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ABSTRACT
The recent emergence of new memory technologies and multi-tier
memory architectures has disrupted the traditional view of mem-
ory as a single block of volatile storage with uniform performance.
Several options for managing data on heterogeneous memory plat-
forms now exist, but current approaches either rely on inflexible,
and often inefficient, hardware-based caching, or they require ex-
pert knowledge and source code modification to utilize the different
performance and capabilities within each memory tier. This paper
introduces a new software-based framework to collect and apply
memory management guidance for applications on heterogeneous
memory platforms. The framework, together with new tools, com-
bines a generic runtime API with automated program profiling
and analysis to achieve data management that is both efficient and
portable across multiple memory architectures.

To validate this combined software approach, we deployed it
on two real-world heterogeneous memory platforms: 1) an Intel®
Cascade Lake platform with conventional DDR4 alongside non-
volatile OptaneTM DCmemory with large capacity, and 2) an Intel®
Knights Landing platform high-bandwidth, but limited capacity,
MCDRAM backed by DDR4 SDRAM. We tested our approach on
these platforms using three scientific mini-applications (LULESH,
AMG, and SNAP) as well as one scalable scientific application (QM-
CPACK) from the CORAL benchmark suite. The experiments show
that portable application guidance has potential to improve per-
formance significantly, especially on the Cascade Lake platform
– which achieved peak speedups of 22x and 7.8x over the default
unguided software- and hardware-based management policies. Ad-
ditionally, this work evaluates the impact of various factors on the
effectiveness of memory usage guidance, including: the amount of
capacity that is available in the high performance tier, the input that
is used during program profiling, and whether the profiling was
conducted on the same architecture or transferred from a machine
with a different architecture.
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1 INTRODUCTION
Memory technologies with very different performance and capabil-
ities than conventional DDR SDRAM have begun to emerge. Some
commercial platforms now package conventional memory DIMMs
together with large capacity, non-volatile, memory devices, such
as Intel®’s OptaneTM DCPMMs1 (3DXPoint) [15, 16], or alongside
high bandwidth, but low capacity, “on-package” memory storage,
such as MCDRAM [28]. These multi-tier memory architectures dis-
rupt the traditional notion of memory as a single block of volatile
storage with uniform performance. Figure 1 illustrates complex
memory tiering in emerging memory architectures. Choosing the
correct tier for data with high amounts of reuse can improve per-
formance dramatically for full scale applications. As one works up
the pyramid, access speed increases greatly, but capacity decreases,
exacerbating the difficulty of intelligently backing allocations with
a limited supply of fast memory.

These heterogeneous architectures require new data manage-
ment strategies to utilize resources in different tiers efficiently. One
common approach is to operate the faster, lower capacity tier(s) as
a hardware-managed, memory-side cache. This approach allows
applications to exercise high bandwidth memories at large data
scale without requiring any source code modifications. However,
hardware caching is inflexible, and can produce some unexpected
and intractable inefficiencies for certain applications and access
patterns. In this paper, we refer to this approach as cache mode.2
An alternative approach, commonly referred to as software-based
data tiering, allows the operating system (OS) to assign pages of

1DCPMM stands for Data Center Persistent Memory Module.
2It is also called Memory Mode in Intel®’s OptaneTM DCPMM literature.
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Figure 1: Data Tiers onModern ComplexMemory Platforms

memory to distinct memory tiers.3 Without additional guidance
from upper-level software, the OS may assign application data first
to faster tier(s), and when faster memory is not available, to slower
memory tiers. While this approach can also be applied to existing
applications (with little or no software changes), it generally results
in inconsistent and suboptimal performance – as pages accessed
earlier or during periods of low demand are prematurely assigned
into the high performance tiers even if they harbor lightly-accessed
data. In this work, we refer to unguided software-based data tiering
as the first touch approach.

The architecture and systems communities are currently explor-
ing how to transcend limitations faced by common hardware- and
software-based approaches. Several recent projects have proposed
program profiling and analysis tools that augment applications
with facilities to guide assignments of data to distinct memory
tiers [7, 8, 10, 11, 26, 27, 30, 31]. For instance, the MemBrain ap-
proach [26] collects profiles of application memory usage and auto-
matically converts them into tier recommendations for each data al-
location site. While these studies demonstrate that application-level
guidance is often much more effective than unguided approaches,
their tools and frameworks are either only useful in simulation, or,
like [26], have only been evaluated in limited usage scenarios on
one type of heterogeneous architecture with a modest amount of
upper tier memory.

This work aims to investigate the potential of generating and ap-
plying portable application guidance for programs that execute on
different types of memory hardware. Towards this goal, we adopt
and integrate the MemBrain approach into the Exascale Computing
Project (ECP) Simplified Interface to Complex Memory (SICM) [4],
which is a unified software framework for automatically adapting
applications to a variety of memory devices and configurations. Us-
ing this combined framework, we evaluate the performance of data
tier guidance on two platforms with very different heterogeneous

3In Intel®’s ecosystem, this approach is called Flat Mode on Knights Landing, and
App-Direct on Cascade Lake systems with OptaneTM DCPMMs.

memory architectures: 1) a “Knights Landing” (KNL4) platform
with high-bandwidth MCDRAM backed by conventional DDR4,
and 2) a “Cascade Lake” (CLX5) platform with DDR4 as the up-
per tier and high capacity OptaneTM DC memory as the lower
tier. To our knowledge, this is the first work to evaluate applica-
tion guided memory management on a high volume commercial
platform equipped with state-of-the-art DCPMM hardware.

