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Abstract
With micro-services continuously gaining popularity and
low-power processors making their way into data centers, ef-
ficient execution of managed runtime systems on low-power
architectures is also gaining interest. Apart from the inherent
performance differences between high and low power pro-
cessors, porting a managed runtime system to a low-power
architecture may result in spuriously introducing additional
overheads and design trade-offs.
In this work we investigate how the lack of strong hard-

ware support for Self Modifying Code (SMC) in low-power
architectures, influences Just-In-Time (JIT) compilation and
execution in modern virtual machines. In particular, we
examine how low-power architectures, with no or limited
hardware support for SMC, impose restrictions on call-site
implementations, when the latter need to be patchable by
the runtime system. We present four different memory-safe
implementations for call-site generation and discuss their
advantages and disadvantages in the absence of strong hard-
ware support for SMC. Finally, we evaluate each technique
on different workloads using micro-benchmarks and we eval-
uate the best two techniques on the Dacapo benchmark suite
showcasing performance differences up to 15%.

CCS Concepts • Software and its engineering → Soft-
ware performance; Just-in-time compilers; Runtime envi-
ronments.

Keywords JIT compilation, Self modifying code, AArch64,
RISC
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1 Introduction
Since the introduction of smart-phones, low power proces-
sors have been constantly gainingmomentumwhile entering
new markets. Initially the term “embedded processors” was
limited to micro-controllers and devices incapable of running
code larger than few kilobytes in size. However, nowadays,
the use of the term has been widened as low-power architec-
tures are constantly becoming computationally more capable.
Hence, low-power processors can be currently found, among
others, in Internet of Things (IoT) devices, autonomous vehi-
cles, edge nodes of distributed systems, and data centers [6].
This wide adoption has also resulted in a wide variety of
applications running on such low power processors, ranging
from embedded applications to demanding micro-services.

The constant increase in computational capability of these
architectures has been also accompanied by a shift in the pro-
gramming languages used to program them. In addition to
traditional languages such as C and C++ , many applications
are written in managed languages and rely on managed run-
time systems to be efficiently executed [7, 18, 22]. Although
managed languages apply the “write once run anywhere” ap-
proach across different architectures, the same does not hold
for performance portability due to differences in the underly-
ing platforms and architectures. Apart from the performance
differences derived by the power/performance targets each
architecture or processor tries to meet, porting a managed
runtime system to a low-power processor can spuriously
introduce additional overheads and design trade-offs.

A prime example is the variance of hardware support for
Self-Modifying Code (SMC) between x86-64 and ARM or
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RISC architectures.Managed runtime systems rely on Just-
in-Time (JIT) compilation and dynamic code optimisations
to translate platform agnostic bytecodes to native code, re-
steering execution between the different versions of the gen-
erated code. Typically, code is optimised at method or block
granularity and the re-steering of the execution to the op-
timised code is done by calling, i.e. branching to, the com-
piled methods or blocks. Additionally, there are cases where
managed runtime systems need to re-compile some code
segments. Such cases include: de-optimisation, where an as-
sumption made during compilation is no longer valid; and
tiered compilation, where methods that are on the “hot" path
get further optimised by utilising more aggressive compiler
optimisations. To handle such code alternations and to be
able to execute the latest version of each method, managed
runtime systems rely on call-site patching. They essentially
modify code on the fly to change the target addresses of calls.
To effectively patch all call-sites invoking a method, man-
aged runtime systems need to either go over all the compiled
methods and eagerly patch the corresponding call-sites, or
patch the current compiled version of the callee to make
it lazily patch call-sites when they get executed. Call-site
implementations and the implications for replacing old meth-
ods with newly compiled ones, have not been thoroughly
studied mainly because the dominant execution platforms
of managed languages feature strong hardware support for
SMC. On such platforms simply overwriting a call instruc-
tion is sufficient in most cases to redirect a call-site to a
different target without further concern. Note that the code
being modified may be being executed by a different core at
the same time, thus SMC requires either hardware support
or synchronisation at the software level to ensure atomic
updates and a coherent view of the code across the different
cores of the processor.
In this work we investigate how the lack of strong hard-

ware support for SMC in low-power architectures can affect
the performance of managed runtime systems. More specifi-
cally this paper contributes the following:

• It discusses the constraints imposed by different archi-
tectures, such as AArch64 and x86-64 with respect to
SMC (see §3).

• It studies (see §4) and evaluates (see §6) four different
Java call-site implementations for low-power archi-
tectures, focusing on their performance and the cor-
responding overheads of their patching. The evalua-
tion is performed on the AArch64 architecture against
micro-benchmarks and standard Java benchmarks (for
the best two implementations) in the context of Max-
ineVM [19, 28].

• It confirms the expectation that different call-site im-
plementations exhibit not only different capabilities
and implementation complexity, but also reveals a per-
formance variation of up to 15%.

D-CACHE

I-CACHE
Main Memory
001010101010110
010101010100101
011001001100111
100010101010100
100010101010111
100010101010100
011001001100111
010101010101010
111110101010100
010100100010101
100110010000011
100110010000011
110001001110010
101010100100101
101011100100111
101010100100101
110010100100101
111110101010100

CPU

1

2

3

4

5

6

7
8

Figure 1. Code-patching illustration.

2 Background
Any form of JIT compilation results in Self-Modifying Code
(SMC); i.e., the program itself generates new native code,
replaces existing code, and executes it. Due to the concep-
tual separation of applications and the underlying runtime
systems, developers typically are not aware of SMC since it
is abstracted away by the runtime system via tiered JIT com-
pilation. If we forget about this virtual distinction between
applications and runtime systems, we observe that both of
them are executed under the same process. As a result, from
the processor’s point of view, they are essentially a single
program that generates and modifies its own code.

2.1 Von Neumann Architectures and SMC
Contemporary processors are based on the Von Neumann
architecture1 and rely on caches to optimise performance
by reducing the latency required to access main memory,
both for data and instructions. In such architectures, the
instruction cache is utilised by hardware pre-fetchers to try
and fetch ahead of time the instructions that are going to be
executed in the near future.
Figure 1 illustrates the data-flow of Von Neumann archi-

tectures in the context of code patching. The solid green
arrows indicate the typical data-flow, while the dashed red
arrows indicate the data-flow of self-modifying code. The
main memory contains both the code and the data. The in-
struction cache (I-Cache) caches code from themainmemory,
which is fetched by the I-Cache pre-fetcher or upon cache

1https://en.wikipedia.org/wiki/Von_Neumann_architecture

https://en.wikipedia.org/wiki/Von_Neumann_architecture
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misses 1 . Similarly the data cache (D-Cache) caches data
from the main memory 2 . Based on the current value of
the Program Counter (PC), the processor reads instructions
from the instruction cache and executes them 3 . Some of
these instructions might modify data, resulting in writes to
the D-Cache 4 which at some point are written-back to the
main memory 5 , depending on the memory model of the
processor. In the case of SMC, the processor might need to
fetch code into the data cache in order to read and modify it
6 . Consequently, the modified code is written to the data
cache 7 which is then written-back to the main memory
8 and re-fetched to the instruction cache 1 in order to
become visible to the processor, and eventually be executed.
Due to the involvement of two kinds of caches (I-Cache

and D-Cache), keeping the code coherent across the system is
more complicated than keeping the data coherent. As a result,
different architectures provide different hardware support
for SMC [16] in a similar manner as they implement differ-
ent memory models. That said, self-modifying-code needs
to comply with the underlying architecture’s constraints
to ensure that the modified code will become visible and
eventually executed.

