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ABSTRACT
Recommendation systems have been widely applied to many E-
commerce and online social media platforms. Recently, sequential
item recommendation, especially session-based recommendation,
has aroused wide research interests. However, existing sequential
recommendation approaches either ignore the historical sessions or
consider all historical sessions without any distinction that whether
the historical sessions are relevant or not to the current session,
which motivates us to distinguish the effect of each historical ses-
sion and identify relevant historical sessions for recommendation.

In light of this, we propose a novel deep learning based sequen-
tial recommender framework for session-based recommendation,
which takes Nonlocal Neural Network and Recurrent Neural Net-
work as themain building blocks. Specifically, we design a two-layer
nonlocal architecture to identify historical sessions that are rele-
vant to the current session and learn the long-term user preferences
mostly from these relevant sessions. Besides, we also design a gated
recurrent unit (GRU) enhanced by the nonlocal structure to learn
the short-term user preferences from the current session. Finally,
we propose a novel approach to integrate both long-term and short-
term user preferences in a unified way to facilitate training the
whole recommender model in an end-to-end manner. We conduct
extensive experiments on two widely used real-world datasets, and
the experimental results show that our model achieves significant
improvements over the state-of-the-art methods.
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1 INTRODUCTION
Recommendation systems have become an essential component in
many E-commerce or social networking websites. There are two
main types of recommendation systems: general recommenders
and sequential recommenders. General recommenders like MF [22]
and BPR [29] focus on modelling static user-item interactions. For
instance, when a user living in NewYork travels to Hawaii for a
holiday, general recommenders may still recommend points of in-
terest (POIs) located in NewYork since they are unable to capture
the dynamics of user preferences [39, 44]. As user’s interactions
with items can be viewed as a long sequence, sequential recom-
menders (e.g., Fossil [12], FPMC [30], CASER [34], RUM [5]) are
proposed to exploit the sequential patterns or sequential dependen-
cies of user-item interactions. The sequential recommenders can
be further divided into two categories: traditional Markov chain
based approaches (e.g, Fossil [12], FPMC [30]) and deep learning
based approaches (e.g., CASER [34], RUM [5]). The sequence can
be further partitioned into sessions where each session contains
a set of interactions that occur within a given time window. Re-
cently, session-based recommendation systems (SRS), as a subtask
of sequential recommenders, have emerged and attracted much
attention from both academia and industry [16, 23, 24, 26, 43, 45].

The key task in SRS is to predict the next item for a given user
based on the user’s current ongoing session. Due to the nature
of SRS, i.e., assuming strong correlations among items within a
session, most existing approaches on SRS, such as GRU4Rec [16],
NARM [23], ATEM [38] and STAMP [26], only consider the current
session and treat it as a short sequence. Theymainly adopt recurrent
neural network (RNN) or its variants and attention mechanism to
characterize short-term user preferences. An obvious drawback
of these methods is that they ignore long-term user preferences,
i.e., the effect of historical sessions on the current session. On the
other hand, some more recent works [24, 28, 45] try to exploit long-
term user preferences to improve the performance of sequential
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Figure 1: The difference between our model and the exist-
ing two types of methods. (a): Methods that do not distin-
guish long-term and short-term user preferences. (b): Meth-
ods that distinguish long-term and short-term user prefer-
ences, but do not identify relevant long-term user prefer-
ences. (c): Our method not only distinguishes long-term and
short-term user preferences, but also identifies long-term
user preferences relevant to the current session.

recommender systems. For example, SHAN [45] employs attention
mechanism to learn an itemweight vector for each user to represent
personal long-term interests. BINN [24] models long-term user
preferences by applying bi-directional LSTMs (Bi-LSTMs) to the
whole historical interaction sequences. However, all these methods
either assume all historical sessions are equally important without
considering what users really need in the current session, or do not
consider the session-based setting, i.e., they do not partition the
long sequence into sessions at all. In light of this, we propose a novel
deep learning-based approach to exploit and integrate both short-
term user preferences and relevant long-term user preferences for
session-based recommendation. Figure 1 summarizes the difference
between our model and the existing two types of methods.

In our proposed session-based recommender, there are three
deep neural network based components to learn relevant long-term
user preferences from historical sessions, learn short-term user
preferences from the current session, and fuse these two types of
user preferences, respectively. Specifically, we design a two-layer
nonlocal architecture [41] to learn long-term user preferences from
relevant historical sessions, inspired by the observation that ses-
sions in the sequence are correlated, and different historical sessions
have distinct effect on the short-term user preferences in the current
session. For example, assuming a user’s goal in the current session
is mainly on purchasing computer accessories, it would be more
helpful to exploit the user’s preferences on computer brands from
her/his previous relevant sessions, e.g., she/he prefers MacBook to
Dell. In such a case, this user’s sessions on purchasing clothes could
be neglected. In addition to the nonlocal architecture for finding
relevant historical sessions, we also integrate the nonlocal struc-
ture with a gated recurrent unit (GRU) to learn short-term user
preferences with subtle sequential and non-consecutive patterns
from the current session. Finally, we propose a novel approach
to integrate both long-term and short-term user preferences in a
unified way to facilitate training the whole recommender model
in an end-to-end manner. We conduct extensive experiments on
two publicly available real-world recommendation datasets, and

the experimental results show that our model achieves significant
improvements over the state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, we
review the related work. In Section 3, we present our proposed
model. In Section 4, we show the experimental evaluation. We
conclude the paper in Section 5.