Our experiments demonstrate the potential of portable applica-
tion guidance using three mini-apps (LULESH, AMG, and SNAP) as
well as one full scale application (QMCPACK) from the CORAL suite
of high performance computing benchmarks [21]. Additionally, this
work investigates the following high-level questions concerning
profile-based guidance for heterogeneous memory management:

(1) How robust is it when different amounts of capacity are
available in the high-performance tier?

(2) Is its performance sensitive to profile input?
(3) Can profiles collected on one architecture be used on a dif-

ferent architecture?
(4) How well does this portable, software-guided approach com-

pete against unguided first touch and cache mode?
This work makes the following important contributions:
(1) It extends the SICM API and runtime to create an automated

and unified application guidance framework for memory
systems with different heterogeneous architectures.

(2) It shows that the SICM-based implementation achieves simi-
lar benefits as previous guidance-based approaches on the
KNL, with speedups of up to 2.8x over unguided first touch.

(3) It finds that guided data tiering yields even larger perfor-
mance gains on CLX, with maximum speedups of more than
22x and 7.8x over the unguided first touch and cache mode
configurations, respectively.

(4) It shows that a single profile of a small program input is of-
ten just as effective for guiding execution with different and
larger program inputs. Additionally, it finds that a single pro-
file can guide execution effectively across different amounts
of capacity available in the high performance memory tier.

(5) It demonstrates that profile guidance collected on one mem-
ory architecture may be transferred and applied favorably to
a different architecture, but finds that there are limitations
to this approach that can reduce its effectiveness.

2 BACKGROUND AND RELATEDWORK
This section provides an overview of the SICM and MemBrain
projects, which we combined to implement portable application
guidance for complex memory systems. Later, it also discusses other
recent research related to this project.

2.1 Simplified Interface to Complex Memory
The U.S. Department of Energy (DOE) is working towards achiev-
ing new levels of scientific discovery through ever-increasingly
powerful supercomputers [5, 6]. Short-term plans call for achieving
exaFLOP performance by the year 2021. To make these computing
environments viable, the DOE has initiated a large effort titled the

4Formally, Intel® Xeon® PhiTM 7250 Series Processors.
5Formally, Intel® Xeon® Gold 6262 Series Processors.
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Exascale Computing Project (ECP) [18, 24]. The project includes
multiple thrust areas to deal with the hardware and software chal-
lenges of the most complex and high-performance supercomputers.
For such systems, the DOE spends hundreds of millions of dollars to
achieve the highest performance possible from available hardware.

The Simplified Interface to Complex Memory (SICM), one of the
ECP projects, seeks to deliver a simple and unified interface to the
emerging complex memory hierarchies on exascale nodes [4]. To
achieve this goal, SICM is split into two separate interfaces: the
low-level and the high-level, as shown in Figure 2. The high-level in-
terface delivers an API that allows applications to allocate, migrate,
and persist their data without detailed knowledge of the underly-
ing memory hardware. To implement these operations efficiently,
the high-level API invokes the low-level interface, which interacts
directly with device-specific services in the OS. This work extends
portions of both layers of SICM to enable automated and portable
application guidance for complex memory architectures.

2.2 MemBrain: Automated Application
Guidance for Hybrid Memory Systems

To integrate application guidance with SICM, this work embraces
and extends the MemBrain approach [26]. MemBrain automates
the use of data-tier guidance by associating profiles of memory
behavior (such as bandwidth and capacity) with program allocation
sites. Each allocation site corresponds to the source code file name
and line number of an instruction that allocates program data (e.g.,
malloc or new) and may optionally include part or all of the call
path leading up to the instruction. A separate analysis pass converts
the profiles into tier recommendations for each site prior to guided
execution. Figure 3 presents an overview of this approach.

2.2.1 Converting Site Profiles to Tier Recommendations. MemBrain
includes three options for converting memory usage profiles into
tier recommendations for each allocation site. The three options,
which are also implemented in this work, are as follows:

Knapsack: The knapsack approach views the task of assigning
application data into different device tiers as an instance of the
classical 0/1 knapsack optimization problem. In this formulation,

each allocation site is an item with a certain value (bandwidth) and
weight (capacity). The goal is to fill a knapsack such that the total
capacity of the items does not exceed some threshold (chosen as
the size of the upper tier), while also maximizing the aggregate
bandwidth of the selected items.

Hotset: The hotset approach aims to avoid a weakness of knap-
sack, namely, that it may exclude a site on the basis of its capacity
alone, even when that site exhibits high bandwidth. Hotset simply
sorts sites by their bandwidth per unit capacity, and selects sites
until their aggregate size exceeds a soft capacity limit. For example,
if the capacity of the upper tier is C, then hotset stops adding the
sorted sites after the total weight is just past C. By comparison,
knapsack will select allocation sites to maximize their aggregate
value within a weight upper bound of C.

