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ABSTRACT

Cycles in graphs o�en signify interesting processes. For example,

cyclic trading pa�erns can indicate ine�ciencies or economic de-

pendencies in trade networks, cycles in food webs can identify frag-

ile dependencies in ecosystems, and cycles in �nancial transaction

networks can be an indication of money laundering. Identifying

such interesting cycles, which can also be constrained to contain a

given set of query nodes, although not extensively studied, is thus

a problem of considerable importance. In this paper, we introduce

the problem of discovering interesting cycles in graphs. We �rst

address the problem of quantifying the extent to which a given

cycle is interesting for a particular analyst. We then show that

�nding cycles according to this interestingness measure is related

to the longest cycle and maximum mean-weight cycle problems (in

the unconstrained se�ing) and to the maximum Steiner cycle and

maximum mean Steiner cycle problems (in the constrained se�ing).

A complexity analysis shows that �nding interesting cycles is NP-

hard, and is NP-hard to approximate within a constant factor in the

unconstrained se�ing, and within a factor polynomial in the input

size for the constrained se�ing. �e la�er inapproximability result

implies a similar result for the maximum Steiner cycle and maxi-

mum mean Steiner cycle problems. Motivated by these hardness

results, we propose a number of e�cient heuristic algorithms. We

verify the e�ectiveness of the proposed methods and demonstrate

their practical utility on two real-world use cases: a food web and

an international trade-network dataset.
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1 INTRODUCTION

Cycles occur as a natural data-mining pa�ern in several real-world

applications. �ey appear naturally in food webs, where cycles

highlight cyclic dependencies, o�en revealing the fragile parts of

an ecosystem [8]. In �nancial transaction data, a cycle could be

an indication of a money-laundering scheme [3]. In biological and

complex networks, a cycle is an indication of a feedback mecha-

nism [16]. Despite the wide range of use cases, the problem of

discovering cyclic pa�erns in graphs has not received much a�en-

tion in the data-mining community (See Section 7).

(a) (b)

(c)

A

(d)

Figure 1: �e most interesting Steiner cycles connecting the

red nodes according to di�erent prior beliefs on the graph

shown in (a): when we have (b) no knowledge about the

graph, (c) knowledge about the individual degrees, and (d)

knowledge about the degrees and the density of the commu-

nity A.

In this paper, we study the problem of discovering interesting

cycles in a directed and non-negatively weighted graph. We also

consider the constrained case, where the cycles have to contain

a set of user-speci�ed query nodes. Cycles containing a given

set of query nodes are called Steiner cycles [20, 22]. Identifying

interesting Steiner cycles can be particularly useful in di�erent

application domains. For example, a biologist may be interested in

�nding a food chain that contains both a rabbit and a hawk to assess

the importance of the hawk population for the rabbit population.

Economists may be interested in �nding surprising trading action

between certain countries in di�erent parts of the world.

As networks typically contain numerous cycles, a key challenge

is the choice of a suitable interestingness measure for a cycle. We

propose to use a subjective measure, i.e., taking into account which

network characteristics (if any) are known a priori to the analyst.

For example, for a lay person it might be surprising that more than

50% of the Dominican Republic’s export is to the USA.
1

However,

for an economist possessing the knowledge that those countries

have a bilateral trade agreement (which can be formalized as prior

information on the trade network), such a trade volume might not

come as a surprise. �us, we are interested in designing methods

that are able to take such prior knowledge into account.

1
h�ps://tradingeconomics.com/dominican-republic/exports-by-country
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Based on this observation, our proposed measure is built on

subjective interestingness [6, 21]. In the formalization of subjective

interestingness, a pa�ern is deemed interesting if it is both surpris-

ing to the user and can be communicated in a concise way. �e

measure we propose to quantify interestingness of cycles in graphs

is presented in Section 2.

Figure 1 illustrates an example of our se�ing. Figure 1a shows

a toy graph in which a user wishes to �nd a cyclic pa�ern con-

taining the red query nodes. We consider three di�erent users.

�e �rst user has no knowledge of the graph. In this case, with

every revealed edge, the user learns something about the graph,

hence, the most interesting cycle is the longest cycle containing the

red nodes, as shown in Figure 1b. �e second user has knowledge

about the degrees of each node in the network. In this case, edges

containing high degree nodes are less interesting to this user as

they are expected. �is prior knowledge makes the cycle shown

in Figure 1c the most interesting cycle to the second user. Our last

user is a specialist. Besides knowing the degrees of the nodes, he

also has prior knowledge that the red nodes are part of a dense

community A. Intra-community edges are now expected and thus

are less interesting to the third user. �is makes the cycle obtained

in Figure 1d the most interesting cycle for the third user.

Following the proposed cycle interestingness measure, in Sec-

tion 3 we formally de�ne the two problem variants that we study in

this paper: (i) the Maximum Subjectively Interesting Cycle problem

(MSIC[α , β]); and (ii) the Maximum Subjectively Interesting Steiner

Cycle problem (k-MSIC[α , β]), in which the cycle is required to

contain a given set of k terminal nodes. We provide an extensive

computational complexity analysis in Section 4 showing that both

problems are NP-hard, and are NP-hard to approximate within a

constant factor for MSIC[α , β], and within a factor polynomial in

the input size for k-MSIC[α , β]. In Section 5, we present a number

of e�cient heuristics for both problems. We show the e�ectiveness

of our methods in practical se�ings through an extensive experi-

mental evaluation in Section 6. We also provide two real-world use

cases, one regarding a food web and another regarding an interna-

tional trade network, demonstrating the potential of the proposed

methods for real-world applications.

Contributions and roadmap.

• We present a novel subjective interestingness measure for cycle

pa�erns in graphs (Section 2).

• We formally de�ne the Maximum Subjectively Interesting Cycle

and Maximum Subjectively Interesting Steiner Cycle problems,

and provide an extensive theoretical analysis of their computa-

tional complexity (Section 4).

• We propose a number of e�cient and e�ective heuristics for

both problems (Section 5).

• We experimentally verify the e�ectiveness of our methods and

demonstrate their practical utility on two real-world use cases

(Section 6).

