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ABSTRACT
This paper summarizes our two-year study of corrected and uncor-
rected errors on the MareNostrum 3 supercomputer, covering 2000
billion MB-hours of DRAM in the field. The study analyzes 4.5 mil-
lion corrected and 71 uncorrected DRAM errors and it compares the
reliability of DIMMs from all three major memory manufacturers,
built in three different technologies.

Our work has two sets of contributions. First, we illustrate the
complexity of in-field DRAM error analysis and demonstrate the
limitations of various widely-used methods and metrics. For exam-
ple, we show that average error rates, errors per MB-hour and mean
time between failures can provide volatile and unreliable results even
after long periods of error logging, leading to incorrect conclusions
about DRAM reliability. Second, we present formal statistical meth-
ods that overcomemany of the limitations of the current approaches.
The methods that we present are simple to understand and imple-
ment, reliable and widely accepted in the statistical community.

Overall, our study alerts the community about the need to, firstly,
question the current practice in quantifying DRAM reliability and,
secondly, to select a proper analysis approach for future studies.
Our strong recommendations are to focus on metrics with a prac-
tical value that could be easily related to system reliability, and to
select methods that provide stable results, ideally supported with
statistical significance.

CCS CONCEPTS
•Computer systems organization→Reliability; •Mathemat-
ics of computing → Probability and statistics.
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1 INTRODUCTION
In large-scale compute clusters, main memory is one of the prin-
cipal causes of hardware failures [8]. These failures are especially
costly in high-performance computing (HPC) systems, where a
single tightly-coupled job may execute for days on thousands of
nodes. If one of these nodes fails, the whole job is terminated. It is
therefore important to understand memory system reliability, as
it is an important limit on the ability to scale to larger systems.

This paper summarizes our study of corrected and uncorrected
errors on the MareNostrum 3 supercomputer [2], covering 2000
billion MB-hours of DRAM in the field. MareNostrum is one of
six Tier-0 HPC systems in Europe; at the time of the study, it com-
prised 3056 servers, with more than 25,000 memory DIMMs from all
three major memory manufacturers, built in three different DRAM
technologies. The study covers a period of more than two years,
from October 2014 to November 2016, during which we detected
4.5 million corrected and 71 uncorrected DRAM errors.

The main objective of our study is to help the community to
define standards for any future quantitative analysis of DRAM
errors in the field. Our work has two sets of contributions. First,
we illustrate the complexity of in-field DRAM error analysis and
demonstrate the limitations of various widely-used methods. Under-
standing these limitations is important because, as we show, widely-
accepted approaches for DRAM analysis provide volatile, unreliable
and statistically insignificant results that may lead to incorrect con-
clusions about DRAM reliability. Second, we present formal meth-
ods widely accepted in the statistical community that overcome
many of the limitations of these currently-used approaches.

This is the first study that clearly distinguishes between two dif-
ferent approaches for DRAM error analysis. The first approach is to
partition the DIMMs into various categories, e.g. based on whether
they did or did not experience an error. The second approach is to
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analyze the error rates, i.e. to present the total number of errors
relative to other statistics, typically the number of MB-hours or
the duration of the observation period. Although both methods are
valid, our results clearly show that they are not interchangeable
and can lead to completely different conclusions. This finding is
important because various previous studies interleave categorical
and error rate analysis and the conclusions based on them (some
examples are in Section 6).

As a part of the categorical analysis, we explain and use inde-
pendence tests to confirm or reject, in terms of statistical signifi-
cance, any differences observed among various categories. We use
these tests to analyse the percentages of DIMMs that experience
uncorrected or corrected errors, for the different manufacturers
and DRAM technologies. These tests allow us to ascertain whether
the observed differences are likely to be due to real differences or
are explainable merely by chance. To the best of our knowledge,
this is the first study of DRAM errors that uses statistical tests to
confirm or reject the significance of its results.

Regarding the error rates, we show that the average errors per
MB-hour and average mean time between failures (MTBF) were
highly volatile over the course of the study, with the final values de-
pending critically on the moment at which the study is terminated.
It is intuitive to conclude that we have little confidence in how the
results would have looked if we were able to continue the study, e.g.
for another year. We perform a careful study of the causes of this
volatility, and conclude that the primary reason differs between un-
corrected and corrected errors. For uncorrected errors, the volatility
is explained by the small number of observations; 71 uncorrected
errors over the course of the study. For corrected errors, the volatil-
ity is explained by error burstiness in time. Moreover, we show
that using the corrected errors and fault rates as an indicator of
DRAM reliability may be misleading because they have completely
different trends from the uncorrected errors, which are the only
errors that lead to system failure.

Our work opens various doubts about the stability and useful-
ness of the DRAM error rates analysis. Clarification of these doubts
is important because error and fault rates, such as errors per MB-
hour and MTBF are the current standard for quantifying memory
system reliability. Before using them in future studies, the com-
munity should understand whether indeed they are appropriate
reliability metrics. Overall, we believe that our study will help the
community to define formal and reliable methods for analysis of
the DRAM errors in the field. Our strong recommendations are to
focus on measurements with a practical value, and select proper
analysis methods that provide stable results, ideally supported with
statistical significance.

The rest of the paper is organized as follows: Section 2 provides
the necessary background on DRAM failures, errors and faults
and statistical significance. Section 3 describes MareNostrum 3, the
source of our data, and it outlines the experimental methodology.
Sections 4 and 5 analyze in detail the corrected and uncorrected
errors and faults, using the categorical and error rate approaches
respectively. Section 6 describes the related work. Finally, Section 7
concludes the paper.

2 BACKGROUND
In the last decade several studies have analyzed field DRAM errors.
These studies have quantified the variations in error rates among
DRAM manufacturers and technologies and analyzed the nature of
DRAM errors, including their temporal and spatial distributions. It
is not easy, however, to compare the conclusions of different studies
or to combine their findings into a clear overall understanding of
memory system reliability, for three main reasons. First, the studies
use non-unified terminology, especially when classifying the error
types. Second, the studies interchangeably use different quantita-
tive approaches, categorical and error rate analysis, which can often
lead to different conclusions. Finally, the studies give quantitative
results without reporting whether or to what degree the reported
results are statistically significant.

2.1 Taxonomy: Are corrected DRAM errors
failures?

In MareNostrum 3, and in the server domain in general, main mem-
ory is protected with error correcting codes (ECC). In modern HPC
systems, sophisticated ECCs are able to correct multiple corrupted
bits in a data word, and even handle cases where an entire DRAM
chip is corrupted [3]. Data correction is performed in parallel with
data read, so corrected errors effectively have no impact on system
performance and reliability. But, if the ECC cannot correct a given
DRAM error, the job typically has to be terminated and the server is
shut down. The server is not operational until the DIMM is replaced
and the node has been tested. The overall impact is lower reliability,
lower system throughput and worse system availability.

Due to the requirement for high system reliability, original equip-
ment manufacturers (OEMs) thoroughly test DIMMs from various
manufacturers to certify that they can be used in production. It is
usual practice, however, to quantify DIMM reliability using cor-
rected errors, rather than the more important uncorrected errors.
Likewise, most of the DRAM error field studies focus their analy-
sis on corrected errors, although only uncorrected errors have an
impact on system reliability.

Most of the previous studies use the definitions of errors, faults
and failures from Avizienis et al. [1]:

• Failure is an event that occurs when the delivered service
deviates from correct service. For example, it is expected that
a data read from memory delivers correct data stored on a
given address. Deviation from this service is a failure.

• Error is the deviation of the system state (seen externally)
from its correct service state. For example, the fact that a
DIMM delivers to the memory controller data that do not
match the ECC is the DRAM error.

• Fault is the adjudged or hypothesized root cause of the
error. The cause of a DRAM error could be a particle impact,
or a defect in the memory cell or circuit.

The problem is that the definitions of failures and errors are
tightly coupled with the scope of the target system and its bound-
aries. For example, the memory system comprises the memory
controller, DRAM devices and all the circuitry between them [12].
DRAM errors that are corrected by ECC in the memory controller
are not errors or failures of the memory system, because the mem-
ory system still delivers correct data. Such corrected DRAM errors
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therefore have no impact on the service provided by the server
and the overall HPC system. DRAM errors that cannot be ECC-
corrected, however, propagate over the boundaries of the memory
system, so they are also memory system errors and failures. In
current HPC systems, such errors propagate even further, causing
failures of the whole server and the affected HPC job(s). The essence
of the error classification problem is whether or not to categorize
corrected DRAM errors as failures.

