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ABSTRACT
Commonsense knowledge about object properties, human behavior
and general concepts is crucial for robust AI applications. However,
automatic acquisition of this knowledge is challenging because of
sparseness and bias in online sources. This paper presents Quasi-
modo, a methodology and tool suite for distilling commonsense
properties from non-standard web sources. We devise novel ways
of tapping into search-engine query logs and QA forums, and com-
bining the resulting candidate assertions with statistical cues from
encyclopedias, books and image tags in a corroboration step. Un-
like prior work on commonsense knowledge bases, Quasimodo
focuses on salient properties that are typically associated with cer-
tain objects or concepts. Extensive evaluations, including extrinsic
use-case studies, show that Quasimodo provides better coverage
than state-of-the-art baselines with comparable quality.

1 INTRODUCTION
1.1 Motivation and Goal
Commonsense knowledge (CSK for short) is an old theme in AI,
already envisioned by McCarthy in the 1960s [16] and later pursued
by AI pioneers like Feigenbaum [9] and Lenat [12]. The goal is to
equip machines with knowledge of properties of everyday objects
(e.g., bananas are yellow, edible and sweet), typical human behavior
and emotions (e.g., children like bananas, children learn at school,
death causes sadness) and general plausibility invariants (e.g., a
classroom of children should also have a teacher). In recent years,
research on automatic acquisition of such knowledge has been
revived, driven by the pressing need for human-like AI systems
with robust and explainable behavior. Important use cases of CSK
include the interpretation of user intents in search-engine queries,
question answering, versatile chatbots, language comprehension,
visual content understanding, and more.

Examples: A keyword query such as “Jordan weather forecast”
is ambiguous, but CSK should tell the search engine that this refers
to the country and not to a basketball player or machine learning
professor. A chatbot should know that racist jokes are considered
tasteless and would offend its users; so CSK could have avoided the
2016 PR disaster of the Tay chatbot.1 In an image of a meeting at
an IT company where one person wears a suit and another person
is in jeans and t-shirt, the former is likely a manager and the latter
an engineer. Last but not least, a “deep fake” video where Donald

1www.cnbc.com/2018/03/17/facebook-and-youtube-should-learn-from-microsoft-tay-racist-chatbot.
html

Trump rides on the back of a tiger could be easily uncovered by
knowing that tigers are wild and dangerous and, if at all, only circus
artists would do this.

The goal of this paper is to advance the automatic acquisition of
salient commonsense properties from online content of the Internet.
For knowledge representation, we focus on simple assertions in
the form of subject-predicate-object (SPO) triples such as children
like banana or classroom includes teacher. Complex assertions,
such as Datalog clauses, and logical reasoning over these are outside
our scope.

Amajor difficulty that priorwork has struggledwith is the sparse-
ness and bias of possible input sources. Commonsense properties
are so mundane that they are rarely expressed in explicit terms (e.g.,
countries or regions have weather, people don’t). Therefore, typical
sources for information extraction like Wikipedia are fairly useless
for CSK. Moreover, online contents, like social media (Twitter, Red-
dit, Quora etc.), fan communities (Wikia etc.) and books or movies,
are often heavily biased and do not reflect typical real-life situa-
tions. For example, existing CSK repositories contain odd triples
such as banana located_in monkey’s_hand, engineer has_property

conservative, child make choice.

1.2 State of the Art and Limitations
Popular knowledge bases like DBpedia, Wikidata or Yago have a
strong focus on encyclopedic knowledge about individual entities
like (prominent) people, places etc., and do not cover commonsense
properties of general concepts. The notable exception is the in-
clusion of SPO triples for the (sub-)type (aka. isa) predicate, for
example, banana type fruit. Such triples are ample especially in
Yago (derived from Wikipedia categories and imported from Word-
Net). Our focus is on additional properties beyond type, which are
absent in all of the above knowledge bases.

The most notable projects on constructing commonsense knowl-
edge bases are Cyc [12], ConceptNet [28], WebChild [34] and Mo-
saic TupleKB [7]. Each of these has specific strengths and limi-
tations. The seminal Cyc project solely relied on human experts
for codifying logical assertions, with inherent limitations in scope
and scale. ConceptNet used crowdsourcing for scalability and bet-
ter coverage, but is limited to only a few different predicates like
has_property, located_in, used_for, capable_of, has_part and type.
Moreover, the crowdsourced inputs often take noisy, verbose or
uninformative forms (e.g., banana type bunch, banana type herb,
banana has_property good_to_eat). WebChild tapped into book n-
grams and image tags to overcome the bias in many Web sources.
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It has a wider variety of 20 predicates and is much larger, but con-
tains a heavy tail of noisy and dubious triples – due to its focus
on possible properties rather than typical ones (e.g., engineers are
conservative, cool, qualified, hard, vital etc.). TupleKB is built by
carefully generating search-engine queries on specific domains and
performing various stages of information extraction and cleaning
on the query results. Despite its clustering-based cleaning steps, it
contains substantial noise and is limited in scope by the way the
queries are formulated.

The work in this paper aims to overcome the bottlenecks of
these prior projects while preserving their positive characteristics.
In particular, we aim to achieve high coverage, like WebChild, with
high precision (i.e., a fraction of valid triples), like ConceptNet. In
addition, we strive to acquire properties for a wide range of predi-
cates - more diverse and refined than ConceptNet and WebChild,
but without the noise that TupleKB has acquired.

1.3 Approach and Challenges
This paper puts forward Quasimodo2, a framework and tool for scal-
able automatic acquisition of commonsense properties. Quasimodo
is designed to tap into non-standard sources where questions rather
than statements provide cues about commonsense properties. This
leads to noisy candidates for populating a commonsense knowledge
base (CSKB). To eliminate false positives, we have devised a sub-
sequent cleaning stage, where corroboration signals are obtained
from a variety of sources and combined by learning a regression
model. This way, Quasimodo reconciles wide coverage with high
precision. In doing this, it focuses on salient properties which typi-
cally occur for common concepts, while eliminating possible but
atypical and uninformative output. This counters the reporting bias
- frequent mentioning of sensational but unusual and unrealistic
properties (e.g., pink elephants in Walt Disney’s Dumbo).