2 CYCLES AND THEIR INTERESTINGNESS

In this section, we �rst introduce the notation used in this paper and

formally de�ne the notion of a cycle pa�ern in weighted digraphs

(Section 2.2). We then explain how the interestingness of a cycle

pa�ern can be formalized w.r.t. a background distribution that mod-

els prior knowledge about the structure of the graph (Section 2.3).

For the sake of clarity and completeness, we also brie�y summarize

the related work on how such a background distribution can be

derived based on a number of relevant types of prior knowledge

on the graph structure (Section 2.4).

2.1 Graph notation

We assume a simple digraph G = (V ,E), with |V | = n nodes and

|E | = m directed edges. A walk in G is de�ned as a sequence

v1,v2, . . . ,vk of nodes, where (vi ,vi+1) ∈ E for i ∈ [1,k − 1] and

(vi ,vi+1) , (vj ,vj+1) for all 1 ≤ i < j ≤ k . We say that a walk is

closed if v1 = vk . A (simple) cycle is a closed walk v1,v2, . . . ,vk =
v1, with no repetition of the nodes vi , for 1 < i < k . We use v ∈ C
and e ∈ C to indicate that a node v and an edge e is part of a cycle

C , respectively. We use |C | to denote the length of a cycleC , i.e. the

number of edges it contains.

2.2 Cycles as patterns

�e pa�erns considered in this paper consist of the speci�cation of a

cycleC that is stated to be present in a given graph. Additionally, we

communicate |C | positive real values `e , one for each edge in e ∈ C .

Each value `e represents a lower bound
2

on the weight of edge e ,

thus informing the user that the weight is at least `e . In practice,

in the most interesting cycle pa�erns, a lower bound `e will be

equal (or as close as possible given the number encoding used) to

the observed value of the weight µ(e), as a larger `e provides more

information.

2.3 Subjective interestingness of cycle patterns

We follow the approach proposed by De Bie [6] in formalizing

the subjective interestingness of a cycle pa�ern as the ratio of its

Information Content (IC), and its Description Length (DL), which

should re�ect the amount of e�ort it takes the data analyst to

assimilate the pa�ern. Here, IC is the negative log probability of the

pa�ern being present in the data, where the probability is computed

w.r.t. a so-called background distribution P that represents the prior

expectations of the analyst. �e IC re�ects the more improbable the

analyst considers a given pa�ern, the more information it conveys

when the analyst learns the pa�ern is present.

It may be impossible to accurately represent all expectations

of an analyst. Yet, it was argued that given a set of constraints in

terms of expectations on certain statistics of the network (e.g., node

degrees, subgraph densities, etc.), a robust estimate of the back-

ground distribution can be obtained by choosing P as the maximum

entropy distribution, subject to these constraints [6].

As reviewed in Section 2.4, a wide range of prior knowledge

types have the (convenient) property that the resulting background

distribution factorizes as a product of independent distributions,

one for each possible edge e ∈ V ×V . We emphasize that indepen-

dence is not a choice, but rather a result of the maximum entropy

optimization. For unweighted and integer weighted networks, these

are respectively Bernoulli and geometric distributions. Hence, the

2
We use a lowerbound and not the actual edge value. O�en a user will not care about

the exact weight of an edge, but rather only if the weight is high or not, relative to the

user’s expectations on the graph structure.

2



IC of a cycle C equals

IC(C) = −log

(∏
e ∈C

Pr(µ(e) ≥ `e )
)
=

∑
e ∈C

w(e),

where w(e) , −log(Pr(µ(e) ≥ `e )) denotes the information con-

tent of the edge e , with Pr(·) denoting the probability under the

background distribution P . Note that w(e) ≥ 0 for all e ∈ V ×V .

�e DL can be computed similarly as in the work of Leeuwen

et al. [17]. To communicate a cycle pa�ern C to the user, we need

to communicate |C | nodes. We assume that the cost of assimilating

that a node is part of C is log(1/q), and that a node is not part of

C is log(1/(1 − q)). Hence the DL of communicating |C | nodes is

equal to

|C | · log

1

q
+(n − |C |) · log

1

1 − q

= |C | · log

1 − q
q
+ n · log

1

1 − q ,

for 0 < q < 1/2. Here, q can be loosely interpreted as the expected

probability that a random node is part of C , according to the user.

Typically, q is to be chosen small. To communicate the |C | numbers

`e , in practice a �xed-length encoding (e.g., �oating-point) would

be used, and arguably it is also in this way (i.e., a �xed number of

signi�cant digits) that an analyst would assimilate the information.

�is implies a further cost that increases linearly with |C |. Hence,

the DL of a cycle pa�ern, including a speci�cation of v ∈ C and the

lower bounds `e for all e ∈ C , is of the form:

DL(C) = α |C | + nβ .

where α > 0 and β > 0 are de�ned as

α = log

1 − q
q

, β = log

1

1 − q . (1)

We now formally de�ne the subjective interestingess of a cycle

pa�ern.

De�nition 2.1 (Subjective Interestingness). Given a directed graph

G = (V ,E) with non-negative edge weights w , and parameters

α > 0 and β > 0, the subjective interestingness F (C) of a cycle C is

de�ned
3

as:

F (C) = IC(C)

DL(C)

=

∑
e ∈C w(e)

α |C | + nβ . (2)

2.4 Modeling a user’s prior beliefs

As argued by De Bie [6], a good choice for the background distribu-

tion P is the maximum entropy distribution, subject to particular

user expectations as linear constraints on the distribution. Here,

the domain of the distribution P is the set of all possible edges over

a given set of nodes. For a be�er understanding of these models,

we recap some existing results and discuss a toyexample below.

3
We note that F (∅) = 0.

0 99 1 0

97 0 1 2

1 1 0 98

2 0 98 0

0 99 1 0

97 0 1 2

1 1 0 98

2 0 98 0

S1

0 99 1 0

97 0 1 2

1 1 0 98

2 0 98 0

S1 S2

25 25 25 25

25 25 25 25

25 25 25 25

25 25 25 25

(a)

0 33.3 33.3 33.3

33.3 0 33.3 33.3

33.3 33.3 0 33.3

33.3 33.3 33.3 0

(b)

0 98 1 1

98 0 1 1

1 1 0 98

1 1 98 0

(c)

Figure 2: (top row) A toy graph, with constraints on the in-

and out degrees of each node (a, b and c), combined with

constraints on the densities of the sets S1 (b and c) and S2 (c).