2.2 Categorisation of Processors
SMC support combines elements of the memory model and
the coherence mechanisms of the architecture. The stronger
the guarantees, the more intuitive the architecture is to the
user, but it also becomes more difficult to implement and
scale to a high numbers of cores. Contemporary proces-
sors that provide strong guarantees regarding both data and
code coherence typically belong to the x86 family and target
high performance. Conversely architectures which target
low power applications tend to offer weaker guarantees re-
garding either data or code coherence. Examples of such
architectures are ARMv7, ARMv8 (AArch32/AArch64) and
RISC-V. For the remainder of this paper we categorise pro-
cessors with the terms high-end and low-power. Apart from
providing weaker guarantees, typical low-power architec-
tures also provide a reduced instruction set, compared to the
one provided by high-end architectures.
In the following section we discuss how the differences

between low-power and high-end processors impose differ-
ent constraints on SMC and thus on the implementation of
patchable call-sites in modern Java Virtual Machines.

3 Architectural Constraints on SMC
Due to their resource demanding nature general purpose
managed runtime systems have evolved and been optimised
to run primarily on high-end architectures. As a result, the
implementation of some design decisions on low-power ar-
chitecturesmay introduce some performance overheads com-
pared to the corresponding implementations on high-end

architectures. We note however that there are examples such
as JavaME and Android that have been developed to specifi-
cally target resource constrained devices. Each type of archi-
tecture or processor design has different performance targets
in a predefined power envelope. By properly sizing the differ-
ent hardware units of a chip (e.g., caches, branch predictors,
etc.) along with additional implemented hardware features
(e.g., vector instructions, specific hardware accelerators, etc.)
microprocessors can scale up or down depending upon their
targeted performance and power.

Excluding the aforementioned design decisions, a number
of additional distinctive elements can also result in perfor-
mance deviations between different types of architectures.
Such differences derive mainly from: i) limitations imposed
by the instruction set architecture (ISA), ii) explicit synchro-
nisation required by the memory model, iii) limited support
for self-modifying code. In the remainder of this Section we
focus on self-modifying code and its implications on hard-
ware implementations.

3.1 Call-Site Size, Patch Size, and Atomicity | ISA
Call-sites are essentially code segments that perform a func-
tion call. In high-end architectures, such as x86-64 [17], a
call-site typically comprises a single instruction, e.g. CALL
<target>. The x86-64 ISA enable near direct calls through
the CALL rel32 instruction. The rel32 operand contains
a 32-bit displacement that is added to the program counter
(PC) to form a ±2GiB PC relative target address, sufficient
for the majority of calls. For calls required to go further than
±2GiB from the program counter, CALL r/m64 can be used
to load the absolute 64-bit target address from r/m64 into
the program counter. On the contrary, in low-power archi-
tectures with reduced instruction set computer (RISC) ISAs
that feature fixed-size instructions, the range of a single in-
struction direct call is more restricted due to the limitations
of the encoding. For instance in AArch64, a call-site can
range from a single instruction (for short-range targets up to
±128MiB), e.g., bl <target>, up to three instructions (for
long-range targets up to ±4GiB) as shown in Listing 1. The
code in Listing 1 essentially initialises a register (X16) with
the memory page containing the target address (line 1), adds
the low 12 bits to form the address (line 2) and branches to
it (line 3).
As a result, the ISA of an architecture defines both the

sizes of the call-site and its potential patch. These sizes can be
as small as a part of an instruction (patching an operand) or
up to a few instructions. Due to the dominance of RISC ISAs
on low-power architectures, call-sites for long-range targets
come with an increased overhead while their patching is
often more complicated.
Apart from the higher complexity of the patching logic

itself due to the increased patch-size, multi-instruction patch-
ing comes with a number of additional implications. When
patching call-sites, the managed runtime system treats the
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1 ADRP X16 , CALL_TARGET

2 ADD X16 , X16 , :lo12:CALL_TARGET

3 BLR X16

Listing 1. AArch64 call-site example for a long-range
target.

corresponding code segment as if it were data (see § 2). As a
result, the implementation of the code performing the patch-
ing is also governed by the ISA. According to the ISA, the
managed runtime system may be able to patch only a part
of an instruction (e.g., half-word), a whole instruction, or
even multiple instructions in an atomic manner. That said, if
the ISA does not provide wide enough atomic write instruc-
tions to make the code modifications appear as an atomic
instruction, then it is up to the managed runtime system to
ensure that the patching will be performed in an atomic man-
ner. Failing to do so may result in other threads observing a
partially patched call-site and jumping to incorrect memory
addresses. Atomic instructions are essentially both part of
the ISA and the memory model specification. In the next
subsection we discuss the constraints that might be imposed
by the memory model.

3.2 Visibility and Timeliness | Memory Model
Since the managed runtime system treats the code segment
being patched as data during patching, it is governed by
the memory model and the guarantees it provides regard-
ing data coherence. When patching call-sites on high-end
systems, managed runtimes typically rely on atomic writes
to ensure that the call-site patching is atomic and becomes
immediately visible to all cores. This is possible due to the
strong memory model that high-end processors typically
implement. In low-power architectures however, weaker
and more energy efficient memory models are usually im-
plemented. As a result, on such architectures, SMC needs
to request the appropriate memory barriers to ensure that
patched call-sites will become visible in a timely manner.
Furthermore, as illustrated in Figure 1, the code segment is
part of two distinct streams, the code-stream and the data-
stream. In high-end processors, due to the strong-memory
models guarantees, both streams are kept in sync and co-
herent. Low-power architectures, however, usually separate
the two streams and require explicit synchronisation to keep
them coherent.

