
The University of Manchester Research

Hosting OpenMP Programs on Java Virtual Machines

DOI:
10.1145/3357390.3361031

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Gaikwad, S., Nisbet, A., & Luján, M. (2019). Hosting OpenMP Programs on Java Virtual Machines. In Proceedings
of the 16th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes (MPLR
'19) Association for Computing Machinery. https://doi.org/10.1145/3357390.3361031

Published in:
Proceedings of the 16th ACM SIGPLAN International Conference on Managed Programming Languages and
Runtimes (MPLR '19)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:19. Apr. 2024

https://doi.org/10.1145/3357390.3361031
https://research.manchester.ac.uk/en/publications/0e32eba7-9bb1-4f86-a3f2-04411f7ea5c2
https://doi.org/10.1145/3357390.3361031


Hosting OpenMP Programs on Java Virtual Machines
Swapnil Gaikwad

University of Manchester
Manchester, UK

swapnil.gaikwad@manchester.ac.uk

Andy Nisbet
University of Manchester

Manchester, UK
andy.nisbet@manchester.ac.uk

Mikel Luján
University of Manchester

Manchester, UK
mikel.lujan@manchester.ac.uk

Abstract
To leverage existing virtual machine infrastructures is at-
tractive for programming language implementors because
competitive runtime performance may be achieved with a
reduced effort. For example, the Truffle framework has en-
abled Ruby (TruffleRuby), and C (Sulong) guest language
implementations to be hosted on a Java Virtual Machine
(JVM). In this paper, we present Sulong-OpenMP, the first
Truffle-based implementation to support parallel programs
written in C/C++ and OpenMP. Our implementation adds
OpenMP support to Sulong that executes LLVM Intermediate
Representation (LLVM IR) for C/C++ programs on a JVM.
We outline the challenges faced in supporting OpenMP

execution semantics, and the current limitations of Sulong-
OpenMP. The geometric mean overhead of 1 thread Sulong-
OpenMP compared to sequential Sulong execution was 2.6%
for the NAS Parallel Benchmark suite, at peak runtime per-
formance. Although this paper focuses on the correctness of
our implementation concerning the OpenMPmemory model,
we also highlight the diminishing performance gap between
the native execution with clang -O2 and our Sulong-OpenMP
as only 1.2x in the best case using 4 OpenMP threads.

CCS Concepts • Software and its engineering→ Inter-
preters; Virtual machines; Multithreading; Just-in-time
compilers.

Keywords Java Virtual Machine, OpenMP, Sulong, Truffle,
GraalVM

ACM Reference Format:
Swapnil Gaikwad, Andy Nisbet, and Mikel Luján. 2019. Hosting
OpenMP Programs on Java Virtual Machines. In Proceedings of
the 16th ACM SIGPLAN International Conference on Managed Pro-
gramming Languages and Runtimes (MPLR ’19), October 21–22,
2019, Athens, Greece. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3357390.3361031

MPLR ’19, October 21–22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes (MPLR ’19), October 21–22, 2019,
Athens, Greece, https://doi.org/10.1145/3357390.3361031.

1 Introduction
The Java Virtual Machine (JVM) is becoming a popular plat-
form for hosting many programming languages beyond Java.
Currently this includes, for example, Clojure, Scala, Kotlin,
and using the Truffle framework C/C++, Fortran, R, Ruby,
JavaScript and Python [4, 6, 11, 17]. The benefits of this ap-
proach are reduced language implementation effort with
competitive runtime performance that directly leverages
JVM infrastructure and its extended ecosystem of software
support tools. Further, the interoperability features of Truffle
[6–8] provide efficient execution support for multi-language
polyglot applications where code in one language, can effi-
ciently access foreign code and data in another.

A Truffle hosted language has to create an Abstract Syntax
Tree (AST) that is initially interpreted. Profiling information
is collected that helps to guide speculative optimizations dur-
ing JIT compilation of hot frequently executed code. If any
speculative assumptions for an optimization are found to be
invalid, then the JVM deoptimizes the offending code back
to its previous slower interpreter-based form. Truffle-hosted
languages with dynamic types can benefit from speculative
optimizations such as the assumed types of values. On the
other hand, for statically typed languages, such as the Sulong
(Truffle) implementation for C/C++ (see Section 2.1), Rigger
et al. [16] demonstrated that additional bugs and program-
ming errors related to undefined behaviour can be caught.
This paper explains how to extend Sulong to provid par-

allel execution support for C/C++ programs using OpenMP
directives. Prior to this work, Sulong was limited to sequen-
tial execution of C/C++ programs. We present the design of
our implementation of Sulong-OpenMP, and present results
using the NAS Parallel Benchmarks (NPB) suite.
This paper describes how to reduce the execution time

overheads of 1-thread Sulong-OpenMP in comparison to
sequential Sulong execution, which is 2.6% geomean for NPB.
The main contributions of the paper are:

• We demonstrate our approach to execute OpenMP
programs on a JVM that is accomplished primarily by
extending LLVM IR bitcode interpreter of Sulong.

• We describe how to map the OpenMP memory model
onto the Java memory model.

• We present an evaluation of NPB suite on our imple-
mentation. We discuss the main optimizations used,
the sources of overhead, and the performance impact
of each optimization.

https://doi.org/10.1145/3357390.3361031
https://doi.org/10.1145/3357390.3361031
https://doi.org/10.1145/3357390.3361031


MPLR ’19, October 21–22, 2019, Athens, Greece Swapnil Gaikwad, Andy Nisbet, and Mikel Luján

2 Background
This section provides an overview of themain components of
Sulong[15], that implements an LLVM IR guest language on
top of Truffle and GraalVM. In addition, we describe the main
relevant aspects of OpenMP programming and functionality
support necessary for our implementation.