(bottom row) �e expected values of the edges according to

the MaxEnt distribution.

2.4.1 A prior on the weighted in- and out-degrees. In the case

of a prior belief on the weighted in- and out-degree of each node,

the distribution P factorizes as a product of independent geometric

distributions, one for each node pair. As discussed in [7], using

a background distribution with the empirically weighted in- and

out-degrees as constraints will ensure that cycle pa�erns are more

interesting if they involve edges from low out-degree nodes to low

in-degree nodes. As it is quite common that weighted node degrees

are well-understood (e.g., biologists have a good idea about the

predatory component of the diet of di�erent species in a food web),

this is an important type of background distribution in practice.

2.4.2 Additional priors on the density of any subsets. Addition-

ally, extra constraints on the density on a number of user-provided

subgraphs can be incorporated. For example, an economist might

have knowledge of high trading volume between a group of neigh-

boring countries, e.g., due to a free trade agreement or a common

market, or a user might know that no self-edges exist in a network.

In this case, if an edge e = (i, j) is part of the speci�ed subgraph,

the probability that this edge has a weight at least ` becomes:

Pr(µ(e) ≥ `) = exp

(
− `(λout

i + λin

j + λ
block)

)
,

where λout

i +λ
in

j +λ
block > 0. Here, λout

i and λin

j denote the Lagrange

multipliers associated with the resp. row- and column sums of node

i and j, and λblock
denotes the Lagrange multiplier associated with

the density of the speci�ed subgraph. Adriaens et al. [1] showed

how these multipliers can still be computed e�ciently for large

networks and a limited number of speci�ed subgraphs. Figure 2

shows an example of ��ing the MaxEnt model on a 4x4 adjacency

matrix A with di�erent types of constraints. It illustrates how

adding more constraints results in a closer �t of the background

distribution to the empirical network. �e probability Pr(A12 ≥
99) = 0.038 for (a), 0.054 for (b) and 0.53 for (c).

3



3 PROBLEM DEFINITION

�e �rst problem considered in this paper is the problem of �nd-

ing the “Maximum Subjectively Interesting Cycle” in a graph.
4

Formally:

Problem 1 (MSIC[α , β]). Given a directed graph G with non-

negative edge weights, and parameters α , β > 0, �nd a simple cycle

C such that F (C) is maximized.

Additionally, we can constrain the cycle to include a given set of

terminal nodes to �nd “Maximum Subjectively Interesting Steiner

Cycle”. �is leads to the second problem we address in this paper:

Problem 2 (k-MSIC[α , β]). Given a directed graph G with non-

negative edge weights, a set of k terminal nodes, and parameters

α , β > 0, �nd a simple cycle C such that C contains all the terminals

and F (C) is maximized.

MSIC[α , β] is closely related to two well-known graph problems.

For α = 0, MSIC[α , β] is equivalent to the problem of �nding the

longest cycle in a digraph, an NP-hard problem that is known for

its di�culty to approximate [2, 9]. On the other hand, for β = 0,

MSIC[α , β] is equivalent to the problem of �nding a maximum

mean-cycle in a directed graph with non-negative edge weights.

�is problem can be solved in polynomial time by reversing the

sign of the edge weights of the input graph and running Karp’s

minimum mean-cycle algorithm [14], that is originally devised to

�nd minimum mean-cycle in digraphs with real-valued weights.

Although MSIC[α , β] is closely related to a tractable and to an NP-

hard problem, it is not equivalent to either one as our problem

se�ing assumes α > 0 and β > 0. Yet, in Section 4 we show that

MSIC[α , β] is NP-hard (as the longest cycle problem), while we dis-

cuss how Karp’s algorithm can be used to provide approximations.

�is is a plausible approach, as in practice α � β (it takes more

e�ort to assimilate the fact that a node is part of a cycle pa�ern

than that a node is not part of a cycle pa�ern), such that the inter-

estingness measure is closer to the maximum mean-cycle objective

than to the longest cycle objective.

Likewise, k-MSIC[α , β] is closely related to two Steiner cycle

problem variants. For α = 0, k-MSIC[α , β] is equivalent to the

problem of �nding a maximum Steiner cycle, i.e. Steiner cycle with

max. total weight, and for β = 0, k-MSIC[α , β] is equivalent to the

problem of �nding a maximum mean Steiner cycle (MMSCP) in a

digraph with non-negative edge weights. To the best of our knowl-

edge, there are no known results on the approximability of either

problems. Besides being NP-hard, we show in the next section that

neither of these Steiner cycle problems, nor k-MSIC[α , β], can be

approximated within a ratio that is polynomial in the number of

nodes.

4 COMPUTATIONAL COMPLEXITY

Unsurprisingly, both MSIC[α , β] and k-MSIC[α , β] are NP-hard

problems. We show this in the following section. Section 4.2 is

dedicated to proving some strong inapproxability results. We note

that the reduction in Lemma 4.5 can directly be applied to the Max.

Steiner Cycle and Max. Mean Steiner Cycle problems, which is a

novel result in itself.

4
Note that although the problem appears to have two parameters, in reality this can

be reduced to one, e.g. by multiplying the objective with β and substituting α/β with

a single parameter γ .

4.1 Hardness results

�e hardness of both problems directly follows from Lemma 4.3

and Lemma 4.5, but are presented here separately for completeness.

Lemma 4.1. MSIC[α , β] is NP-hard.

Proof. We use a reduction from the NP-complete Hamiltonian

cycle problem. Given a digraph G = (V ,E), the Hamiltonian cycle

problem is to determine whether G has a simple cycle that visits

every node exactly once. Given an instance of the Hamiltonian

cycle problem, we construct an instance of MSIC[α , β] by assigning

a constant weight to every edge, w(e) = ρ, ∀e ∈ E. �en, for any

cycle C , we have F (C) = ρ |C |
α |C |+nβ . Notice that, in all the instances

of MSIC[α , β] with uniform edge weights, F (C) monotonically in-

creases with |C |, ceteris paribus, and obtains the maximum possible

value whenever |C | = n. �us, F (C) = ρn
αn+nβ i�C is a Hamiltonian

cycle and F (C) = ρ |C |
α |C |+nβ <

ρn
αn+nβ otherwise. Hence, we can use

the solution to MSIC[α , β] to decide the solution to the Hamiltonian

cycle problem. �

Lemma 4.2. k-MSIC[α , β] is NP-hard.