Thermos: Since hotset (intentionally) over-prescribes capacity
in the upper tier, cold or lukewarm data could potentially end
up crowding out hotter objects during execution. The thermos
approach aims to address this occasional drawback. It only assigns
a site to the upper tier if the bandwidth (value) the site contributes
is greater than the aggregate value of the hottest site(s) it may
displace. In this way, thermos avoids crowding out performance-
critical data, while still allowing large-capacity, high-bandwidth
sites to place a portion of their data in the upper-level memory.

2.3 Other Related Work
Propelled by computing trends such as Big Data and Exascale sys-
tems, research interest in application-guided data management has
grown significantly in the last few years. Some recent works have
combined program profiling and analysis with physical data man-
agement in operating systems and hardware to address a variety of
issues on homogeneous memory platforms, including: DRAM en-
ergy efficiency [17, 25], cache pollution [14], NUMA traffic conges-
tion [9], and data movement costs for non-uniform caches [23, 29].
While their techniques and goals are very different than this work,
these studies highlight the power and versatility of application-level
profiling for guiding data management.

Several other works have used program profiling to direct the
assignment of data to different memory tiers in complex memory
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architectures. For instance, some projects employ binary instru-
mentation to collect information about individual data objects and
structures, and then use classification heuristics to assign data to
the appropriate tier [7, 10, 11, 27, 30]. While this approach can be
effective, instrumentation-based profiling is often slow due to the
large number of data accesses generated by most applications, and
may be inaccurate if hardware effects are not modeled properly.
In contrast, this work employs architectural sampling to collect
memory usage information with low overhead.

Some other projects have employed hardware support to col-
lect data tiering guidance during execution [8, 20, 22]. However,
these works only combine coarse-grained architecture-supported
profiling with low-level (i.e., physical) memory management, and
are therefore vulnerable to inefficiencies that arise from the ap-
plications working at cross-purposes from the OS and hardware.
Unimem [31] also integrates hardware-based profiling with appli-
cation events, and even adjusts tier assignments dynamically in
response to shifting guidance. The adopted MemBrain approach
applies static guidance, but unlike Unimem, it does not require any
source code modification.

In contrast to all of these works, including MemBrain, this work
is the first to study the use of common guidance infrastructure
on multiple real complex memory platforms, including one with
state-of-the-art non-volatile OptaneTM DC memory. Using this
framework, we also evaluate the robustness of profile guidance
across several parameters, including the capacity of the upper tier,
as well as the program input and architecture used during profiling.

3 PORTABLE APPLICATION GUIDANCE FOR
COMPLEX MEMORY SYSTEMS

This section describes the extensions and changes this work makes
to the SICM runtime to enable portable application guidance for
complex memory systems.

3.1 Allocation Site Annotations
The original MemBrain toolset includes a static compilation pass,
implemented in the LLVM toolchain [19]. It annotates allocation
instructions with unique identifiers for each allocation site, so that
sites may be identified and associated with memory usage profiles.
To distinguish allocation instructions reached by multiple call paths,
the pass furnishes an option to clone some number of layers of the
function call path leading to each allocation instruction. For this
work, we adopt and modify this LLVM-based tool to replace each
allocation instruction with a corresponding call to the high-level
SICM API with the site ID added in as a parameter.

New extensions also make it easier to modify existing appli-
cations as described next. The MemBrain annotation procedure
requires multiple passes to: 1) convert each file to LLVM IR, 2) link
all files to resolve function call context across the entire program,
3) perform site annotations, and 4) compile the annotated IR to
executable code. For this work, we have abstracted these actions
into wrapper commands for easy integration into build scripts for
existing applications, as shown in an example Makefile in Listing 1.
In most cases, including for all of the applications in this study, the
build scripts require only a few lines of changes to generate an
annotated executable file.

Listing 1: Makefile for building LULESH + site annotations.
The changes for applying the annotations are shown in red.
export CXX_WRAPPER= " $SICM_DIR / b in / cxx_wrapper . sh "
export LD_WRAPPER= " $SICM_DIR / b in / ld_wrapper . sh "
. . .
a l l : $ ( LULESH_EXE )

. cc . o : l u l e s h . h
$ (CXX_WRAPPER) −c $ ( CXX_FLAGS ) −o $@ $<

$ ( LULESH_EXE ) : $ ( OBJECTS )
$ ( LD_WRAPPER ) $ ( OBJECTS ) $ ( LD_FLAGS ) −o $@

3.2 Memory Usage Profiling
Similar to MemBrain, this work obtains profiling information dur-
ing application execution through the use of low-overhead architecture-
supported sampling. The profiles estimate the relative density of
accesses of the data associated with each allocation site. While
MemBrain requires a custom kernel module to collect samples of
memory accesses, our framework implements a more portable tech-
nique that uses the Linux perf tool [3]. The tool allows user-level
programs to customize the collection of hardware performance
events and the subsequent analysis of the collection. For this study,
we configured perf to collect samples of the relevant Precise Event-
Based Sampling (PEBS) event that occurs when a data load misses
the last level cache (LLC) on each platform. Specifically, we used the
MEM_LOAD_UOPS_RETIRED.LLC_MISS event on the KNL platform,
and the MEM_LOAD_UOPS_RETIRED.L3_MISS event on the CLX plat-
form, and employ a sampling rate of 1⁄128 events on both systems.