2.1 Truffle, GraalVM & Sulong
Truffle is an implementation framework written in Java that
enables a guest language to be implemented as an Abstract
Syntax Tree (AST) interpreter [6, 21]. A Truffle-based in-
terpreter converts a guest language program input into an
AST that is executed using a Java Virtual Machine (JVM).
As with normal Java, the AST is initially interpreted and
its frequently executed parts are JIT compiled on demand
during execution. The Truffle generated AST is specialized
using observed runtime program behaviour that can then
aid optimizing JIT compilers such as Graal to generate bet-
ter code with speculative optimizations. For example, this
can include aspects such as the observed datatype of pro-
gram variables, the probability of taking a branch, and the
identities of dynamically resolved function calls, and so on.
Correct execution semantics are preserved by performing
deoptimization at runtime back to the original Truffle AST
form when speculative assumptions are found to be false.

Truffle-ASTs can be executed using any JVM, however, the
Graal JIT compiler applies a range of optimizations including
partial evaluation [20] and partial escape analysis [18], that
have been found to be especially effective for improving
the performance of dynamically typed languages such as
Python, Ruby and JavaScript. GraalVM (a JVM using the
GraalJIT compiler) is particularly useful in this context as it
enables specialized custom compilation of Truffle-ASTs and
specific features of Truffle hosted language features via the
JVM Compiler Interface (JVMCI).
Sulong is a Truffle-based interpreter that executes the

binary bitcode (.bc) form of the LLVM Intermediate Repre-
sentation (LLVM IR) on JVMs. Therefore, by supporting the
necessary LLVM IR, Sulong can host guest languages that
generate LLVM IR without writing an actual parser or an
interpreter for each of those languages. For example, LLVM
IR can be generated from C/C++ programs using the Clang
frontend, with all the benefits of the comprehensive static
optimizations offered by the LLVM infrastructure.

2.2 OpenMP
OpenMP is a popular directive-based parallel programming
approach for shared memory systems that is available in
C, C++ and FORTRAN languages. It provides a variety of
parallel programming models that can exploit various forms
of work-sharing such as where iterations of a loop are col-
laboratively executed, and also where a task is the basic
unit of parallel execution. In our initial implementation for

Sulong-OpenMP, we only exploit and address the fork-join
computational model of OpenMP and loop-based parallelism
with a static schedule of iterations to threads.
1 void main() {
2 // Code before OpenMP block ...
3 #pragma omp parallel
4 {
5 printf("Thread %d\n", omp_get_thread_num());
6 }
7 // Code after OpenMP block ..
8 }

Listing 1. A simple OpenMP C code where each thread
prints a message containing its thread id.
OpenMP parallel for-loops use a fork-join work-sharing

model. In this model, threads are forked at the beginning of a
program block marked with an OpenMP directive as shown
in Line 2 of Listing 1, and an implicit join is automatically
inserted at the end of the block. A program may contain one
or more such OpenMP parallel blocks, placed sequentially
or nested within each other, to achieve parallelism. When
an OpenMP block contains a for-loop, it is executed by each
OpenMP thread. We can place an #pragma omp for immedi-
ately before a for-loop to split and share the iterations of the
loop amongst the available OpenMP threads. We elaborate
this discussion in Section 5, while referring to the OMP Split
optimization.

3 Implementation
This section outlines themain aspects of the Sulong-OpenMP
implementation, and relevant operational aspects concern-
ing generation of LLVM IR for OpenMP programs. Finally,
we describe the implementation of key OpenMP features,
and the challenges faced whilst mapping semantics of the
OpenMP memory model onto the Java memory model.

1 define i32 @main() {
2 ; LLVM IR for code before omp for loop
3 call .. @__kmpc_fork_call(...,
4 void (i32*, i32*, ...)* @.omp_outlined.),...)
5 ; LLVM IR for code after omp for loop
6 }
7 define void @.omp_outlined.(..) {
8 ; LLVM IR for actual OpenMP block
9 call @printf(..)
10 }

Listing 2. Shortened snippet of LLVM IR generated with
Clang from Listing 1.

3.1 LLVM IR for OpenMP
Clang is the LLVM compiler frontend for C, C++, Objective-
C and Objective-C++ programs. It can generate LLVM IR
for both sequential, and parallel OpenMP programs. The



Hosting OpenMP Programs on JVMs MPLR ’19, October 21–22, 2019, Athens, Greece

latest stable version 8.0.1 [12]. Note the latest OpenMP spec-
ification is 5.0 as of writing this paper whereas Clang has
supported OpenMP 3.1 since version 3.8.0 [13].

Listing 2 shows a shortened snippet of the LLVM IR gen-
erated from Listing 1. Lines 1-7 of Listing 2 represent the
equivalent LLVM IR of the main() function. Note that the
OpenMP block in the main function is replaced by a call to
the OpenMP runtime denoted using @__kmpc_fork_call,
and the function pointer argument to the runtime call is a
pointer to the function containing LLVM IR for an OpenMP
block that includes a call to a printf function. We refer to
this as an outlining of a function, and it is one of the ways
in which the generated LLVM IR for an OpenMP program is
different from a non-OpenMP program.