2 RELATEDWORK
In this session, we summarize the related research background, in-
cluding the conventional recommendation systems, deep learning-
based recommendation systems, and session-based recommenda-
tion systems.

2.1 Conventional Recommendation Systems
Conventional recommendation systems can be categorized into
two types: general recommenders and sequential recommenders.

The general recommenders, represented by the classic collabora-
tive filtering (CF) technique [15], aims to explore the entire purchase
history of users to build their general static interests. Specifically,
matrix factorization [22] is the most popular method along this
line due to its strong power of reconstructing the user-item matrix.
Following the success of MF, many optimized methods such as
BPR [29], SVD [8], WRMF [31], SVD++ [21], eALS [14] have been
introduced into this field. The general recommenders mainly focus
on the stability of users’ preferences and ignore the dynamics and
evolutions of users’ interests.

The second type leverages users’ historical records in a sequen-
tial manner to model the dynamics and evolutions of users’ pref-
erences. The main task is to predict the next item. Instead of us-
ing a common matrix in MF, the classic sequential recommender
method FPMC [30] builds a personal transition matrix for each
user by integrating Markov chain into MF. Besides dynamic in-
terests, other studies take users’ general tastes into account. For
example, HRM [37] builds a two-layer aggregation structure to
combine users’ general preferences and their sequential behavior
in a nonlinear way. Similarly, SPORE [40] proposes a novel latent
variable topic model to fuse sequential influence with personal
interests. Fossil [12] models users’ long and short-term preferences
by extending Markov chain with similarity-based methods.

2.2 Deep Learning-based Recommendation
Systems

Deep learning has become pervasive in recommendation systems
in recent years. In general recommenders, impressive progress has
beenmade by incorporating deep neural networks [4, 6, 9, 13, 35, 42].
NeuMF [13] models latent features of users and items in a high level
of non-linearities by jointly learning a matrix factorization and a
multi-layer neural network. Based on NeuMF [13], DELF [6] is pro-
posed by constructing an additional item/user-based embedding for
each item/user before neural interaction layers. LRML [35] adopts
an attentive memory module to generate latent relation vectors
which can improve the interpretability of users’ interactions.

Various deep neural networks like recurrent neural networks
(RNNs) have been applied to sequential recommenders to character-
ize the temporal dependency [2, 5, 19, 25, 27, 34, 46]. DREAM [46]
puts users’ transaction sequences into a single RNN layer and treats
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the hidden states as the current preferences. CA-RNN [25] im-
ports the adaptive context-specific inputs and transition matrices
to model current contextual information. RUM [5] and KSR [19]
maintain an external memory matrix for each user to store histori-
cal hidden states by reading and updating the matrix. CASER [34]
adopts a convolutional neural network (CNN) to capture union-
level and point-level patterns, as well as the skip behaviors.

2.3 Session-Based Recommendation Systems
Session-based recommendation [10, 16, 28] is one kind of emerg-
ing recommenders. Considering a session as a short sequence,
the deep neural networks used in sequential recommenders can
also be employed in session-based recommenders. For example,
GRU4Rec [16] makes use of GRU (a variant of RNN) to model se-
quential patterns within a short time frame. NARM [23], ATEM [38]
and STAMP [26] adopt attention mechanisms to emphasize the
main intentions in current session. Following this line of work, a
number of optimized methods have been introduced. For example,
the basic GRU4Rec [16] method is later improved by incorporating
side information such as dwell time [3] and items’ features [17].
Techniques including data augmentation, model pre-training, and
distillation [32] are introduced to enhance the RNN based model.
A significant improvement is made in [20] by using a weighted
combination of GRU4Rec [16] and kNN methods.

The aforementioned models ignore users’ long-term preferences.
To tackle this problem, several methods consider both short and
long-term interests. For example, HRNN [28] adds an additional
user-GRU based on GRU4Rec [16] to propagate information across
sessions, thus tracking the evolution of users’ long-term interests.
SHAN [45] models users’ evolving general tastes with a hierar-
chical attention network, while BINN [24] applies a Bi-LSTM on
users’ entire historical interaction sequences to generate vector
representations of static preferences.

While HRNN [28], SHAN [45], and BINN [24] show improve-
ments over previousmethods, they neglect the relationship between
users’ current session and previous sessions when extracting gen-
eral interests from historical interactions. In contrast, our proposed
model can identify the relevant sessions from the history. Further-
more, ourmodel well exploits both long- and short-term preferences
to improve the performance of next-item recommendation.

3 THE PROPOSED MODEL
In this section, we first formulate the session-based next-item rec-
ommendation problem, and then introduce the details of our model.

3.1 Preliminaries
3.1.1 Problem Definition. LetU and I be the user and item set,

respectively. Each user u ∈ U has a session sequence denoted as
S = {S1, S2, ..., Sn }, where n is the index for the current session.
Form = 1, 2, ...,n, each session Sm ∈ S consists of a sequence of
items i ∈ I clicked or visited by the user, i.e., Sm =

{
i1, i2, ..., i |Sm |

}
.

The session-based next-item recommendation problem is defined
as: for a target user u ∈ U , within the user’s current session Sn =
{i1, i2, ..., it−1} where it−1 is the most recent item u has interacted
with, given a historical session sequence {S1, S2, ..., Sn−1} of u, the

task is to predict the next item it ∈ I that u is most likely to access
at the next time step t in the present session Sn .