During profiling, the SICM runtime maintains shadow records of
each allocation site. Each record includes a count of the number of
perf samples corresponding to the addresses allocated by the site.
In this way, the profiling tool constructs a heatmap of the relative
access rates of each site. It also estimates the relative capacity of
each site using a similar means as MemBrain; that is, it periodically
counts the number of virtual pages associated with each site that
are valid in physical memory using the Linux pagemap facility [2].

3.3 Arena Allocation
The low-level SICM runtime includes an arena allocator based on
the standard jemalloc allocator [13]. By allocating program ob-
jects to page-aligned regions of virtual memory, arena allocation
allows the runtime to manage and assign different groups of appli-
cation data to distinct memory tiers independently of one another.
We extended SICM’s default allocator with two arena allocation
schemes that enable the collection and use of application guidance.

Figure 4 illustrates the two arena allocation schemes. In these
examples, the threads are running annotated code, in which the
allocation instructions have been replaced with calls to the SICM
API with the allocation site ID passed as their final argument. The
first scheme, shown in Figure 4(a), creates a separate arena for each
allocation site and shares those arenas between application threads.
If two threads allocate data from the same site at the same time, one
thread will block to avoid allocating multiple objects to the same
address. While such (typically rare) contention can slow execution,
this scheme simplifies profiling because it facilitates the assignment
of sampled addresses to each allocation site.
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For guided execution, the runtime creates a set of private arenas
for each thread, where each set includes one arena for each memory
tier, as shown in Figure 4(b). This approach allows the application
to allocate data to different arenas corresponding to distinct tiers
without requiring any synchronization across threads. For each
allocation, the allocating thread first looks up the site ID in the
(static) guidance file to determine the proper arena for the new data.
To bind each arena to its corresponding device tier, SICM invokes
the appropriate system interface whenever an arena is created or
re-sized. On our Linux-based platforms, it uses the mbind system
call with MPOL_PREFERRED to enforce arena-tier assignments.

3.4 Translating Profiles Across Platforms
An important advantage of our approach is that the platform that
collects memory usage profiling does not necessarily need to match
the platform on which it is deployed. Since the compiler pass asso-
ciates each allocation site ID with file names and line numbers from
high-level source code, many profiles can be transferred across dif-
ferent platforms without additional effort. However, in some cases,
the context for an allocation site on the profiling platform might
include language libraries or other supporting software that are not
installed on the production platform. Configuration options and
architectural differences can also change the way an application’s
source code is pre-processed and compiled on different platforms.

To address these issues, we developed a custom tool that at-
tempts to match allocation contexts from executable files that were
compiled in different software environments. For each allocation
site in the executable file compiled on the source platform, the tool
compares the strings describing the site’s context with the alloca-
tion contexts on the destination platform. If no match is found, the
site’s profiling information is simply not mapped to the destination
platform. In some cases, multiple sites from the source platform
might match the same allocation context on the destination plat-
form. For example, the compiler might create multiple copies of
allocation sites within C++ template code. In these scenarios, the
tool chooses the site that was accessed most frequently during the
profiling run to ensure profiles of hot allocation sites are always
transferred to the destination platform.

4 EXPERIMENTAL SETUP
4.1 Platform Details
Our evaluation employs two heterogeneous memory platforms.
The first, which we refer to as the “Knights Landing” platform
and abbreviate as KNL in this work, includes an Intel® Xeon®
PhiTM 7250 processor with 68 quadruple hyper-threaded cores (272
hardware threads), clocked at 1.3GHz each, and a shared 34MB
cache. Its memory system contains 16GB (8x2GB) of MCDRAM and
96GB (6x16GB) of 2400 MT/s DDR4 SDRAM. The upper MCDRAM
tier sustains about 5x more bandwidth with similar access latencies
as the lower DDR4 tier [28].

The second platform, called “Cascade Lake” and abbreviated as
CLX, contains two Intel® Xeon® Gold 6262 processors, each with
24 compute cores (48 hardware threads) with a maximum clock
speed of 3.6GHz and a shared 33MB cache. Each socket includes
192GB (6x32GB) of 2666 MT/s DDR4 SDRAM and 512GB (4x128GB)
of non-volatile OptaneTM DC memory hardware. For data reads,
the OptaneTM tier requires 2x to 3x longer latencies and sustains
30% to 40% of the bandwidth as the DDR4 memory. While latency
for writes is similar on both tiers, the DDR4 tier supports 5x to 10x
more write bandwidth than the OptaneTM devices [16]. To avoid
issues related to NUMA placement, all of our experiments use the
processor and memory on only one socket of the CLX platform.
We also installed recent Linux distributions as the base operating
system for each platform: Debian 9.8 with kernel version 4.9.0-8 on
the KNL, Fedora 27 with kernel version 5.1.0-rc4 on the CLX.

4.2 Workloads
Our evaluation employs three proxy applications (LULESH, AMG,
and SNAP) as well as one full scale scientific computing applica-
tion (QMCPACK) from the CORAL high performance computing
benchmark suite [21]. The applications were selected based on their
potential to stress cache andmemory performance on our platforms.
To study the impact of tiering guidance under different constraints
and usage scenarios, we also constructed a set of inputs for each
application on each platform. Table 1 presents descriptions of each
selected application as well as usage statistics for each input on
each platform with the unguided first touch configuration. Thus,
the inputs we have selected generate a range of execution times
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Table 1: Workload descriptions and statistics. Alongside the application name and description, the columns on the right show
the arguments we used to construct each input as well as the execution time, figure of merit (throughput), peak resident set
size (in GB), and # of allocation sites reached during execution of each input with the unguided first touch configuration.