The new sources that we tap into for gathering candidate asser-
tions are search-engine query logs and question answering forums
like Reddit, Quora etc. Query logs are unavailable outside indus-
trial labs, but can be sampled by using search-engine interfaces
in a creative way. To this end, Quasimodo generates queries in a
judicious way and collects auto-completion suggestions. The subse-
quent corroboration stage harnesses statistics from search-engine
answer snippets, Wikipedia editions, Google Books and image tags
by means of a learned regression model. This step is geared to
eliminate noisy, atypical, and uninformative properties.

A subsequent ranking step further enhances the knowledge
quality in terms of typicality and saliency. Finally, to counter noisy
language diversity, reduce semantic redundancy, and canonicalize
the resulting commonsense triples to a large extent, Quasimodo
includes a novel way of clustering the triples that result from the
fusion step. This is based on a tri-factorization model for matrix
decomposition.

Our approach faces two major challenges:
• coping with the heavy reporting bias in cues from query logs,
potentially leading to atypical and odd properties,

2The name stands for: Query Logs and QA Forums for Salient Commonsense Defi-
nitions. Quasimodo is the main character in Victor Hugo’s novel “The Hunchback
of Notre Dame” who epitomizes human preconception and also exhibits unexpected
traits.

• coping with the noise, language diversity, and semantic redun-
dancy in the output of information extraction methods.
The paper shows how these challenges can be (largely) overcome.

Experiments demonstrate the practical viability of Quasimodo and
its improvements over prior works.

1.4 Contributions
The paper makes the following original contributions:
• a complete methodology and tool for multi-source acquisition

of typical and salient commonsense properties with principled
methods for corroboration, ranking and refined grouping,

• novel ways of tapping into non-standard input sources like
query logs and QA forums,

• a high-quality knowledge base of ca. 2.21 million salient prop-
erties for ca. 52,000 concepts, which will be made publicly avail-
able as a research resource3,

• an experimental evaluation and comparison to ConceptNet,
WebChild, and TupleKB which shows major gains in coverage
and quality, and

• experiments on extrinsic tasks like language games (Tabooword
guessing) and question answering.

Our code will be made available on Github.

2 RELATEDWORK
Commonsense Knowledge Bases (CSKB’s). The most notable
projects on building large commonsense knowledge bases are the
following.

Cyc: The Cyc project was the first major effort towards collect-
ing and formalizing general world knowledge [12]. Knowledge
engineers manually compiled knowledge, in the form of grounded
assertions and logical rules. Parts of Cyc were released to the pub-
lic as OpenCyc in 2002, but these parts mostly focus on concept
taxonomies, that is, the (sub-)type predicate.

ConceptNet: Crowdsourcing has been used to construct Con-
ceptNet, a triple-based semantic network of commonsense asser-
tions about general objects [28, 29]. ConceptNet contains ca. 1.3
million assertions for ca. 850,000 subjects (counting only Eng-
lish assertions and semantic relations, i.e., discounting relations
like synonym or derivedFrom). The focus is on a small number of
broad-coverage predicates, namely, type, locationOf, usedFor,

capableOf, hasPart. ConceptNet is one of the highest-quality and
most widely used CSK resources.

WebChild: WebChild has been automatically constructed from
book n-grams (and, to a smaller degree, image tags) by a pipeline
of information extraction, statistical learning and constraint rea-
soning methods [33, 34]. WebChild contains ca. 13 million asser-
tions, and covers 20 distinct predicates such as hasSize, hasShape,

physicalPartOf, memberOf, etc. It is the biggest of the publicly avail-
able commonsense knowledge bases, with the largest slice being on
part-whole knowledge [35]. However, a large mass of WebChild’s
contents is in the long tail of possible but not necessarily typical

3https://www.dropbox.com/sh/r1os5uoo6v2xiac/AADinRFpUYSg1kQLm63pdMnOa?dl=0
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Figure 1: Quasimodo system overview.

and salient properties. So it comes with a substantial amount of
noise and non-salient contents.

Mosaic TupleKB:. The Mosaic project at AI2 aims to collect com-
monsense knowledge in various forms, from grounded triples to
procedural knowledge with first-order logic. TupleKB, released as
part of this ongoing project, is a collection of triples for the sci-
ence domain, compiled by generating domain-specific queries and
extracting assertions from the resulting web pages. A subsequent
cleaning step, based on integer linear programming, clusters triples
into groups. TupleKB contains ca. 280,000 triples for ca. 30,000
subjects.

Wikidata: This collaboratively built knowledge base is mostly
geared to organize encyclopedic facts about individual entities like
people, places, organizations etc. [13, 36]. It contains more than
400 million assertions for more than 50 million items. This includes
some world knowledge about general concepts, like type triples,
but this coverage is very limited. For instance, Wikidata neither
knows that birds can fly nor that elephants have trunks.

Use Cases of CSK. Commonsense knowledge and reasoning are
instrumental in a variety of applications in natural language pro-
cessing, computer vision, and AI in general. These include question
answering, especially for general world comprehension [42] and
science questions [27]. Sometimes, these use cases also involve ad-
ditional reasoning (e.g., [32]), where CSK contributes, too. Another
NLP application is dialog systems and chatbots (e.g., [41]), where
CSK adds plausibility priors to language generation.

For visual content understanding, such as object detection or
caption generation for images and videos, CSK can contribute as an
informed prior about spatial co-location derived, for example, from
image tags, and about human activities and associated emotions
(e.g., [5, 39, 40]). In such settings, CSK is an additional input to
supervised deep-learning methods.