3.2 Sulong-OpenMP Implementation Approach
The focus of our initial implementation is the subset of
OpenMP features necessary to execute the selected NPB
suite benchmarks. These programs are complex and expose
an important set of challenges for bringing parallel execu-
tion capabilities for the first time to Sulong. Nonetheless,
we continue to extend and enhance the OpenMP support to
incorporate further directives and features.
The OpenMP implementation for Clang is directly based

on Pthreads. We could not use directly this approach, as
Pthreads support for Sulong, although in progress, was not
available at the time of implementation and writing this
paper. One implementation option was to provide our own
Pthreads support in Sulong, and to use the OpenMP runtime
libraries part of LLVM. Although this approach promises to
provide full OpenMP 3.1 feature completeness, the estimated
effort required to run even a simple OpenMP program, such
as in Listing 1, was significantly greater than the chosen alter-
native hybrid approach (mainly based on function morphing)
that we describe below. Further, the Pthread approach could
potentially remove or hinder opportunities to directly apply
custom compilation and optimizations related to mapping
OpenMP language features and memory model semantics
onto Truffle and Java.

FunctionMorphing: Sulongmaintains a registry of func-
tion definitions that map LLVM IR function names onto their
corresponding Truffle-based AST representations generated
by the Sulong parser. The map is searched at runtime to
retrieve a corresponding Truffle-based implementation of an
LLVM IR function that is then invoked. If an LLVM IR func-
tion is not found in the map, then an exception is thrown, this
was initially the case for unimplemented OpenMP runtime
functions. With the goal of reducing our implementation ef-
forts to the essential OpenMP runtime subset, we performed
function morphing where we implemented the necessary
subset of OpenMP functionality with morphed Java imple-
mentations and directly added appropriate mappings to the
registry of function definitions. This approach reduces imple-
mentation effort by avoiding extensive support for pthreads

whilst enabling the direct exploitation of custom execution
using Sulong for specific OpenMP runtime function features.

A hybrid approach is necessary because it becomes cum-
bersome to generate morphed OpenMP functions when read-
/write access to local variables is required. For example, in an
OpenMP for-loop the local range of iterations to be executed
by a thread is typically calculated using the global iteration
space and the logical id of a thread. The approach becomes
cumbersome because the implementation would need to
track and update any changes concerning the internal pro-
cedures of Sulong for accessing any raw memory allocated
using the Unsafe API. Further, the OpenMP runtime func-
tion to perform iteration space splitting can easily exceed a
few 100 lines of Java code, leading to less maintainable and
potentially error-prone code.

To avoid these problems, we use a hybrid approach where
a subset of OpenMP runtime functions can be directly im-
plemented in C. Such C functions are converted into LLVM
IR using Clang, and then added as an external library. The
library is parsed by Sulong and any defined functions are
added to the registry map. Therefore, hybrid functions can
be invoked during execution in a Sulong compatible way.
The need for this approach was minimized, and currently,
we only use a single function implemented in C that returns
the local range of iterations to be executed by an OpenMP
thread.

This hybrid approach is very useful during prototyping, as
it enables the production of simplistic and potentially incom-
plete implementations of OpenMP runtime functions used
as placeholders for further implementation and experimen-
tation. The approach enables the development and imple-
mentation work to provide the earliest possible successful
execution of benchmarks without any exceptions arising due
to unimplemented runtime functions.

3.3 Sulong-OpenMP: Challenges
The main implementation challenges for Sulong-OpenMP
are discussed, they include the for-loop, master, single, criti-
cal, barrier and flush directives that are required to run the
benchmark suite [9] using a fork-join model.

Fork-Join Model — Clang outlines (or wraps) the IR for
a parallel execution block into a separate function, that is
invoked by a runtime function (see Listing 2). Function mor-
phing (see Section 3.2) is used to provide our own implemen-
tation for the runtime @__kmpc_fork_call function. Our
morphed implementation spawns the required number of
Java threads as specified by the OMP_NUM_THREADS environ-
ment variable. The entry point run method of the spawned
Java threads calls the outlined function to match the be-
haviour of OpenMP-based execution. Our morphed function
synchronizes all spawned Java threads once they finish ex-
ecution of the outlined function representing the OpenMP
block. After synchronization, only the master thread contin-
ues to execute outside of the OpenMP region.



MPLR ’19, October 21–22, 2019, Athens, Greece Swapnil Gaikwad, Andy Nisbet, and Mikel Luján

OpenMP For-Loop — Each thread executes a subset of
the iteration space. The local iteration space bounds of a
thread are obtained from an additional call to the runtime
function; @__kmpc_for_static_init_4. We provide an im-
plementation of this function in C and attach its LLVM
IR as an external library to Sulong using the hybrid ap-
proach. Executing the remaining IR including the body of the
for-loop on Sulong is the same as its sequential execution.
Sulong-OpenMP currently supports only the static schedule
of OpenMP for-loop iterations to threads.

OpenMP Shared & Private Clauses — In the case of
shared variables, only a single copy of the variable is used
by all the threads and a separate copy of each private vari-
able is created for each thread in the latter case. From the
perspective of implementation, these features did not pose
a high degree of difficulty because of the way Clang gen-
erates LLVM IR. Shared variables are implemented as pass-
by-reference arguments to the outlined OpenMP function.
Private variables are implemented by allocating thread-local
copies on the private stack of each thread.

Barrier Implementation — We provide a naïve imple-
mentation of an OpenMP barrier based on Java’s wait-notify
mechanism. A thread can invoke a wait() method on an
object and suspend itself until any other thread invokes
interrupt(), notify() or the notifyAll()method on the
same object. We use this feature to implement an OpenMP
barrier where all threads except the last thread to enter a
barrier invoke a wait() method on a fixed object. The last
thread to reach the barrier wakes up all waiting threads.