Application Description Platform Input Input Arguments Time FoM RSS (GB) Sites

LULESH

Performs a hydrodynamics stencil calcu-
lation with very little communication be-
tween computational units. Represents
the numerical algorithms, data motion,
and programming style typical in sci-
entific C/C++ applications. Version 2.0.
FoM metric: zones per second.

KNL
Small -s 220 -i 12 -r 11 -b 0 -c 64 -p 1.9m 1253.9 10.5 88

Medium -s 340 -i 12 -r 11 -b 0 -c 64 -p 7.2m 1,213.4 36.9 87
Large -s 420 -i 12 -r 11 -b 0 -c 64 -p 20.6m 769.8 69.7 87

CLX

Small -s 220 -i 12 -r 11 -b 0 -c 64 -p 1.8m 1,208.2 11.6 87
Medium -s 520 -i 6 -r 11 -b 0 -c 64 -p 14.5m 1,021.3 146.2 87
Large -s 690 -i 3 -r 11 -b 0 -c 64 -p 1.3h 220.2 339.7 87
Huge -s 780 -i 3 -r 11 -b 0 -c 64 -p 8.0h 50.0 492.9 87

AMG

Parallel algebraic multigrid solver for lin-
ear systems arising from problems on
unstructured grids. Highly synchronous
and generates a large amount of memory
bandwidth. Version 1.0, written in ISO-C.
FoM metric: nnz∗(iter s+steps )seconds

KNL
Small -problem 2 -n 120 120 120 0.6m 3.46E8 7.1 304

Medium -problem 2 -n 220 220 220 4.1m 3.13E8 43.9 478
Large -problem 2 -n 270 270 270 7.6m 3.11E8 80.0 397

CLX

Small -problem 2 -n 120 120 120 0.3m 5.37E8 3.9 215
Medium -problem 2 -n 400 400 400 13.4m 5.39E8 140.7 216
Large -problem 2 -n 520 520 520 1.1h 2.43E8 315.4 215
Huge -problem 2 -n 600 600 600 2.4h 1.67E8 477.2 218

SNAP

Mimics the computational requirements
of PARTISN, a Boltzmann transport equa-
tion solver developed at LANL. Exhibits
smooth scaling with a large number of
program threads. Version 1.07, written in
Fortran 90/95. FoM metric: inverse of
the grind time (ns).

KNL
Small nx=272, ny=32, nz=32 8.8m 1.28E−2 9.7 91

Medium nx=272, ny=136, nz=32 23.7m 2.03E−2 41.6 91
Large nx=272, ny=136, nz=68 34.9m 2.94E−2 88.4 91

CLX

Small nx=272, ny=32, nz=32 2.0m 5.81E−2 9.5 502
Medium nx=272, ny=136, nz=136 31.7m 6.39E−2 169.2 386
Large nx=272, ny=272, nz=120 4.1h 1.43E−2 301.7 276
Huge nx=272, ny=272, nz=192 10.5h 9.03E−3 485.2 91

QMCPACK

Quantum Monte Carlo simulations of
the electronic structure of atoms and
molecules. Exhibits near-perfect weak
scaling and extremely low communica-
tion. Version 3.4, mostly written in C++.
FoM metric: blocks∗steps∗Nwseconds

KNL

Small NiO S16 with VMC method, 272 walkers 3.1m 24.8 12.4 1750
Medium NiO S32 with VMC method, 272 walkers 16.6m 1.77 43.0 1809
Large NiO S32 with VMC method, 1088 walkers 54.4m 1.80 78.2 1852

CLX

Small NiO S32 with VMC method, 48 walkers 2.3m 2.27 10.6 1633
Medium NiO S128 with VMC method, 96 walkers 30.4m 5.69E−2 159.8 1425
Large NiO S128 with VMC method, 384 walkers 30.9h 3.45E−3 362.3 1609
Huge NiO S256 with VMC method, 48 walkers 45.6h 2.93E−4 475.4 1566

and capacity requirements. The smallest inputs complete in only
a few minutes and fit entirely within the upper memory tier on
each platform, while the largest inputs require multiple hours of
execution time and would use almost all of the capacity available
in the cache mode configuration.

4.3 Common Experimental Configuration
All applications were compiled using the LLVM compiler toolchain
(v. 6.0.1) with default optimization settings and -march=native.
C/C++ codes use the standard clang frontend, and Fortran codes are
converted to LLVM IR using Flang [1]. All guided and non-guided
configurations use SICMwith the unmodified jemalloc allocator (v.
5.2.0) with oversize_threshold set to 0, and all other parameters
set to default.6 To prepare executables for guided execution, we
configure the compilation pass to clone up to three layers of call
path context to each allocation site. Recent work has shown that
this amount of context is sufficient to obtain the benefits of this
approach for most applications [12].

All workloads use OpenMP with one software thread for each
hardware thread on each platform (i.e., 272 software threads on
KNL, 48 on CLX), and one MPI rank, if applicable. For each experi-
mental run, we execute the workload on an otherwise idle machine,
and report the figure of merit (FoM) as the performance of the
workload. Due to limited machine resources, and the large number
of experiments in this study, we were only able to conduct one
experimental run for most configurations of each workload.