Information Extraction from Query Logs. Prior works have
tapped into query logs for goals like query recommendation (e.g.,
[4]) and extracting semantic relationships between search terms,
like synonymy and hypernymy/hyponymy (e.g., [1, 22, 24, 38]). The
latter can be seen as gathering triples for CSK, but its sole focus is on
the (sub-)type predicate – so the coverage of the predicate space is
restricted to class/type taxonomies. Moreover, these projects were
carried out on full query logs within industrial labs of search-engine
companies. In contrast, Quasimodo addresses a muchwider space of
predicates and operates with an original way of sampling query-log-
derived signals via auto-completion suggestions. To the best of our
knowledge, no prior work has aimed to harness auto-completion
for CSK acquisition (cf. [3]).

The methodologically closest work to ours is [23]. Like us, that
work used interrogative patterns (e.g. “Why do . . . ”) to mine query
logs – with full access to the search-engine company’s logs. Unlike
us, subjects, typically classes/types such as “cars” or “actors”, were
merely associated with salient phrases from the log rather than
extracting complete triples. One can think of this as organizing CSK
in SP pairs where P is a textual phrase that comprises both predicate
and object but cannot separate these two. Moreover, [23] restricted
itself to the extraction stage and used simple scoring from query
frequencies, whereas we go further by leveraging multi-source
signals in the corroboration stage and refining the SPO assertions
into semantic groups.

3 SYSTEM OVERVIEW
Quasimodo is designed to cope with the high noise and poten-
tially strong bias in online contents. It taps into query logs via
auto-completion suggestions as a non-standard input source. How-
ever, frequent queries – which are the ones that are visible through
auto-completion – are often about sensational and untypical issues.
Therefore, Quasimodo combine a recall-oriented candidate gather-
ing phase with two subsequent phases for cleaning, refining, and
ranking assertions. Figure 1 gives a pictorial overview of the system
architecture.
Candidate Gathering. In this phase, we extract candidate triples
from some of the world’s largest sources of the “wisdom of crowds”,
namely, search-engine query logs and question answering forums
such as Reddit or Quora. While the latter can be directly accessed
via search APIs, query logs are unavailable outside of industrial labs.
Therefore, we creatively probe and sample this guarded resource by
means of generating queries and observing auto-completion sugges-
tions by the search engine. The resulting suggestions are typically
among the statistically frequent queries. As auto-completion works
only for short inputs of a few words, we generate queries that are
centered on candidate subjects, the S argument in the SPO triples
that we aim to harvest. Technical details are given in Section 4.
Corroboration. This phase is precision-oriented, aiming to elim-
inate false positives from the candidate gathering. We consider
candidates as invalid for three possible reasons: 1) they do not
make sense (e.g., programmers eat python); 2) they are not typical
properties for the instances of the S concept (e.g., programmers
drink espresso); 3) they are not salient in the sense that they are
immediately associated with the S concept by most humans (e.g.,
programmers visit restaurants). To statistically check to which
degree these aspects are satisfied, Quasimodo harnesses corrobora-
tion signals in a multi-source scoring step. This includes standard
sources like Wikipedia articles and books, which were used in prior
works already, but also non-standard sources like image tags and
answer snippets from search-engine queries. Technical details are
given in Section 5.
Ranking. To identify typical and salient triples, we devised a proba-
bilistic ranking model with the corroboration scores as input signal.
This stage is described in Section 6.
Grouping. For this phase, we have devised a clustering method
based on the model of tri-factorization for matrix decomposition
[8]. The output consists of groups of SO pairs and P phrases linked
to each other. So we semantically organize and refine both the

3



concept arguments (S and O) in a commonsense triple and the
way the predicate (P) is expressed in language. Ideally, this would
canonicalize all three components, in analogy to what prior works
have achieved for entity-centric encyclopedic knowledge bases (e.g.,
[10, 30]). However, commonsense assertions are rarely as crisp as
facts about individual entities, and often carry subtle variation and
linguistic diversity (e.g., live in and roam in for animals being
near-synonymous but not quite the same). Our clustering method
also brings out refinements of predicates. This is in contrast to prior
work on CSK which has mostly restricted itself to a small number
of coarse-grained predicates like partOf, usedFor, locatedAt, etc.
Technical details are given in Section 7.

4 CANDIDATE GATHERING
The key idea for this phase is to utilize questions as a source of hu-
man commonsense. For example, the question “Why do dogs bark?”
implicitly conveys the user’s knowledge that dogs bark. Questions
of this kind are posed in QA forums, such as Reddit or Quora, but
their frequency and coverage in these sources alone is not sufficient
for building a comprehensive knowledge base. Therefore, we addi-
tionally tap into query logs from search engines, sampled through
observing auto-completion suggestions. Although most queries
merely consist of a few keywords, there is a substantial fraction of
user requests in interrogative form [37].

4.1 Data Sources
Quasimodo exploits two data sources: (i) QA forums, which return
questions in user posts through their search APIs, and (ii) query
logs from major search engines, which are sampled by generating
query prefixes and observing their auto-completions.

QA forums. We use four different QA forums: Quora, Yahoo! An-
swers4, Answers.com, and Reddit. The first three are online com-
munities for general-purpose QA across many topics, and Reddit is
a large discussion forum with a wide variety of topical categories.

Search engine logs Search engine logs are rich collections of ques-
tions. While logs themselves are not available outside of industrial
labs, search engines allow us to glimpse at some of their underly-
ing statistics by auto-completion suggestions. Figure 2 shows an
example of this useful asset. Quasimodo utilizes Google and Bing,
which typically return 5 to 10 suggestions for a given query prefix.
In order to obtain more results, we recursively probe the search
engine with increasingly longer prefixes that cover all letters of the
alphabet, until the number of auto-completion suggestions drops
below 5. For example, the query prefix “why do cats” is expanded
into “why do cats a”, “why do cats b”, and so on.