Although most previous studies categorize them as such, we
believe that reporting corrected DRAM errors as failures, and using
them to compute statistics such as the failure rates or themean time
between failures (MTBF) could be highly misleading as it exaggerates
the problem of HPC system reliability. For example, a statement that
the MTBF in MareNostrum 3 during the observation period was
14 seconds, based on the corrected error count in this study, could
suggest that the system suffered frequent service interruptions.
However, the provided number only states that at an average rate
of once every 14 seconds, one out of eightmemory controllers in one
out of 3056 servers performs an ECC correction. The service is not
interrupted and performance is not affected. So, in the HPC domain,
it is very difficult to understand the practical value of this number.
On the other hand, the mean time between uncorrected DRAM
errors in MareNostrum 3 was 10 days (approximately 1 million
seconds), meaning that on average every 10 days a single job is
terminated, a single node is shut down and single DIMM is replaced.

Overall, it is important that DRAM error studies and the research
motivated by them are clear as to whether the presented failure
rates andMTBF values are based on corrected or uncorrected errors,
or both. On MareNostrum 3, the difference between MTBF values
calculated using corrected vs. uncorrected failures was five orders
of magnitude; i.e. 14 seconds vs. 10 days. And we would strongly
suggest to present numbers that have a practical value.

2.2 Quantitative DRAM errors analysis:
Different approaches

Quantitative analysis of DRAM errors in the field can be performed
with two approaches, which are often used interchangeably. The
first approach is categorical analysis. This approach analyzes the
errors at the DIMM level, and partitions the DIMMs into various
categories, e.g. based on whether they did or did not experience an
error of a given type. The categorical analysis does not consider
the number of errors that occurred on a given DIMM; the DIMM is
categorized as soon as the first error of that type is detected and any
further errors do not change the DIMM’s category. It is typically
used to show the proportion of the DIMMs that experienced errors,
or that were replaced from the system. The second approach is
to analyze the error rates. In this approach, the total number of
errors is presented relative to other statistics, typically the amount
of the MB-hours or the duration of the observation period.

To the best of our knowledge, our study is the first to distinguish
between approaches for DRAM error analysis, employ both of them
and compare their results on the same data. Our results clearly show
that categorical and error rates analyses are not interchangeable and
that they may differ greatly in stability and often lead to different
conclusions.

2.3 Statistical significance
Statistical significance means that a result from testing or experi-
menting has a low probability of occurring randomly or by chance,
allowing us to conclude with confidence that it is likely to have a
specific cause. Previous field studies of DRAM errors often claim
that their findings are statistically significant because the analysis
covers years of data onmachines with thousands of servers, totaling
thousands of billions of MB-hours.

Unfortunately, these claims are misleading. Statistical signifi-
cance is defined by the probability of the outcome happening by
chance, not the amount of data. Therefore the significance has to be
confirmed or rejected using a carefully designed statistical test that
considers the type and distribution of the data under study. As we
show in this paper, a large-scale experiment with a large number
of observations, e.g. millions of corrected DRAM errors, does not
per se guarantee statistical significance.

In addition to providing exploratory analysis, e.g. plotting the
error rates for different memory manufacturers, we perform statis-
tical significance tests for each finding that we present. Our analy-
sis shows that various widely-accepted approaches for comparing
DIMMs from different categories, e.g. different manufacturers, pro-
vide data that appear to support an interesting conclusion, but are
not statistically significant, meaning that there is insufficient ev-
idence to conclude that it is not merely the result of chance. We
hope that these conclusions will encourage future work to analyze
their data using formal statistical methods.

2.4 Replaced DIMMs
It is commonly believed that corrected DRAM errors can be used
as early signals of failing devices. This reasoning is used by system
protection mechanisms that, in order to prevent future uncorrected
errors, retire potentially failing memory pages [9, 17, 28, 30] or
replace the affected DIMMs [7, 11, 16, 22].

DIMM replacement causes bias when analyzing the dependency
between corrected and uncorrected errors. DIMM replacement is
based on an assumption that uncorrected DRAM errors can be pre-
dicted based on corrected errors. This assumes that probability of
an uncorrected error is higher if the DIMM experienced preceding
corrected errors, which, by definition, means that the two variables
are statistically dependent. In systems that employ DIMM replace-
ment, the potentially failing DIMMs could be replaced before an
uncorrected error is detected. The error log of this DIMM would
show corrected errors that were not followed by an uncorrected
error. This input would suggest no dependency or even a nega-
tive dependency between corrected and uncorrected errors, both
intuitively and in the statistical analysis. A successful DIMM re-
placement is actually a self-defeating prophecy— it predicts that a
DIMM will fail, and therefore decides to replace it; However, since
the DIMM is replaced it does not fail, so the prophecy is defeated.
The bias introduced by DIMM replacement can be significant be-
cause the number of replaced DIMMs is large relative to the number
of uncorrected errors. In our study, for instance, we detected 71
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uncorrected errors, but an extra 51 DIMMs were replaced due to
pre-failure alerts. 1

Removing the bias due to DIMM replacement is not trivial. The
main problem is that we typically do not know the effectiveness
of the DIMM replacement policy, i.e., we cannot estimate the prob-
ability that a replaced DIMM would have eventually experienced
an uncorrected error. In order to consider a potential bias due to
DIMM replacement, we use two data-sets to analyze the depen-
dency between corrected and uncorrected errors. First, we analyze
the data logs with all the monitored events, e.g. all Corrected Er-
rors (CEs) and Uncorrected Errors (UEs). This approach, taken by
the previous studies, considers the whole system as is, without
any further analysis whether additional CEs or UEs would have
occurred in the case of a different system management policy, e.g.
no DIMM replacement policy. Second, we analyze the data log
without the replaced DIMMs, i.e., during the lot pre-processing we
remove all the information about the DIMMs that we eventually
replaced from the system. Third option would be to monitor CEs
and UEs of the replaced DIMMs once that they are removed from
the production. This analysis, however, is not covered in this paper
because we could not obtain any monitoring data after the DIMMs
were replaced.

3 ENVIRONMENT DESCRIPTION
3.1 MareNostrum 3
Our analysis is based on measurements of the memory errors on
the MareNostrum 3 supercomputer [2] over a period of more than
two years, from October 2014 to November 2016. In that period
the MareNostrum 3 supercomputer [2] was one of the six Tier-0
(largest) HPC systems in the Partnership for Advanced Computing
in Europe (PRACE) [20]. It comprised 3056 compute nodes, each
with two eight-core Intel Sandy Bridge-EP E5-2670 sockets with
a 2.6 GHz nominal clock frequency. In addition to the compute
nodes, MareNostrum 3 also included login and test nodes. However,
to mitigate the impact of different workloads, we report and ana-
lyze only the DRAM errors on the compute nodes. MareNostrum 3
included more than 25,000 DDR3-1600 DIMMs, and during the ob-
servation period we collected measurements on more than 2000
billion MB-hours. The main workloads executed on MareNostrum 3
were large-scale scientific HPC applications and the typical system
utilization exceeded 95%.

We analyze DIMMs from all three major memory manufacturers,
built in three different DRAM technologies. All the DIMM manu-
facturers presented in this study have been anonymized to protect
the interested parties. In this paper, we will refer to the different
memory manufacturers as Manufacturer A, B and C.2 Similarly,
technologies in the DIMMs under study are also anonymized, and
we show only the first of two digits of the nanometer technology.
3x nm, 2y nm and 2z nm represent three different DRAM technolo-
gies in descending order, i.e., 3x nm > 2y nm > 2z nm.

1Coincidentally, it matches the number of DIMMs that experienced uncorrected errors.
In total, 51 DIMMs experienced uncorrected errors and additional 51 DIMMs were
replaced due to the pre-failure alerts.
2There are 6717, 13,419 and 5247 DIMMs from anonymized Manufacturers A, B and C
respectively.

MareNostrum 3 uses a Single Device Data Correction (SDDC)
ECC scheme which can correct all errors coming from a single x4
device, usually referred to as Chipkill. For x8 devices it can correct
up to 4-bit errors coming from the same DRAM chip. Each time
the data is requested from the memory, the demand memory scrub
checks whether the accessed data correspond to the ECC. If this is
not the case, the ECC will performs error correction or report an
uncorrected DRAM error. The system also includes patrol scrubbing
that periodically traverses the whole physical memory, performing
an ECC check on each location. If the scrubber detects any errors
that are corrected by the ECC, it fixes the errors and writes the
correct data back to the same memory location.

System monitoring software of MareNostrum 3 also includes
pre-failure alerts that inform system administrators of the DIMMs
with early signals of failing. The potentially failing DIMMs are then
replaced in order to prevent future uncorrected errors.