3.1.2 Nonlocal Neural Network. The basic idea of nonlocal op-
eration [41] is to represent each position of the input signal (image,
sequence, or video) by a weighted sum of the features at all posi-
tions such that long-range dependencies can be taken into account.
Taking a real-valued feature sequence X = {x1,x2, ...x |X |} as an
example, each position xi ∈ X of the sequence is encoded as yi ∈ Y
(|X | = |Y |) by:

yi =
1

C(X )

∑
∀j

f (xi ,xj )д(xj ), (1)

whereC(X ) =
∑
∀j f (xi ,xj ) is the normalization factor, and j is the

index that enumerates all positions of the input x, andд(·) computes
the latent representation for xj . The pairwise function f (·) is used
to calculate a scalar (representing the similarity) between xi and
xj . We will detail our design of д(·) and f (·) for session-based
recommendation in the following sections.

3.2 Model Overview
In this paper, we propose a novel sequential recommender for
session-based next-item recommendation by considering both users’
short-term and long-term preferences. The architecture of our
model is shown in Figure 2. Our model contains three key com-
ponents: long-term preference modelling, short-term preference
modelling, and personalized representation integration. Specifically,
to capture users’ long-term preferences, we design a two-layer non-
local neural network which learns representations from historical
sessions relevant to the current session and the most recently vis-
ited item. To model users’ short-term preferences, we present a
hybrid structure containing a GRU and a nonlocal neural network
to model users’ present intentions from the current session. Fi-
nally, for each user, we integrate the user’s long- and short-term
preference representations in a personalized way based on her/his
interaction history to estimate the next item to recommend.

3.3 Long-Term Preference Modelling
A user’s click or check-in history contains rich information about
the user’s interests, and each session can be regarded as a short clip
of the user’s long-term interaction history. When recommending
an item within a certain session, though the limited information
from a single session can hardly indicate a user’s long-term pref-
erences, the historical sessions related to the present session can
offer substantial signals that lead to the user’s final decision. Hence,
a smart recommender should be capable of learning to selectively
gather the most useful information from the history to infer each
user’s long-term preferences.

To this end, we propose a two-layer nonlocal neural network
to lay more emphasis on the influence of relevant sessions and
weaken that of irrelevant ones. As demonstrated in Figure 2, for a
session sequence of length n, the first layer learns a session-level
long-term representation s∗n indicating a user’s general preference.
Then, by leveraging the information of the most recent item visited
by the user, the second layer further refines s∗n into s+n , which is the
fine-grained long-term representation containing both item-level
and session-level information.
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Figure 2: The architecture of our model.

First, to model the long-term preferences concealed in the ses-
sion sequence, for each user, our two-layer nonlocal neural network
takes a sequence of vectors {s1, s2, ..., sn } representing n different
sessions as inputs. For session Sm ∈ S containing |Sm | items, we cal-
culate its session-level representation sm using the average pooling
as follows:

sm =
1

|Sm |

|Sm |∑
t=1

xt , (2)

where xt ∈ Rd×1 is thed-dimensional embedding vector for the t-th
item in session Sm . All embeddings will be randomly initialized and
then trained in the network. By applying average pooling on item
representations, we can now represent the user’s current session as
sn while the historical session sequence as {s1, s2, ..., sn−1}. Note
that we represent session Sm ∈ S with one synergic vector sm
instead of all the items’ vector representations in this session. This
is because sm encodes the second-order interactions between item
features in the embedding space, thus being more representative of
a user’s session-level interest within a particular session.

Then, to derive the long-term user preference s∗n ∈ Rd×1 from
relevant historical sessions, we perform the nonlocal operation in
Eq. 1 on all session representations. The intuition is that identifying
the connection between a user’s past session-level preferences and
the current one can help the model better summarize the user’s
preference in the long run. In other words, the representation of the
current session is a weighted average over all historical sessions,
and we reformulate Eq. 1 as the following:

s∗n =
1∑n−1

j=1 f (sn , sj )

n−1∑
j=1

f (sn , sj )д(sj ), (3)

where sj ∈ Rd×1 denotes the representation of a historical session
Sj , and 1∑n−1

j=1 f (sn,sj )
is the normalization term.

The design of д(·) and f (·) is task-oriented. In our model, we
respectively define the similarity function f (·) and the session
feature generator д(·) as:

f (sn , sj ) = e(Wθ sj )TWϕ sn , (4)

д(sj ) =Wдsj , (5)

where Wθ ∈ Rd×d and Wϕ ∈ Rd×d are weight matrices to be
learned, while the learnable weight matrix Wд ∈ Rd×d projects sj
into a new embedding space. The rationale behind Eq. 4 is twofold.
On one hand, for a givenn, each 1∑n−1

j=1 f (sn,sj )
f (sn , sj ) is equal to the

widely used so f tmax function along dimension j which supports
the efficient computation of derivatives. On the other hand, with
j ≤ n−1, so f tmax((Wθ sj )TWϕsn ) serves the same purpose as the
self-attention in [36], allowing the model to attend to information
from different representation subspaces in different sessions, and
assign more weights to the relevant sessions.