We intentionally restrict ourselves to query prefixes in inter-
rogative form, as these are best suited to convey commonsense
knowledge. In contrast, simple keyword queries are often auto-
completed with references to prominent entities (celebrities, sports
teams, product names, etc.), given the dominance of such queries
in the overall Internet (e.g., the query prefix "cat" is expanded into
"cat musical"). These very frequent queries are not useful for CSK
acquisition.

In total, we collected 11,603,121 questions from autocompletion.
4answers.yahoo.com and webscope.sandbox.yahoo.com

Figure 2: A glimpse into a search-engine query log.

Pattern In Query Logs In QA Forums
how does 19.4% 7.5%
why is 15.8% 10.4%
how do 14.9% 38.07%
why do 10.6% 9.21%
how is 10.1 % 4.31%

why does 8.97% 5.46%
why are 8.68% 5.12%
how are 5.51% 1.8%
how can 3.53% 10.95%
why can’t 1.77% 1.40%
why can 0.81% 0.36%

Table 1: Question patterns for candidate gathering.

4.2 Question Patterns
We performed a quantitative analysis of frequent question words
and patterns on Reddit. As a result, we decided to pursue two
question words, Why and How, in combination with the verbs
is, do, are, does, can, can’t, resulting in 12 patterns in total. Their
relative frequency in the question set that we gathered by auto-
completion is shown in Table 1. For forums, we performed title
searches centered around these patterns. For search engines, we
appended subjects of interest to the patterns for query generation
(e.g., “Why do cats”) for cats as subject. The subjects were chosen
from the common nouns extracted from WordNet [17].

4.3 From Questions to Assertions
Open information extraction (Open IE) [15], based on patterns, has
so far focused on assertive patterns applied to assertive sentences. In
contrast, we deal with interrogative inputs, facing new challenges.

We address these issues by rule-based rewriting. As we need to
cope with colloquial or even ungrammatical language as inputs, we
do not rely on dependency parsing but merely use part-of-speech
tags for rewriting rules. Primarily, rules remove the interrogative
words and re-order subject and verb (al phrase) to form an assertive
sentence. However, additional rules are needed to cast the sentence
into a naturally phrased statement that Open IE can deal with.
Most notably, auxiliary verbs like “do” need to be removed, and
prepositions need to be put in their proper places, as they may
appear at different positions in interrogative vs. assertive sentences.
Table 2 shows some example transformations, highlighting the
modified parts.

After transforming questions into statements, we employ the
Stanford OpenIE tool [14] and OpenIE5.0 ([25], [26], [20], [6]) to
extract triples from assertive sentences. When several triples with
the same S and O are extracted from the same sentence, we retain
only the one with the longest P phrase.

4



Question Statement
(1) why is voltmeter not con-

nected in series
voltmeter is not connected
in series

(2) why are chimpanzees en-
dangered

chimpanzees are endan-
gered

(3) why do men have nipples men have nipples
(4) why are elephant seals

mammals
elephant seals aremammals

(5) why is becoming a nurse in
france hard

becoming a nurse in france
is hard

Table 2: Examples of questions and statements.

The resulting extractions are still noisy, but this is taken care of
by the subsequent stages of corroboration, ranking and grouping,
to construct a high-quality CSKB.

4.4 Output Normalization
The triples produced by OpenIE exhibit various idiosyncrasies. For
cleaning them, we apply the following normalization steps:
• Replacement of plural subjects with singular forms.
• Replacement of verb inflections by their infinitive (e.g., are

eating → eat).
• Removal of modalities (always, sometimes, occasionally, ...) in
the predicate and object. These are kept as modality qualifiers.

• Removal of negation, put into a dedicated qualifier as negative
evidence.

• Replacement of generic predicates like are, iswithmore specific
ones like hasColor, hasBodyPart, depending on the object.

• Removal of adverbs and phatic expressions (e.g., “so”, “also”,
“very much” etc.).

We completely remove triples containing any of the following:
• subjects outside the initial seed set,
• personal pronouns (“my”, “we”), and
• a short list of odd objects (e.g., xbox, youtube, quote) that fre-

quently occur in search results but do not indicate commonsense
properties.
The output of this phase are tuples of the form (Subject, Predicate,

Object, Modality, Negativity, Source, Score), for instance, (lion, hunts,
zebra, often, positive, Google, 0.4).

5 CORROBORATION
The output of the candidate gathering phase is bound to be noisy
and contains many false positives. Therefore, we scrutinize the
candidate triples by obtaining corroboration signals from a variety
of additional sources. Quasimodo queries sources to test the occur-
rence and obtain the frequency of SPO triples. These statistics are
fed into a logistic-regression classifier that decides on whether a
triple is accepted or not.

The goal of this stage is to validate whether candidate triples are
plausible, i.e., asserting them is justified based on several corrobo-
ration inputs:

Wikipedia and Simple Wikipedia. For each SPO candidate, we
probe the article about S and compute the frequency of co-occurring

Source Fraction
Google Auto-complete 39.5%
CoreNLP 52.3%
OpenIE5 42.3%
Answers.com 10.5%
Reddit 8.78%
Yahoo! Answers 1.19%
Wikipedia 62.6%
Simple Wikipedia 53.6%
Flickr 2.72%
OpenImage 1.57%
Quora, Bing Auto-complete,
Google Books, Answer snippets

<1%

Table 3: Proportions of candidate triples by sources.

P and O within a window of n successive words (where n = 5 in
our experiments).

Answer snippets fromsearch engine.Wegenerate Google queries
using the S and O arguments of a triple as keywords, and analyze
the top-100 answer snippets. The frequency of snippets containing
all of S, P and O is viewed as an indicator of the triple’s validity.
As search engines put tight constraints on the number of allowed
queries per day, we can obtain this signal only for a limited subset
of candidate assertions. We prioritize the candidates for which the
other sources (Wikipedia etc.) yield high evidence.

