
Spatio-Temporal Graph Convolutional and Recurrent Networks
for Citywide Passenger Demand Prediction

ABSTRACT
Online ride-sharing platforms have become a critical part of the
urban transportation system. Accurately recommending hotspots
to drivers in such platforms is essential to help drivers find pas-
sengers and improve users’ experience, which calls for efficient
passenger demand prediction strategy. However, predicting multi-
step passenger demand is challenging due to its high dynamicity,
complex dependencies along spatial and temporal dimensions, and
sensitivity to external factors (meteorological data and time meta).
We propose an end-to-end deep learning framework to address the
above problems. Ourmodel comprises three components in pipeline:
1) a cascade graph convolutional recurrent neural network to ac-
curately extract the spatial-temporal correlations within citywide
historical passenger demand data; 2) two multi-layer LSTM net-
works to represent the external meteorological data and time meta,
respectively; 3) an encoder-decoder module to fuse the above two
parts and decode the representation to predict over multi-steps into
the future. The experimental results on three real-world datasets
demonstrate that our model can achieve accurate prediction and
outperform the most discriminative state-of-the-art methods.

KEYWORDS
Passenger Demand Prediction; Spatial-Temporal Correlations; Deep
Learning;

1 INTRODUCTION
Online ride-sharing platforms such as Didi and Uber have become
a critical part of the urban transportation system and serves a large
number of passengers on a daily basis. Despite the adoption of
sophisticated ICT technologies, drivers in such platforms still lack
knowledge about the locations of potential passengers. As a result,
they often have to drive a long way before finding a passenger
due to low demand volumes in their proximity. This issue not only
incurs income loss and energy waste to drivers but also leads to
excessive waiting time to users and harms users experience. Thus,
recommending regions with high probability of finding passengers,
namely hotspots, for drivers in a timely manner is pressing for
online ride-sharing platforms [8]. In general, citywide passenger
demand prediction which aims at forecasting the future (next one
or few time steps) variations of passenger demand in each region
is the fundamental step for recommending hotspots [3].

However, predicting multi-step passenger demand still remains
challenging: 1) passenger demand in a region is influenced by other
regions’ demand in the city. Accurately capturing these spatial cor-
relations requires to not only find out closely related regions but
also filter out weakly related regions to avoid irrelevant interfer-
ence; 2) as the typical time series data, passenger demand changes
over time and fluctuates tremendously; 3) the passenger demand is
sensitive to external factors such as meteorological data (e.g. rain)
and time meta (e.g. morning rush hour).

To tackle these challenges, we propose an end-to-end trainable
framework to achieve efficient multi-step passenger demand pre-
diction. The framework consists of three components. Firstly, we
design a cascade graph convolutional recurrent neural network
module to extract the spatial-temporal correlations from the city-
wide historical demand. To model the spatial correlations, we treat
a city as a graph where each region is a specific node. The adjacency
matrix of the graph is generated according to the similarities be-
tween historical passenger demands of different regions. Then, we
apply Graph Convolutional Network (GCN) to the graph to extract
the shared patterns only within closely related regions. Our method
can precisely learn spatial correlations by emphasizing regions with
similar demand patterns and ignoring the noise from weakly re-
lated regions, regardless of the geographcial proximity. In addition,
our approach does not presuppose one particular abstraction of
the city, be it grid based or road network based. Secondly, we use
two multi-layer LSTM networks to extract representations of the
external meteorological data and time meta, respectively. Thirdly,
we fuse the aforementioned components into a joint hidden rep-
resentation and decode it under an encoder-decoder structure to
generate the multi-step prediction. We have evaluated our approach
with three real-world passenger demand datasets of different scales:
DidiSY, TaxiBJ and BikeNYC. The experimental results demonstrate
that our method consistently outperforms a set of baselines and
state-of-the-art methods.

2 NOTATIONS AND PROBLEM STATEMENT
Suppose a city is partitioned into N small regions, irrespective of
whether grid or road network based partitioning is employed. We
represent the region sets as {r1, r2, ..., ri , ...rN }. At each time step t , a
scalar Dt (ri ) represents the passenger demand of region ri in time
step t . Respectively, a vector Dt ∈ RN represents the passenger
demand of all regions in time step t . The vector Et represents the
external features in time step t . In this work, external features
include the meteorological data (e.g. weather state, temperature,
wind speed) and time meta (e.g., time of day, day of week, holidays),
which are represented as EMt and ETt , respectively.