Master Construct — A block enclosed by an OpenMP
master construct is only executed by the master thread with
logical id 0. Its LLVM IR is enclosed by calls to the @__kmpc_-
master() and @__kmpc_master_end() runtime functions.
All OpenMP threads execute the @__kmpc_master() func-
tion that returns the value 1 only for the thread with logical
id 0. Threads having a return value other than 1 are forced to
skip execution of the master block. We implement this sim-
ple functionality using a hashmap to maintain the mapping
between Java thread ids and their corresponding OpenMP
logical thread ids.

Critical Construct — OpenMP provides a mechanism
for mutual exclusion of threads where only a single thread
can be executing code inside a critical section code block,
and all other threads must wait until the block is exited.
A critical code block is enclosed by @__kmpc_critical()
and the @__kmpc_critical_end() runtime function calls.
We exploit the Java Semaphore class to implement the two
aforementioned runtime functions. Here, the thread entering
a critical section acquires a semaphore and releases it while
exiting the critical section to ensure an exclusive access.

Flush Construct — OpenMP uses a relaxed-consistency
memory model that enables threads to have a temporary
view of shared variables that may not be consistent with the

view of the memory of other threads at all times [1]. The tem-
porary view of variables of a given thread is made consistent
with values written to memory after executing the flush op-
eration associated with the OpenMP flush construct. This
is analogous to a memory fence operation. Specifically, the
flush operation is performed on a set of variables called the
flush-set. If no variables are specified then the flush applies
to all shared variables in the temporary view of a thread. The
flush operation restricts reordering of memory operations
that an implementation might undertake. Implementations
must not reorder the code for a memory operation for a
given variable, or the code for a flush operation for the vari-
able, with respect to a flush operation that refers to the same
variable.

Java uses a different memory consistency model based on
happens-before semantics [14], where if a write operation by
a thread is performed on a volatile variable then all previ-
ous writes to any other variables performed by that thread
become visible to all other threads after those perform a
read/write operation on the same volatile variable. We use
this behaviour to implement the OpenMP flush operation
in Java. In the generated LLVM IR, the flush pragma is
replaced by a call to the @__kmpc_flush runtime function
call. We implement a morphed function to increment the
value of a predefined volatile variable to perform a read and
a write operation on that variable. Therefore, when all the
threads finish executing the OpenMP flush operation, all the
writes carried out before the OpenMP flush operation are
now visible to all the other Java threads.
We check the correctness of this approach using the test

suite of Clang for the flush construct. Currently, this ap-
proach limits our ability to perform the flush operation on
a subset of the shared variables. Thus, every flush opera-
tion, irrespective of whether it is on a subset of the shared
variables or not, is executed on all the shared variables.

4 Evaluation Methodology
Firstly, we evaluate 1-thread Sulong-OpenMP execution over-
head compared to sequential Sulong. Secondly, we evaluate
the overhead of Sulong in comparison to native execution,
and finally, we evalute the overhead of multithreaded Sulong-
OpenMP against native-OpenMP along with a brief discus-
sion on the scaling behavior for the selected benchmarks on
Sulong-OpenMP and native-OpenMP.

4.1 Benchmarks
The NAS Parallel Benchmarks (NPB) suite is a widely used
parallel programming benchmark suite from scientific com-
puting that provides implementations for multiple program-
ming languages. This paper uses the C OpenMP variant of
the NPB suite 3.0 [9] and the Java NPB implementation. In
this way, we can investigate the relative performance for



Hosting OpenMP Programs on JVMs MPLR ’19, October 21–22, 2019, Athens, Greece

each benchmark across pure Java, Sulong, Sulong-OpenMP,
native and native-OpenMP execution mechanisms.
The NPB suite has 5 kernels and 3 pseudo-applications

derived from computational fluid dynamics (CFD) applica-
tions. The kernels are a few hundred lines of code, while the
pseudo-applications are larger; typically a few thousand lines
of code. For each benchmark, there are 5 different choices of
classes categorised based on the different problem sizes are
available. We use the class ‘W’ for the kernels and class ‘S’ for
the pseudo-applications. These are the smallest classes, and
the choice is made based on the execution time for a single
iteration exceeding a few minutes. Longer executions would
make the generation of results for warmed-up execution
state (see Section 4) unnecessarily lengthy.

4.2 Experimental Setup
A JVM-based execution of an application starts with a slower
interpreted mode, and then the frequently executed parts of
the application are JIT compiled whenever the JVM decides
they are hot. This process continues until the application
reaches its peak performance when typically all the compu-
tationally intensive parts of an application are JIT compiled.
Such state is referred to as the warmed-up execution state
where performance improvement plateaus.

We use the methodology previously presented in [15] for
performance evaluation. We observe that the kernel bench-
marks warmed-up in less than 10 iterations while the pseudo-
applications took a maximum of 25 iterations. Consequently,
we use a harness to execute a benchmark 100 times in a
loop, without exiting the JVM process. Then we measured
the execution time for each of the last 50 iterations and cal-
culated a geometric mean of those values to represent the
execution time of the benchmark. The variation in execution
time over the last 50 iterations for each benchmark can be
seen as a violin plot in Figure 1. The correct execution of
each benchmark for native, Sulong, Java, native-OpenMP and
Sulong-OpenMP is double checked using the test available
in the NPB suite.

The experiments run on a system with 4 physical (8 hyper-
threaded) cores Intel Core i7-6700 with 16GB of memory
running Ubuntu 18.04 (4.15.0-48-generic). We disable the
processor frequency scaling and set it to its maximum of 3.4
GHz using the performance governor.