Google Books. We create queries to the Google Books API by
first forming disjunctions of surface forms for each of S, P and O,
and then combining these into conjunctions. For instance, for the
candidate triple (lion, live in, savanna), the query is "lion OR lions
live OR lives in savanna OR savannas". As we can use the API only
with a limited budget of queries per day, we prioritized candidate
triples with high evidence from other sources (Wikipedia etc.).

Image tags from OpenImages and Flickr. OpenImages is com-
posed of ca. 20.000 classes used to annotate images. Human-verified
tags exist for ca. 5.5 million images. Quasimodo checks for co-
occurrences of S and O as tags for the same image and computes
the frequency of such co-occurrences. For Flickr, we use its API to
obtain clusters of co-occurring tags. Individual tags are not avail-
able through the API. We test for the joint occurrence of S and O
in the same tag cluster.

Table 3 gives the fractions of candidate triples for which each of
the sources contributes scoring signals.

Classifier training and application. We manually annotated a
sample of 1700 candidate triples obtained in the candidate gathering
phase.5 These are used to train a logistic regression model, which
gives us a precision of 61%.

6 RANKING
We refer to the scores resulting from the corroboration stage as
plausibility scores π . These plausibility scores are essentially lin-
ear combinations of frequency signals. Frequency is an important
criterion for ranking CSK, yet CSK has other important dimensions.

5In comparison, TupleKB required crowd annotations for 70,000 triples.
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In this section we propose two probabilistic interpretations of
the scores π , referred to as τ (“typicality”) and σ (“saliency”). Intu-
itively, τ enables the ranking of triples by their informativeness for
their subjects. Conversely, σ enables the ranking of triples by the
informativeness of their p,o part.

To formalize this, we first define the probability of a triple spo.

P[s,p,o] = π (spo)
Σx ∈KB π (x) .

Then, we compute τ and σ as:

• τ (s, p, o) = P[p,o | s] = P[s,p,o]
P[s] .

• σ (s, p, o) = P[s | p,o] = P[s,p,o]
P[p,o] .

In each case, the marginals are P[p,o] = Σs ∈subjects P[s,p,o] and
P[s] = Σp,o∈(predicates,objects) P[s,p,o].

At the end of this stage, each triple spo is annotated with three
scores: an internal plausibility score π , and two conditional proba-
bility scores τ and σ , which we subsequently use for ranking.

7 GROUPING
The corroboration stage of Quasimodo aimed to remove overly
generic and overly specific assertions, but still yields diverse state-
ments of different granularities with a fair amount of semantic
redundancy. For instance, hamsters are cute, hamsters are cute

pets, and hamsters are cute pets for children are all valid as-
sertions, but more or less reflect the same commonsense property.
Such variations occur with both O and P arguments, but less so
with the subjects S as these are pre-selected seeds in the candidate
gathering stage. To capture such redundancies while preserving
different granularities and aspects, Quasimodo groups assertions
into near-equivalence classes. At the top level, Quasimodo provides
groups as entry points and then supports a meta-predicate refines

for more detailed exploration and use-cases that need the full set
of diversely phrased assertions.

Soft Co-Clustering. Our goal is to identify diverse formulations
for both predicates P and subject-object pairs SO. The prior work on
TupleKB has used ILP-based clustering to canonicalize predicates.
However, this enforces hard grouping such that a phrase belongs
to exactly one cluster. With our rich data, predicates such as “chase”
or “attack” can refer to very different meanings, though: predators
chasing and attacking their prey, or students chasing a deadline and
attacking a problem. Analogously, S and O arguments also have
ambiguous surface forms that would map to different word senses.

WebChild [33] has attempted to solve this issue by comprehen-
sive word sense disambiguation (see [18] for a survey), but this is
an additional complexity that eventually resulted in many errors.
Therefore, we aim for the more relaxed and – in our findings – more
appropriate objective of computing soft clusters where the same
phrase can belong to different groups (to different degrees). As the
interpretation of P phrases depends on the context of their S and O
arguments, we cast this grouping task into a co-clustering problem
where SO pairs and P phrases are jointly clustered.

Tri-Factorization of SO-PMatrix.Ourmethod for soft co-cluster-
ing of SO pairs and P phrases is non-negativematrix tri-factorization;
see [8] for mathematical foundations. We aim to compute clusters

for SO pairs and clusters for P phrases and align them with each
other when meaningful. For example, the SO pairs student problem

and researcher problem could be grouped together and coupled
with a P cluster containing attack and a second cluster containing
solve.

This goal alone would suggest a standard form of factorizing a
matrix with SO pairs as rows and P phrases as columns. However,
the number of clusters for SO pairs and for P phrases may be
very different (because of different degrees of diversity in real-
world commonsense), and decomposing the matrix into two low-
rank factors with the same dimensionality would not capture this
sufficiently well. Hence our approach is tri-factorization where the
number of (soft) clusters for SO pairs and for P phrases can be
different.

We denote the set of SO pairs and P phrases, as observed in the
SPO triples after corroboration, as anm × n matrixMm×n , where
elementMi j denotes the corroboration score of the triple with SOi
and Pj . We factorizeM as follows:

Mm×n = Um×k ×Wk×l ×VT
l×n

where the low-rank dimensionalities k and l are hyper-parameters
standing for the number of target SO clusters and target P clusters
and the middle matrixW reflects the alignments between the two
kinds of clusters. The optimization objective in this tri-factorization
is to minimize the data loss in terms of the Frobenius norm, with
non-negativeU ,W ,V and orthonormalU ,V :

Minimize ∥M −Um×k ×Wk×l ×VT
l×n ∥F

s .t . UTU = I , VTV = I

U ,V ,W ≥ 0 (1)

We can interpret Ui µ as a probability of the membership of the
ith SO pair in the µth SO cluster. Similarly, Vjν represents the
probability of cluster membership of the jth P phrase to the ν th P
cluster. The coupling of SO clusters to P clusters is given by the
Wk×l matrix, where the µth SO cluster is linked to the ν th P cluster
ifWµν > 0.