Proof. We use a reduction from the NP-complete Hamiltonian

cycle problem. Let G = (V ,E) be a given instance of the Hamil-

tonian cycle problem. We construct an instance of k-MSIC[α , β]
by assigning w(e) = 1,∀e ∈ E, and picking an arbitrary subset of

k nodes as the terminals. Given uniform weights, for any Steiner

cycle C , F (C) monotonically increases with |C |, ceteris paribus. Let

C∗ denote the optimal solution to k-MSIC[α , β]. �en, G is a YES

instance of the the Hamiltonian cycle problem i� F (C∗) = n

αn + nβ

and NO instance i� F (C∗) < n

αn + nβ
. �

4.2 Inapproximability results

Lemma 4.3. �ere exists no constant-factor polynomial-time ap-

proximation algorithm for MSIC[α , β], unless P = NP.

Proof. To prove this, we use an approximation preserving re-

duction from the Longest Cycle problem in digraphs [2]. Specif-

ically, we use an A-reduction [4] that preserves membership in

APX, which is the class of NP optimization problems that admit

polynomial-time constant-factor approximation algorithms.

To show that a reduction from Longest Cycle problem toMSIC[α , β]
is an A-reduction, we need to show that (i) there exists a polynomial-

time computable function д mapping the solutions of MSIC[α , β]
to the solutions of the Longest Cycle problem, and (ii) a polynomial-

time computable function c : Q∩(1,∞) → Q∩(1,∞) such that any

algorithm providing r -approximation to MSIC[α , β] with the ap-

proximate solution C provides a c(r )-approximation to the Longest

Cycle problem using the approximate solution д(C).
Let G = (V ,E) be a given an instance of the Longest Cycle

problem in digraphs. We construct an instance of MSIC[α , β] by

assigning a constant weight w(e) = ρ, ∀e ∈ E in G. Assume

there exists a polynomial-time algorithm A which provides a r -

approximation to MSIC[α , β] for some constant r ≥ 1. Let C∗

denote the optimal solution to MSIC[α , β] and let CA denote the

4



solution returned by algorithm A. �en we have,

F (C∗)
F (CA)

=
ρ |C∗ |
ρ |CA |

· α |CA | + nβ
α |C∗ | + nβ ≤ r (3)

Reminding that F (C) monotonically increases with |C | in such in-

stances of MSIC[α , β] with uniform edge weights, we de�ne д as

the identity function, and use the solutions of MSIC[α , β] as the

solutions of the Longest Cycle problem. �en, by re-arranging (3)

and using the fact that 2 ≤ |C | ≤ n for any cycle C , we have:

|C∗ |
|CA |

≤ r · α |C
∗ | + nβ

α |CA | + nβ

≤ r · n(α + β)
2α + nβ

≤ r · (1 + α/β)
We have just showed that the Longest Cycle problem is A-reducible

to MSIC[α , β]. Finally, P = NP, given that the Longest Cycle prob-

lem in digraphs is not in APX [2, 9], we conclude that MSIC[α , β]
is also not in APX. �

Björklund et al. [2] show that there exists no polynomial-time

approximation algorithm for the Longest Cycle problem in un-

weighted Hamiltonian digraphs with performance ratio n1−ϵ
for

any �xed ϵ > 0, unless P = NP. Next we show the implications

of this strong inapproximability result for solving MSIC[α , β] in

Hamiltonian digraphs with uniform edge weights.

Lemma 4.4. It is NP-hard to approximate MSIC[α , β] in a Hamil-

tonian digraph with uniform weights within a factor of

n1−ϵ + α/β
1 + α/β ,

for any ϵ > 0, unless P = NP.

Proof. Let G = (V ,E) be an unweighted Hamiltonian digraph

denoting an instance of the Longest Cycle problem[2]. Given

G = (V ,E), we construct an instance of MSIC[α , β] by assign-

ing a constant weight to every edge, w(e) = ρ, ∀e ∈ E. Assume by

contradiction that there exists such an approximation algorithm A
which �nds a solution CA satisfying

ρ |CA |
α |CA | + nβ

≥ 1 + α/β
n1−ϵ + α/β

· ρn

αn + nβ
(4)

By re-arranging the terms in (4), we obtain |CA | ≥ nϵ implying

that any such approximation algorithm to MSIC[α , β] leads to a

polynomial-time n1−ϵ
-approximation algorithm for the Longest

Cycle problem in unweighted Hamiltonian digraphs, which is a

contradiction, unless P = NP. �

Next we show the hardness of approximating k-MSIC[α , β].

Lemma 4.5. It is NP-hard to approximate k-MSIC[α , β] within a

factor polynomial in the input size in digraphs with non-negative

edge weights for any k ≥ 1, unless P = NP.

Proof. To prove this, we use a reduction from the NP-complete

Restricted Two node Disjoint Paths problem (R2VDP), which was

introduced by Björklund et al. [2] as the restricted version of the

Two node Disjoint Paths problem (2VDP) [19]. Given a digraph

of order n ≥ 4 and four nodes, 2VDP problem seeks to determine

whether there exist two node disjoint paths, one from node 1 to 2

1 2

4 3

1 2

4 3

G1 G2

W

Figure 3: A visualization of the construction in Lemma 4.5.

and one from node 3 to 4. In the restricted version R2VDP of 2VDP,

all the YES instances of 2VDP are guaranteed to contain two such

paths that together exhaust all nodes of G, i.e., the graph G with

the additional edges from node 2 to 3 and from 4 to 1, contains a

Hamiltonian cycle through these edges in YES instances to R2VDP.