Besides the long-term preferences s∗n learned from session-level
representations, we argue that the target user’s most recent check-
in item tend to have the strongest impact on the user’s next activity.
For instance, in the scenario of POI recommendation, a user is likely
to visit a POI in Hawaii given that her/his latest check-in is there.
Inspired by the success of deep memory network [33], we design
the second layer to look back and reconsider the historical sessions
from both item and session perspectives in order to generate a more
comprehensive representation s+n ∈ Rd×1. So, similar to the com-
putation in Eq. 3, we derive the fine-grained, long-term preference
representation s+n using another nonlocal operation:

s+n =
1∑n−1

j=1 f ′(s̃∗n , sj )

n−1∑
j=1

f ′(s̃∗n , sj )д
′(sj ), (6)

where s̃∗n is the element-wise sum of s∗n and the embedding of the
last check-in item xt−1:

s̃∗n = s∗n + xt−1, (7)

and:

f ′(s̃∗n , sj ) = e(Wθ ′sj )TWϕ′ s̃∗n , (8)

д′(sj ) =Wд′sj (9)

whereWд′ ,Wθ ′ ,Wϕ′ ∈ Rd×d are trainableweightmatrices. Clearly,
the final output s+n denotes the user’s long-term preference repre-
sentation which not only captures historical sessions’ relation with
the current session, but also uncovers how relevant each previous
session is to the last visited item.
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3.4 Short-Term Preference Modelling
Due to the power of modelling sequential patterns, RNN structures
like GRU and LSTM have been widely applied to sequential rec-
ommendation systems. However, the drawback of most RNNs is
that they can only model local sequential patterns from short and
consecutive input segments. Furthermore, in session-based recom-
mendation, users might buy relevant items in a non-consecutive
manner. For example, although a user’s main purpose in a session
is making a cake, she/he might buy flour at the first place, and then
turn to other groceries before purchasing butter and sugar.

As a result, to extract users’ short-term preference from the cur-
rent session, we propose a unified network which can learn both
local and nonlocal patterns. The short-term preference modelling
is carried out via a RNN and a nonlocal neural network in paral-
lel. Given a sequence of item embeddings {x1,x2, ...,xt−1} of the
current session Sn , we firstly leverage the advantage of learning
sequential representations from RNN. A gated recurrent unit (GRU)
network architecture is adopted to locally model the sequential
item features:

h̃t−1 = GRU (xt−1, h̃t−2), (10)
where GRU (·) is the GRU network, and h̃t−1 ∈ Rd×1 is the hidden
state corresponding to the input at time t − 1. Due to the tendency
of RNNs to better represent recent inputs [1], the hidden state h̃t−1
will be focused on the inputs close to xt−1, thus being a local feature
of user preference at time t − 1. Note that the choice of RNNs can
be diverse (e.g., LSTM is also applicable), but we choose GRU in
our paper because a GRU network is easier to train as it has higher
learning efficiency and less model parameters [3, 16] compared
with LSTM.

At the same time, with the item embedding sequence of the cur-
rent session {x1,x2, ...,xt−1}, we derive a nonlocal representation
x̃t−1 of the last item in session Sn . This is achieved by aggregating
information from relevant items in the same session via the follow-
ing nonlocal neural network for short-term preference modelling:

x̃t−1 =
1∑t−2

j=1 fx (xt−1,xj )

t−2∑
j=1

fx (xt−1,xj )дx (xj ), (11)

fx (xt−1,xj ) = e(Wθx xj )
TWϕx xt−1 , (12)

дx (xj ) =Wдx xj , (13)

with weight matrices Wдx ,Wθx ,Wϕx ∈ Rd×d to learn. The rep-
resentation of the last item x̃t−1 is a weighted average of all its
previous items based on their relevance in the same session, hence
it is a nonlocal summarization of a user’s short-term preference in
the current session Sn . At last, we formulate the final short-term
preference representation ht−1 as the element-wise aggregation of
both the nonlocal and local preference vectors, x̃t−1 and h̃t−1:

ht−1 = x̃t−1 + h̃t−1. (14)

3.5 Personalized Integration and Prediction
3.5.1 Personalized Integration. Different users have varied in-

terests on different items, and such diversity becomes even stronger
when users tend to act differently at different stages (i.e., sessions).
Hence, instead of treating every user’s preference uniformly, we in-
tegrate the long-term and short-term preferences in a personalized

way for the final prediction. First, for each user, we collect all the
interacted items from her/his historical sessions {S1, S2, ..., Sn−1},
denoted by Ih = {{i |i ∈ S1}, {i |i ∈ S2}, ..., {i |i ∈ Sn−1}}. Then,
we represent these items with their embedding vectors, i.e., Ih =
{x1,x2, ...,x |Ih |}. Similarly, all t − 1 items in the current session
are represented as Ic = {x1,x2, ...,xt−1}. Based on the features of
interacted items Ih and Ic , we generate this user’s historical repre-
sentation mh

t−1 ∈ Rd×1 and current representation mc
t−1 ∈ Rd×1

at time t − 1 via average pooling:

mh
t−1 =

1
|Ih |

|Ih |∑
j=1

xj , (15)

mc
t−1 =

1
|Ic |

|I c |∑
j=1

xj . (16)

Next, we linearly combine the user’s historical and current repre-
sentation to obtain this user’s overall representation mu

t−1 ∈ Rd×1:

mu
t−1 = λmh

t−1 + (1 − λ)mc
t−1, (17)

where λ is a hyper-parameter used to balance the impacts of his-
torical and current representations. Here,mu

t−1 carries the user’s
general item-level demand extracted from the items in both his-
torical and current sessions. Finally, for user u, we calculate the
personalized user preference ut−1 ∈ Rd×1 by fusing mu

t−1 with
both long- and short-term preference representations:

ut−1 =
1
2

(
Wh (m

u
t−1 ⊕ s+n ) +Wc (mu

t−1 ⊕ ht−1)
)
, (18)

where ⊕ is the concatenation of two vectors, Wh ∈ Rd×2d and
Wc ∈ Rd×2d are the trainable weight matrices. Intuitively, ut−1
represents the user’s current personal interest by looking at her/his
long- and short-term preferences as well as each individual item
she/he has ever interacted with.