Listing 2 presents the AArch64 assembly code that needs
to be executed on the core performing the codemodifications.
Similarly, Listing 3 presents the AArch64 assembly code that
needs to be executed on the cores running the modified
code to ensure that they will run the modified code and not
an older or inconsistent version of it. Listing 2 essentially
writes-back the modified cache-line from the data-cache
up to the Point of Unification (line 1) – typically this is the

lowest level component in the memory hierarchy that is
shared among all cores – and then invalidates the modified
cache-line in the instruction-cache (line 3). The DSB ISH
instruction following the aforementioned cache operations
(lines 2 and 4) are barriers that ensure that those operations
have reached completion before continuing. On the other
side of the synchronisation, the ISB instruction in Listing 3
ensures that the pipeline is empty before continuing. This
essentially forces the processor to load instructions from
the instruction cache or the main memory and not use a
potentially stale copy from the pipeline buffers.

The aforementioned synchronisation, as expected, comes
at the cost of performance overhead. As a result, the place-
ment of such barriers creates a trade-off between how fast
the patched code becomes accessible, and how much over-
head we pay per call-site patching. Skewing the time that
the patched code becomes visible may result in different
cores running different versions of the code having a po-
tential impact on both the performance and the correctness
of the application. In the case of tiered compilation, perfor-
mance can be negatively affected by failing to invoke the
latest and highest-performing compiled method. In the case
of de-optimisation, correctness may be affected by invok-
ing an optimised version of the code that was based on an
assumption that is no longer true.

3.3 Patchable Instructions | SMC Support
Ensuring atomicity and visibility when modifying code on
the fly does not suffice. A third dimension that needs to
be taken into consideration comprises restrictions explic-
itly imposed by the architecture. x86-64 allows programs to
modify any instruction in the code-stream by overwriting
with any other instruction. This however is not always the
case. For instance, on AArch64, ARMv7, and Power only a
limited set of instructions can be safely modified without
explicit synchronisation. Namely for AArch64, these are B,
BL, BRK, HVC, ISB, NOP, SMC, and SVC [5]. Note that in order
for a code modification to be safe, both the old and the new
instructions need to belong in that set. In any other case,
“Concurrent modification and execution of instructions can lead
to the resulting instruction performing any behaviour that can
be achieved by executing any sequence of instructions that can
be executed from the same Exception level” [5]. In the case
of the Power ISA the set of instructions (referred as patch
class in the manual [15]) that can be concurrently modified
is even more strict, containing only direct branches and the
no-op (ori 0,0,0) instruction.

For the rest of the instructions, the managed runtime sys-
tem needs to ensure exclusive access to the corresponding in-
structions, which in the case of call-site patching can be only
achieved by performing a “Stop-the-World” operation. “Stop-
the-World” is essentially a pause of all application threads
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1 DC CVAU , Xn ; Clean data cache by VA to point of unification (PoU)

2 DSB ISH ; Ensure visibility of the data cleaned from cache

3 IC IVAU , Xn ; Invalidate instruction cache by VA to PoU

4 DSB ISH ; Ensure completion of the invalidations

Listing 2. AArch64 JIT compiler side synchronisation [5].

1 ISB ; Sync. fetched instr. stream

Listing 3. AArch64 call-site side synchronisation [5].

in order to allow for the managed runtime to perform op-
erations that cannot be safely performed while the applica-
tion is running. “Stop-the-World” pauses are mainly used
by garbage collection algorithms to ensure that while the
collection happens the state of the heap does not change by
the application. In the case of call-site patching a “Stop-the-
World” pause ensures that the application is not running the
code being patched, making the patching operation safe (no
matter the instructions used in the call-site implementation).

In the following section we examine the case of AArch64
and present a number of different possible call-site imple-
mentations, that allow safe patching.

4 Call-Site Implementations
In this section we present four different call-site implemen-
tations that enable safe patching without the need for a
“Stop-the-World” pause even in architectures with weak SMC
support.We present each implementation and discuss its HW
support prerequisites. At the end of § 4.5 we also discuss
patching with a “Stop-the-World” pause to provide a solu-
tion for architectures that do not offer any HW support for
SMC. We base our implementations and discussion on the
AArch64 architecture, which we find interesting due to its
weak HW support for SMC. We do not, however, limit the
discussion to the AArch64 architecture.

The AArch64 architecture [5] constrains the implementa-
tion of patchable call-sites by:

1. Supporting only short-range direct branches. This is a
common characteristic of most RISC architectures due
to the use of fixed size instructions, which inevitably
puts a limit on the immediate operands that are used
as the call offset in direct branches.

2. Supporting 64-bit atomic writes. Note that it can go
up to 128-bit atomic writes using Load-Exclusive Pair
(LDXP) and Store-Exclusive Pair (STXP) instructions,
but requires the memory being modified to be 128-bit
aligned. Most architectures provide at least word-sized
atomic writes, and typically instructions are not bigger
than a word. Regarding the alignment constrain for
128-bit atomic writes, it is worth noting that x86-64

also requires instructions to be word-aligned in order
to be patchable.

3. Requiring explicit memory barriers (see § 3.2). The
necessity of using memory barriers is also common
on most low-power architectures, since to keep en-
ergy consumption low they avoid implementing strong
memory models, rendering software responsible for
performing some synchronisation operations.

4. Limiting the instructions that can be safely patched
on-the-fly (see § 3.3). From our experience, the main
limitation imposed by this constraint is that one can
not swap direct branches (i.e. B and BL) with indirect
branches (i.e. BR and BLR) and vice versa. This limita-
tion is present on all three ISAs mentioned in § 3.3.

4.1 Direct Branching
Similarly to x86-64, AArch64 JIT compilers can use a single
direct branch (B or BL) to implement call-sites as long as the
target callee is in the range of the direct call. In the case of
AArch64 the direct call range is ±128MiBs from the call-site.
Since both B and BL are safe to modify concurrently with
the execution, patching in this case is as simple as placing
the encoded new direct branch in a register and storing it to
the memory address of the call-site being patched. To ensure
the visibility of the modified code on other cores, we need to
execute the appropriate barriers as well (see Listing 2). The
main advantage of this approach is its simplicity and perfor-
mance, while its main disadvantage is the limited range of
call targets. Although the ±128MiBs AArch64 branch range
allows for a substantial managed code cache that may be
sufficient for a range of applications, it is nonetheless a hard
design limit in the absence of other solutions. Furthermore
other contemporary 32–bit ISAs, such as RISC-V, have amore
limited branch range of ±1MiB [12]. This constraint of di-
rect branches warrants the investigation of complementary
techniques.

4.2 Absolute-load Indirect Branching
Absolute-load indirect branching avoids modifying code,
by loading the target address from a memory address and
jumping to it. As a result, patching is done by overwriting
the target address in the corresponding memory location
without modifying the code-stream. In this case, explicit
synchronisation might not be necessary depending on the
cache coherency protocol of the underlying architecture. In
the case of AArch64 no explicit synchronisation is required
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1 MOVZ X16 , #0xABCD ;Craft the address

2 MOVK X16 , #0xEF89 , lsl #16 ; holding

3 MOVK X16 , #0x7654 , lsl #32 ; the

4 MOVK X16 , #0x0213 , lsl #48 ; target

5 LDR X16 , [X16]
6 BLR X16

Listing 4. AArch64 absolute-load indirect branching.