Assume that there exists an approximation algorithm for k-

MSIC[α , β] with ratio p(n) ≥ 1 that is a polynomial of n. We

show how to decide R2VDP by using such algorithm with approx-

imation ratio p(n). Given an instance of R2VDP, we construct an

instance of k-MSIC[α , β] as follows. We connect 2 copies G1 and

G2 of G by adding edges (i) from node 2 in G1 to node 1 in G2, and

(ii) from node 4 in G2 to node 3 in G1. We also add an edge (4, 1) in

G1 and an edge (2, 3) in G2. For each edge we assign a weight of

1, except for the edge (2, 3) in G2 for which we assign a weight of

W = n · p(n) + 1. Finally, we set the node 1 of G1 as the terminal

for 1-MSIC[α , β]. Let G ′ = (V ′,E ′) denote the resulting graph, as

shown in Figure 3.

Let C∗ denote the optimal solution to 1-MSIC[α , β] in G ′. If

G is a YES instance of R2VDP, then C∗ is a Hamiltonian cycle in

G ′, containing 2n edges with a total weight of 2n + n · p(n), since,

F (C∗) = 2n + n · p(n)
2αn + nβ

>
|C |

α |C | + nβ for any other Steiner cycle C

that is not Hamiltonian, thus, not containing the edge (2, 3) in G2.

On the other hand, if G is a NO instance to R2VDP, then C∗ can

have at most 2n − 2 edges, excluding the edge (4, 1) in G1 and the

edge (2, 3) in G2, thus,

|C∗ |
|C∗ | + 1

≤ 2n − 2

α(2n − 2) + nβ .

We have just shown that, unless P = NP, it is not possible to

approximate 1-MSIC[α , β] within a factor that is polynomial in the

input size in digraphs with non-negative edge weights. It is easy

to see that as k increases, the problem only becomes harder, with

k = n corresponding to the search for a Hamiltonian cycle. �us,

the result follows for any k ≥ 1. �

Corollary 4.6. It is NP-hard to approximate Maximum Steiner

Cycle and Maximum-Mean Steiner Cycle problems within a factor

polynomial in the input size in digraphs with non-negative edge

weights for any k ≥ 1, unless P = NP.

Proof. �e results directly follows from the reduction given in

Lemma 4.5. �

5 PRACTICAL ALGORITHMS

5.1 Algorithms for MSIC

5.1.1 Karp’s Algorithm. Due to the NP-hardness of our problem,

we resort to the maximum mean cycle as an approximate solution

to MSIC[α , β]. We �rst note that the maximum mean cycle in a

graph G is equivalent to the minimum mean cycle in the graph G ′

obtained by reversing the sign of the edge weights of G.

5



�e problem of �nding the minimum mean cycle (MMC) in a

graph with real-valued edge weights is well-studied in the literature

and admits e�cient polynomial algorithms as shown by Karp [14].

Karp’s MMC algorithm runs in Θ(nm) time on any instance. As

noted by Dasdan and Gupta [5], there are other algorithms, with

worse theoretical bounds, performing signi�cantly be�er in prac-

tice, such as, Howard’s algorithm [11] and Young’s algorithm [24].

Dasdan and Gupta [5] have given excellent survey of the di�erent

algorithms and their performance in practice.

In this paper we use Karp’s MMC algorithm, not only due to

its ease of implementation but also it still holds one of the best

asymptotic running times.

We brie�y review Karp’s algorithm for completeness. First, recall

that in the MMC problem we are given a directed graph G = (V ,E)
and an arbitrary edge-weight function w : E → R, and the goal

is to �nd a cycle C in G that minimizes the average weight, i.e.,

ρ∗ = min{C cycle of G }
{∑

e∈C w (e)
|C |

}
. Karp provided the following

elegant characterization for the weight of the minimum mean-cycle:

ρ∗ = min

v ∈V
max

1≤k≤n
Dn (v) − Dk (v)

n − k , (5)

where Dk (v) is the minimum weight of an edge progression
5

of

length k from an arbitrary source s , while Dk (v) = +∞ if no such

path exists. It is assumed that all nodes are reachable from s . �e

algorithm computes ρ∗ using Equation (5) a�er computing the

values Dk (v) for all v ∈ V and k = 1, . . . ,n via the recurrence

Dk (v) = min(u,v)∈E {Dk−1
(u)+w(u,v)}, initialized with D0(s) = 0

and D0(v) = +∞ for v , s . �e actual cycle can be extracted by

traversing the edge progression Dn (v), for the node v that mini-

mizes (5).

Obviously, the MMC and MSIC[α , β] problems optimize di�erent

objectives, however, we can use Karp’s algorithm as a heuristic for

theMSIC[α , β] problem. We can show that the cycle with maximum

mean weight provides a O(n)-approximation for MSIC[α , β] in

arbitrary graphs with non-negative edge weights.

Lemma 5.1. Karp’sMMCalgorithm [14] provides aO(n)-approximation

for MSIC[α , β] in arbitrary graphs with non-negative edge weights.

Proof. Given a directed graph G = (V ,E) with non-negative

weights, let CK denote the cycle with maximum mean weight and

let C∗ denote the optimal solution to MSIC[α , β]. �en, by using

the fact that

∑
e ∈CK w(e)/|CK | ≥

∑
e ∈C∗ w(e)/|C∗ |, and that 2 ≤

|C | ≤ n for any cycle C , we obtain

F (C∗)
F (CK )

=

∑
e ∈C∗ w(e)

α |C∗ | + nβ ·
α |CK | + nβ∑
e ∈CK w(e)

≤
∑
e ∈CK w(e) · |C

∗ |
|CK |

α |C∗ | + nβ · α |CK | + nβ∑
e ∈CK w(e)

=
α + nβ/|CK |
α + nβ/|C∗ | ≤

α + nβ/2
α + β

(6)

�

In Section 6 we show that the bound (6) is quite good in practice,

as long as the parameter q, i.e., the expected probability that a

random node is part of a cycle, is small. Roughly put, small indicates

5
Both edges and nodes may be repeated.

not more than the density of the network. Notice that, asq increases,

the value of β also increases, see (1), and thus it becomes more likely

that the optimal solution to MSIC[α , β] is the longest cycle in the

graph, which is hard to approximate.

