Bk-means
will be smaller, increasing the possibility of finding the nearest
neighbor in the graph structure. But, as discussed earlier, we will
not set𝑚 too big for the sake of intensive computation. In addition,
if we compare every node with more candidates, it will improve
the whole quality of the base graph.

4.6 Search in "Pailitao".
Finally, our proposed BDG competes with the former online search
algorithm in “Pailitao”. Different from the above settings, we
simulate the online environments with multi-shards, and fix the
candidate pool size to get satisfactory recall. The comparison is
made on the “others” set, which is split into fifteen shards to make
one shard contain 100M vectors.Wemerge the results from different
shards to attain the final top60 (also based on binary linear search),
and show different recalls in Table 3. It is clear our new method
goes beyond the former on matter in accuracy or efficiency.

5 CONCLUSIONS
Graph-based ANNS algorithms have shown huge advantage in
search efficiency and recall. However, most existing methods taking
no consideration of offline issuemake it far away from being utilized
in practice. In this paper, we propose a new approach named Binary
Distributed Graph to solve the problem. By combining the binary
code with graph structure and completely implementing the offline
graph building in a distributed system, we make a billion-scale
graph-construction less than five hours, and performs comparably
with the state-of-the-art in online search. Last but not least, we
offer a practical and attractive solution in “Pailitao”.
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