3.2 Data collection
In Intel server architectures, the memory errors that are corrected
by the ECC are recorded in the machine-check architecture (MCA)
registers [13]. To log the corrected DRAM errors, we designed
a daemon, based on the mcelog Linux kernel module [13], that pe-
riodically, each 100 ms, accesses the MCA registers, extracts the
information of interest and logs them into a file. The log file contains
information about the error time stamp, server and DIMM id, and
the exact physical location of the error in the DIMM including rank,
bank, row, column and DQ pin. Also, the daemon can distinguish
whether the correction was done on an application memory read or
by patrol scrubbing. If more than one error occurred in the 100 ms
time interval, the MCA registers record the number of errors, but
they provide detailed information only for one error in the interval.
Therefore, our logs contain the exact number of corrected errors
that occurred in our system, while the detailed error information is
available for a statistical sample (sampled in time) of all the errors.

If multiple DRAM errors occurred in the exactly the same phys-
ical location, they are counted as a single fault. The faults can be
extracted only from the errors with known exact physical location.
Increasing the frequency of daemon access to the MCA registers
would increase the sample of errors with detailed information and
the sample of observed faults. However, this would also increase
the performance penalty of the error logging daemon. The 100 ms
time interval was selected as the shortest time interval that causes
less then 1% overhead to the production applications. Previous stud-
ies perform similar readings of the memory error registers with a
period of a few seconds [25–27] or once per hour [15].

On a node restart, the daemon logs the DIMM locations, manufac-
turer information, and a serial number unique for each DIMM. This
information enables us to keep the DIMM error and fault history,
even if the servers or the DIMMs are moved.

Uncorrected errors are logged by the IBMfirmware [10], which
is part of the MareNostrum 3 monitoring software. For each uncor-
rected error, the log specifies the DIMM that failed and the cause
of the error, i.e. whether the error happened during an application
memory read or patrol scrubbing. After an uncorrected error is
reported, the corresponding DIMM is removed from production
and exposed to a stress test. If additional errors are detected during
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testing, the DIMM is retired. If no errors are detected, the DIMM is
returned to production. In our study, we detected 71 uncorrected
errors from 51 DIMMs.

The MareNostrum 3 system monitoring log also contains infor-
mation about 51 DIMMs that were replaced due to the pre-failure
alerts. The log specifies the DIMM, the date and time of the re-
placement.

4 CATEGORICAL ANALYSIS
This section analyzes the percentage of DIMMs that experience er-
rors, and evaluates whether there is a significant difference among
the manufacturers and DRAM technologies. The presented analysis
is formally referred to as a categorical analysis because the popula-
tion of all DIMMs is divided into different categories based on, e.g.,
whether they did or did not experience an error of a given type.

4.1 Uncorrected errors
The results for the uncorrected errors are summarized in Figure 1.
Figure 1(a) compares different DRAM manufacturers. Only 0.15%
of Manufacturers A and C DIMMs experience uncorrected errors.
For Manufacturers B, this percentage is somewhat higher, 0.25%.
Figure 1(b) shows the technology comparison. The 3x nm technol-
ogy shows the best reliability with 0.14% of DIMMs experiencing
uncorrected errors. For 2y nm and 2z nm technology the percentage
of DIMMs with errors increases to 0.19%.

Overall we could conclude that the percentage of DIMMs that
experience uncorrected errors is low, with some differences among
the manufacturers and DRAM technologies. However, based solely
on the results presented in Figure 1, we have no evidence as to
whether these differences are statistically significant.

To verify significance of the results, we introduce formal statisti-
cal tests. Since, to the best of our knowledge, this is the first time
that statistical tests are applied to the analysis of the DRAM errors,
we explain the rationale behind them as well as their step-by-step
application.

Essentially we want to understand whether probability of UE
occurrence in a given DIMM depends on the DIMM manufacturer.
This dependency can be checked with a statistical tests of indepen-
dence. These tests can help us to determine whether there really is
a difference; e.g. whether the DIMMs from Manufacturer B indeed
have a higher probability of an uncorrected error, or whether our
results show the typical variations due to chance that would be
expected even without differences among the manufacturers and
DRAM technologies.

In our case in particular, we use independence tests that analyze
the relation between two categorical variables: whether a DIMM
experienced an uncorrected error (first categorical variable), and
the DIMM manufacturer (second variable). Once that the categori-
cal variables are defined, each DIMM is classified into one of the
categories. In our example, the DIMMs can be classified into six
categories based on the DRAM manufacturer (Manufacturer A, B or
C) and the error occurrence (the DIMM did or did not experience
an uncorrected error), as illustrated in Table 1. Table 1 is referred
to as a contingency table, and it shows the number of DIMMs that
belong to each category. The contingency table is the input to a
statistical test of independence. The test assumes the null hypothesis
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Figure 1: Percentage of DIMMs with uncorrected errors:
Manufacturer and technology comparison.

DIMMs w/ UEs DIMMs wo/ UEs

Manufacturer A 10 6,707
Manufacturer B 33 13,386
Manufacturer C 8 5,239

Table 1: Contingency table: Comparison between different
manufacturers by the number of DIMMs that experienced
uncorrected error (UE). The statistical test indicates no de-
pendency, p-value = 0.24, so we cannot claim any statisti-
cally significant difference in the probability that DIMMs
fromManufacturers A, B and C will experience uncorrected
errors.

that the categorical variables are independent. The test output is
the p-value, which is the probability of obtaining a result equal to or
more extreme than what was actually observed, assuming the null
hypothesis is true. If p-value is small, then we can conclude that
the null hypothesis can be rejected, i.e., there is enough evidence
to claim dependency between the variables. We use an α = 0.05
cutoff for accepting or rejecting the null hypothesis, which is a
standard value used in academia. In this paper, we use Pearson’s
chi-square test, the most widely used test for the independence
between two categorical variables.3

The test applied to our data shows no statistically significant
dependence between the number of DIMMs that experienced un-
corrected error and the memory manufacturer. The outcome of the
test is p-value = 0.24, meaning that although the results may seem
to provide convincing evidence of a difference, we would expect
similar or more extreme results to appear 24% of the time by chance,
even if there were no differences at all. Also, in contrary to the com-
mon belief in the community is that as the technology scales down,
the probability of DRAM errors increases, measurements show no
statistically significant decrease in the reliability for the three gen-
erations of DIMM technology used in our system, p-value = 0.93.

3If cell values in the contingency table are small, it is recommended to use Fisher’s
exact test. Fisher’s exact test is similar to Pearson’s chi-square test, and a rule of
thumb is to use it instead of a chi-squared test if more than 20% of the values in
contingency table are lower than five. In all our results, we employ both Pearson’s
chi-square test and Fisher’s exact test, using the chisq.test() and fisher.test() functions
from the R programming language, respectively. Even for small cell values both tests
have the same conclusions about accepting or rejecting the null hypothesis. Therefore,
in the rest of the paper, we report p-values from Pearson’s chi-square test.
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Figure 2: Percentage of DIMMs with corrected errors: Manu-
facturer and technology comparison.

4.2 Corrected errors
The results for the corrected errors are summarized in Figure 2.
Figure 2(a) compares different DRAM manufacturers. Manufactur-
ers B and C have 3.3% and 5.1% of DIMMs with corrected errors,
respectively, while for Manufacturers A it reaches 16%. Figure 2(b)
shows the technology comparison. Contrary to the common belief
in the community is that as the technology scales down the DRAM
reliability decreases, our measurements show the opposite trend:
3x nm technology has the highest percent of DIMMs with errors,
followed by 2y nm and 2z nm technology, respectively.

Again we use the statistical test of independence to validate
whether the detected differences between the manufacturers and
technology are statistically significant. The test applied to our
data confirms a statistically significant difference among DRAM
manufacturers (p-value < 2.2 × 10−16) and technologies (p-value =
1.51 × 10−15).

4.3 Corrected vs. Uncorrected errors
System reliability is affected only by uncorrected memory errors.
However, current practice in academia and industry is to analyze
corrected errors and faults as DIMM reliability indicator [15, 17, 22,
23, 25–27], In this section, we perform statistical tests to analyze the
dependency between the DIMMs that experienced corrected and
uncorrected errors. The contingency table for this statistical test
of independence is shown in Table 2. In different rows of the table,
we show the number of DIMMs with and without an uncorrected
error (UE). Similarly, the table columns show the number of DIMMs
with and without at least one corrected error (CE). The indepen-
dence test indicates a strong dependency between the DIMMs expe-
riencing corrected and uncorrected errors, p-value < 2.2 × 10−16.
We repeated the tests for each manufacturer separately and ob-
served the same conclusion. For Manufacturers A, B and C, the
p-values are 0.013, < 2.2 × 10−16 and 0.006, respectively.