1 CALLEE_1: .quad 0x0123456789ABCDEF

2 ...

3 CALLEE_N: .quad 0x01234ABCDEF56789

4 START: ...

5 LDR X16 , CALLEE_1

6 BLR X16

Listing 5. AArch64 relative-load indirect branching.

as the cache coherency protocol will ensure that any shared
copies are invalidated and re-fetched from memory. Listing 4
shows the corresponding instructions for an absolute-load
indirect branching call-site implementation. Lines 1–4 place
the memory address holding the target address in register
X16. Then in line 5 the target address is loaded in register
X16 while in line 6 the branch is performed.

The implementation in Listing 4 allows the managed run-
time system to keep the target address in any memory ad-
dress in the system. This way, each method can be mapped
to a memory address holding the location of its compiled
version. This approach not only simplifies patching, by not re-
quiring code patching, but it also saves the managed runtime
system from detecting all the potential call-sites targeting
the method at hand. Unfortunately, however, this simplicity
comes at the cost of increased number of instructions, due to
the inline crafting (Lines 1–4) of the address. In the case of
AArch64 this can be up to 4 instructions per call-site (some
values can be crafted with fewer instructions), which is in
the common path. Note that patching is expected to occur
less often than calling a method.

4.3 Relative-load Indirect Branching
Taking advantage of PC-relative addressing we can opti-
mise the absolute-load indirect branching approach (§ 4.2)
by storing the target address in a PC-relative address, e.g.,
after the end of the callers compiled code. Listing 5 shows
the corresponding instructions for the relative-load indirect
branching call-site implementation. The first lines illustrate
an array of PC-relative call-site targets, one for each of the
callers target methods. Note that the labels are only placed to
improve readability, the JIT compiler can directly place the
corresponding offset when generating the LDR instruction.

1 CALLEE_1: .quad 0x0123456789ABCDEF

2 ...

3 CALLEE_N: .quad 0x01234ABCDEF56789

4 START: ...

5 NOP
6 BL SHORT_TARGET

Listing 6. Patchable direct branch relying on relative-
load indirect branching for long range calls. Unsafe on
AArch64.

1 L: LDR X16 , CALLEE

2 BR X16 ; Don't link

3 CALLEE: .quad 0x0123456789ABCDEF

4 ...

5 BL SHORT_TARGET ; or L

Listing 7. Trampoline implementation with relative-
load call-sites.

Non-AArch64-compatible approach: Note that in archi-
tectures without the constraint 4 of AArch64, about which
instructions can be safely patched, the relative-load indi-
rect branching can be combined with direct branching to
improve performance of short range calls (by using direct
calls). In such a scenario the JIT compiler would use a NOP
followed by a BL for short range calls. When patching for a
long range call, the runtime would first write the new target
to CALLEE_1 patch NOP to LDR X16, CALLEE_1 and then
patch BL SHORT_TARGET to BLR X16. When patching from a
long range call to a short range the opposite would happen,
patching first the BLR X16 to BL SHORT_TARGET and then
LDR X16, CALLEE_1 to NOP.

4.4 Trampolines
Another approach for safe patching of call-sites is to use
trampolines. A trampoline is essentially an instruction that
jumps to a call-site that eventually calls the desired callee.
Trampolines are implemented using a single BL instruction,
which can be safely patched without exclusive access. The
trampoline can either branch directly to the target method
(if it is within the range of a direct branch), or branches to
an out-of-line long-range call-site, see Listing 7. Note that
the call sites just branch without linking (line 2), this way
when the callee returns it does not return to the out-of-line
call-site but right after the trampoline (line 5). This approach
is currently being used by the OpenJDK AArch64 port. A
limitation of this approach is that the out-of-line call-site still
needs to be in the direct branch range. This can be achieved
by reserving space for a call-site per callee in the method
header, in a similar manner to the way we allocate space for
target addresses for relative-load indirect branching.
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4.5 Patching only at Safe-points
Managed runtime systems use safe-points to “stop the world”
and perform critical operations, such as garbage collection,
that are not safe to be performed while application threads
are running. Safe-point checks are usually injected by the
JIT compiler at back-edges of branches and right after (or
before) call-sites. Whenever a critical operation needs to be
performed, the managed runtime system enables the safe-
point flag forcing the application threads to pause execution
the next time they reach a safe-point. An early version of
the AArch64 OpenJDK port [13] employed this technique to
obviate the complexities of call-site patching imposed by the
architecture. By employing call-site patching at safe-points
it is ensured that only the patching thread will have access to
the corresponding call-site. That said, JIT compilers can use
any instructions (even from the AArch64 ISA) to generate
the call-sites in this case. A possible call-site implementation
for this approach would be that of Listing 1. In this approach
patching is achieved by overwriting the call-site as a whole or
partially, depending on the chosen call-site implementation.
When patching only at safe-points the application threads
can be safely synchronized when notified that the safe-point,
and hence the patching, is complete. The major advantage
of this approach is that it gives the flexibility to the managed
runtime system to use any instruction sequence to imple-
ment the call-site. However, it requires a stop-the-world
pause which might not be desirable, especially in interactive
or latency-critical applications.

5 Comparison of Call-Site
Implementations

In this section we perform a comparison between the differ-
ent call-site implementations that we present in § 4. Table 1
presents a summary of this comparison based on the follow-
ing criteria:

• Whether code-patching or data-patching is required.
• Whether SMC support is required.
• The code size of the call-site implementation.
• The complexity of the patching code.
• The supported target range.
• Whether patching requires a “Stop-the-World” pause.

5.1 Code vs Data Patching and SMC Support
We characterise each implementation based on whether
patching needs to alter code or data. Implementations that
require code patching, e.g. Direct (§ 4.1), depend on SMC
support and cannot be implemented in the absence of it. On
the other hand, implementations requiring only data patch-
ing, e.g. Absolute-load Indirect (§ 4.2), do not require SMC
support since they do not alter the code itself, they just in-
directly redirect execution. Note that Relative-load Indirect
(§ 4.3) despite writing to memory holding code it does not
overwrite actual code. It just overwrites data which reside

with code, thus we characterise it as Hybrid, and it does not
require SMC support. Similarly we characterise Trampolines
(§ 4.4) asHybrid since they alsowrite data inmemory holding
code for the long-range call-sites. In contrast to Relative-load
Indirect, Trampolines require SMC support to patch short-
range calls, and to patch short-range calls to long-range and
vice versa. Depending on the underlying hardware Hybrid
implementations may or may not have side-effects on the
code-stream (see Figure 1 1 and 3 ).