3.5.2 Prediction. In our paper, we treat the next-item recom-
mendation as a classification task with the same problem setting
as [23, 26]. With the user’s representation ut−1, a so f tmax layer
is employed to calculate vector p, a |I |-dimensional probability
distribution over all items at time t :

p = so f tmax(Wiut−1) (19)

where Wi ∈ R |I |×d is the weight for all items. A larger pk ∈ p
means user u is more likely to interact with item ik ∈ I at time t .

For model training, we adopt the cross-entropy loss over all
training samples. Because the actual probability is 1 for ground
truth item and 0 otherwise, the loss function can be simplified as:

L = −

L∑
l

loд(pд,l ), (20)

where l and L are respectively the index and total number of training
samples, д is the index of ground truth item for the l-th training
sample. As an end-to-end model, stochastic Gradient Descent (SGD)
based algorithms can be easily applied to optimize its parameters.

4 EXPERIMENT
In this section, we conduct extensive experiments on two real-world
datasets to evaluate the performance of our model.
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Table 1: Statistics of datasets in use.

Statistic Tmall Gowalla
#user 36,595 14,898
#item 26,576 15,291

avg. session length 2.903 3.267
#train session 105,560 166,683
#test session 35,613 14,892

4.1 Evaluation Datasets
We choose two public datasets, namely Tmall and Gowalla. Both of
them are widely used in previous works [18, 34, 45].

• Tmall: This is an E-commerce dataset collected from the
largest online shopping platformwww .tmall .com in China.
It provides more than 50 million interactions of 424,170 users
on 1,090,390 itemswithin six months. Additional information
including action type and session id is also released. There
are four kinds of activities: click, collect, add-to-cart and
purchase. Following the settings in [18, 34, 45], we only use
the purchase activities in our experiments.

• Gowalla: This is a check-in dataset [7] collected from the
location-based social network Gowalla from February 2009
to October 2010. The total number of check-ins in this dataset
is 6,442,890. Every record in the data consists of user id,
timestamp, GPS location and POI id.

We preprocess the datasets following the criteria in [18, 45]. First,
we filter out items which have been observed by less than 20 users.
Then, we treat each user’s transactions or check-ins in one day as
a session and remove sessions having less than two interactions.
Similar to [11, 19], each user’s most recent session is held out for
validation and test, while the historical ones are for training. In
each most recent session, the last item is selected as the ground
truth for test, and the second last item is used for validation. Table 1
lists the major statistics of both datasets after preprocessing.

4.2 Baseline Methods
We compare our method with the following baselines for evaluation:

• POP: This is a naive baseline that ranks items for recom-
mendation according to their occurrence frequency.

• Fossil [12]: This method models users’ long- and short-
term preferences by fusing Markov chains with similarity
methods to make personalized sequential recommendation.

• GRU4Rec [16]: This is the first session-based recommenda-
tion method. It views each session as a short sequence and
employs GRU to capture users’ short-term preferences.

• NARM[23]:This is a session-based recommendationmethod
which introduces an attentionmechanism tomodel the user’s
main purpose in the current session. Note that this method
does not take user’s long-term preference into consideration.

• STAMP [26]: This method proposes to make use of user’s
short-term and long-term preferences. Different from ours,
STAMP extracts those two preferences from the same current
session while we model them from the user’s whole history.

• HRNN [28]: This method applies a hierarchical RNN for per-
sonalized cross-session recommendation based onGRU4Rec [16].
It designs an additional user-GRU to propagate information
from the previous user session to the next one.

• SHAN [45]: This is the state-of-the-art method in session-
based next-item recommendation. It combines users’ long-
term representation learned from past items with embed-
dings of current items to form a hybrid user representation.

• BINN [24]: This is the other state-of-the-art approach. It ap-
plies a Bi-LSTM structure to the whole historical interaction
sequence and generates the unified long-term preference
representation with the output hidden states.

Furthermore, in order to verify the performance gain from each
key component of our proposed model, we further implement three
variants of our model by removing one component each time:

• Remove-LT:We remove the two-layer nonlocal neural net-
work module for long-term preference modelling.

• Remove-ST:We remove the parallel GRU and nonlocal neu-
ral network module for short-term preference modelling.

• Remove-PI: We remove the personalized integration mod-
ule and simply average long- and short-term preference vec-
tors to generate the final user preference representation.

4.3 Evaluation Metrics and Experimental Setup
4.3.1 Evaluation Metrics. To evaluate the recommendation per-

formance of all models, we employ two widely-used evaluation
metrics, namely Recall@N andMRR.