The results presented in Table 2 include all CEs and UEs moni-
tored in our system, including the ones proceeding from the DIMMs
that were replaced due to pre-failure alerts. In order to consider a
potential bias due to the DIMM replacement, as described in Sec-
tion 2.4, we remove all the data logs related to the replaced DIMMs
and repeat the analysis. Again, the independence test indicates a
strong dependency between the DIMMs experiencing corrected
and uncorrected errors, p-value < 2.2 × 10−16. Also, the tests for

DIMMs w/ CEs DIMMs wo/ CEs

DIMMs w/ UEs 23 28
DIMMs wo/ UEs 1,764 23,722

Table 2: Contingency table: Dependency between the
DIMMs (all manufacturers) experiencing corrected (CEs)
and uncorrected errors (UEs). The statistical test indicates
strong dependency, p-value < 2.2 × 10−16; i.e. we can claim
that DIMMs that experienced CEs have higher probability
of also experiencing UEs.

each manufacturer separately lead to the same conclusion: forMan-
ufacturers A, B and C, the p-values are 0.0007, < 2.2 × 10−16 and
0.0007, respectively.

4.4 Errors vs. Faults
A couple of studies [25–27] argue that the DIMMs should be com-
pared in terms of DRAM faults rather than errors. The categorical
analysis presented in this section would directly apply to the faults
as well. This is due to the inherent dependency between the errors
and faults—a DIMM that experienced an error at the same time
experienced a fault; while a DIMM with no errors, has no faults
neither. Actually, all the contingency tables, p-values and conclu-
sions for the DRAM faults would remain precisely the same as the
ones that we presented for the errors.

4.5 Summary
In this section we perform a categorical analysis of the DIMMs that
experienced corrected or uncorrected memory errors. Our study
is the first to support its quantitative analysis of the error logs
with statistical tests that confirm or reject the significance of the
findings.

The percentage of DIMMs that experience uncorrected errors is
very small, which is consistent with previous studies (see Section 6).
We notice some differences among manufacturers and DRAM tech-
nologies. We are the first, to the best of our knowledge, to use
statistical tests to validate our findings, and the first to show a lack
of their statistical significance.

We repeat the analysis for the corrected errors and, unlike for the
uncorrected errors, the independence tests confirm with high con-
fidence that these differences are statistically significant. Contrary
to the common belief that scaling down the technology reduces
DRAM reliability, our measurements show that the fraction of
DIMMs that experience errors has reduced significantly in each
DRAM generation.

Finally, we show a statistically significant dependence between
the DIMMs experiencing corrected and uncorrected errors, and we
find that the probability of an uncorrected error is higher if the
DIMM previously experienced corrected errors. This result formally
confirms the possibility to predict upcoming uncorrected DRAM
errors based on preceding corrected errors which motivates further
work on pre-failure predictions.
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5 ERROR RATE ANALYSIS
In addition to the categorical analysis, DIMM reliability can be
quantified and compared using the error rates: errors per MB-hour
or mean time between failures (MTBF). The errors per MB-hour
metric considers the total number of errors, and the capacity and
production time of each DIMM in a given category:

Errors per MB-hour =
Total number of errors∑

(DIMM capacity [MB] × Production time [hours])
(1)

The mean time between failures (MTBF) for a given DIMM category,
e.g., a specific manufacturer, is computed as the ratio of the sum of
DIMM production times divided by the total number of detected
failures for all the DIMMs of the target manufacturer:

MTBF [hours] =

∑
Production time [hours]
Total number of failures

(2)

MTBF and per MB-hour metrics are the de facto standard for quanti-
fying DIMM reliability, and are used by previous studies to analyze
faults and corrected/uncorrected errors. However, to the best of
our knowledge, no prior study has supported its findings based on
these metrics with a statistical significance, nor confirmed that they
provide stable and reliable results.

5.1 Uncorrected errors
5.1.1 Distribution. Figure 3 shows the incidence of uncorrected
errors over time. The x-axis shows time, in months from the begin-
ning of the study (October 2014) and the y-axis shows the number
of uncorrected errors per day, across all DIMMs of a given manu-
facturer. On most days we detect no errors, on a few days we detect
one error, and very occasionally we detect two or three errors on
the same day. In total during the observation period of 25 months
we detect only 71 errors.

Based on the observed errors in Figure 3, the number of errors
per MB-hour is calculated using Equation 1. Figure 4 the evolution
of this empirical uncorrected error rate over time. The x-axis is
again the time, in months from the beginning of the study. The
y-axis is now the average number of uncorrected errors per billion
MB-hour, based only on the measurements done until that point.
We can see that the mean error rate is highly volatile, even after
more than a year of observation.

The errors per MB-hour evolve in time as an impulse and down-
ramp function. The impulses in the average errors per MB-hour
are caused by the observed errors. For example, if we consider
Manufacturer A, the impulses in months 1, 8, 9, 12, etc., are per-
fectly aligned with the errors detected in Figure 3. This happens
because the total number of errors is small, so the mean error rate
changes significantly each time a new error is detected. For exam-
ple, Manufacturer A experiences the first error in the 1st month of
the observation, and then experiences no errors in the following
eight months. At the 8th month, the second error is detected, which
causes both the total error count and the errors per MB-hour to
double. In the 9th month, we detect three more errors in the same
day, so the number of observed errors changes from two to five,
with the result that the total number of errors and the errors per
MB-hour are both multiplied by 2.5. A similar phenomenon is seen
in the 12th month of the observation period. We detect a similar
behavior for the DIMMs produced by Manufacturers B and C.
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Figure 3: Uncorrected errors per day. On most days we de-
tect no errors, on a few days we detect one error, and very
occasionally we detect two or three errors on the same day.

The down-ramp segments observed in the plot of errors per MB-
hour correspond to periods in which we detect no errors. In these
periods the cumulative number of errors remains constant while the
observation time increases. Therefore, the shape of the errors per
MB-hour function is proportional to 1/t , where t is the observation
time. This is well illustrated for Manufacturer A between the first
and eighth months of the observation period and for Manufacturer
C between the second and eleventh months.

As a consequence of the high variability in the error rates, the
ranking of manufacturers switches several times. For example, 12
months into the study Manufacturer A had 90% higher error rate
than Manufacturer C. At the end of the study, at month 25, Manu-
facturer C now had 60% higher error rate than Manufacturer A. It
is intuitive to conclude that we have little confidence in how the
results would have looked if we were able to continue the study for
another year.

5.1.2 Other DRAM categories and MTBF. Figure 4 illustrates the
volatility of the conclusions when the error rates are used for com-
parison of different DRAM manufacturers. We repeat the whole
analysis by looking into other DRAM categories, MTBF metric and
the DRAM faults.

DRAM categories: We repeated the analysis for the three dif-
ferent DRAM technologies (rather than manufacturers) and reach
the same conclusions. Since the total number of DRAM errors is the
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Figure 4: Average uncorrected errors per MB-hour: each
point is the running average number of uncorrected errors
per MB-hour observed up to that point. The error rates can
vary significantly, by tens of percents each time a new error
is detected. Depending on the moment of observation, we
reach different conclusions about the ranking of the differ-
ent DIMMmanufacturers.

same as before, the number of non-zero observations contributing
to the calculation of the mean is still small. We strongly argue that
the same problem is present when the error rates are compared
for various DIMMs categories, such as DIMMs located in different
datacenters, different racks or servers, or DIMMs running different
workloads.

MTBF: We used the same approach to test the MTBF metric,
and the conclusions are the same—we detect huge variability in the
MTBF, even after long periods of error logging.

5.2 Corrected errors
We repeat the above analysis for the corrected errors and, we obtain
precisely the same conclusions: the average corrected errors per
MB-hour has a large variance even after more than two years of
error logging.

5.2.1 Distribution. Figure 5 shows the number of corrected errors
over time. As before, the x-axis shows time, in months from the
beginning of the study, and the y-axis shows the total number of
corrected errors per day, for a single manufacturer. This figure
clearly illustrates the error distribution: on most days there are
zero, or close to zero, corrected errors, but on a few days there
are very large numbers of corrected errors, up to about 110,000
(Manufacturer B, Month 7). When repeated at a finer granularity, by
measuring not per day, but per hour, minute or second, we detected
the same trend: >99% of the observations had no errors, and again
a very small proportion of observations had very high values.