5.2 Code Size
Code size is an important metric not only because bigger
code size is associated with more instructions and thus more
cycles, but also because bigger code sizes impact the cache
performance, especially in embedded systems. For each im-
plementation we report the number of 32-bit instructions.
Note that Relative-load Indirect is once more special. Despite
requiring only two instructions per call-site, it also requires
a 64-bit segment (marked as +2 in Table 1) per callee per
compiled method. These 64 bits reside inline with the code
and hold the target address of the corresponding call-sites.
This additional space in the method body contributes to the
overall code size and may impact the performance of the
code cache. Trampolines depending on the call-range require
executing from a single instruction (for short-range calls) up
to three instructions (for long-range calls). For short-range
the reserved space is four instructions, while for long-range
the reserved space is two instructions (marked as +4 and +2
respectively in Table 1).

5.3 Patching Complexity
The complexity of the patching code, although not in the
common path, is another interesting metric when it comes
to call-site implementations. The patching complexity relies
heavily on whether the call-site requires code or data patch-
ing. When data-patching, an overwrite of the old address is
enough to make future calls jump to the new target. How-
ever, different implementations have different complexity. In
the Absolute-load Indirect branching (§ 4.2) case where we
keep a single central 64-bit value for each compiled method,
a single 64-bit write is enough to effectively patch all the
call-sites targeting the corresponding method. On the con-
trary, in the Relative-load Indirect (§ 4.3) case we need to
visit each caller method and overwrite the corresponding
64-bit inline segment, increasing the complexity from O(1)
to O(n), where n is the number of methods that invoke the
corresponding method at least once.

In implementations requiring code-patching, the complex-
ity increases even more. In code-patching we need to patch
each call-site separately, even if multiple call-sites with the
same target reside in the same method, resulting in a com-
plexity of O(m), where m is the number of call-sites that
invoke the corresponding method andm ≥ n. To effectively
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Table 1. Comparison of call-site implementation approaches.

Absolute-load Relative-load
Direct Indirect Indirect Trampolines Any | Safe-point

Characterisation Code Data Hybrid Hybrid Any
Requires SMC support Yes No No Yes Maybe

Size (in 32-bit instructions) 1 6 2 +2 1 +4 to 3 +2 Any (≥ 1)
Patching Complexity Medium Low Medium High Any
Supported Call Range Limited Any Any Any Any
Stop-the-world pause No No No No Yes

patch all call-sites invoking a method, we need to either go
over all the compiled methods and eagerly patch the corre-
sponding call-sites, or patch the current compiled version
of the callee to make it lazily patch call-sites when they get
executed. The latter allows patching to run in constant time,
but penalizes the first execution of each un-patched call-site.

6 Evaluation
6.1 Platform and Methodology
Hardware & Software: To evaluate the different call-site
implementations we run our experiments on an ARM-based
Odroid-C2. The Odroid-C2 features a quad-core Cortex-A53
processor clocked at 1.54 GHz and 2 GB of DDR3 RAM. The
Cortex-A53 is an “8-stage pipelined processor with 2-way
superscalar, in-order execution pipeline, a 4 KiB conditional
branch predictor, and a 256-entry indirect branch predictor2”.
The software configuration consists of Ubuntu 18.04.2 LTS
with the odroid 3.16.68-41 kernel, GCC 8.3.0, and MaxineVM
2.8.0 built with Open JDK 8 u212.

We evaluate the presented call-site implementations on a
microbenchmark and the DaCapo benchmark suite [8]. Our
discussion of cache effects does not consider non-uniform
cache line sizes, such as those on some implementations of
big.LITTLE configurations.

Microbenchmark: In order to perform a fine-grainedmicro-
architectural and performance analysis of the call-site im-
plementations presented in § 4, we implemented a micro-
benchmark that performs a predefined number of invoca-
tions, where each callee performs just a return instruction.
We use a total of two callees, one is used as the default tar-
get and the other as the patching target. For each call-site
implementation we generate the corresponding sequence
of assembly instructions. In addition, the microbenchmark
allows us to generate inline call-sites and measure their per-
formance in a cycle accurate manner. Finally, we can also
calculate the cost of the patching code per call-site imple-
mentation by isolating its execution.

2https://en.wikipedia.org/wiki/ARM_Cortex-A53#Overview

DaCapo Suite: For the DaCapo benchmark suite (version
9.12-bach), we implemented and evaluated the two high-
est performing call-site implementations in MaxineVM [19,
28]. We chose Maxine VM as our experimental JVM follow-
ing on directly from our experience of porting it to Arm
architectures [19], and our search for an optimal call-site
strategy. Namely, in MaxineVM we evaluate against Da-
Capo the Direct, and a modified version of Relative-load
Indirect. We run nine out of the fourteen DaCapo bench-
marks, namely: avrora, fop, h2, jython, luindex, lusearch,
pmd, sunflow, and xalan. The remainder five either do not
run due to limitations of the bundled Java platform (batik,
eclipse, and tomcat), or fail to start in MaxineVM (trade-
soap and tradebeans). For each run we set the heap size
to 1GB (-Xms1G -Xmx1G). We run each benchmark 20 times
(using the DaCapo harness) and report the average of the
runs after reaching peak-performance.

Methodology: For the micro-benchmark we perform 100
runs for each configuration and report the average measure-
ments. When plotting we use bar-plots with 95% confidence
intervals, to indicate the variance across the runs. On the
Odroid-C2 we obtain the measurements by directly access-
ing the performance monitor unit (PMU) with Table 2 listing
the hardware counters that we read when measuring. Af-
ter analysing the obtained performance counters, we report
those that directly influence and contribute to the perfor-
mance results. In addition, we disable dynamic voltage and
frequency scaling (DVFS) by setting each core to work at the
highest possible frequency using the cpufreq-set utility
and the userspace governor.

6.2 Microbenchmark Results
Figure 2 and Table 3 summarise the results obtained by run-
ning the microbenchmark on the Odroid-C2. Note that for
Trampolines we only evaluate the performance of long-
range calls since the performance of short-range calls is
equivalent to that of the Direct implementation. Note also
that the number of cycles represents calling the “return” func-
tion, i.e. corresponds to the call-site plus the ret instruction.

Call Cost (Best/Worst Case): Figure 2 illustrates the num-
ber of cycles spent for each call implementation and the ret

https://en.wikipedia.org/wiki/ARM_Cortex-A53#Overview
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Table 2. PMU hardware counters used in our experiments and evaluation. We mark with bold the counters used for generating
Figure 2 and Table 3.