6Setting oversize_threshold to 0 disables a feature of jemalloc that allocates ob-
jects larger than a specific size to a dedicated arena (to reduce fragmentation).

Table 2: Mean, minimum, and maximum FoM of first touch
and cache mode over five runs. The minimum and maxi-
mum FoMs are shown relative to the mean.

Application Input First touch Cache mode
Mean Min Max Mean Min Max

LULESH KNL: Small 1253.9 0.98 1.03 1305.9 0.97 1.02
CLX: Med. 1021.3 0.99 1.00 911.0 0.98 1.01

AMG KNL: Small 3.46e8 0.99 1.01 3.36e8 0.91 1.04
CLX: Med. 5.39e8 0.99 1.00 5.30e8 0.99 1.00

SNAP KNL: Small 0.0128 0.99 1.01 0.0125 0.99 1.01
CLX: Med. 0.0639 0.98 1.02 0.0368 0.97 1.02

QMCPACK KNL: Small 24.765 0.99 1.00 24.567 0.99 1.00
CLX: Med. 0.0568 0.99 1.00 0.0484 0.99 1.01

To estimate the degree of variability in our results, we conducted
five experimental runs for each of the small inputs on the KNL and
the medium inputs on CLX with the first touch and cache mode
configurations. Table 2 presents the mean FoM of these runs, as well
as the minimum and maximum FoM relative to the mean, for each
workload. Thus, variance for all of the workloads is relatively low
on both architectures. We also find that cache mode exhibits slightly
higher variability than first touch, perhaps due to timing and micro-
architectural effects in the memory cache. In the limited number
of cases we have evaluated, we have found that the variability of
guided execution is similar to that of the first touch configuration.

All program profiling was conducted with hardware-managed
caching enabled because we found this configuration runs signifi-
cantly faster than the flat addressing mode for larger input sizes.
Program data that originates from sites that are not reached during
profiling is always assumed to be cold and assigned to the lower
tier during guided execution. Non-heap (i.e., global and stack) data
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Figure 5: Performance (execution time) of each input on
each platform in cachemode with profiling enabled relative
to the default cache mode configuration (lower is better).

makes up a relatively small (< 2%) portion of the total memory foot-
print of all programs and inputs. All guided configurations assign
non-heap data to the upper tier, if space is available.

Additionally, we found that the hotset approach for converting
profiles to tier recommendations for guided execution performs as
well or better than knapsack and thermos for the vast majority of
our experiments. Thus, the results in the following section use the
hotset approach unless otherwise noted.

5 EVALUATION
5.1 Overhead of Program Profiling
We first evaluate the overhead of collecting memory usage profiles
in our framework. Figure 5 shows the execution time of each pro-
gram input while profiling memory usage in cache mode relative to
the default cache mode configuration. Thus, while some workloads
exhibit higher overheads, average slowdowns are only 53% on KNL
and 32% on CLX. We view these overheads as acceptable for the
intended usage as an offline profile collection tool within a super-
computer center. In such environments, domain scientists often
cycle between a development phase in which more life-like realism
is introduced into their simulation applications, and a deployment
phase in which results are collected from long-running jobs with
a “production” release of the application. Since the long-running
jobs may continue for many hours (in some cases, many days), the
benefits of our workflow far exceed the cost of the overhead.

In the worst cases (LULESH LG, AMG LG), much of the per-
formance loss is due to the use of the alternative arena allocation
strategy (shown in Figure 4a) – which we confirmed by disabling
profiling during a run with the alternative allocation strategy. We
found that this configuration is 80% slower with the large input of
AMG on KNL, and 8.2x slower for the large input of LULESH on
CLX. Later in this section (figures 6–10), we show that profiles of
smaller inputs are useful across different amounts of capacity in
the upper tier and are typically transferable to larger executions.
Therefore, despite the occasional higher overheads in Figure 5, we
expect that this profiling technique can be adapted to an online and
fully automatic guidance approach.

5.2 Robustness of Guidance with Different
Amounts of Capacity in the Upper Tier

Our next experiments investigate the robustness of application
guided data placement across different amounts of upper tier mem-
ory capacity. For this study, we employ a single input on each
platform: small on KNL and medium on CLX. These inputs are
small enough that the application’s data always fits entirely within
the upper tier. To generate and control contention for the high
performance memory, we use a separate (otherwise idle) process to
reserve some amount of upper tier capacity prior to launching the
application. For guided execution, we employ profiles generated
against the same program input for each configuration. Immediately
prior to each guided run, the runtime applies one of the approaches
described in Section 2.2.1 to compute site to tier recommendations
for each given capacity assumed for the upper tier.

The line graphs in Figure 6 display the performance (FoM) of
each application with both the guided and first touch approaches.7
This study also omits cache mode because we could not exert di-
rect control over the capacity of the in-memory caches. We plot
performance for a range of upper tier capacities, each of which is
presented as a percentage of the peak resident set size (RSS) of the
application.8 Each data point in Figure 6 and is relative to a baseline
that places all application data in the lower tier.