Similarly to the uncorrected error case, to illustrate the difficulty
in measuring the mean, Figure 6 plots the evolution of the empirical
mean error rate, per MB-hour, for the three manufacturers, over
time. This figure shows that corrected errors per MB-hour also
evolve in time as an impulse and down-ramp function. An intensive
error burst, as seen in Figure 5, significantly increases the number of
detected errors in a short time interval, causing an impulse in the
average errors per MB-hour function. For example, if we observe
Manufacturer C, the impulses in Figure 6, e.g. in the observation
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Figure 5: Corrected errors per day. On most days we detect
zero or close to zero corrected errors; but on a few days
there are very large numbers of corrected errors, up to about
110,000 errors.

months 2, 8, 11, 15, etc., are perfectly aligned with the intensive
error burst in Figure 5. The down-ramp segments of the errors per
MB-hour function correspond to the periods in which we detect
few errors.

Figure 6 clearly shows the volatility when calculating the mean
errors per MB-hour. The error rates can vary significantly, by tens
of percents in just a few days. We detect this behavior for all three
manufacturers. Also, we detect this behavior not only at the be-
ginning of the study, where it might be expected due to the small
observation period, but also after long periods e.g. well after one
year of the study. As a consequence of the high variability in the
error rates, the ranking of manufacturers switches several times.
Actually, during the observation period, Manufacturer A and B
switched order eight times. At month 4, Manufacturer B had 40%
higher error rate than Manufacturer A, but at month 17, Manufac-
turer A had 25% higher error rate than Manufacturer B.

Overall, our results show high variability of the results despite
the millions of corrected errors observed over the course of the
study. Even after long periods of error logging, any comparison of
different DRAM manufacturers based on the errors per MB-hour
may support different conclusions depending on the moment in
which the measurements are finalized.
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Figure 6: Average corrected errors per MB-hour: each point
is the running average observed up to that point. Depending
on the moment of observation, we reach different conclu-
sions about the ranking of the DIMM manufacturers. Dur-
ing the observation period,Manufacturer A and B switched
order eight times.

5.2.2 Other DRAM categories and MTBF. As for the uncorrected
errors, we repeat the analysis for different DRAM technologies,
theMTBF metric and DRAM faults, and the conclusions are the
same—the error rates can vary significantly, by tens of percents
in just a few days, not only at the beginning of the study, but also
after long observation periods.

5.3 On the volatility of the error rates
In the previous section we have seen that intensive bursts of cor-
rected errors can cause significant changes in the average error
rates even after long observation periods. Next, we quantify and
explore in more detail the bursty behavior of corrected errors.

5.3.1 Quantifying burstiness of observed errors. A recent study of
Goh and Barabási [5] explores burstiness in wide range of systems,
and identifies two causes for it: (1) The inter-event time distribution,
which, in our study corresponds to the distribution of the interval
lengths between consecutive errors, and (2) Memory, i.e. correlation
between pairs of consecutive inter-event interval lengths. The study
also defines two parameters that quantify these causes of burstiness:
the burstiness parameter, B, and the memory coefficient,M .

The burstiness parameter B is based on the inter-event time
distribution and it is defined as the ratio B = σ−m

σ+m , where σ is the
empirical standard deviation andm is the empirical mean, calcu-
lated from the measured times between errors. The value of B is in
the bounded range [−1, 1), and its magnitude correlates with the
signal’s burstiness: B → 1 for the most bursty signals, B = 0 is
neutral (e.g. for Poisson sequence), and B = −1 corresponds to a
completely regular (periodic) signal.

Thememory coefficient M quantifies the correlation between
pairs of consecutive inter-event interval lengths. It is based on
the Pearson correlation between two samples of the same size,
X = x1, · · · , xN and Y = y1, · · · ,yN [24]:

ρX ,Y =
1
N

N∑
i=1

(xi −mX )

σX

(yi −mY )

σY

where N is the size of the samples, mX and mY are the sample
means of X and Y , respectively, and σX and σY are the sample stan-
dard deviations. The Pearson correlation is in the range [−1, 1]. A
value greater than zero implies that samples X and Y are positively
correlated, i.e. xi and yi tend to deviate from their means in the
same direction. A value less than zero implies that X and Y are
negatively correlated, while a value of 0 implies no correlation.

Applying this idea to find the correlation between consecutive
inter-event interval lengths gives [5]:

M =
1

n − 1

n−1∑
i=1

(τi −mX )

σX

(τi+1 −mY )

σY

where τi is the i-th inter-arrival interval and n is the total number
of errors. Then,mX and σX are the sample mean and standard de-
viation of τ1, · · · , τn−1 (sequence X ) andmY and σY are the sample
mean and standard deviation of τ2, · · · , τn (sequence Y ). The range
of values and interpretation of the memory coefficient corresponds
to the Pearson correlation. When a short inter-event interval tends
to be followed by another short interval and long by long, we get
a positive memory coefficient, 0 < M ≤ 1, indicating positive cor-
relation. When short intervals are more likely to be followed by
long intervals and vice versa, the consecutive interval lengths are
negatively correlated, so we get −1 ≤ M < 0. When the interval
lengths are uncorrelated, such as, e.g. for a Poisson process, we
haveM = 0.

5.3.2 Corrected error volatility. For Manufacturer A, B, and C, re-
spectively, the inter-event time distribution of our corrected errors
has the burstiness parameter of 0.94, 0.86, and 0.95, while the mem-
ory coefficient equals 0.18, 0.29 and 0.29. These B and M values
are very high, and seldom seen in experimental contexts related to
natural and human phenomena [5].4

In order to get an intuitive understanding of the importance
of the inter-event distribution (quantified by B) and correlation
(quantified byM), we plot the evolution of the real corrected error
rate in time alongside two synthetic timelines exploring the two
causes of the error rates volatility (see Figure 7). As before, in all
three charts, the x-axis is the time, in months from the beginning of
the study, and the y-axis is the average number of corrected errors
per billion MB-hour, based only the measurements done until that
point.

Figure 7(a) is the real timeline. Figure 7(b) plots a synthetic
timeline with the real inter-event distribution (B is unchanged),
but with these intervals randomly permuted in time (M = 0). We
see immediately that Figure 7(b) has much lower volatility than
Figure 7(a), illustrating the impact of correlation on the volatility
of the results. The original distribution has a high positive memory
parameter, and the error rates vary significantly, by tens of percents
in just a few days, even after long periods. By only making the inter-
error time intervals independent, i.e. by setting memory parameter
M = 0, the presented error rates become stable only after a few
months of the measurements.

As the final step of the analysis, we explore the impact of the
inter-event distribution. Figure 7(c) plots synthetic data assuming

4Goh and Barabási [5] also provide a detailed interpretation of the B andM parameters,
and use the (B, M ) phase diagram to plot and compare various human activities and
natural phenomena.
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Poisson arrivals (M = 0, B = 0), at a rate equal to the empirical
mean from the actual measurements. In this case the sample average
rapidly converges, even in the first day, to very close to the correct
value.

Note that Figures 7(b) and (c) each plot a single trial of a synthetic
timeline assuming independent inter-event intervals and Poisson
inter-event intervals, respectively. We performed the experiment
several times and obtained the same general behavior.

5.3.3 Uncorrected error volatility. In Section 5.1 we illustrated the
impact of the small number of observations on the volatility of the
uncorrected error rate. We extend this explanation with a formal
analysis as to whether part of this volatility is due to burstiness of
the uncorrected errors. As for the corrected errors, we compute the
B andM parameters for the different manufacturers, 5 and analyze
the impact of these causes on the volatility of the errors per MB-hour
metric. Figure 8 includes three charts: the actual measured results
from our system (Figure 8(a)). the same data with an independent,
randomly permuted inter-error periods (M = 0) (Figure 8(b)), and
data assuming Poisson arrivals (M = 0, B = 0) at a rate equal to the
empirical mean from the actual measurements (Figure 8(c)). Even
when the data is plotted assuming Poisson arrivals with M = 0
and B = 0, the error rates have large variation after even long
observation periods, and there is no qualitative difference between
the empirical error rates plotted in the three subfigures. Also, a
small number of observations causes significant variation in the
shape of the data plotted in Figure 8(b) and (c), from one trial to
another (we plot only one of several trials that we performed).
Therefore we conclude that a large part of the justification for the
volatility in the average number of uncorrected errors is simply
due to the small number of uncorrected errors in the sample.

5.4 Statistical significance
Errors per MB-hour and MTBF are standard metrics for measuring
DRAM reliability in large-scale systems. In the previous sections,
however, we show that their values can vary significantly even
after long observation periods, which can lead to unreliable con-
clusions that depend on the moment in which the measurements
are finalized. It is therefore essential that the community looks for
alternative approaches to quantify DRAM errors rates and reliably
compare them between different categories.