Each SO pair and P phrase have a certain probability of belonging
to an SO and P cluster, respectively. Hence, using a thresholding
method, we assign SOi to the µth cluster if Ui µ > θ and Pj to
the ν th cluster if Vjν > θ , in order to arrive at crisper clusters. In
our experiments, we set the thresholds as follows: for the λth SO
cluster, we set θλ = δ ·maxiUiλ , and for the λth P cluster, we set
θλ = δ ·maxiViλ . By varying the common thresholding parameter
δ , we tune the cluster assignments of SO pairs and P phrases based
on the empirical perplexity of the resulting clusters. This way, we
found an empirically best value of δ = 0.1.

The factor matrices in this decomposition should intuitively be
sparse, as each SO pair would be associated with only a few P
clusters, and vice versa. To reward sparsity, L1 regularization is
usually considered for enhancing the objective function. However,
the L1 norm makes the objective non-differentiable, and there is no
analytic solution for the tri-factorization model. Like most machine-
learning problems, we rely on stochastic gradient descent (SGD)
to approximately solve the optimization in Equation 1. For this
reason, we do not use L1 regularization. Our SGD-based solver
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# SO/SO cluster # P/P cluster # P clusters/P
Domains #SPO k l ρ avg. max avg. max avg.
Animals 201942 3500 2000 0.10 38.46 383 2.8 24 1.5
Persons 218924 5000 2000 0.10 11.7 235 4.7 67 1.5
Medicine 91184 3000 1800 0.15 45.17 171 2.91 31 1.3
Sport 30794 1500 400 0.15 13.3 73 3.8 15 1.14

macro-avg. (over all 49 domains) 1457.8 603.7 0.12 33.97 123.0 3.5 24.8 1.24
Table 4: Statistics for SO clusters and P clusters for vertical domains Animals and Occupations.

P clusters SO clusters
make noise at, be loud at, make noises at, croak in,
croak at, quack at

fox-night, frog-night, rat-night, mouse-night, swan-night,
goose-night, chicken-night, sheep-night, donkey-night, duck-
night, crow-night

help in, help with, play part in butterfly-environment, bee-ecosystem, butterfly-reproduction,
butterfly-reproduction of plants, worm-ecosystem

misbehave in, talk in, sleep in, be bored in, act out
in, be prepared for, be quiet in, skip, speak in

student-class, student-classes, student-lectures

diagnose, check for doctor-leukemia, doctor-reflexes, doctor-asthma, doctor-
diabetes, doctor-pain, doctor-adhd

Table 5: Anecdotal examples of coupled SO clusters and P clusters from vertical domains Animals and Occupations.

initializes the factor matrices with a low density of non-zero values,
determined by a hyper-parameter ρ for the ratio of non-zero matrix
elements. The overall objective function then is the combination of
data loss and sparseness:

Maximize
fraction of zero elements (W )

data loss by Equation 1

All hyper-parameters – the factor ranks k and l and the sparseness
ratio ρ – are tuned by performing a grid search.

8 EXPERIMENTAL EVALUATION
8.1 Implementation
Seeds. As seeds for subjects we use a combination of concepts
from ConceptNet, combined with nouns extracted from WordNet,
resulting in a total of around 120,000 subjects.

CandidateGathering. In this phaseQuasimodo collected ca. 14,000
questions from Quora (which has tight access restrictions), 600,000
questions from Yahoo! Answers, 2.5 million questions from An-
swers.com (via its sitemap), and 3.5 million questions from a Reddit
dump (with a choice of suitable sub-reddits). From auto-completion
suggestions, we obtained ca. 13 million questions from Google and
200,000 questions from Bing. After applying the rewriting of ques-
tions into statements and running Open IE, we obtained 24 million
candidate triples; the subsequent normalization further reduced
this pool to ca. 15 million triples.

Corroboration. The regression model assigned a mean π score of
0.61, with a standard deviation of 0.03. For high recall we do not
apply a threshold in this phase, but utilize the scores for ranking in
our evaluations.

Grouping. We performed this step on the top-50% triples, ordered
by corroboration scores, amounting to ca. 2.1 million assertions,
For efficient computation, we sliced this data into 49 basic domains
based on theWordNet domain hierarchy [2]. To this end, wemapped
the noun sense of each assertion subject to WordNet and assign
all triples for the subject to the respective domain (e.g., animals,

plants, earth, etc.) The five largest domains are earth, chemistry,
animal, biology, and person, containing on average 3.9k subjects
and 198k assertions. We performed co-clustering on each of these
slices, where hyper-parameters were tuned by grid search. Table 4
gives hyper parameter values and cluster-specific statistics of the
co-clustering for three domains: number of assertions (#SPO); the
co-clustering hyper-parameters SO clusters (k), P clusters (l) and
sparseness ratio (ρ); the average number of elements per cluster
for both SO and P clusters; and the average number of P-clusters
per predicate. Additionally, we provide macro-averaged statistics
for all 49 domains. Table 5 shows anecdotal examples of co-clusters
for illustration.

Quasimodo CSKB. The resulting knowledge base contains ca. 4.6
million assertions for 87,000 subjects. A preliminary version is
accessible by reviewers on Dropbox.6

Run-Time. One of the expensive component of Quasimodo is the
probing of Google auto-completions. This was carried out within
the allowed query limits over an entire week. Bing auto-completion
was accessed through the Azure API. The another expensive com-
ponent is co-clustering of all 49 domains, which takes total 142
hours in a Intel Xeon(R)(2 cores@3.20GHz) server (average 3.14
hours/ slice). All other components of Quasimodo run within a few
hours at most.

8.2 Intrinsic Evaluation
We evaluate four aspects of Quasimodo: 1) size of the resulting
CSKB, 2) quality, 3) recall, and 4) cluster coherence.