• Recall@K: This metric [24, 45] measures the proportion
of cases where the ground truth items have been correctly
ranked in top-K items in all test cases. It is defined as:

Recall@K =
#hit
Ntest

, (21)

where Ntest and #hit respectively denotes the size of test
set and the number of cases where the desired items appear
in top-K ranking lists. It is worth mentioning that we adopt
K = 10 and K = 20 which are the widely-used settings.

• MRR: This metric [24, 26] measures the mean reciprocal
rank of the ground truth item. It is defined as:

MRR =
1

Ntest

Ntest∑
n′=1

1
Rank(iд,n′)

, (22)

where Rank(iд,n′) is the rank of the ground truth item iд in
the n′-th test session.

Note that both metrics are in the range of [0, 1], and a higher value
indicates better performance.

4.3.2 Experimental Setup. For a fair comparison, we follow the
reported optimal parameters and training settings to achieve the
baselines’ best performance. For our model, we adopt grid search
to select the optimal hyperparameters. Specifically, the dimension
d is set to 256 for all hidden states and embeddings, and λ is re-
spectively set to 0.1 and 0.7 for Tmall and Gowalla dataset. To train
our model, we use the learning rate of 0.001. Note that we iterate
our model and all the comparison methods for 15 training epochs
which ensures that all model losses can converge. Note that all the
reported differences between our model and others are statistically
significant (p < 0.01).
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Table 2: Performance on session-based next-item recom-
mendation. The best result in each column is marked in
boldface wile the second best is underlined.

Method Tmall Gowalla
Rec@10 Rec@20 MRR Rec@10 Rec@20 MRR

POP 0.0213 0.0339 0.0085 0.0424 0.0638 0.0155
Fossil 0.1251 0.1523 0.0647 0.0894 0.1189 0.0342
HRNN 0.5200 0.5520 0.3973 0.1615 0.2015 0.0853

GRU4Rec 0.5736 0.6014 0.4601 0.3183 0.3820 0.1889
NARM 0.6117 0.6450 0.4683 0.3607 0.4441 0.2003
STAMP 0.6112 0.6442 0.4643 0.3395 0.4189 0.1805
SHAN 0.5834 0.6123 0.4409 0.3421 0.4214 0.1942
BINN 0.5312 0.5775 0.3896 0.3679 0.4549 0.2146
Ours 0.6228 0.6530 0.4757 0.3954 0.4844 0.2301

4.4 Performance Comparison
We compare the full version of our model with all baseline methods,
and the results on two datasets are illustrated in Table 2. From the
recommendation results, we draw the following observations:

(1) The performance of our model shows obvious superiority on
Tmall dataset, especially in Recall@10, which indicates our
model can accurately rank the ground truth item in the top
10 candidates. On Tmall dataset, it is also worth noting that
NARM and STAMP outperform SHAN and BINN while only
taking the short-term preference into account. Different from
Gowalla dataset, Tmall is an E-commerce dataset collected from
an online shopping platform, which means that a user’s next
decision can be largely influenced by her/his last several check-
in items within the same session. Thus, the user’s short-term
preference is more important than long-term preference on
the Tmall dataset. On the contrary, NARM and STAMP per-
form worse than BINN on Gowalla dataset due to the lack of
long-term preferences. Meanwhile, our model still outperforms
all the baselines, showing the benefit of leveraging all useful
information from both long- and short-term perspectives.

(2) On Gowalla dataset, our model outperforms all the baselines in
terms of Recall@10, Recall@20 andMRR by a significant mar-
gin. Our model achieves a 7.4% and 7.2% improvement against
the best competitor BINN regardingRecall@10 andMRR scores,
respectively. Although both SHAN and BINN take the users’
long-term preferences into account, our model’s consistent
advantage against SHAN and BINN clearly demonstrates the
benefits from modelling long-term preferences by focusing on
the most relevant historical sessions.

(3) The second best performance on Gowalla is produced by BINN
which takes the user’s long-term preference into consideration.
One main reason is that users’ check-ins within successive ses-
sions tend to be continuous due to the geographical restriction.
However, BINN experiences an obvious performance drop on
Tmall. This phenomenon is probably due to the fact that the
correlations between successive sessions are weak on Tmall
dataset. In such circumstances, it is no longer appropriate for
BINN to consider the whole historical purchase actions as a con-
tinuous sequence. In contrast, our model uncovers the subtle
correlations among different sessions by modelling users’ pref-
erences in a nonlocal manner, thus being able to suit different
recommendation scenarios.

(4) Though HRNN can be viewed as an extension of GRU4Rec,
it shows worse recommendation performance than GRU4Rec
on both datasets. Compared with HRNN, the performance of
GRU4Rec is slightly more promising on two datasets, and there
are mainly two reasons. On one hand, a user’s short-term pref-
erences can exert a strong influence on her/his next decisions,
and GRU has the powerful ability to model short-term sequen-
tial patterns. At the same time, as HRNN simply combines the
current item with personal information, it may introduce noise
to the GRU’s input, which weakens its capability of modelling
short-term user preferences.

4.5 Impact of Different User History Lengths
In this section, we investigate the impact of different user his-
tory lengths on the recommendation outcomes. We split the users’
sessions into 8 groups based on their numbers of historical ses-
sions. The first group contains users with history length of 2, while
users having 8 or more historical sessions are in the last group. We
then evaluate the performance separately with each data group as
the model input. To benchmark our model’s sensitivity to history
lengths, we also show the results of SHAN on Tmall and BINN on
Gowalla. We choose BINN on Gowalla because it is the best baseline
on this dataset. Note that on Tmall, we choose the third-best SHAN
instead of the best two (i.e., NARM and STAMP) because NARM and
STAMP only takes the items in the current session rather than the
full history as input, and these two methods do not fit the setting
of this case study.