5.1.2 A variant of Karp’s algorithm. Although e�cient, a direct

application of Karp’s algorithm to solve MSIC[α , β] disregards the

information about the parameters α and β . �us, we propose a

natural extension of Karp’s algoritm that incorporates the role

of the parameters α and β aligned with the objective function of

MSIC[α , β]. To this end, we modify Karp’s algorithm to �nd the

node v that minimizes (on the edge-signs reversed graph G ′) the

following:

min

v ∈V
max

1≤k≤n
Dn (v) − Dk (v)
α(n − k) + nβ . (7)

Notice that, as in Karp’s characterization, the numerator in (7)

mimics the weight of a cycle of length (n −k) found for each v ∈ V ,

so (7) operates with the objective function of MSIC[α , β]. Similar to

Karp’s algorithm, this algorithm runs in Θ(nm) time and the cycle

for the minimizerv can be found by traversing the edge progression

Dn (v).

5.2 Algorithms for k-MSIC

�e k-MSIC[α , β] problem is reminiscent of Steiner cycle problems,

thus, one could consider the solutions of related problems, such

as maximum mean Steiner cycle (MMSCP), for approximating k-

MSIC[α , β]. However, as we have shown in Section 4, besides being

NP-hard, both problems cannot be approximated within a ratio

that is polynomial in the number of nodes. Existing algorithms for

approximating Steiner cycle problem variants are less well-known,

and in most cases these algorithms have strict requirements as we

review next.

Steinová [22] proposed a
3

2
log

2
(k)-approximation algorithm

for the mininum Steiner cycle problem on k terminal nodes in

non-negatively weighted graphs in which the edge weights satisfy

the triangle inequality. We note that not only the instances of k-

MSIC[α , β] do not necessarily satisfy the triangle inequality but

also we study a maximization problem.

Salazar-Gonzalez [20] introduced a minimum Steiner cycle prob-

lem variant with node penalties and considered a 0-1 integer linear

program examining the Steiner cycle polytope. Besides having a

di�erent context, their method is of theoretical interest that doesn’t

translate into practical algorithms for k-MSIC[α , β].
Kanellakis and Papadimitriou [13] propose a local search method

for directed TSP, extending the Lin-Kernighan heuristic proposed

for undirected TSP [18]. We adopt the local search approach pro-

posed by Kanellakis and Papadimitriou [13] for directed TSP and

extend their techniques for �nding Steiner cycles of interest. We

will refer to our local search heuristic for k-MSIC[α , β] as Local-

SCS.

�e local search method by Kanellakis and Papadimitriou [13]

starts with a random initial solution then considers the so-called

“sequential primary” and “quad” changes. In a sequential primary

change, three edges (a,b), (c,d), and (e, f ), encountered in this

order on the cycle, are removed from the cycle, and the edges (a,d),
(c, f ) and (e,b) are added. In a quad change, the rewiring consists

of removing four edges and reconnecting opposite edges, as shown

6



in Figure 4(b). �e neighborhood of each step in their local search

consists of a cost-dependent subset, determined by a number of

heuristic rules. �e search stops when no signi�cant improvements

can be made.

When transforming this search from a TSP se�ing to a Steiner

cycle se�ing, a few adjustments have to be made. Besides the pri-

mary and quad change, we propose two new changes in Local-SCS.

�e shortcu�ing change shortcuts the initial solution into a smaller

Steiner cycle. �e extending change bypasses an edge in a Steiner

cycle, by replacing the edge with two new edges. A visualization of

all the changes considered by Local-SCS are provided in Figure 4.

Given a set Q of k terminal nodes and an upper bound lmax ≥ k
on the cycle length, Local-SCS �nds an initial Steiner cycle of G
as follows:

(1) Prune G by only considering nodes v ∈ V s.t.

∀q ∈ Q : `(q  v) + `(v  q) ≤ lmax ,

where `(·) denotes the (unweighted) shortest path length.

�is step can be performed in time O(k(n +m)).
(2) Run a randomized depth-�rst search to �nd an initial valid

Steiner cycle. �e search is guided by a heuristic, and each

v that has a low total distance towards all query nodes has

a higher chance of being explored �rst, i.e., at any time

in the depth-�rst search, the probability that a node v is

chosen from the stack is proportional to 1/∑q∈Q `(v  q).
A�er Local-SCS �nds an initial Steiner cycle, a sequence of changes

depicted Figure 4 are applied. When considering a type of change,

Local-SCS always selects the one that yields the largest improve-

ment to the objective function (2). Local-SCS �rst applies a number

of extending changes to the initially found cycle until the cycle

length is equal to lmax . �en, Local-SCS greedily keeps select-

ing the best change among the sequantial, quad, or shortcu�ing

changes until no improvements can be made. If Local-SCS doesn’t

return a solution, then no Steiner of length at most lmax exists

for the given k terminal nodes. �e idea is to run this randomized

procedure a couple of times (1-5 in the experiments), and pick the

best solution.

Unlike the method of Kanellakis and Papadimitriou [13], a neigh-

borhood in our local search will consist of all the possible changes.

For a Steiner cycle of length lmax , there are O(l2max ) shortcu�ing

changes, O(n · lmax ) extending changes, O(l3max ) primary changes

and O(l4max ) quad changes, which is feasible to evaluate for a rea-

sonable upper bound lmax .

6 EXPERIMENTS

�e goal of this section is manifold. First, we would like to eval-

uate the quality of solutions obtained by Karp’s MMC algorithm,

the variant from Section 5.1.2 and our local Steiner cycle search

heuristic Local-SCS. To this end, we conduct experiments on small

synthetic datasets and compare the subjective interestingness of

the approximate solutions against the optimal solutions that we

obtain by exhaustive search in these small instances. Second, we

would like to evaluate the e�ciency and scalability (how o�en do

we �nd a cycle, and how fast) of Local-SCS on real-word datasets.

Finally, we provide two practical use cases. Our Python and Matlab

(a) (b)

(c) (d)

Figure 4: (a) Sequential primary change (b) �ad change (c)

Shortcutting change (d) Extending change.

code is publicly available at h�ps://bitbucket.org/ghentdatascience/

interesting-cycles-public.

Table 1: Network statistics.