Given the citywide historical passenger demand {D0,D1, ...,Dt }
and external features {E0,E1, ...,Et }, our target is to learn a predic-
tion function Γ(·) that forecasts the citywide passenger demand in
the next τ (τ > 1) time steps:

(Dt+1,Dt+2, ...,Dt+τ ) = Γ(D0,D1, ...,Dt ,E0,E1, ...,Et ) (1)

3 MODEL
Figure 1 illustrates the framework of our proposed method based on
the encoder-decoder architecture. The encoder encodes all inputs
into a joint representation, and the decoder subsequently decodes
the representation into a sequence of predictions. Specifically, the
encoder module includes three parts: 1) a graph spatial-temporal



Figure 1: Proposed Framework

network extracts correlations from the citywide historical passen-
ger demand. It extracts the shared patterns exclusively from similar
regions and avoids the negative influence of weakly related regions.
2) two multi-layer LSTM networks that learn a better represen-
tation for meteorological data and time meta, respectively. This
design considers the independence between meteorological data
and time meta. 3) A Hadamard fusion method fuses the final state
of the three networks above into a joint representation. In the de-
coder, we use another multi-layer LSTM network to decode the
joint representation and to achieve multi-step prediction. We will
elaborate on these modules in the following.

3.1 Graph Spatial-Temporal Network
We first introduce the design of graph spatial-temporal network
to process the historical citywide passenger demand data. For ex-
tracting the spatial correlations, previous works assume that the
passenger demand in one region is influenced by other regions.
They either apply CNN to capture global spatial influences over the
entire city [6] [7] or local influences from geographic near regions
[5]. Distinct from these existing studies, we assume that spatial
correlations only depend on regions with similar demand patterns,
while independent of geographic locations. Passenger demand of
remote regions with similar attributes (such as PoIs, functions)
could also share similar demand patterns and vice versa. Thus, ex-
isting methods overstate the globality and proximity in passenger
demand. They either introduce excessive noise from weakly related
regions or neglects the correlations from remote similar regions.

In this regard, we treat the city as a graph G = (ν , ξ ,A), where
ν is the set of regions ν = {ri |i = 1, 2, ...N }, ξ is a set of edges
and A is an adjacent matrix. We define the connectivity of the
graph according to the passenger demand pattern similarity among
regions.

Ai, j =

{
1, if Similarityri ,r j > ϵ

0, otherwise
(2)

where ϵ is a threshold to control the sparsity of matrix A.
In order to find the regions with similar patterns, a direct way is to
calculate the correlations (e.g., Pearson Coefficient) by historical
demand. Let D0∼t (ri ) represent historical order sequence of region
ri from time 0 to t in the training data. Then the similarity of region
ri and r j can be defined as:

Similarityri ,r j = Pearson(D0∼t (ri ),D0∼t (r j )) (3)
As shown in Figure 2, the inputs of the graph spatial-temporal
module are citywide passenger demand for the past q time steps
and the calculated adjacency matrix A of the city region graph.

Figure 2: Graph Spatial-temporal Network.

At each time step, we feed the citywide passenger demand of the
current time step into a set of connected GCN layers.
GCN Layer In this work, we use the graph convolution operation
defined in the spectral domain with graph Fourier Transform [1].
Taking the graph signal Dt at time step t and adjacency matrix A
as inputs, the spectral graph convolutional operation with kernel
Θ is defined as follows:

Θ⋆Dt = Θ(L)Dt = Θ(UΛUT )Dt = UΘ(Λ)UTDt (4)

where Θ is the graph convolution operator, U ∈ RN×N is the
matrix of eigenvectors of the normalized graph Laplacian L =

IN − P−
1
2AP−

1
2 = UΛUT ∈ RN×N , where IN is the identity ma-

trix, A is the adjecency matrix of the graph and P ∈ RN×N is the
diagonal degree matrix with Pii =