In this section we consider the choice of statistical methods for
comparison of different error rate distributions. Whereas the cate-
gorical analysis in Section 4, which used Pearson’s chi-square test,
only needed to assume that the observations of different DIMMs
are random, independent and identically distributed, the analysis of
numerical data usually requires assumptions about the underlying
distribution.

The most common tests for statistical significance in numerical
data are the t-test (for two sets of data) and ANOVA (its general-
ization to three or more sets of data). Both tests assume that the
sample means have a normal distribution. In many circumstances,
this assumption is justified, either because the population itself is

5Manufacturer A, B, and C, respectively, have the burstiness parameters of 0.17, 0.14,
and 0.25, and the memory coefficient of 0.25, −0.17 and 0.34.
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(b) Synthetic timeline of corrected error rates, with real
inter-event intervals from our system, but randomly permuted so
that consecutive time intervals are approximately independent
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(c) Synthetic timeline of corrected error rates, with synthetic
inter-event intervals assuming Poisson arrivals (M = 0, B = 0), at a
rate equal to the empirical mean from the actual measurements.

Figure 7: Average corrected errors per MB-hour: each point
is the running average observed up to that point. The mem-
ory coefficient M and burstiness parameter B of the inter-
error time distribution are the main causes of the average
error rate variability.

close to normal or because the average of a large sample is close
to normal by the Central Limit Theorem. Unfortunately, however,
if the data being averaged, in our case the error occurrences, has
heavy tails or are not independent, then convergence of the sample
mean to normal is very slow, requiring an extreme sample size. Our

10



Months of error logging

U
n
o
rr

ec
te

d
 e

rr
o
rs

 p
er

 b
il

li
o
n
 M

B
−

h
o
u
rs

Manufacturer A

Manufacturer B

Manufacturer C

0 3 6 9 12 15 18 21 24

0
0
.0

5
0
.1

(a) Actual timeline of uncorrected error rates
(the same as Figure 4)

0 5 10 15 20 25
Months of error logging

0.00

0.02

0.04

0.06

0.08

0.10

Ru
nn

in
g 

av
er

ag
e

er
ro

rs
 p

er
 b

illi
on

 M
B-

ho
ur

s

Uncorrected errors
Manufacturer A
Manufacturer B
Manufacturer C

(b) Synthetic timeline of uncorrected error rates, with real
inter-event intervals from our system, but randomly permuted so
that consecutive time intervals are approximately independent

(M = 0).

0 5 10 15 20 25
Months of error logging

0.00

0.02

0.04

0.06

0.08

0.10

Ru
nn

in
g 

av
er

ag
e

er
ro

rs
 p

er
 b

illi
on

 M
B-

ho
ur

s

Uncorrected errors
Manufacturer A
Manufacturer B
Manufacturer C

(c) Synthetic timeline of uncorrected error rates, with synthetic
inter-event intervals assuming Poisson arrivals (M = 0, B = 0), at a
rate equal to the empirical mean from the actual measurements.

Figure 8: Average uncorrected errors perMB-hour. Volatility
of the uncorrected error rates is caused by the small num-
ber of observations. Even when the data is plotted assuming
Poisson arrivals (M = 0, B = 0), we detect large variation
after long observation periods.

experiments indicate that even with 2000 billion MB-hours and
two years, the sample mean of the corrected errors is unlikely to
be normal. In fact, applying the Kolmogorov–Smirnoff test to the
actual numbers of corrected errors, with one sample per DIMM,
gives a p-value < 10−60 for all three manufacturers, indicating that

if the distributions were normal, then the observed results would
be highly unlikely. Due to the small number of non-zero samples
for the uncorrected errors, it is difficult to determine whether or
not this is also the case for uncorrected errors.6

There are, however, additional statistical tests that do not assume
a normal distribution, or any parametrized distribution (such as
normal, whose parameters are the mean and variance). Such non-
parametric tests include the Mann–Whitney U test (for two sets of
data) and Kruskal–Wallis (its generalization to three or more sets
of data). These tests are commonly thought to compare population
medians, rather than means, but this is not strictly true. In our
case comparing population medians would be useless since, for all
DRAM manufacturers and technologies, >99% of MB-hours had
zero (un)corrected errors, so the median number of (un)corrected
errors per MB-hour is zero.

We applied the Kruskal–Wallis test and could not conclude that
there is any statistically significant difference among the distribu-
tions (p-value < 2.2 × 10−16). It is important to realize that even
if we had found a statistically significant difference, the strongest
conclusion that we could have made would have been that the
DRAM manufacturers have different distributions, not that one has
a higher mean or median than another. To conclude the latter would
have required an assumption of statistical dominance; i.e. that the
cumulative distribution functions do not cross, but our experiments
(not presented) show that it is quite likely that they do.

5.5 Corrected vs. Uncorrected errors
Next, we compare the errors per MB-hour and MTBF metrics based
on DRAM faults, corrected errors and uncorrected errors. In case
that these trends were similar, we could conclude that measure-
ments based on the corrected errors and faults might be used as
an indirect indicator of the DRAM reliability. Our results, however,
clearly show that the corrected errors and faults rates show trends
that are completely different from the uncorrected errors.

In Figure 9(a), we compare the errors per MB-hour for various
manufacturers.7 Corrected errors, faults and uncorrected errors
results are presented in separate charts, while different bars refer to
the different DRAM manufacturers. When counting the corrected
errors, the highest error rate, 2665 errors per billion MB-hours, is
measured for Manufacturer A, followed by Manufacturers B and C
with 15% and 44% lower error rates, respectively. Fault rates follow
a similar trend, Manufacturer A has the highest fault rate followed
by Manufacturers B and C. The uncorrected error rates, however,
follow a different trend: Manufacturer A shows the lowest rate,
followed by Manufacturer C (1.6× increment) and Manufacturer B
(2.7× increment).

We get the same conclusion when comparing DIMMs with dif-
ferent technologies, see Figure 9(b). The corrected error and fault
rates increase as the technology scales down from 3x nm to 2y nm
and 2z nm. The uncorrected error rates, again, follow a different
trend: 2y nm technology shows the lowest error rates followed by
the 2z nm (1.6× increment) and 3x nm technology (3.7× increment).

6The p-values are 0.01, 5 × 10−6 and 0.06.
7Note that because of the big difference in error rates, charts in Figures 9 and 10 have
different scales on the y-axis.

11



A B C
0

1000

2000

3000

Corrected errors
per billion MB-hours

A B C
0

100

200

300

400

Faults
per billion MB-hours

A B C
0

0.02

0.04

0.06

Uncorrected errors
per billion MB-hours

(a) DRAM manufacturer comparison

3x 2y 2z

0

2000

4000

6000

Corrected errors
per billion MB-hours

3x 2y 2z

0

400

800

1200

Faults
per billion MB-hours

3x 2y 2z

0

0.01

0.02

0.03

Uncorrected errors
per billion MB-hours

(b) DRAM technology comparison

Figure 9: Corrected errors, faults and uncorrected errors per
billion MB hours. The corrected error and fault rates have
the same trend, but the uncorrected error rates exhibit a dif-
ferent trend.

Similarly to the analysis of errors per MB-hour, we compare the
MTBF metric based on DRAM faults, corrected and uncorrected
errors. We perform the analysis for different DRAM manufactur-
ers and DIMM technologies, presented in Figures 10(a) and 10(b),
respectively. As in the errors per MB-hour analysis, MTBF based
on the corrected error and fault show similar trends, that are com-
pletely different from the uncorrected errors.

The results presented in Figures 9 and 10 include all corrected
and uncorrected errors monitored in our system, including the
ones proceeding from the DIMMs that were replaced due to pre-
failure alerts. In order to account for a potential pre-failure alert
bias, as explained in Section 2.4, we remove all the data logs of the
replaced DIMMs and repeat the analysis. Again, our results show
that the corrected errors and faults errors rates show trends that
are completely different from the uncorrected errors. Therefore,
we conclude that the errors per MB-hour and MTBF metrics based
on DRAM faults and corrected errors cannot be used even as an
indirect indicator of the DRAM reliability.

5.6 Error rates vs. Categorical analysis
As the final step of our study, we compare the findings of the
categorical and the error rates analysis. Our results clearly show
that although quantitative DRAM error analysis may be performed
with both approaches, they are not interchangeable and could
lead to different conclusions. We illustrate this with three examples
based on the data used in this study.
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Figure 10: Mean time between corrected errors, faults and
uncorrected errors. The corrected error and fault rates have
the same trend, but the uncorrected error rates exhibit a dif-
ferent trend.