We use Figure 3 to show the results in terms of Recall@10 and
MRR. Clearly, our model consistently and significantly outperforms
the compared methods on both Tmall and Gowalla datasets in most
cases. On Tmall dataset, both Recall@10 andMRR decrease when
the historical session length is increasing. A reasonable explanation
is that, for Tmall dataset, the short-term preferences have larger
impacts on users’ next purchase decisions than the long-term pref-
erences. Nevertheless, the advantages of our method against SHAN
confirm that extracting users’ long-term preferences related to cur-
rent interests has positive effects on the recommendation results.

Meanwhile, different from the Tmall dataset, both Recall@10
andMRR on Gowalla gradually increase while the historical session
length is growing. This can be caused by the fact that people are
more likely to visit POIs near her/his familiar activity areas, which
are reflected by the long-term preferences in our case. It is also
notable that on either dataset, our model shows more significant
improvements when tackling short history lengths. This further
demonstrates our model’s effectiveness of learning the fine-grained
user preferences, especially when facing the lack of sufficient trans-
action data for user preference modelling.

4.6 Analysis on Different Model Components
As mentioned in Section 4.2, we also verify the contribution of each
proposed component for session-based recommendation. To quan-
tify the performance gain achieved from different components, we
implement three degraded versions of our model, namely Remove-
LT, Remove-ST and Remove-PI for ablation tests. We show the
results of ablation tests on both Tmall and Gowalla in Table 3.
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(a) Recall@10 on Tmall (b) Recall@20 on Tmall (c) MRR on Tmall

(d) Recall@10 on Gowalla (e) Recall@20 on Gowalla (f) MRR on Gowalla
Figure 3: Results w.r.t. different history lengths.

Table 3: Results of ablation tests. We use ‘Default’ to denote
the full version of our proposed model.

Dataset Method Rec@10 Rec@20 MRR

Tmall

Default 0.6228 0.6530 0.4757
Remove-LT 0.5827↓ 0.6099↓ 0.4704↓
Remove-ST 0.5858↓ 0.6135↓ 0.4711↓
Remove-PI 0.5768↓ 0.6116↓ 0.4362↓

Gowalla

Default 0.3954 0.4844 0.2301
Remove-LT 0.3618↓ 0.4470↓ 0.2178↓
Remove-ST 0.3813↓ 0.4666↓ 0.2252↓
Remove-PI 0.3404↓ 0.4255↓ 0.1802↓

4.6.1 The Long-Term Preference Modelling Module. After remov-
ing the two-layer nonlocal neural network for long-term user pref-
erence modelling, the Remove-LT model suffers from an obvious
decrease on the recommendation performance on both Tmall and
Gowalla. Therefore, modelling users’ long-term preferences by min-
ing the relationship between historical sessions and the current one
is actually beneficial to the recommendation. It is worth mention-
ing that the performance decrease of Remove-LT on Gowalla (e.g.,
6.4% on Recall@10) is more server than that on Tmall (e.g., 8.5% on
Recall@10). This is because there are substantially more long-term
interest patterns on the Gowalla dataset, which we have pointed out
in Section 4.5. Hence, the long-term preference modelling module
plays a pivotal role in our model.

4.6.2 The Short-Term Preference Modelling Module. Without the
parallel GRU and nonlocal neural network module for short-term
user preference modelling, the Remove-ST model experiences a
performance drop which is similar to Remove-LT. Though Remove-
ST does not affect the performance as greatly as Remove-LT, the
extraction of short-term user preferences is apparently helpful
for generating accurate recommendation results. We can conclude
that the short-term preference modelling module offers positive
contributions to the session-based recommendation.

Table 4: Results of different layers. We use ‘Default’ to de-
note the full version of our proposed model.

Dataset Method Rec@10 Rec@20 MRR

Tmall Default 0.6228 0.6530 0.4757
One-layer 0.6229↑ 0.6530 0.4760↑

Gowalla Default 0.3954 0.4844 0.2301
One-layer 0.3901↓ 0.4792↓ 0.2290↓

4.6.3 The Personalized Integration Module. In particular, com-
pared with Remove-LT and Remove-ST, removing the personalized
integration module (i.e., Remove-PI) incurs the largest loss in per-
formance. This suggests that each user has her/his own behavior
features. Apart from extracting long- and short-term user prefer-
ences from the past sessions, the item-level user demand represen-
tation computed in this module can greatly help the model to lay
more emphasis on specific feature spaces in Eq. 18. As a result, the
personalized integration module is indispensable for our model.

4.7 Analysis on Two-Layer Nonlocal
Architecture

In this section, we remove the second nonlocal operation layer
from our model to investigate the impact of the last check-in item.
Results on two datasets are shown in Table 4.