We find that both the guided and unguided approaches perform
better as upper tier capacity rises. At the same time, the guided
approach makes use of the limited upper tier capacity much more
efficiently than the unguided (first touch) allocation strategy. We
also find that allocation guidance is often much more effective on
the CLX platform than on the KNL platform. This result is due to
the wider performance asymmetry between DDR4 and OptaneTM
DCPMMs, underscoring the greater salience of intelligent data
tiering on the CLX platform.

Another interesting finding is that the guided approach typically
achieves sharper and more pronounced performance gains at spe-
cific thresholds, while the unguided approach exhibits more gradual
improvements as capacity increases. This effect arises because per-
formance critical data typically originates from a single or small set
of allocation sites. When there is enough capacity for the guided
approach to assign these hot sites to the upper tier, performance
improves markedly.

5.3 Effectiveness of Different Profile Inputs
Our next study evaluates the impact of different profile inputs on the
effectiveness of guided data placement. For this study, we execute
guided configurations of each workload with profiling collected
from a run of the same program input as well as from runs of
smaller inputs for the same application, without changing the size
of the upper tier. We compare each guided configuration to both
the unguided first touch and cache mode approaches.

KNL Platform: Figure 7 shows the performance of the cache
mode and guided approaches for each program input relative to

7The hotset heuristic for dividing allocation sites into hot and cold sets exhibits sub-
optimal performance with AMG at 10% on CLX and with QMCPACK at 45% on KNL.
These figures use the thermos approach for these cases, and use hotset for all others.
8We collected and show results for the CLX platform with larger capacity increments
than the KNL due to time constraints on the CLX machine.
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Figure 6: First touch and guided performance with different amounts of capacity in the upper tier on KNL and CLX. Each
marker shows application performance with some amount of capacity available in the upper tier (expressed as a portion of
the total capacity requirements) relative to a configuration that places all application data on the lower tier (higher is better).
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Figure 7: Performance (throughput) of each input with
cache mode and guided approaches relative to first touch on
KNL. The solid bars show results for guided execution with
profiles of smaller and similar size inputs (higher is better).

first touch on the KNL platform.9 The guided approach typically
performs as well or better than first touch, but is exceeded in some
cases by cache mode. The guidance-based approach computes tier
recommendations offline, and does not attempt to migrate program
data after its initial allocation. For applications that generate high
bandwidth from different sets of program data during different
execution periods, such static placement might be slower than an
adaptive approach like cache mode. However, as shown in Figure 8,
static placement typically generates less total bandwidth than cache
mode and, as a result, is often more energy efficient.

We also find that profiles of smaller inputs are often just as
effective as profiles of the same input for these applications. One
notable exception is LULESH with the large program input, which
runs about 17% faster with guidance from the large input profile
compared to guidance from themedium input. In this case, we found

9All of the guided runs use the hotset approach except for the medium input of
QMCPACK with medium profiling, which uses thermos.
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Figure 8: Total memory bandwidth of each program with
each input with cache mode and guided approaches relative
to first touch on the KNL platform.

that the medium profile accurately characterizes the relative access
rates of each site, but but does not estimate the relative capacity
requirements of each site accurately, resulting in less effective tier
recommendations for the large input. Thus, one potential solution
for generating better guidance for unseen program inputs is to
combine offline profiles of access rates from known inputs with
more accurate capacity estimates collected during guided execution.

CLX Platform: Figure 9 displays the performance of the cache
mode and guided approaches with each input on the CLX plat-
form.10 Additionally, Figure 10 presents the average bandwidths of
the first touch, cache mode, and guided approaches. On the CLX
platform, the small inputs of each application exhibit similar per-
formance for all guided and unguided configurations. To reduce
clutter, we omit results in both figures for the small input size, and
show only the guided approach with the medium input in Figure 10.

10All guided runs use hotset except for the huge input of LULESH with large profiling
and the huge input of QMCPACK with huge profiling, which both use thermos.
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CLX. The solid bars show results for guided execution with
profiles of smaller and similar size inputs (higher is better).

As with our findings in Section 5.2, application guidance delivers
a more significant impact on CLX (compared to KNL) due to the
greater performance asymmetry between its memory tiers. For
the unguided approaches, the medium inputs in Figure 9 generate
relatively high average bandwidths because all of their data fits
within the upper tier. Average bandwidth for the larger inputs is
typically lower because more data is allocated to the OptaneTM
DC tier. The guided approaches are comparatively more resilient
because they push a larger portion of the performance critical data
into the DDR tier.

At the same time, profiles based on the small program inputs
enable most, or all, of the benefits of guided data placement for
larger input sizes. In the best case, we found that profile of the
small input of QMCPACK, which executes for less than three min-
utes, speeds up the huge input by more than 21.5x compared to
unguided first touch. Additionally, static guidance frequently out-
performs the hardware-based cache mode, achieving, for example,
a peak speedup of over 7.8x with the huge input of SNAP. Only
one instance, QMCPACK with the large input size, exhibits worse
performance with the guidance approaches than with cache mode.
On further analysis, we found this result is related to the method
by which we constructed this input, as described next.