∑
j Ai j . However, calculating

graph convolution on Eq.(4) is computationally expensive. To over-
come this problem, Chebyshev polynomials are used to expand
and approximate Θ(Λ). Kipf et.al [1] further proposed to set the
order of Chebyshev polynominals to 1 and approximate the largest
eigenvalue of L to 2. Finally, the approximated efficient calculation
of graph convolution layer is generalized as follows:

Z l+1 = (P̃−
1
2 ÃP̃−

1
2 )Z lΘ (5)

where Z l ∈ RN×C with C dimensions, Θ ∈ RC×F and Z l+1 ∈

RN×F with F dimensions. This formulation can be efficiently im-
plemented. As K is simplified to 1, successively applying k GCN
layers can capture correlations fromkth -order neighbours of a node.
Considering that our graph is generated by passenger demand sim-
ilarity, our design can automatically capture spatial correlations
from most related regions while excluding weakly correlated re-
gions, regardless of their geographic proximity.
LSTM Layer The representations extracted from the GCN layers
are then fed into a multi-layer LSTM network to capture the tem-
poral relationships and encode citywide passenger demand of the
previous q time steps into a joint representation. Notice that, we use
passenger demand from the previous q time steps as input to GCN
and extract the representation for each time interval separately.
Correspondingly, we get q distinct representations. In Figure 3, we
use a one-layer LSTM as an example to elaborate, where q outputs
of GCN layers are shown as Xt−q+1,Xt−q+2, ...,Xt . Each LSTM
cell has three inputs: Xi , the cell state from last cellCi−1, and the
output last cell Hi−1, where i ∈ [t − q + 1, t]. The cell state Ci is
transferred and updated in all LSTM cells and can be regarded as
an accumulation of all previous information. So the cell state Ct

generated by the last (qth ) LSTM cell contains all spatial-temporal
2



Figure 3: Illustration of one layer LSTM

information from the passenger demand of the previous q time
steps. We useCt together with Ht as the output of the LSTM net-
work. When stacking multiple LSTM layers, the outputs are Ct

and Ht of the last LSTM cell in all layers. We represent them as
(Sh
D
, Sc

D
) in Figure 1.

3.2 Representation of External Features
In addition to the spatial-temporal correlations hidden in historical
citywide demand, many external factors such as time meta (e.g.,
time of day, day of week, holidays) and meteorological data (e.g.,
weather, temperature, wind speed) also influence the passenger
demand. For example, passenger demand tends to be very high in
themorning rush hour and low at midnight. Moreover, the influence
of time meta and meteorological data on passenger demand is
independent of each other [6]. Based on these observations, we feed
the meteorological data and time meta of past q time steps into two
separate multi-layer LSTM networks to obtain their representation.
Similar to Section 4.1, we only get the state and output of the last
LSTM cell in the multi-layer LSTM networks as the output and
representation of inputs because they integrate all the information
in the input data.

In addition, we use a fully-connected layer to map the final state
of time meta part to N times the higher dimension to make it match
the number of regions, based on the fact that time meta is the same
among all regions. This way, we can represent meteorological data
and time meta as (Sh

M
, Sc

M
) and (Sh

T
, Sc
T
).

3.3 Fusion and Decoding
In Sections 3.1 and 3.2, we introduced our design of three distinct
neural networks to obtain representations of historical citywide
passenger demand, meteorological data and time meta, separately.
Before feeding these representations into the decoder module, they
should be fused together:

Sh = ShD ⊙W h
D + S

h
T ⊙W h

T + S
h
M ⊙W h

M (6)

Sc = ScD ⊙W c
D + S

c
T ⊙W c

T + S
c
M ⊙W c

M (7)
where Sh and Sc are joint representations of all inputs to our

model,W h
D ,W

h
T ,W

h
M ,W

c
D ,W

c
T ,W

c
M are learnable parameters, ⊙ is

element-wise hadamard product operation, which can simultane-
ously learn a joint representation of each region from historical
passenger demand, meteorological data and time meta separately.