On the Tmall dataset, the one-layer model performs slightly
better in terms of Recall@10 and MRR scores, but the results are
almost identical due to the marginal difference. This phenomenon
indicates that on an E-commerce dataset like Tmall, users’ check-in
records in the same session only carry very weak sequential de-
pendencies. Due to the randomness and variety in online shopping
scenarios, a user’s next decision depends not only on the previ-
ous record but also earlier records within the same session. This
observation further proves that the nonlocal structure is capable
of modelling non-consecutive dependencies for recommendation.
As for Gowalla dataset, the performance of the one-layer variant
decreases in all three metrics. Different from the Tmall dataset, for
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(a) User 1 from Tmall

(b) User 2 from Tmall

(c) User 1 from Gowalla

(d) User 2 from Gowalla
Figure 4: Session relevance visualization. The scores above each historical session denote the Jaccard score/attention weights.
Note that darker colors represent higher weights learned by the model.

(a) Tmall (b) Gowalla
Figure 5: The impact of λ on two datasets.

POI platform users, people are more likely to choose POIs that are
close to their current check-in POIs as the next spots to visit. Hence,
with the second nonlocal layer, the last check-in items can play an
important role in our model.

4.8 Analysis on Hyperparameter λ
In this section, we study the model’s sensitivity on hyper-parameter
λ which is used to balance the target user’s two representations
for historical and current context in our model. We tune λ in
{0.1, 0.3, 0.5, 0.7, 0.9} on both Tmall and Gowalla datasets, and cor-
responding results are shown in Figure 5.

On Tmall dataset, the recommendation performance drops when
a larger λ is selected. However, the model performance gradually
increases when the value of λ grows. This observation is also con-
sistent with our conclusions in Section 4.5 that the short-term
preferences of Tmall users are the dominant factor while long-term
preferences of Gowalla users play a major role. Specifically, our
model achieves the best performance with λ = 0.1 on Tmall and
λ = 0.7 on Gowalla. This infers that on Tmall dataset, the current
context plays a more important role than that for historical ones.
At the same time, on Gowalla dataset, a large λ is required to obtain
the optimal performance, which is also determined by the charac-
teristics of the dataset where the long-term preferences often drive
users’ choices.

4.9 Analysis on Importance of Different
Sessions

In our model, the two-layer nonlocal neural network can identify
relevant historical sessions based on their strength of relationship
with the current session. To illustrate the importance of different
sessions, we randomly select two test users from each dataset, and
visualize the learnedweights of their last five sessions before the test
session. Since it is hard to directly evaluate the association between
the historical session and the test session due to the absence of
detailed item/session information such as item name or category,

we use the Jaccard coefficient to measure the similarity between
the past session Shist and test session Stest , i.e.,

Score(Shist , Stest ) =
|UShist ∩UStest |

|UShist ∪UStest |
(23)

whereUSm denotes the set of users who have visited at least one
item in session Sm . The intuition of computing the session-wise
similarity with Jaccard coefficient is that items purchased by the
same user are more similar to each other.

In Figure 4, we visualize the empirical Jaccard session similarity
as well as these sessions’ weights assigned by our two-layer nonlo-
cal neural network. From these four case studies, we can find some
insights listed below:
(1) The nearest sessions might not be the most relevant ones (e.g.,

Figure 4.(b) and Figure 4.(c)), which supports our hypothesis
that local sequential patterns may not be useful for modelling
users’ current interests. Instead, it is more reasonable to ex-
tract users’ long-term preferences in a nonlocal manner based
on session-wise relevance, and the benefits from the nonlo-
cal neural network are also demonstrated via the effectiveness
evaluation.

(2) Our method is capable of highlighting the relevant sessions
(shown in deep colors in Figure 4), regardless of their distances
from the most recent session. For example, the second session
in Figure 4.(c) has the highest similarity with respect to the test
session in terms of the empirical Jacarrd score. At the same
time, our method also assigns the largest weight to this session,
which demonstrates our model’s capability of distinguishing
important sessions for recommendation.

(3) The Jacarrd scores for less relevant sessions might be 0 (e.g., the
first three sessions in Figure 4.(b)) as it only measures the first-
order similarity without considering the high-order similarity
between two sessions. In contrast, our method will still assign
a small attention weight. This is much more reasonable since
in recommendation systems, most of users can only access a
very small fraction of items within each session. Hence, the
session with a 0 first-order Jacarrd score should not be simply
identified as the irrelevant one.
To have a deeper look, we take two examples whose 1-order

Jaccard scores are both 0 from Tmall dataset. We show their first-
and second-order Jaccard scores as well as the attention weights in
Figure 6. From Figure 6, it is clear that even if the first-order and
second-order Jaccard scores between and investigated session and
the test one are 0 (defined in Eq. 23), these sessions can still possibly
contain the items that are eventually purchased.
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Figure 6: Session relevance w.r.t. first/second order Jaccard
and attention weights. The scores above each historical ses-
sion denote the first-order Jaccard score/the second-order
Jaccard score/attention weights. The numbers under each
historical session denote the items in this session, and those
in brackets are the items purchased in the next session.

5 CONCLUSION
In this paper, we propose a novel model for session-based next-
item recommendation by considering users’ long- and short-term
preferences. We design a two-layer nonlocal neural network to
precisely capture user’s long-term preferences based on the rela-
tionship between the historical sessions and the current ongoing
session. We further deploy the GRU network coupled with a nonlo-
cal structure to model short-term preferences. We finally present
a personalized strategy to adaptively combine the learned long-
and short-term preferences. Empirical results on two real-world
datasets demonstrate the effectiveness of our proposed model via
the superior performance over the state-of-the-art methods.
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