Size.We compare KBs in Table 6 left side by the number of subjects
(#S), the number of predicates (#P), predicates occurring at least 10
times (#P≥10), and the number of triples (#SPO). For Quasimodo we
exclude all triples with isA / type predicate denoting subclass-of
or instance-of relations, as these are well covered in traditional
knowledge resources like WordNet, Wikidata and Yago. We also

6https://www.dropbox.com/sh/r1os5uoo6v2xiac/AADinRFpUYSg1kQLm63pdMnOa?dl=0
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Full KB
#S #P #P≥10 #SPO #SPO/S

ConceptNet-full@en 842,532 39 39 1,334,425 1.6
ConceptNet-CSK@en 41,331 19 19 214,606 5.2

TupleKB 28,078 1,605 1,009 282,594 10.1
WebChild 55,036 20 20 13,323,132 242.1

Quasimodo 86,660 162,321 12,942 4,596,048 53.0

animals occupations
#S #SPO #S #SPO

50 2,678 50 1,906
50 1,841 50 1,495
49 16,052 38 5,321
50 27,223 50 26,257
50 97,798 50 45,423

Table 6: Statistics for different KBs. Left side full KBs, right side two slices on animals and occupations.

compare, on the right side of the table, on two vertical domains:
assertions for the 50 most popular animals and 50 most popular
occupations, as determined by frequencies from Wiktionary. For
ConceptNet, we report numbers for the full data including isA /

type and related and other linguistic triples (e.g., on etymology)
imported from DBpedia, WordNet and Wiktionary (ConceptNet-
full), and for the proper CSK core where these relations are removed
(ConceptNet-CSK).

Table 6 clearly conveys that Quasimodo has richer knowledge per
subject than all other resources except forWebChild. The advantage
over themanually created ConceptNet becomes particularly evident
when looking at the two vertical domains, where ConceptNet-CSK
contains less than 10% of the assertions that Quasimodo knows.

Quality.We asked MTurk crowd workers to evaluate the quality
of CSK assertions along three dimensions: 1) meaningfulness, 2)
typicality, 3) saliency. Meaningfulness denotes if a triple is conveys
meaning at all, or is absurd; typicality denotes if most instances of
the S concept have the PO property; saliency captures if humans
would spontaneously associate PO with the given S as one of the
most important traits of S.

For each evaluated triple, we obtained two judgments for the
three aspects, each graded on a scale from 1 (lowest) to 5 (high-
est). A total 275 crowd workers completed the evaluation, with
mean variance 0.70 on their ratings from 1 to 5 indicating good
inter-annotator agreement. To ensure that crowd workers would
not be distracted by KB-specific jargon, we translated predicates
like hasPrerequisite or hasProperty into generic verb phrases like
“requires” or “is”.

We sampled triples from the different CSKBs under two settings:
In comparative sampling, we sampled triples for the same 100 sub-
jects (50 popular occupations and 50 popular animals) across all KBs.
For subject and each KB we considered the top-5-ranked triples as
a pool, and uniformly sampled 100 assertions for which we obtain
crowd judgement. For Quasimodo, as the rankings by typicality τ
and by saliency σ differ, this sampling treated Quasimodo-τ and
Quasimodo-σ as distinct CSKBs. This setting provides side-by-side
comparison of triples for the same subjects.

In horizontal sampling, we sampled each KB separately; so they
could differ on the evaluated subjects. We considered the top 5
triples of all subjects present in each KB as a pool, and picked
samples from each KB uniformly at random. This evaluation mode
gave us insights into the average quality of each KB. Note that it
gives KBs that have fewer long-tail subjects an advantage, as triples
for long-tail subjects usually receive lower human scores. Again,
we considered Quasimodo rankings by τ and σ as distinct CSKBs.

meaningfulness typicality saliency
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Figure 3: Quality for comparative sampling.
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Figure 4: Quality for horizontal sampling.

Figure 5: Recall evaluation.
The results of these evaluations are shown in Figure 3 and Fig-

ure 4. With comparative sampling, Quasimodo-τ significantly out-
performs both WebChild and TupleKB, and nearly reaches the
quality of the human-generated ConceptNet. In horizontal sam-
pling mode, Quasimodo-τ outperforms WebChild along all dimen-
sions and outperforms TupleKB in all dimensions but saliency. This
is remarkable given that Quasimodo is 3 times bigger than Con-
ceptNet, and is therefore penalized with horizontal sampling by
its much larger number of long-tail subjects. In both evaluations,
Quasimodo-τ significantly outperforms Quasimodo-σ in terms of
meaningfulness and typicality. Regarding saliency the results are
mixed, suggesting that further research on ranking models would
be beneficial.

Recall. To compare the recall (coverage) of the different CSKBs,
we asked crowd workers at MTurk to make statements about 50
occupations and 50 animals as subjects. We asked to provide short
but general sentences, as spontaneous as possible so as to focus
on typical and salient properties. Together with these instructions,
we gave three examples for elephants (e.g., “elephants are grey”,
“elephants live in Africa”) and three examples for nurses. For each
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Quasimodo ConceptNet WebChild TupleKB

(hasPhysicalPart, trunk) (AtLocation, africa) (quality, rare) (has-part, brain)
(hasPhysicalPart, ear) (HasProperty, cute) (trait, playful) (drink, water)
(live in, zoo) (CapableOf, remember water source) (size, large) (prefer, vegetation)
(love, water) (HasProperty, very big) (state, numerous) (eat, apple)
(be in, circus) (CapableOf, lift logs from ground) (quality, available) (open, mouth)

Quasimodo ConceptNet WebChild TupleKB

(help, people) (HasA, private life) (emotion, euphoric) (complete, procedure)
(stand long for, surgery) (CapableOf, attempt to cure patients) (quality, good) (conduct, examination)
(learn about, medicine) (AtLocation, golf course) (trait, private) (get, results)
(cure, people) (CapableOf, subject patient to long waits) (atlocation, hospital) (has-part, adult body)
(can reanimate, people) (AtLocation, examination room) (hasproperty, aggressive) (treat, problem)

Table 7: Anecdotal examples (PO) for S elephant (top) and S doctor (bottom).