To predict the passenger demand in the next τ time steps, we use
another LSTM networks to decode the joint representation (Sh , SC ).
The inputs of the decoder are comprised of two parts: the encoded
representation of encoder, and an initial variable. The encoded
representation (Sh , SC ) is fed into the decoder as the initial state
of LSTM network (as shown in Figure 3), and the initial variable

is served as the first input of LSTM network to start the decoding.
In machine translation research, the most commonly used initial
variable is the ’End-of-sentence" token. In our work, we use the
first part of the joint representation Sh as the initial variable as it
contains more information than the zero variable. The inputs to
the subsequent cells of the decoder are the output of the last LSTM
cell, as shown in the right part of Figure 1.

3.4 Optimization and Training
The outputs of all LSTM cells in the decoder constitute the predicted
passenger demand (D′

t+1,D
′
t+2, ...,D

′
t+τ ). In the training process,

our objective is to minimize the error between predicted passenger
demand and true passenger demand. We define the loss function as
the mean squared error of the predicted passenger demand and the
actual passenger demand for τ time steps, written as:

L(Wθ ) =

i=τ∑
i=1

∥Dt+i − D′
t+i ∥

2
2 (8)

whereWθ represents all the learnable parameters in the network.

4 EXPERIMENTS
4.1 Experiment Settings
We use three real-world datasets in our comparisons, as detailed
below:

• DidiSY: This is a self-collected dataset that consists of three
parts: 1) share car demand data from Didi, the biggest online
ridesharing company in China; 2) Time meta, including time
of day, day of week and holidays; 3) Meteorological data,
including weather, temperature, wind speed, and visibility.
This dataset is collected from 5/Dec/2016 to 4/Feb/2017 in
Shenyang, a large city in China. Each time step is one hour.
We use the last 6 days demand as test data.

• BikeNYC [6]: The public BikeNYC dataset consists of two
parts: the bike demand part and the time meta part. This
dataset covers the shared bike hire and returns data of City-
Bike in New York from 1/Apr/2014 to 30/Sep/2014. Each time
step is one hour. To be consistent with previous work us-
ing this dataset. [6][7], the last ten days data are chosen as
testing data.

• TaxiBJ [6]: The public TaxiBJ dataset contains taxi demand
in Beijing from 1/Mar/2015 to 30/Jun/2015. Similar to the
DidiSY dataset, TaxiBJ contains passenger demand, time
meta, and meteorological data. Each time step is 30 minutes
and last ten days data are chosen as testing data.

During training, we use Adam optimizer as the optimization
function. After parameter tuning, we set historical demand length
q to 12, batch_size to 32, learning rate to {0.0001, 0.0007, 0.001} for
{DidiSY, BikeNYC, TaxiBJ}. Root Mean Square Error (RMSE), Mean
Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE)
are used as evaluation metrics to evaluate the model.

4.2 Evaluation on next-step prediction
We first compare our method with with two representative tra-
ditional baselines: Historical Average (HA), Ordinary Linear Re-
gression (OLR), and five discriminative state-of-the-art methods
including DeepST [7], ResST-Net [6], DMVST-Net [5], ConvLSTM
[4] and DCRNN [2] to evaluate the ability of our model in capturing

3



Table 1: Evaluation on next-step prediction over three datasets of different scales (best performance displayed in bold).

Index Method DidiSY BikeNYC TaxiBJ
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

1 HA 4.112 2.646 0.426 8.541 3.695 0.437 40.439 20.696 0.268
2 OLSR 3.713 2.528 0.379 8.502 4.652 0.391 23.921 14.937 0.276
3 DeepST [7] 3.362 2.221 0.337 6.603 2.549 0.242 18.305 11.264 0.157
4 ResST-Net [6] 3.449 2.331 0.319 6.159 2.432 0.228 17.649 10.599 0.141
5 DMVST-Net [5] 3.440 2.232 0.373 4.766 2.318 0.224 18.206 11.085 0.153
6 ConvLSTM [4] 3.414 2.222 0.379 4.745 2.435 0.226 18.788 11.461 0.163
7 DCRNN [2] 3.465 2.281 0.371 5.215 2.776 0.241 20.569 12.517 0.177
8 Ours 3.263 2.105 0.323 4.605 2.275 0.211 17.598 10.473 0.138

(a) (b)

(c) (d)

(e) (f)
Figure 4: Evaluation on multi-step prediction.

the spatial-temporal correlations. All methods have the same input
data source with our model except for HA, which only utilizes the
passenger demand data. Considering the fact that most state-of-
the-art methods can only achieve next-step prediction, we use our
prediction in the first time step as our result in this part.