To generate scalability results, we use a larger systemwith
16 physical cores (2 socket NUMA) Intel Xeon E5-2690 with
378GB of memory running Ubuntu 16.04 (4.15.0-36-generic).
Hyper-threading is disabled, and we set the processor fre-
quency at 2.4 GHz using the performance governor.
On both systems, we use Sulong commit b0ab114 from

GraalVM release candidate 1.0.0-rc6 that supports LLVM 6.0.
The LLVM IR for the Sulong-based execution is generated
using Clang with -O2 optimization flag.

Table 1. Comparison of execution overhead for 1-thread
Sulong-OpenMP before and after optimizations (shown in
Figure 3) normalized to the sequential Sulong execution time.
Values less than 1 represent faster than sequential execution.

Benchmark Before Opt. After Opt. 1 Thread
Specialization

IS 1.19 1.05 1.00
EP 1.08 1.00 0.99
MG 1.92 1.22 1.01
FT 1.05 1.03 1.02
CG 1.53 1.12 1.03
LU 0.03 0.02 0.02
BT 8.81 1.11 1.01
SP 32.91 1.30 1.13

GeoMean 2.73 1.11 1.03

5 Peak Performance Evaluation
We discuss the performance of OpenMP support in Sulong
considering the following aspects:
(1) Overhead incurred by the 1-thread Sulong-OpenMP with
various optimizations compared to Sulong-sequential.
(2) Relative performance with respect to the sequential na-
tive execution for 1-thread Sulong-OpenMP, 1-thread native-
OpenMP and 1-thread Java.
(3) The performance gap between Sulong-OpenMP and native-
OpenMP execution with 4 threads.
(4) Scaling results up to 16 processors for Sulong-OpenMP
compared to native-OpenMP on a 2-socket Intel machine.

IS EP MG FT CG BT SP
0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

S
lo
w
d
o
w
n

Figure 1. Violin plot of the warmed-up execution time dis-
tribution for 50 iterations of each benchmark. Overhead of
Sulong-OpenMP 1-thread normalized to Sulong sequential.
On the Y-axis lower is better, and values less than 1 indicate
Sulong-OpenMP is faster than Sulong sequential.



MPLR ’19, October 21–22, 2019, Athens, Greece Swapnil Gaikwad, Andy Nisbet, and Mikel Luján

5.1 Single Thread Results
The performance of 1-thread Sulong-OpenMP before and
after optimizations in comparison to Sulong-sequential is
shown in Table 1. To measure the performance without
OpenMP support, we used the -fopenmp compilation flag.
Although our objective is to reduce the overhead of executing
OpenMP programs to zero, it is important to note here that
we are comparing the sequential version (without additional
OpenMP runtime function calls) to the OpenMP version with
1 thread (see Section 3.1). Figure 2 highlights the overhead of
native OpenMP 1-thread against native-sequential execution
using the blue bars.
Table 1 shows the aggregated impact of all the optimiza-

tions while the detailed impact of each optimization is shown
in Figure 3. While comparing the overhead for executing
Sulong-OpenMP to Sulong. It is important to note that the
additional OpenMP runtime calls, as described in Section
3.1, effectively result in a geometric mean slowdown of 2.6%
for the NPB suite benchmarks (excluding LU). This over-
head is in-line with the 2.4% incurred for the executions of
1-thread native compared to native-sequential. As described
in Section 4, this paper primarily focuses on correct execu-
tion semantics for Sulong-OpenMP with minimal overhead
for execution with 1 OpenMP thread. In order to achieve
this goal, we apply a special optimization shown in Table
1, henceforth referred to as ‘1 Thread Specialization’. This
optimization overcomes the current limitation of our im-
plementation for the multi-threaded OpenMP execution as
described in Section 6.
In Table 1, the LU benchmark (unlike all others) shows a

significant speedup compared to the sequential execution on
Sulong. The main reason for this behaviour is that the erhs
function from the benchmark cannot be JIT compiled whilst
executing sequentially because its compilation unit size ex-
ceeds themaximum threshold for compilation byGraal. How-
ever, the same function has multiple OpenMP parallel blocks
that are outlined into separate functions. These functions are
small enough to be JIT compiled. Therefore, the performance
improvement of ~48x for the OpenMP version is primarily
due to JIT compilation. However, in the case of BT and SP,
the sequential version was JIT compiled, but the parallel
version remained as interpreted. This is a current limitation
of our implementation (Section 6), that fails to compile the
top-level outlined OpenMP function.

In the case of BT and SP benchmarks, this situation is exac-
erbated, because the functions called from the OpenMP block
are inlined into the top-level OpenMP function and executed
in an interpreted mode that results in a slowdown of ~9x
and ~33x, respectively. This limitation impacted all the NPB
suite benchmarks. The extent of the impact is proportional
to the percentage of the overall computations performed in
the top-level outlined function.

In the case of EP, the proportion of interpreted computa-
tion is negligible and thus, we do not see any overhead for
execution with Sulong-OpenMP. The impact of such inter-
preted execution is not observed for LU, because it executes
in interpreted mode when running on Sulong sequentially.
Figure 2 shows the 1-thread execution time overheads

of Sulong-OpenMP, Java, native-OpenMP, and (sequential)
Sulong normalized to the native-sequential C. The bars rep-
resenting the geometric mean exclude the results for the
LU benchmark because Sulong-sequential executes a large
portion of its code in a slower interpreted mode. The higher
overheads for executing pseudo-applications on Java should
be accounted more to the implementation choices instead
of the limitations of the underlying JVM platform. However,
faster execution of a Java version of a benchmark can be seen
as an opportunity, e.g., for MG, IS and FT benchmarks that
could be exploited by Sulong-OpenMP. The performance of
Sulong-OpenMP 1-thread has a better geomean slowdown in
performance of 2.19 in comparison to 4.20 for Java 1-thread
in comparison to native execution.