Name Event ID Description

CPU_CYCLES 0x11 Cycle count
L1I_CACHE_REFILL 0x01 L1 Instruction Cache Refills

L1I_CACHE 0x14 L1 Instruction Cache Accesses
L1D_CACHE_REFILL 0x03 L1 Data Cache Refills

L1D_CACHE 0x04 L1 Data Cache Accesses
L2D_CACHE_REFILL 0x17 L2 Data Cache Refills

L2D_CACHE 0x16 L2 Data Cache Accesses
PC_WRITE_RETIRED 0x0c Branches (Including Returns)
BR_IMMED_RETIRED 0x0d Immediate Branches

BR_MIS_PRED 0x10 Branch Misses
BR_PRED 0x12 Predictable Branches

BR_INDIRECT_SPEC 0x7a Speculatively Executed Indirect Branches
INST_RETIRED 0x08 Retired instructions
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Figure 2. Micro-Benchmark results from Odroid-C2.

instruction. As shown, both the best and worst-case costs are
presented. Regarding the best case, this is the cost that each
particular call-site implementation has when the memory
accesses hit on the L1 caches. On the contrary, the worst-
case refers to the first method call invocation directly after
patching, in the case where the patching has caused shared
cache line invalidations. In the case of Trampolines the
worst-case may include up to two instruction-cache and one
data-cache miss, due to the number and placement of instruc-
tions that might happen to be on different cache-lines. In the
case of Direct the worst-case includes a single instruction-
cache miss and in the case of data-patching implementations
(Absolute-load Indirect and Relative-load Indirect)
the costs include one data-cache miss.
In the best-case the Direct branch implementation out-

performs all others, while the Trampolines is the worst

performing (6 versus 12 cycles). The two data-patching im-
plementations fall in-betweenwith 7 (Relative-load Indi-
rect) and 11 (Absolute-load Indirect) cycles. The same
trends are also observed in the worst-case with the various
call-site implementations ranging from 18 cycles for Direct
to 50 cycles for Trampolines. When applications reach their
peak performance state, the call-site costs will be equivalent
to the best-case presented.

Patching Cost: Table 3 summarises the cost of performing
a call-site patch for each call-site implementation. The first
row shows the number of cycles spent to execute the patch
logic. Note that these numbers are indicative since different
runtime systems are expected to require different number
of cycles for the patching. For instance, in our microbench-
mark we use the return register and calculate the memory
address that needs to be patched. In a realistic runtime sys-
tem we would have to traverse some data-structure, or even
the code itself to find the addresses that need to be patched.
Nevertheless, the core functionality of the patching would
be the same and the order between the various implemen-
tation is expected to remain the same, i.e. we expect the
Absolute-load Indirect implementation to always have
the fastest patching implementation, and the Trampolines
implementation to have the slowest. The additional over-
head of instruction-cache management operations due to ex-
plicit instruction modification can be seen in the Direct and
Trampoline call-site implementations whose patching costs
more cycles in comparison to that of the Absolute-load
Indirect and Relative-load Indirect implementations
that require only data cache management operations.

Level 1 Instruction Cache Refills: The second row of Ta-
ble 3 presents the total number of potential L1 instruction
cache refills expected as a result of a patch operation for
each implementation. Data-patching implementations are
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Table 3. Comparison of patching call-site implementation.

Absolute-load Relative-load
Direct Indirect Indirect Trampolines

Cycles 45 12 24 56
L1I-refills on caller’s site 1 0 0 0–2
L1D-refills on caller’s site 0 1 1 0–1

not expected to result in any instruction-cache refills since
they do not alter code, nor do they perform any explicit
instruction-cache management operations. On the other
hand code-patching implementations, namely Direct and
Trampoline, may cause instruction-cache misses. The patch-
ing of a Direct call-site may cause one instruction-cache
miss if the patched instruction needs to be re-fetched in or-
der to be executed. The patching of a Trampoline call-site
is more complex, though. Depending on the patch operation,
wemay observe from zero up to two instruction cache misses
(due to the patching).When patching a long-range call-site to
a long-range call-site, patching a Trampoline call-site is es-
sentially identical to patching an Relative-load Indirect
call-site. Consequently no explicit instruction cache man-
agement are required in the patching process, and no refill
is expected to happen. On the contrary, when patching a
short-range call to perform long-range call, we may observe
instruction cache refills. The first instruction refill is needed
to fetch the newly patched trampoline branch, and the sec-
ond one is needed to fetch the out-of-line call-site that will
actually perform the long-range call. Finally, when patch-
ing either a short-range or a long-range call to perform a
short-range call, then only a single instruction-cache refill is
expected; the one required to fetch the patched inline direct
branch.

Level 1 Data Cache Refills: The third row of Table 3 pre-
sents the total number of possible L1 data cache refills ex-
pected as a result of a patch operation for each implemen-
tation. In this case, data-patching implementations could
cause one cache-miss when a caller loads the patched tar-
get address. Patching a Direct call-site is not expected to
result in any data-cache refill, since direct branches do not
perform any reads/loads. On the contrary, in the case of
a Trampoline call-site if the new target is long-range one,
then after performing a direct branch (for the trampoline)
the caller will need to load the target address from memory,
resulting in data-cache refill to serve that load.

Both Level 1 instruction and data cache refills discussed
above, assume that the caller is running on a different core
than the patcher. Otherwise, in the case that the patcher
is sharing the level 1 cache with the caller, the caller does
not need to perform any refills, all the data will be already
available to it.

1 ADR X17 , CALL ; Get address of BLR

2 LDR X16 , OFFSET ; Load offset

3 ADD X16 , X16 , X17 ; Add them

4 B #8 ; Jump over inline offset

5 OFFSET: .int CALL - CALLEE_1

6 CALL: BLR X16

Listing 8. Indirect-Maxine: MaxineVM version of
Relative-load Indirect branching.

6.3 DaCapo Results
After conducting the micro-benchmark studies, we imple-
mented versions of the presented call-site implementations
in MaxineVM in order to assess their real-world performance.
From the call-site implementations described in § 4, we
opted for implementing the fastest ones as demonstrated by
the micro-benchmark; namely Direct and Relative-load
Indirect. Regarding the Relative-load Indirect imple-
mentation shown in Listing 5, we slightly modified its im-
plementation in MaxineVM due to its meta-circular nature.
In this scheme, we encode the target address of the different
callees inside the methods. However, this is not possible in
MaxineVM where due to its meta-circular nature the meth-
ods that comprise the bootimage do not have known target
addresses. Since MaxineVM is written in Java and compiled
by its own compiler (C1X), the methods that are part of the
bootimage must have relative offsets rather than absolute
addresses in order for the VM to be portable. A potential
solution would be to create the boot image with relative off-
sets and later patch it to use absolute addresses at load time,
however this entails significant effort that is out of the scope
of this paper. Other meta-circular VMs such as Jikes RVM [1]
allocate the bootimage on predefined memory addresses and
hence could use the Relative-load Indirect scheme of
Listing 5 as is.