Figure 11(a) compares the uncorrected DRAM errors for three
technologies under study, 3x nm, 2y nm and 2z nm. The left figure
shows the uncorrected error rates per MB-hour, while the right
figure shows the categorical analysis, the percent of DIMMs that
experienced an uncorrected error. It is clear that the trends on the
figures are completely different, e.g. 3x nm technology has the
highest rate of the errors per MB-hour, while it has the lowest
percent of the DIMMs with uncorrected errors.

Figure 11(b) illustrates the same for the corrected errors. Again,
the trends on the are completely different depending on whether
we compare the DRAM technologies based on the error rates per
MB-hour or the percent of DIMMs that experienced an error.

Finally, our categorical analysis confirms the strong dependency
(p-value < 2.2 × 10−16) between the DIMMs experiencing corrected
and uncorrected DRAM error, see Section 4.3. However, analysis
of the same error logs showed that the per-MB-hour and MTBF
metrics based on corrected DRAM faults and errors have trends
that are completely different from the uncorrected errors, see
Section 5.5.

5.7 Summary
In this section, we analyzed the DRAM error distributions and the
variability of errors per MB-hour and MTBF over the course of the
25-month observation period.

First, we show that average errors rates, errors per MB-hour and
MTBF, have a large variance even after more than two years
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Figure 11: Analysis of the same DRAM error data with dif-
ferent approaches, categorical and the error rates, can lead
to completely different conclusions.

of the error logging. The findings are the same for corrected and
uncorrected errors and for both comparisons: DRAM manufacturer
and technology. We also show that errors per MB-hour and MTBF
show different conclusions depending on the moment in which the
measurements are finalized. It is intuitive to conclude that we have
little confidence in how the results would have looked if we were
able to continue the study, e.g. for another year.

Second, we explore in more detail the causes of the corrected and
uncorrected error rate volatility. For uncorrected errors, a large part
of the justification for this volatility is simply due to the small num-
ber of uncorrected errors observed during the study. For corrected
errors, the significant changes in the average error rates are caused
by intensive error bursts, up to about 110,000 errors in only few
days. We further explore the causes of this burstiness, and conclude
that it is a consequence of inter-event time distribution and a strong
correlation between consecutive inter-error interval lengths.

Third, we carefully consider the options for statistical signifi-
cance tests when comparing the average DRAM error rates from
DIMMs in different categories. We conclude that this would require
statistical dominance, i.e. that the cumulative distribution functions
from different categories do not cross, supported with the non-
parametric tests that could confirm statistical difference among
the distributions. We are aware that this is a very strict require-
ment, and we would encourage future work that would explore less
conservative approaches to this problem.

Also, we show that using the corrected error rate and fault rate,
errors per MB-hour or MTBF, as an indicator of DRAM reliability

is misleading because the uncorrected error trends can be com-
pletely different. This is onemore example that shows how impor-
tant it is to understand the relation between DRAM faults, corrected
errors and uncorrected errors. Any metrics based on corrected er-
rors or faults should be used as a DRAM reliability indicator only if
there is a clearly understood relationship with uncorrected errors.

As the final step of our study, we compare the findings of the
categorical and the error rates analysis. Our results clearly show
that although quantitative DRAM error analysis may be performed
with both approaches, they are not interchangeable and could
lead to different conclusions.

Error and fault rates are the de facto standard for measuring
DRAM reliability in both academia and industry. To the best of our
knowledge this is the first study that analyzes the limitations of
these approaches and demonstrates that they can provide volatile
and unreliable results, leading to incorrect conclusions about DRAM
reliability. It is therefore essential to question the current practice
in quantifying DRAM reliability and to select a proper analysis
approach. Our strong suggestion would be to select the method
that provides the most stable and, ideally, statistically significant
results. Another important requirement is that the selected method
provides numbers with a practical value that could be easily related
to HPC system reliability.

6 RELATEDWORK
In recent years, various studies have analyzed corrected and uncor-
rected DRAM errors and faults in the field.

Uncorrected DRAM errors and whole system resiliency:
Schroeder et al. [21], Martino et al. [16] and Gupta et al. [6] analyze
the impact of DRAM errors on the resiliency of large-scale compute
clusters. The authors consider numerous causes of the system fail-
ures including hardware components, software and environment.
The analysis of the DRAM errors is only a small part of their studies.

Schroeder et al. [21] analyze failures of the Los Alamos National
Laboratory HPC systems between 1996 and 2005. The authors re-
port that uncorrected memory errors account for 20% of all hard-
ware failures, and were the root cause of 30% of the server failures.

Martino et al. [16] analyze failures of the Blue Waters super-
computer during 261 days. The supercomputer includes general
purpose computing nodes with chipkill protected DDR3 and GPU
accelerators with SEC-DED protected DDR5. The authors detect
1.5 million corrected and 28 uncorrected DRAM errors, and report
that DRAM is the cause of 44% of all server failures.

Gupta et al. [6] compare and contrast the reliability character-
istics of five production HPC systems deployed at the Oak Ridge
National Laboratory. The study analyzes error logs gathered during
more than eight years and covering more than one billion compute
node hours. The study shows that hardware-related errors, such
as uncorrected errors in the CPU caches and main memory, are
equally or more dominant than the software errors, such as those in
the file system and kernel. The authors emphasizes the importance
of the CPU and GPU memory errors, and advocate for increasing
the reliability of these components by better memory provisioning
and replication.

The previous studies are very important for two reasons. First,
these studies show that DRAM is one of themain causes of hardware
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failures, and they quantify the impact of these failures on system
reliability. This positions DRAM failures in the overall picture of
large-scale compute cluster reliability. Second, when quantifying
system reliability, the studies focus on uncorrected DRAM errors.
Although the message is not as explicit as it could be, it is very clear:
system reliability is driven by uncorrected errors not corrected
errors.

Corrected vs. Uncorrected DRAM errors: Few studies men-
tion the dependency between corrected and uncorrected DRAM
errors.

The results of Schroeder et al. [22] indicate that two months after
a corrected error the DIMM has higher probability to experience
an uncorrected one. The authors also present the idea of an early
replacement policy, where a DIMM is replaced after experiencing a
significant number of corrected errors, rather than waiting for the
first uncorrected one.

Sridharan and Liberty [26] confirm that the probability of an
uncorrected fault may increase if the server had preceding corrected
faults, especially if the corrected faults affected various ranks and
banks of a given DIMM.

Levy et al. [14] analyze SRAM and DRAM failure data collected
during the entire life-time of the Cielo supercomputer. Unlike all
previous studies, this work concludes that corrected DRAM faults
are not predictive of future uncorrected faults. The presented
data show only a weak temporal relation between corrected DRAM
faults and a subsequent uncorrected DRAM fault at the same server.
The study also analyzes the average fraction of servers with cor-
rected and uncorrected DRAM faults per day, and concludes that
there is no strong correlation between these two statistics. Finally,
the authors compute the average number of corrected faults per
server, and show a small difference between the nodes that did and
did not experience uncorrected faults.

Comparing and combining the conclusions of these studies is
not trivial. First, although the studies analyze the same phenomena,
they do not analyze the same problem. Schroeder et al. [22] use a
categorical approach to analyze the probability of corrected and
uncorrected error occurrence in each DIMM. Sridharan and Lib-
erty [26] interchangeably use terms DRAM error and fault. They
use a categorical approach to analyze the probability of DRAM
errors/faults occurrence at different servers. Levy et al. [14] also
analyze the DRAM faults at the server level. This study, however,
uses the error rate analysis to explore correlation between the
rates of corrected and uncorrected DRAM faults. Finally, although
all the studies agree that the number of observed uncorrected errors
(or faults) is very low, none of the presented quantitative results
are supported by statistical tests.

Predicting uncorrected DRAM errors: Giurgiu et al. [4] pro-
pose a machine learning random forest model for prediction of un-
corrected DRAM errors. The prediction is based on the previously-
detected corrected errors and measurements from over 100 sensors
that monitor system functioning. The model achieves very high
precisions of up to 96%; meaning that up to 96% of the predicted un-
corrected DRAM errors indeed occur in future. The model still has
problems to predict uncorrected errors which have no preceding
corrected ones. Predicting these errors is very important because
typically they correspond to a majority of all uncorrected DRAM
errors [4, 14].

CorrectedDRAMerrors: Most DRAMerror studies focus their
analysis on corrected errors. These studies cover various large-scale
compute systems, with DDR1, DDR2, DDR3 and FBDIMM DIMMs.