5.2 Sulong-OpenMP Optimizations
Using the performance analysis technique introduced in [5]
and analysing the NPB suite, we can identify a number of
performance bottlenecks. We briefly summarize the various
optimizations applied to reduce the overhead of 1-thread
Sulong-OpenMP compared to the Sulong-sequential execu-
tion.
(1) Calls to Intrinsics: Sulong provides implementations
for various C math library functions such as log, sqrt using
the Math class of Java. Previously, calls to such functions
inserted a new stack frame with a synchronized method.
This optimization avoids creating a new stack frame for such
intrinsic functions and thus, the synchronization overhead.
(2) OpenMP Split: Targets optimization of large OpenMP
parallel blocks that could not be JIT compiled. Such blocks
exceed the threshold for the size of the method that Graal
can compile. As a temporary workaround, the blocks are
manually split into multiple blocks, typically two or three.
These are then outlined into smaller functions which can
then be JIT compiled by Graal.
(3) Thread Pool: This optimization highlights the bene-
fits of implementing an OpenMP thread pool. Previously,
OpenMP threads were created at the beginning of every
OpenMP block and merged/destroyed at the end of the block.
Implementation of the thread pool avoided the expensive
operation of thread creation and destruction.
(4) Thread-private Stack Implementation: The addition
of thread-private stack support is expected to help perfor-
mance for benchmarks performing multiple local variable
allocations, mainly the pseudo-applications. However, only
the IS benchmark from NPB suite benefited from this op-
timization and the slowdown reduced from approximately
2.5x to 2.0x.



Hosting OpenMP Programs on JVMs MPLR ’19, October 21–22, 2019, Athens, Greece

0.98 1.00

1.01

0.98

1.04 1.05

1.00

1.13 1.02
1.07 1.18

2.26 2.12
1.04

300.79

5.71 6.08

2.161.11 1.18

2.25 2.09

1.07

5.58 5.38
6.75

2.19

0.95

1.00

2.07
1.53 1.50

23.62
32.38 37.70

4.20

Sl
ow

do
w
n

1

5

10

50

100

IS EP MG FT CG LU BT SP GeoMean

Native-OpenMP Sulong Sulong-OpenMP Java

Figure 2. Comparison of overhead executing native-OpenMP, Sulong, Sulong-OpenMP (1-thread) and Java (1-thread). The
execution times are normalized to execution time of the native-sequential. The Y-axis shows slowdown, on a logarithmic scale,
compared to the native execution. Thus, Y-axis 1 means the execution time of Sulong with OpenMP is on par with the native
execution; lower is better.

2.2

17.9
23.9

3.6 3.9

137.6

93.5 99.3

2.4

1.2

24.1

3.6 4.0

140.0

92.2 88.5

2.4

1.2

24.1

3.6 4.0

26.5 30.4
57.8

2.5

1.2

8.6

3.5
2.1

15.5 19.0

53.2

2.0 1.2 8.4 3.5 2.1 13.5 16.1 53.31.9
1.2

8.4

3.5
2.0

13.5 16.1

42.2Sl
ow

do
w

n

5.0

10.0

50.0

100.0

IS EP MG FT CG LU BT SP

No Opt Intrinsic Opt OMP split Thread Pool Thread Private Stack Restricted Inlining

Figure 3. Effect of each optimization on the execution times of Sulong-OpenMP (4-threads) vs. execution time of native-
OpenMP (4-threads). The Y-axis shows slowdown, on a logarithmic scale, compared to the native execution. Thus, Y-axis 1
means the execution time of Sulong with OpenMP is on par with the native execution; lower is better.

(5) Restricted Inlining: This optimization is only applied
to the SP benchmark to minimize the impact of the existing
limitation where the top-level outlined OpenMP function
cannot be JIT compiled. We force Clang not to inline func-
tions called from the outlined OpenMP functions in a parallel
region using __attribute__((noinline)) attribute. This
significantly reduces the portion of computation executed
in the slower interpreted mode.

5.3 Scalability Results
Figure 4 shows the scalability results for Sulong-OpenMP and
native-OpenMP with EP, FT and MG benchmarks as these
showed the best, intermediate and the worst scaling results
for Sulong-OpenMP. We do not discuss the scaling results

for the pseudo-applications because the selected problem
size is too small to provide sufficient work for the number
of cores available.
For the EP benchmark, Sulong-OpenMP shows scaling

comparable to the native-OpenMP upto 16 cores while for
the FT benchmark, Sulong-OpenMP matches the scaling of
native-OpenMP until 8 cores. As seen previously in Figure 3,
the MG benchmark still has a high overhead while execut-
ing on Sulong-OpenMP. This is reflected by the slowdown
beyond 2 threads. Note, we have not made any attempt to
optimize Sulong-OpenMP for execution on NUMA systems,
nor do we attempt to pin threads to processing cores in any
of the experiments.



MPLR ’19, October 21–22, 2019, Athens, Greece Swapnil Gaikwad, Andy Nisbet, and Mikel Luján

0 2 4 6 8 10 12 14 16
Number of cores

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p

Ideal
EP_Sulong-OpenMP

EP_Native-OpenMP

MG_Sulong-OpenMP

MG_Native-OpenMP

FT_Sulong-OpenMP

FT_Native-OpenMP

Figure 4. Speedup graph with scaling results for the EP, FT
and MG kernels part of the NPB suite.