Dataset —V— —E— Edge Weights

Food web
6

128 2 106 Carbon exchange in the Florida Bay Area

Trade
7

221 1 957 Country top 5 import & export in 2018

Gnutella
8

26 518 65 369 Connections between hosts in a p2p-network

Enron
9

36 692 183 831 Email communication network

6.1 �ality experiments on synthetic datasets

In this section we evaluate the quality of solutions obtained by

the algorithms for MSIC[α , β], and our local Steiner cycle search

heuristic k-MSIC[α , β], using various choices of α and β . �is

requires to exhaustively search for their optimal solutions, by enu-

merating all the cycles using Johnson’s algorithm [12] that runs

in O((n +m)(c + 1)) time, where c is the total number of cycles in

the input graph. To keep the exhaustive search feasible, we per-

form the quality tests on small instances and generated 200 random

Erdős-Rényi graphs with n = 20 and edge probability 0.2. Even in

such small instances, we found an average of 218, 080 cycles per

instance, with the maximum number of cycles found in an instance

being more than 5 million. We set the weight of each edge to a

random integer that is generated uniformly at random from the

interval [1, 10K].
We start by evaluating the quality of solutions obtained by Karp’s

algorithm and its variant for MSIC[α , β]. We use varying values

of α and β obtained by evaluating (1) for q ∈ {0.1, 0.2, 0.3}. Fig-

ure 5 shows the relative performance w.r.t. the optimal solution

for di�erent values of q over 200 random Erdős-Rényi instances,

sorted from worst to best performing. In order to have a baseline,

we compute the average interestingness over all possible cycles

that were encountered in the 200 instances. �e in�uence of the pa-

rameter q is clearly visible. For q = 0.1, Karp’s algorithm provides

6
h�p://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm

7
h�ps://wits.worldbank.org/

8
h�ps://snap.stanford.edu/data/p2p-Gnutella31.html

9
h�ps://snap.stanford.edu/data/email-Enron.html

7

https://bitbucket.org/ghentdatascience/interesting-cycles-public
https://bitbucket.org/ghentdatascience/interesting-cycles-public
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm
https://wits.worldbank.org/
https://snap.stanford.edu/data/p2p-Gnutella31.html
https://snap.stanford.edu/data/email-Enron.html
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Figure 5: Relative performance of Karp’s MMC & Karp’s Variant

for various q. �e dashed lines indicate the theoretical bound pro-

vided in Lemma 5.1.

the optimal cycle in about 10% of the instances, and has a perfor-

mance ratio of at least 0.75 in the rest of the instances. For q = 0.2,

Karp’s algorithm provides the optimal cycle only in 5 instances,

with a performance ratio of at least 0.5 overall. For q = 0.3, the

performance ratio drops drastically as expected, since, the optimal

cycle corresponds more to the longest weighted cycle, while Karp’s

algorithm provides the cycle with maximum mean weight. Interest-

ingly, the variant from Section 5.1.2 performs slightly worse overall

than Karp’s algorithm. However, we report that in a small number

of instances it performed signi�cantly be�er than Karp’s algorithm

although this trend didn’t generalize. As a guideline, we advise to

set q to be not larger than the density of the network (which is 0.2

in this case).

Next we evaluate the quality of solutions obtained by Local-SCS

for k-MSIC[α , β]. We set q = 0.05 and randomly pick k terminal

nodes, for k ∈ {1, 5, 10}. We set no upper bound on the maximum

cycle length, i.e., lmax = 20, run the algorithm 5 times, and pick

the best solution. Relative performance is shown in Figure 6. In-

stances in the x-axis are again sorted from worse to best performing.

�e dashed lines indicate the best value of an initial Steiner cycle

that was found in the 5 tries, clearly showing that the sequence

of changes proposed in Section 5.2 improve the score by a good

amount. We also observed that Local-SCS didn’t �nd any Steiner

cycle in 55 out of 200 instances for k = 10, while this number was

25 for k = 5 and 8 for k = 1. �e increase in the performance for

larger k is mainly due to the fact that there are more possible local

changes available to perform on an initially found cycle for higher

k , provided that a Steiner cycle of length at most lmax exists.

We analyze the running time of Local-SCS in two di�erent

se�ings, see Figure 7. First, we generate Erdős graphs of size n = 20

with edge probability 0.2, set no bound on lmax , and let the query

size k vary. For each k , we generate 50 graphs and repeat the

algorithm one time. As expected, for �xed n and m, the running

time is linear in k . Second, we set k = 3, lmax = 10 and let the

graph size n vary. Again for each n, we generate 50 instances. As

expected, there is a polynomial dependence on the graph size n;

doubling the graph size n roughly leads to a quadrupling in running

time. Karps’s MMC and Karp’s Variant always run in Θ(nm) time,

hence are not tested. �eir space complexity is given by Θ(n2).
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Figure 6: Relative performance of Local-SCS for various k and

q = 0.05. �e dashed lines indicate the best initial solutions before

applying changes.
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Figure 7: Running times of Local-SCS on Erdős graphs: on

the le� for varying query size k , on the right for varying

graph size n.

6.2 Scalability on real-world datasets

Contrary to the dense Erdős graphs, it is interesting to test scalabil-

ity on (sparser) real-world datasets. Indeed, o�en it might be the

case that we don’t �nd a Steiner cycle at all. We test on datasets

whose basic statistics are summarized in Table 1. For each dataset

and for each k ∈ {1, 3, 5}, we generated a set Qi of k random ter-

minal nodes, for i ∈ [1, 200]. Each Qi is generated by a snowball

sampling scheme, i.e., a�er choosing an initial terminal node intoQi
at random, each of its neighbors is chosen into Qi with probability

p until k terminals are obtained. We set p = 0.4 in our experiments.

We set lmax = 10 for the local search and we run the algorithm

only once for q = 0.01. Figure 8 shows the average running time of

Local-SCS to �nd an interesting Steiner cycle of length at most 10

or return none if such a Steiner cycle doesn’t exist. �e numbers

above the x-axis (inside the bars) denote how many times a solution

was found or not. For Enron, we only report the results for k = 1

since for k = 3, the algorithm couldn’t terminate within 24 hours

for some query sets. For Gnutella, k doesn’t seem to in�uence the

running time which is expected since the network is sparse withm
being roughly 2 times n. Indeed, in most cases Local-SCS didn’t

�nd a solution.