As can be observed fromTable 1, ourmethod consistently achieves
the best performance with all three datasets, which demonstrates
the superiority of our model in accurately capturing the citywide
spatial-temporal correlations. More specifically, performance gains
of our model over the baseline Historical Average are: 20.66%
(RMSE), 20.45% (MAE) and 21.83% (MAPE) relative improvement in
DidiSY dataset, 46.08% (RMSE), 38.44% (MAE) and 51.72% (MAPE)
relative improvement in BikeNYC dataset, 56.48% (RMSE), 49.39%
(MAE) and 48.51% (MAPE) relative improvement in TaxiBJ dataset.
When comparing to the best state-of-the-art methods, our model

still achieves 0.88% (RMSE) and 1.77% (MAE) relative improvement
in DidiSY dataset, 2.95% (RMSE), 1.855% (MAE) and 5.80% (MAPE)
relative improvement in BikeNYC dataset, 1.18% (MAE) and 2.13%
(MAPE) relative improvement in TaxiBJ dataset.

4.3 Evaluation on multi-step prediction
Next, we evaluate the ability of our model in conducting multi-step
prediction. We predict the passenger demand for the next three
time steps and compare it to three methods: HA, ConvLSTM, and
DCRNN. RMSE and MAE are used as comparison metrics. As can
be observed from Figure 4, the prediction of HA remains the same
for all time steps while the prediction of other methods deteriorates
with time. Moreover, the performance of HA is the worst in all
steps. In summary, our model performs the best for all steps and it
deteriorates slower than the other two state-of-the-art methods.

5 CONCLUSIONS
In this paper, we studied the citywide multi-step passenger de-
mand prediction problem. We proposed a new deep learning model
based on the Graph Convolution Network and Long-Short Term
Memory network under the encoder-decoder framework. Our pro-
posed model can capture more accurate spatial-temporal correla-
tions hidden in citywide historical passenger demand data, achieves
multi-step prediction with less deterioration and is flexible to differ-
ent city partitioning methods. Experimental results show that our
model consistently outperforms all the baselines and discriminative
state-of-the-art methods.

REFERENCES
[1] Thomas N Kipf and MaxWelling. 2017. Semi-supervised Classification with Graph

Convolutional Networks. In ICLR’2017.
[2] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2017. Diffusion Convolutional

Recurrent Neural Network: Data-driven traffic forecasting. In ICLR.
[3] Aditya KrishnaMenon and Young Lee. 2017. Predicting short-term public transport

demand via inhomogeneous Poisson processes. In CIKM’2017. ACM, 2207–2210.
[4] Shi Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and

Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning ap-
proach for precipitation nowcasting. In NIPS’2015. 802–810.

[5] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong,
Jieping Ye, and Zhenhui Li. 2018. Deep Multi-View Spatial-Temporal Network for
Taxi Demand Prediction. In AAAI’18.

[6] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep Spatio-Temporal Residual
Networks for Citywide Crowd Flows Prediction.. In AAAI’17. 1655–1661.

[7] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. 2016. DNN-based
prediction model for spatio-temporal data. In SIGSPATIAL’2016. ACM, 92.

[8] Kai Zhang, Zhiyong Feng, Shizhan Chen, Keman Huang, and Guiling Wang. 2016.
A framework for passengers demand prediction and recommendation. In 2016
IEEE International Conference on Services Computing (SCC). IEEE, 340–347.

4


	Abstract
	1 Introduction
	2 Notations and Problem Statement
	3 Model
	3.1 Graph Spatial-Temporal Network
	3.2 Representation of External Features
	3.3 Fusion and Decoding
	3.4 Optimization and Training

	4 Experiments
	4.1 Experiment Settings
	4.2 Evaluation on next-step prediction
	4.3 Evaluation on multi-step prediction

	5 Conclusions
	References