6 Limitations
The main limitations of the current Sulong-OpenMP imple-
mentation are discussed next.

A) JIT compilation of entire OpenMP Block: Section
3.1 discusses how OpenMP blocks are outlined into separate
functions when the corresponding LLVM IR is generated.
The threads in the OpenMP thread pool wait in a loop to
execute the assigned ASTs and synchronize after executing
them. There are two entities required to execute the AST of
a guest language function: (i) the Truffle-based AST repre-
sentation and (ii) a VirtualFrame object associated with a
function. Passing the VirtualFrame as a parameter limits
what outlined functions can be compiled by Graal, specifi-
cally the top-level outlined OpenMP function.

This is currently the biggest contribution to the execution
time overhead for Sulong-OpenMP. Current efforts are di-
rected towards addressing this issue. Further, we are also
considering an approach using MaterializedFrame instead
of the VirtualFrame for the outlined OpenMP functions.
B) Feature Completeness: As discussed in Section 3.2,

we implement the subset of OpenMP features that are nec-
essary to execute the NPB suite on Sulong-OpenMP. How-
ever, there are more OpenMP features yet to be supported.
For example, various schedules to execute the OpenMP for-
loop, nested parallel regions and OpenMP task directives.
We will continue adding support for the most commonly
used OpenMP features.

7 Related Work
There are implementations of OpenMP available from differ-
ent software vendors, such as Intel, PGI, GCC, Clang LLVM
and IBM. These have various degrees of completeness with
respect to the latest OpenMP specification (version 5.0). All
of them take an OpenMP program written in C/C++/Fortran

as input and generate an executable binary by compiling
Ahead-Of-Time (AOT). This is the de facto mode for execut-
ing OpenMP applications. In comparison to the JIT compiled
approach presented in this paper, AOT compiled approach
has a faster startup time.
For Java programs, pre-processors such as JOMP, omp4j

and JaMP can convert a Java program consisting of OpenMP
directives as comments in the source code to the equiva-
lent parallel Java program using source-to-source translation
[2, 3, 10]. JOMP and omp4j provide a pre-processor and a run-
time library to support the execution of the generated Java
source while JaMP is implemented in the research compiler
Jackal [19]. JOMP and omp4j support a relatively smaller
subset of the OpenMP features, while the JaMP supports all
OpenMP 2.0 features and some of the OpenMP 3.0 features,
such as tasks. Additionally, JaMP also supports execution of
OpenMP parallel loops on CUDA-enabled graphics cards. On
the other hand, our approach is for C programs converted
to LLVM IR to execute on JVM. We provide the implemen-
tation for the OpenMP runtime functions emitted by Clang
in LLVM IR instead of emitting code for OpenMP directives
and implementing the supporting runtime functions. Sulong-
OpenMP does not currently support OpenMP tasks (OpenMP
3.0), nor can it offload OpenMP parallel loops for execution
by accelerators (OpenMP 4.0 & 5.0).

8 Conclusions & Future Work
We have described our implementation of OpenMP sup-
port for the Sulong framework and the main challenges
faced. Sulong-OpenMP demonstrates that correct execution
of OpenMP parallel programs can be achieved using the
Java memory model. This paper has focused on reducing
the execution time overheads of 1-thread Sulong-OpenMP
in comparison to sequential Sulong execution, which is 2.6%
geomean for NPB. This is very close to the 2.4% geomean
overhead of native execution concerning 1-thread OpenMP
to native-sequential. The observed overhead is expected in
both cases as the LLVM IR generated for an OpenMP equiva-
lent of a program (by compiling with -fopenmp flag) contains
additional OpenMP runtime calls that are absent when the
IR is generated without enabling OpenMP support.
The optimizations described in Section 5 have consider-

ably improved the performance of multi-threaded execu-
tion using Sulong-OpenMP. Nonetheless, substantial per-
formance and functionality gaps remain for future Sulong-
OpenMP work.

Acknowledgments
We acknowledge the support of the EU Horizon 2020 ACTi-
CLOUD 732366 project. Swapnil Gaikwad is supported by
a Ph.D. studentship funded by Oracle Labs. Mikel Luján is
supported by an Arm/RAEng Research Chair award and is a
Royal Society Wolfson Fellow.



Hosting OpenMP Programs on JVMs MPLR ’19, October 21–22, 2019, Athens, Greece

References
[1] OpenMP Architecture Review Board (OpenMP ARB). 2019. OpenMP

Application Programming Interface. Retrieved 30th Mar 2019
from https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf

[2] Petr Bĕlohlv̀ek and Antonín Steinhauser. 2019. omp4j Project website.
Retrieved 14th Jul 2019 from http://www.omp4j.org

[3] J. M. Bull and M. E. Kambites. 2000. JOMP—an OpenMP-like Interface
for Java. In Proceedings of the ACM 2000 Conference on Java Grande
(JAVA ’00). 44–53. https://doi.org/10.1145/337449.337466

[4] Oracle Corporation. 2016. TruffleRuby. Retrieved Jun 16th 2019 from
https://github.com/oracle/truffleruby

[5] Swapnil Gaikwad, Andy Nisbet, and Mikel Luján. 2018. Performance
Analysis for Languages Hosted on the Truffle Framework. In Proceed-
ings of the 15th International Conference on Managed Languages &
Runtimes (ManLang ’18). Article 5, 12 pages. https://doi.org/10.1145/
3237009.3237019

[6] Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Würthinger,
Mikel Luján, and Hanspeter Mössenböck. 2018. Cross-Language Inter-
operability in a Multi-Language Runtime. ACM Trans. Program. Lang.
Syst. 40, 2, Article 8 (May 2018), 43 pages. https://doi.org/10.1145/
3201898

[7] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger,
and Hanspeter Mössenböck. 2015. High-performance Cross-language
Interoperability in a Multi-language Runtime. In Proceedings of the
11th Symposium on Dynamic Languages (DLS). 78–90. https://doi.org/
10.1145/2816707.2816714