QMCPACK includes several test input files that generate a range
of processing and capacity requirements. For instance, the medium
input employs the NiO S128 test file, which simulates the electronic
structure of 128 atoms with 1,536 electrons. Since QMCPACK did
not include a test input file with computational requirements similar
to those of the other large inputs, we constructed the large input by
increasing the number of processing units (known as walkers) for
the NiO S128 test case. While this approach does increase the time
and space demands of the application, it also changes the proportion
of data created at each allocation site. For example, we found that
one of the workload’s relatively “hot” allocation sites corresponds
to only 12% of the total capacity when we use a smaller number of
walkers for the medium input, but the same site generates over 70%
of the capacity when we increase the number of walkers for the
large input. In this case, the guided approach is not able to assign
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Figure 10: Average memory bandwidth of each program in-
put with first touch, cache mode, and guided approach with
medium input profile on the CLX platform.

such a large proportion of hot data from this site to the upper tier,
and therefore lags behind the performance of cache mode.

5.4 Performance of Using Different Platforms
for Profiling and Guided Execution

Lastly, we examine the potential of using profiles collected on one
platform to generate guidance for systems with different memory
architectures. Such a capability would allow users to profile appli-
cation behavior on earlier or less resource-rich platforms, and use
it to guide data placement on systems with memory that is more
expensive, in higher demand, or earmarked for production soft-
ware. For these experiments, we employ the profile conversion tool
described in Section 3.4 to translate profiles of the small program
input from the KNL to the CLX platform, and vice versa.

Figures 11 and 12 present the performance of the guided ap-
proach with each input on each platform between guidance ob-
tained by two types of profiling: 1) native profiling from the same
platform, and 2) cross-platform profiling obtained by conversion
from the other platform. In many cases, the cross-platform profil-
ing obtains all, or a significant portion, of the benefits of native
profiling. For the others, profiles from a different architecture fall
short of delivering the impact of profiling on the same platform. For
instance, the huge inputs of LULESH and QMCPACK on CLX (Fig-
ure 12) exhibit some benefits with the cross-profiling drawn from
the KNL, but are still about 2x to 5x slower than guided execution
with profiling from the same system.

There are multiple factors that could limit the effectiveness of
the guided approach with cross-platform profiling. Specifically, 1)
The program input or number of threads that are used during pro-
filing on the source platform deviate significantly from those used
during execution on the target platform, 2) Hardware-based profil-
ing on older architectures, such as KNL, can be less accurate than
architectural profiling on the target platform, and 3) Cross-platform
profile conversion is lossy; it is not always possible to find exact
correspondence between the allocation contexts due to differences
between system libraries and supporting software. This last factor
is particularly important on the platforms we used for this study,
which require different Linux distributions and include different
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Figure 11: Performance comparison of guided execution on
the KNL platform with profiling collected on the same KNL
platform and on CLX (higher is better).

versions of the standard libraries for C, C++, and Fortran. Such
unmatched contexts are conservatively assigned to the lower tier
in our conversion process. In the future, we plan to setup identical
software environments across platforms and conduct additional
experiments to isolate, evaluate, and address the impact each of
these factors individually.

6 FUTURE WORK
There are several paths for future work. Our studies show that appli-
cation guidance from a separate profile run is often effective across a
wide range of upper tier capacities and even with usage profiles col-
lected during execution with different, and much smaller, program
inputs. In the future, we will develop and integrate into SICM static
program analyses and lightweight online profiling to generate and
apply memory usage guidance without prior offline profiling. At the
same time, we will study the performance of application guidance
with a wider range of applications and program inputs to better
understand the limitations of our approach.We have also found that
some applications perform better with hardware-managed caching
than with software-directed data placement, especially on systems
with a limited amount of high bandwidth memory in the upper tier.
To facilitate the use of software guidance with existing hardware
features, we plan to design and implement new data characteriza-
tion tools that automatically identify objects and usage patterns
that work well with hardware caching. Finally, this study targets
two Intel®-based platforms, one with high bandwidth on-package
DRAM, and another with large capacity, non-volatile memory. As
we take this work forward, we will modify our framework for use
with other architectures and emerging technologies, including sys-
tems with three or more tiers of distinct memory hardware, and
explore the potential challenges and opportunities that arise from
guiding data management on more complex memory platforms.

7 CONCLUSIONS
This paper presents a unified software framework that combines
a generic runtime API for emerging memory technologies with
automated program profiling and analysis to enable efficient and
portable application guided data management for complex memory
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Figure 12: Performance comparison of guided execution on
the CLX platform with profiling collected on the same CLX
platform and on KNL (higher is better).

hardware. It deploys and validates this approach on two Intel®-
based server machines with real heterogeneous memory technol-
ogy: one with conventional DDR4 alongside non-volatile memory
with large capactiy, and another with limited capacity, high band-
width DRAM backed by DDR4 SDRAM. The evaluation shows that
application guidance can enable substantial performance and effi-
ciency gains over default unguided software- and hardware-based
schemes, especially on systems with state-of-the-art non-volatile
memory hardware. Additional experiments reveal that a single pro-
file of a smaller program input is often sufficient to achieve these
gains across different amounts of capacity in the upper tier and
with larger program inputs, in most cases. Furthermore, this work
demonstrates that memory usage profiles collected on a machine
with one type of memory hardware can be automatically and fa-
vorably adapted to platforms with a different architecture. Overall,
the results show that there is great potential for this portable ap-
plication guidance approach to address the challenges posed by
emerging complex memory technologies and deliver their benefits
to a wide range of systems and applications.
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