Listing 8 shows the version of Relative-load Indirect
call-site that was prototyped on the Maxine VM. In addition
to the above constraint, we placed the target offset inside
the call site for simplicity, which enabled a prototype to be
created without making significant changes to the runtime.
Ideally the offset would be moved out-of-line, as in Listing 5,
to avoid incurring the additional branch on line 4. Line 1 gets
the address of the BLR in line 6. Line 2 loads the offset stored
inside the code (in line 5) using PC-relative addressing. Line
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Figure 3. DaCapo benchmark results from Odroid-C2.

3 adds the offset to the BLR address. Line 4 jumps over the
inlined offset, and finally Line 6 branches to the target. To esti-
mate the relative cost of this sub-optimal implementation, we
also evaluate the Relative-load Indirect implementation
of MaxineVM (Indirect-Maxine) against the original four
implementations with the micro-benchmark. As shown in
Figure 4, despite being a little slower, the Indirect-Maxine
implementation has a roughly similar performance to the
Absolute-load Indirect.

As shown in Figure 3, the Indirect-Maxine implemen-
tation performs notably worse than the Direct branch im-
plementation with slowdowns varying from 4% (sunflow) to
15% (luindex). Of course the speedup that direct branches
have over indirect come at the cost of limited branch range
as explained in § 4. However, in non-metacircular virtual
machines we expect the performance of indirect branches to
be better if we apply the Relative-load Indirect imple-
mentation (see Figure 4).

7 Related Work
The majority of prior studies has focused on detecting [10],
modelling [3], analysing [4], and verifying [9, 23] SMC. SMC
is of main interest in the area of security where it can be
potentially utilised to either improve the security of sys-
tems [2, 14, 27], or to obfuscate code in order to trickmalware
detectors [11, 24] or to prevent reverse-engineering [21].
In managed languages, in particular, SMC is part of the
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Figure 4. Micro-benchmark results from Odroid-C2 includ-
ing Maxine’s variation of Indirect-Relative.

JIT tiered compilation employed for increased performance.
Call-site implementations and the implications for replac-
ing old methods with newly compiled ones, have not been
thoroughly studied mainly because the dominant execution
platforms of managed languages provide strong hardware
support for SMC. Hence, implementations of call sites were
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resulting in memory coherent results completely transpar-
ently to the users.

In architectures without hardware support for SMC, such
as the AArch64, although studies have been conducted ana-
lysing their performance on various workloads [20, 25, 26], to
the best of our knowledge, no prior work exists on character-
ising the performance implications of SMC in the context of
managed language runtimes. Our work aims at providing the
first in-depth characterisation of alternative memory-safe
call-site implementations.

8 Conclusions & Future Work
In this paper we explored how managed runtime systems
can perform method calls and safe code patching in the ab-
sence of hardware support for SMC. After discussing the
implications that the lack of hardware support for SMC has
on low-power architectures such as AArch64, we performed
an analysis over alternative call-site implementations and
patching strategies, highlighting their advantages and disad-
vantages. Consequently, we evaluated four alternative imple-
mentations along with their associated patching strategies
on a microbenchmark. Furthermore we evaluated the two
most promising strategies on the DaCapo benchmark suite
in the context of the open-source MaxineVM running on
AArch64. Our low-level architectural characterisation and
performance analysis showcased a performance variation of
up to 15% between the different implementations.

For future work, we plan to extend this study to more ar-
chitectures that are more constrained with respect to branch
instruction encodings such as RISC-V. Furthermore, we plan
to explore additional patching strategies such as polymorphic
inline caches, and study safe patching at natural synchroni-
sation points of managed runtimes, such as safe-points.

Acknowledgements
We would like to thank the anonymous reviewers for their
feedback and Lubomír Bulej for his guidance while preparing
the camera-ready version. This work is partially supported
by an ARM iCASE scholarship and the EU Horizon 2020
ACTiCLOUD 732366 and E2Data 780245 programme grants.
Mikel Luján is supported by an Arm/RAEng Research Chair
award and is a Royal Society Wolfson Fellow.

References
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J. . Choi,

A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V.
Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley.
2000. The JalapeÃśo virtual machine. IBM Systems Journal 39, 1 (2000),
211–238. https://doi.org/10.1147/sj.391.0211

[2] Antoine Amarilli, Sascha Müller, David Naccache, Daniel Page, Pablo
Rauzy, and Michael Tunstall. 2011. Can Code Polymorphism Limit
Information Leakage?. In Information Security Theory and Practice.
Security and Privacy of Mobile Devices in Wireless Communication,
Claudio A. Ardagna and Jianying Zhou (Eds.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1–21.

[3] Bertrand Anckaert, Matias Madou, and Koen De Bosschere. 2007. A
Model for Self-Modifying Code. In Information Hiding, Jan L. Ca-
menisch, Christian S. Collberg, Neil F. Johnson, and Phil Sallee (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 232–248.

[4] Bertrand Anckaert, Matias Madou, and Koen De Bosschere. 2007. A
Model for Self-modifying Code. In Proceedings of the 8th International
Conference on Information Hiding (IH’06). Springer-Verlag, Berlin, Hei-
delberg, 232–248. http://dl.acm.org/citation.cfm?id=1759048.1759066

[5] ARM. 2019. Arm Architecture Reference Manual Armv8. https:
//static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.pdf?
_ga=2.153168888.1503102752.1563189579-1528906649.1556140495

[6] ARM. 2019. Neoverse E1. https://www.arm.com/products/silicon-ip-
cpu/neoverse/neoverse-e1

[7] Azul Systems. 2019. Zulu Embedded Open Source Java for Embedded
Systems. https://www.azul.com/products/zulu-embedded/

[8] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R.
Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.
Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The
DaCapo Benchmarks: Java Benchmarking Development and Analysis.
InOOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and Applications.
ACM Press.

[9] HongxuCai, Zhong Shao, andAlexander Vaynberg. 2007. Certified Self-
modifying Code. In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’07). ACM,
New York, NY, USA, 66–77. https://doi.org/10.1145/1250734.1250743

[10] Shi Dawei, Lv Delong, and Ye Zhibin. 2018. Dynamic Self-modifying
Code Detection Based on Backward Analysis. In Proceedings of the 2018
10th International Conference on Computer and Automation Engineering
(ICCAE 2018). ACM, New York, NY, USA, 199–204. https://doi.org/10.
1145/3192975.3193016

[11] Daniele Cono D’Elia, Emilio Coppa, Simone Nicchi, Federico Palmaro,
and Lorenzo Cavallaro. 2019. SoK: Using Dynamic Binary Instrumen-
tation for Security (And How You May Get Caught Red Handed). In
Proceedings of the 2019 ACM Asia Conference on Computer and Com-
munications Security (Asia CCS ’19). ACM, New York, NY, USA, 15–27.
https://doi.org/10.1145/3321705.3329819

[12] RISC-V Foundation. 2019. The RISC-V Instruction Set Manual, Volume
I: User-Level ISA, Document Version 20190608-Base-Ratified. https:
//riscv.org/specifications/