[8] Matthias Grimmer, Chris Seaton, Thomas Würthinger, and Hanspeter
Mössenböck. 2015. Dynamically Composing Languages in a Modular
Way: Supporting C Extensions for Dynamic Languages. In Proceedings
of the 14th International Conference onModularity (MODULARITY 2015).
1–13. https://doi.org/10.1145/2724525.2728790

[9] H. Jin, M. Frumkin, and J. Yan. 1999. The OpenMP Implementation of
NAS Parallel Benchmarks and Its Performance. Retrieved 16th Jun
2019 from https://www.nas.nasa.gov/assets/pdf/techreports/1999/nas-
99-011.pdf

[10] Michael Klemm, Matthias Bezold, Ronald Veldema, and Michael
Philippsen. 2007. JaMP: An Implementation of OpenMP for a Java
DSM. Concurrency and Computation Practice and Experience 19, 18
(Dec. 2007), 2333–2352. https://doi.org/10.1002/cpe.1178

[11] Joanna Kolodziej and Bruce R. Childers (Eds.). 2014. 2014 International
Conference on Principles and Practices of Programming on the Java
Platform Virtual Machines, Languages and Tools, PPPJ ’14, Cracow,
Poland, September 23-26, 2014. ACM. https://doi.org/10.1145/2647508

[12] LLVM. 2019. LLVM Download Page. Retrieved 29th Jun 2019 from
http://releases.llvm.org

[13] LLVM. 2019. OpenMP: Support for the OpenMP language. Retrieved
29th Jun 2019 from https://openmp.llvm.org/

[14] Willam Pugh. 2019. JSR 133, Java Memory Model and Thread Specifi-
cation. Retrieved 30th Mar 2019 from http://www.cs.umd.edu/~pugh/
java/memoryModel/CommunityReview.pdf

[15] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas
Würthinger, and Hanspeter Mössenböck. 2016. Bringing Low-level
Languages to the JVM: Efficient Execution of LLVM IR on Truffle. In
Proceedings of the 8th International Workshop on Virtual Machines and
Intermediate Languages (VMIL). 6–15. https://doi.org/10.1145/2998415.
2998416

[16] Manuel Rigger, Roland Schatz, René Mayrhofer, Matthias Grimmer,
and Hanspeter Mössenböck. 2018. Sulong, and Thanks for All the
Bugs: Finding Errors in C Programs by Abstracting from the Native
Execution Model. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’18). 377–391. https://doi.org/10.1145/
3173162.3173174

[17] Lukas Stadler, Adam Welc, Christian Humer, and Mick Jordan. 2016.
Optimizing R Language Execution via Aggressive Speculation. In Pro-
ceedings of the 12th Symposium on Dynamic Languages (DLS). 84–95.
https://doi.org/10.1145/2989225.2989236

[18] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014.
Partial Escape Analysis and Scalar Replacement for Java. In Proceedings
of Annual IEEE/ACM International Symposium on Code Generation and
Optimization (CGO ’14). 165–174. https://doi.org/10.1145/2581122.
2544157

[19] R. Veldema, R. F. H. Hofman, R. A. F. Bhoedjang, and H. E. Bal. 2001.
Runtime Optimizations for a Java DSM Implementation. In Proceedings
of the 2001 Joint ACM-ISCOPE Conference on Java Grande (JGI ’01).
153–162. https://doi.org/10.1145/376656.376842

[20] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon,
and Matthias Grimmer. 2017. Practical Partial Evaluation for High-
performance Dynamic Language Runtimes. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI). 662–676. https://doi.org/10.1145/3062341.3062381

[21] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. 2013. One VM to Rule Them All. In Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward!). 187–204. https:
//doi.org/10.1145/2509578.2509581

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
http://www.omp4j.org
https://doi.org/10.1145/337449.337466
https://github.com/oracle/truffleruby
https://doi.org/10.1145/3237009.3237019
https://doi.org/10.1145/3237009.3237019
https://doi.org/10.1145/3201898
https://doi.org/10.1145/3201898
https://doi.org/10.1145/2816707.2816714
https://doi.org/10.1145/2816707.2816714
https://doi.org/10.1145/2724525.2728790
https://www.nas.nasa.gov/assets/pdf/techreports/1999/nas-99-011.pdf
https://www.nas.nasa.gov/assets/pdf/techreports/1999/nas-99-011.pdf
https://doi.org/10.1002/cpe.1178
https://doi.org/10.1145/2647508
http://releases.llvm.org
https://openmp.llvm.org/
http://www.cs.umd.edu/~pugh/java/memoryModel/CommunityReview.pdf
http://www.cs.umd.edu/~pugh/java/memoryModel/CommunityReview.pdf
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/3173162.3173174
https://doi.org/10.1145/3173162.3173174
https://doi.org/10.1145/2989225.2989236
https://doi.org/10.1145/2581122.2544157
https://doi.org/10.1145/2581122.2544157
https://doi.org/10.1145/376656.376842
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Background
	2.1 Truffle, GraalVM & Sulong
	2.2 OpenMP

	3 Implementation
	3.1 LLVM IR for OpenMP
	3.2 Sulong-OpenMP Implementation Approach
	3.3 Sulong-OpenMP: Challenges

	4 Evaluation Methodology
	4.1 Benchmarks
	4.2 Experimental Setup

	5 Peak Performance Evaluation
	5.1 Single Thread Results
	5.2 Sulong-OpenMP Optimizations
	5.3 Scalability Results

	6 Limitations
	7 Related Work
	8 Conclusions & Future Work
	Acknowledgments
	References