6.3 Practical use cases

We discuss two practical use cases for discovering interesting cycles:

food trajectories and �nancial trade data.
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Figure 8: Average running time of Local-SCS on real-world datasets.

6.3.1 Food Web dataset. �e Florida Bay Food Web dataset [23]

contains information about carbon exchange between species in the

Florida Bay Area. �e dataset consists of 128 species and 2106 edges.

An edge weight is a snapshot of the amount of biomass transferred

between the species within a �xed period of time. Besides a wide

variety of organisms, ranging from microorganisms to sharks, it

also contains special nodes such as “input”, “output” or “particulate

organic carbon (POC)”. �e extinction of certain species could have

a severe impact on the diet of the other organisms in the food chain,

possibly leading to a sensitive cascading e�ect. �us, in a food

web, we consider cycles as interesting based on their vulnerability

to extinction. Using the biomass edge weights, we �t a geometric

background distribution on the network. Given such a model, an

edge (a,b) is usually more informative if the weight of the edge is

either a large part of the total incoming weight of node b, or a large

part of the outgoing weight of node a (or both).

Figure 9(a)-(c) shows the top 3 results a�er iteratively mining

the most interesting cycles using the MMC algorithm. A�er a

cycle is shown to the user, all edges in the cycle are known to the

user, hence, convey zero information. �is amounts to se�ing the

information content of those edges equal to zero, a�er which the

algorithm can be applied again. �e top 3 resulting cycles all contain

edges that are quite vulnerable to extinction. For e.g., the diet of

the “File�shes” consists of 47% of “Echinoderma”, a fungus species,

which means that a disease in the population of “Echinoderma’

will most likely have a signi�cant impact on the population of

“File�shes”. �is fraction is quite high compared to the expected

fraction on an edge being 6% in the network. Note that the top 2

cycles are cannibalism cycles: it contains a predatory subspecies

eating its own kind. Figure 9(d) shows the results when we query

a cycle containing both “Snook” and “Crocodile”, for q = 0.1 and

lmax = 6. �is cycle also contains a link between the “Omnivorous

Crab” and the “Atlantic Blue Crab”, a highly interesting connection

that was also found in Figure 9(a).

6.3.2 Trade dataset. To see the in�uence of a prior belief model

on the resulting cycles, we look at the trading volumes between

countries in 2018. We set lmax = 6, q = 0.01, and used 10 iterations

of Local-SCS. First, we �t a geometric model with the weighted

in- and outdegree of each node as a prior. Figure 10a shows the

most interesting cycle in the graph: a 2-cycle between the U.S. and

the Dominican Republic. As discussed in Section 2.4, these edges

are indeed very interesting: the Dominican Republic is extremely

economically-dependent on the U.S. in terms of import and export.

However, the converse is not true.

Figure 10b shows the most interesting cycle when we take the

bilateral trade agreement between the U.S. and Dominican Republic

into account as a prior belief. Since these edges are now more

expected, they become less interesting. �e new most interesting

cycle is another 2-cycle, between China and Sudan. Again, a small

country that is economically-dependent on a bigger country. Fig-

ure 10c shows the result when we query both Iran and the U.S., two

countries not expected to be in a direct trade relationship because

of the U.S. trade embargo on Iran. �is cycle now contains China

as an export country for Iran and China linking back to the U.S.

Figure 10d shows the result when we take the trade relationships

between the U.S. and China into account as well. �e direct edge is

now expected, and the resulting heuristic takes this into account by

placing an intermediate country in between, Nicaragua. Nicaragua

heavily depends on China for its import, and the U.S. for its export,

thus making these connections interesting.

7 RELATEDWORK

Discovering cyclic pa�erns in graphs has not received much a�en-

tion in the data-mining community. Giscard et al. [10] evaluate the

balance of a signed social network by �nding simple cycles. Kumar

and Calders [15] propose an algorithm for enumerating all sim-

ple cycles in a directed temporal network, by extending Johnson’s

algorithm [12] to a temporal se�ing. Building on the subjective

interestingness framework, Leeuwen et al. [17] studied the prob-

lem of subjectively interesting dense subgraphs, and Adriaens et al.

[1] studied subjectively interesting Steiner trees and forests. We

discuss algorithmically relevant work in Section 5.

8 CONCLUSIONS & FURTHER CHALLENGES

We introduced the problem of discovering interesting cycles in

directed graphs, by formally de�ning the problem of �nding the

maximum subjectively interesting (Steiner) cycle. Our work opens

interesting directions for future research. First, it is worth to con-

sider the usefulness of a non-simple cycle (a so-called tour) as a

data-mining pa�ern. Second, extending our results to undirected

graphs is non-trivial. Karp’s algorithm does not apply, and more

general algorithms for minimum ratio problems have to be consid-

ered.

9



Atlantic

Blue Crab

Omnivorous

Crabs

Benthic

POC

67%¡1%

35%

Benthic

POC

Detritivorous

Amphipods

Other

Cnidaridae

Echinoderma

File�shes

Water POC Bivalves

Rays

27%

23%

6%

47%

¡1%

20%

37%

¡1%

Predatory

Gastropods

Detritivorous

Gastropods
Benthic

POC

52%¡1%

47%

Snook

Crocodile

Water POC

Bivalves

Omnivorous Crabs

Atlantic

Blue Crab

3%

¡1%
¡1%

20%

5% 67%

(a) (b) (c) (d)

Figure 9: (a)-(c): �e top 3 results from iteratively mining the most interesting cycles in the Food Web dataset. �e percentages next to each
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Figure 10: �e % outside the circle denotes the weight of an edge

(u, v), relative to the total export of u . �e % inside the circle the

denotes the weight relative to the total import of v . �e most inter-

esting cycles: (a) with a prior onweighted in- and out-degree of each

country (b) with a prior on the trading volume betweenUS andDom.

Rep. (c) with Iran and US as query nodes, with a prior on weighted

in- and out-degrees of each country (d) Iran and US as query nodes,

with a prior on trading volume between US and China.
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