[13] Andrew Haley and Andrew Dinn. FOSDEM 2014. OpenJDK on
AArch64 Update. https://aph.fedorapeople.org/Aarch64-fosdem-
2014.pdf

[14] Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz.
2013. Librando: transparent code randomization for just-in-time com-
pilers. In Proceedings of the 2013 ACM SIGSAC conference on Computer
&#38; communications security (CCS ’13). ACM, New York, NY, USA,
993–1004. https://doi.org/10.1145/2508859.2516675

[15] IBM. 2017. Power ISA Version 3.0B. https://openpowerfoundation.
org/?resource_lib=power-isa-version-3-0

[16] Intel. 2015. Method and apparatus for providing hardware support
for self-modifying code, PCT/US2015/030411. https://patents.google.
com/patent/EP3143496A1/en

[17] Intelm. 2019. Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2. https://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-ia-32-architectures-software-
developer-instruction-set-reference-manual-325383.pdf

[18] JamaicaVM. 2019. A hard realtime Java bytecode-based Virtual Ma-
chine. https://www.aicas.com/cms/en/JamaicaVM

[19] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet,
John Mawer, and Mikel Luján. 2017. Heterogeneous Managed Runtime
Systems: A Computer Vision Case Study. In Proceedings of the 13th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

https://doi.org/10.1147/sj.391.0211
http://dl.acm.org/citation.cfm?id=1759048.1759066
https://static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.pdf?_ga=2.153168888.1503102752.1563189579-1528906649.1556140495
https://static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.pdf?_ga=2.153168888.1503102752.1563189579-1528906649.1556140495
https://static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.pdf?_ga=2.153168888.1503102752.1563189579-1528906649.1556140495
https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-e1
https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-e1
https://www.azul.com/products/zulu-embedded/
https://doi.org/10.1145/1250734.1250743
https://doi.org/10.1145/3192975.3193016
https://doi.org/10.1145/3192975.3193016
https://doi.org/10.1145/3321705.3329819
https://riscv.org/specifications/
https://riscv.org/specifications/
https://aph.fedorapeople.org/Aarch64-fosdem-2014.pdf
https://aph.fedorapeople.org/Aarch64-fosdem-2014.pdf
https://doi.org/10.1145/2508859.2516675
https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0
https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0
https://patents.google.com/patent/EP3143496A1/en
https://patents.google.com/patent/EP3143496A1/en
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.aicas.com/cms/en/JamaicaVM


An Analysis of Call-Site Patching without Strong HW Support for SMC MPLR ’19, October 21–22, 2019, Athens, Greece

Environments (VEE ’17). ACM, New York, NY, USA, 74–82. https:
//doi.org/10.1145/3050748.3050764

[20] Dumitrel Loghin, Bogdan Marius Tudor, Hao Zhang, Beng Chin Ooi,
and Yong Meng Teo. 2015. A Performance Study of Big Data on
Small Nodes. Proc. VLDB Endow. 8, 7 (Feb. 2015), 762–773. https:
//doi.org/10.14778/2752939.2752945

[21] Nikos Mavrogiannopoulos, Nessim Kisserli, and Bart Preneel. 2011. A
taxonomy of self-modifying code for obfuscation. Computers & Security
30, 8 (2011), 679 – 691. https://doi.org/10.1016/j.cose.2011.08.007

[22] MicroPython. 2019. Python for microcontrollers. https://micropython.
org

[23] Magnus O. Myreen. 2010. Verified Just-in-time Compiler on x86. In
Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’10). ACM, New York, NY,
USA, 107–118. https://doi.org/10.1145/1706299.1706313

[24] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis
Polychronakis, and Sotiris Ioannidis. 2014. Rage Against the Vir-
tual Machine: Hindering Dynamic Analysis of Android Malware.
In Proceedings of the Seventh European Workshop on System Secu-
rity (EuroSec ’14). ACM, New York, NY, USA, Article 5, 6 pages.
https://doi.org/10.1145/2592791.2592796

[25] Nikola Rajovic, Lluis Vilanova, Carlos Villavieja, Nikola Puzovic, and
Alex Ramirez. 2013. The low power architecture approach towards
exascale computing. Journal of Computational Science 4, 6 (2013), 439 –
443. https://doi.org/10.1016/j.jocs.2013.01.002 Scalable Algorithms for
Large-Scale Systems Workshop (ScalA2011), Supercomputing 2011.

[26] BogdanMarius Tudor and YongMeng Teo. 2013. On Understanding the
Energy Consumption of ARM-based Multicore Servers. In Proceedings
of the ACM SIGMETRICS/International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’13). ACM, New York, NY,
USA, 267–278. https://doi.org/10.1145/2465529.2465553

[27] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and
François-Xavier Standaert. 2012. Shuffling against Side-Channel At-
tacks: A Comprehensive Study with Cautionary Note. In Advances in
Cryptology – ASIACRYPT 2012, Xiaoyun Wang and Kazue Sako (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 740–757.

[28] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick
Jordan, Laurent Daynès, and Douglas Simon. 2013. Maxine: An Ap-
proachable Virtual Machine for, and in, Java. ACM Trans. Archit. Code
Optim. 9, 4, Article 30 (Jan. 2013), 24 pages. https://doi.org/10.1145/
2400682.2400689

https://doi.org/10.1145/3050748.3050764
https://doi.org/10.1145/3050748.3050764
https://doi.org/10.14778/2752939.2752945
https://doi.org/10.14778/2752939.2752945
https://doi.org/10.1016/j.cose.2011.08.007
https://micropython.org
https://micropython.org
https://doi.org/10.1145/1706299.1706313
https://doi.org/10.1145/2592791.2592796
https://doi.org/10.1016/j.jocs.2013.01.002
https://doi.org/10.1145/2465529.2465553
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1145/2400682.2400689

	Abstract
	1 Introduction
	2 Background
	2.1 Von Neumann Architectures and SMC
	2.2 Categorisation of Processors

	3 Architectural Constraints on SMC
	3.1 Call-Site Size, Patch Size, and Atomicity | ISA
	3.2 Visibility and Timeliness | Memory Model
	3.3 Patchable Instructions | SMC Support

	4 Call-Site Implementations
	4.1 Direct Branching
	4.2 Absolute-load Indirect Branching
	4.3 Relative-load Indirect Branching
	4.4 Trampolines
	4.5 Patching only at Safe-points

	5 Comparison of Call-Site Implementations
	5.1 Code vs Data Patching and SMC Support
	5.2 Code Size
	5.3 Patching Complexity

	6 Evaluation
	6.1 Platform and Methodology
	6.2 Microbenchmark Results
	6.3 DaCapo Results

	7 Related Work
	8 Conclusions & Future Work
	References