KB Elementary NDMC Middle NDMC CommonsenseQA Trivia Examveda
#Questions 1,288 1,409 15,173 452 765
Random 27.1/27.1 24.6/24.6 33.6/33.6 25.9/25.9 25.4/25.4
word2vec 28.6/27.7 28.3/26.6 39.3/38.5 28.3/23.2 27.2/22.1
Quasimodo 38.0*/37.3* 37.4*/35.9* 38.4*/36.1* 30.4/22.7* 32.8/21.3*
ConceptNet 32.5/21.4 25.9/14.6 - (source) 32.1/7.74 29.8/5.88
TupleKB 32.6/25 30.6/22.2 37.2/17.5 23.1/3.3 31.6/4.71
WebChild 24.8/21.1 28.9/24.3 31.1/26.3 27.6/10.6 25.5/8.24

Table 8: Precision and recall of answer selection in question answering. Statistically significant results (with p-value < 0.05 for
paired t-test) of Quasimodo against other CSKBs are marked with an asterisk.

subject, crowd workers had 4 text fields to complete, which were
pre-filled with “[subject] ...”. Each task was handed out 6 times; so
in total, we obtained 2,400 simple sentences on 100 subjects.

We computed CSKB recall w.r.t. these crowd statements in two
modes. In the strict mode, we checked for each sentence if the
KB contains a triple (for the same subject) where both predicate
and object are contained in the sentence and, if so, computed the
word-level token overlap between PO and the sentence. In the
relaxed setting, we checked separately if the KB contains an S-
triple whose predicate appears in the sentence, and if it contains
an S-triple whose object appears in the sentence. The results are
shown in Figure 5. In terms of this coverage measure, Quasimodo
outperforms the other CSKBs by a large margin, in both strict
and relaxed modes and also when limiting ourselves to the top-5
highest-ranked triples per subject.

Cluster Coherence. We evaluate cluster coherence using an in-
truder task. For a random set of clusters that contain at least three
P phrases, we show annotators sampled SO pairs from the clus-
ter and samples of P phrases from the aligned cluster interspersed
with an additional random intruder predicate drawn from the entire
CSKB. For example, we show the SO pairs spider-web, mole-tunnel,

rabbit-hole, along with the P phrases build, sing, inhabit, live

in, where sing is the intruder to be found. We sampled 175 in-
stances from two vertical slices, Animals and Persons, and used
crowdsourcing (MTurk) to collect a total of 525 judgments on these
175 instances for the intruder detection task. We obtained an in-
truder detection accuracy of 64% for clusters in the Animals domain,

and 54% in Persons domain (compared with 25% for a random base-
line). This is supporting evidence that our co-clustering method
yields fairly coherent groups.

Anecdotal Examples. Table 7 provides a comparison of randomly
chosen assertions for two subjects in each of the KBs: (elephant)
(top) and doctor (bottom). WebChild assertions are quite vague,
while TupleKB assertions are reasonable but not always salient.
ConceptNet, constructed by human crowdsourcing, features high-
quality assertions, but sometimes gives rather exotic properties. In
contrast, the samples for Quasimodo are both typical and salient.

8.3 Extrinsic Evaluation
Answer Selection for QA. In this use case, we show that CSK
helps in selecting answers for multiple-choice questions. We use
five datasets: (i+ii) elementary school and middle school science
questions from the AllenAI science challenge [19], (iii) common-
sense questions generated from ConceptNet [31], (iv) reading com-
prehension questions from the TriviaQA dataset [11], and (v) exam
questions from the Indian exam training platform Examveda [21].

To assess the contribution of CSKBs, for each multiple-choice
answer and each word t in the answer phrase, we look for all triples
of the form (t, p, o) or (s, p, t) in a KB; each time s or o appears
in the respective question, we increase the score of that answer.
In the end, the answer with the highest score is chosen (or the
lexicographic first if two answers have equal scores). This is a basic
strategy for multiple-choice QA and could be improved in many
ways. However, it is sufficient to bring out the value of CSK and
the differences between the CSKBs under test.

We compare four CSKBs against each other and against aword2vec
baseline which computes the embeddings similarity between ques-
tions and answers. The results are shown in Table 8. Quasimodo
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Figure 6: Coverage for word guessing game.

significantly outperforms the other CSKBs on three of the five
datasets and is competitive on the other two.

Word Guessing Game. Taboo is a popular word guessing game
in which a player describes a concept without using 5 taboo words,
usually the strongest cues. The other player needs to guess the
concept. We used a set of 578 taboo cards from the website playta-
boo.com to evaluate the coverage of the different CSKBs.

Given a concept to be guessed, we compute the fraction of Taboo
words that a KB associates with the concept, appearing in the O or
P argument of the triples for the concept. This is a measure of a
CSKB’s potential ability to perform in this game (i.e., not playing the
game itself). The resulting coverage is shown in Table 6. Quasimodo
outperforms all other KBs by this measure. TupleKB, the closest
competitor on the science questions in the multiple-choice QA
use case, has substantially lower coverage, indicating its limited
knowledge beyond the (school-level) science domain.

9 CONCLUSION
This paper presented Quasimodo, a methodology for acquiring
high-quality commonsense assertions, by harnessing non-standard
input sources, like query logs and QA forums, in a novel way. As our
experiments demonstrate, the Quasimodo knowledge base improves
the prior state of the art, by achieving much better coverage of
typical and salient commonsense properties (as determined by an
MTurk study) while having similar quality in terms of precision.
Extrinsic use cases further illustrate the advantages of Quasimodo.
The Quasimodo data is available online7, and our code will be made
available on Github.
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