Schroeder et al. [22] present the first large-scale study of DRAM
memory errors in the field. The study covers 2.5 years (Jan 2006–
June 2008) of DRAM error logging of the Google fleet with six
different platforms using DDR1, DDR2 and FBDIMM memory with
SEC-DED and chipkill ECC. The study analyzes corrected and un-
corrected error probabilities and rates, and correlates them with
different factors, such as chip capacity, temperature, utilization,
aging and DIMM generation.

Li et al. [15] report on nine months of DRAM error collection
from various platforms with a total of 800 GB of DDR2 memory.
The authors pay special attention to a comparison of transient and
non-transient errors, and the study discovers a significant number
of non-transient errors, with multiple errors often occurring in the
same row or column.

Hwang et al. [9] study data on DRAM errors collected from
four different environments: SciNet HPC cluster (Canada), the IBM
Blue Gene/L at Lawrence Livermore National Laboratory, the Blue
Gene/P from the Argonne National Laboratory, and 20,000 ma-
chines from Google’s data centers. In total, this work covers nearly
300 terabyte-years of main memory utilization in the field. The
study distinguishes between soft transient errors and hard DRAM
errors caused by the device defects and provides a detailed analytical
study of both error types. The authors also propose memory page
retirement policy as a protection mechanism that would prevent
a large number of corrected DRAM errors in production systems,
while sacrificing only a negligible fraction of the total DRAM.

Sridharan and Liberty [26] analyze 11 months (Nov 2009–Oct
2010) of DRAM error logs from the Jaguar supercomputer located
at the Oak Ridge National Laboratory. The study covers DDR2
DIMMs with chipkill ECC and presents detailed analysis of the
corrected errors and fault types: permanent, transient, single-bit,
multi-bit, row, column, bank, multi-bank and multi-rank. Sridharan
et al. [27] extend this study with the analysis of the error logs
from the Cielo supercomputer located at the Los Alamos National
Laboratory. These logs observe 15 months (mid-2011 to early-2013)
of chipkill-protected DDR3 DIMMs. This study focuses on DRAM
faults (corrected errors faults) and presents a detailed analysis of
fault types, similarly to Sridharan and Liberty [26]. The study also
analyzes fault rates as a function of the DRAM vendor, physical
location of the fault in the DRAM device, location of the DRAM
device in the data-center, and the data-center altitude. Sridharan
et al. [25] extend these studies with the 18 months (April 2011 to
January 2013) of the error logs from the Hopper supercomputer
located at the Lawrence Berkley Labs. The study covers DDR3
DIMMs with a chipkill ECC scheme. These studies [25–27] strongly
argue that “system health” should be measured in terms of DRAM
faults rather than errors. The term “system health” is not explicitly
defined, but if it is a synonym for system reliability, then we argue
instead that it should be quantified by uncorrected DRAM errors,
rather than corrected errors or faults.

Siddiqua et al. [23] analyze DRAM errors logs collected from
30,000 servers over a period of three years. This is the first study
that uses the pattern of the error addresses to distinguish between
errors caused by the memory module, memory controller, memory
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channel and bus. The authors conclude that memory module faults
are by far the most dominant fault type. Meza et al. [17] extend this
work, and distinguish between errors caused by the DIMM bank,
row, column and cell. They analyze 14 months of DRAM error logs
from the Facebook fleet comprising DDR3 DIMMs, and conclude
that 85% of memory errors are not caused by the DIMM, but by the
socket and memory channel, which is opposite to the conclusions
of Siddiqua et al. [23]. Meza et al. [17] also analyze corrected error
rates as a function of DIMM manufacturer, DIMM architecture,
technology, workload characteristics, CPU and memory utilization.

These studies present many quantitative results on corrected
DRAM errors and faults, and their analysis is extremely valuable
for the understanding of DRAM error and fault rates, distributions,
and correlated factors. However, it is important to not forget that
only uncorrected DRAM errors have an impact on system reliability.
Our results, as well as the previous studies [4, 14, 22, 26] show there
is no direct relation between corrected and uncorrected errors and
faults. So, it is not straightforward to quantify whether, and to what
extent, the analyses focused on corrected DRAM errors improve
our understanding of the memory system reliability.

GPU errors in the field: Extensive use of GPUs in HPC moti-
vated studying and improving of their reliability, and few recent
studies analyze GPU errors in the field. Tiwari et al. [29] analyze
GPU error logs from February 2013 to August 2014 (over 18 months)
of the Titan supercomputer comprising 18,688 K20X GPUs. Nie et
al. [18] continue this work with the analysis of the GPU-error re-
lated data on the same system from February 2015 to June 2015. The
follow-up study from the same team [19] proposes and evaluates
several machine learning-based models for the GPU error predic-
tion. The studies reveal interesting insights about the temporal and
spatial distribution of GPU errors, their correlation with tempera-
ture, GPU power consumption and workload characteristics.

In K20X GPUs the error correction codes protect all the major
memory structures including register files, caches and device mem-
ory. The studies analyze all the single-bit errors together, and do
not distinguish between the errors in different memory structures.
Therefore, it is not easy to understand whether and how the find-
ings of these studies could be applied to DRAM resiliency. Tiwari
et al. [29] actually report that 98% of the detected errors come from
the L2 cache, while the register files, instruction cache, L1 cache,
shared memory and device memory together contribute to only 2%.

Our study: The main focus of our study is not to understand
the cause of DRAM errors in the field and the correlated factors,
but rather to emphasize the complexity of this quantitative analysis
and importance of the statistically sound methodology. Although
our analysis detects various weaknesses in the quantitative DRAM
error analysis performed by previous studies, our objective is not
to discredit there studies nor their findings. Instead, our objective is
to increase the awareness of the limitations of various widely-used
methods, and to present methodology, statistical tests and examples
that improve any future analysis of the DRAM errors in the field.

7 CONCLUSIONS
This paper summarizes our two-year study of corrected and un-
corrected errors on the MareNostrum 3 supercomputer, covering
2000 billion MB-hours of DRAM in the field. The main objective

of the paper is to help the community to define standards for any
future quantitative analysis of DRAM errors. The paper has two
sets of contributions. First, we illustrate the complexity of in-field
DRAM error analysis and demonstrate the limitations of various
widely-used methods. Understanding these limitations is impor-
tant because, as we show, widely-accepted approaches for DRAM
analysis provide volatile, unreliable and statistically insignificant
results that may lead to incorrect conclusions about DRAM relia-
bility. Second, we present formal statistical methods that overcome
many of the limitations of the current approaches. The methods
that we present are simple to understand and implement, reliable
and widely accepted in the statistical community.

This is the first study that clearly distinguishes between the
categorical and error rate analysis. Although both methods are valid,
our results clearly show that they are not interchangeable and can
lead to completely different conclusions. This is very important
finding, because various previous studies interleave categorical and
error rate analysis and the conclusions based on them.

As a part of the categorical analysis, we explain and use indepen-
dence tests to confirm or reject, in terms of statistical significance,
any differences observed among various categories. We use these
tests to analyse the percentages of DIMMs that experience un-
corrected or corrected errors, for the different manufacturers and
DRAM technologies. These tests allow us to ascertain whether the
observed differences are likely to be due to real differences or are
explainable merely by chance. To the best of our knowledge, this is
the first study of DRAM errors that uses statistical tests to confirm
or reject the significance of its results.

Regarding the error rates, we show that the average errors per
MB-hour and average MTBF were highly volatile over the course of
the study, with the final values depending critically on the moment
at which the study is terminated. It is intuitive to conclude that we
have little confidence in how the results would have looked if we
were able to continue the study, e.g. for another year. We perform a
careful study of the causes of this volatility, and conclude that the
primary reason differs between uncorrected and corrected errors.
For uncorrected errors, the volatility is explained by the small
number of observations; 71 uncorrected errors over the course of
the study. For corrected errors, the volatility is explained by error
burstiness in time. Moreover, we show that using the corrected
errors and fault rates as an indicator of DRAM reliability may be
misleading because they have completely different trends from the
uncorrected errors, which are the only errors that lead to system
failure.

Our study alerts the community about the need to question the
current practice in quantifying DRAM reliability and to select a
proper analysis approach for future studies. Our strong recommen-
dations are: firstly, to focus on measurements with a practical value
that can be easily related to system reliability; secondly, to select
a proper analysis approach that provides reliable results, ideally
supported with statistical significance. Overall, we believe that the
analysis and guidelines summarized in this paper will help the com-
munity to define formal and reliable methods for analysis of the
DRAM errors in the field.
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