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1. Introduction

For all practical purposes, the world around us is not a deterministic one. Even
if a simple physical system can be described deterministically, say by the laws
of Newtonian mechanics, the differential equations expressing these laws typically
cannot be solved explicitly. This means that predicting the exact evolution of the
system is impossible. A classical example is the famous 3-body Problem, which asks
to describe the evolution of a system in which three celestial bodies (the “Earth”,
the “Sun”, and the “Moon”) interact with each other via the Newton’s force of
gravity. Computers are generally not of much help either: of course, a system of
ODEs can be solved numerically, but the solution will inevitably come with an error
due to round-offs. Commonly, solutions of dynamical systems are very sensitive to
such small errors (the phenomenon known as “Chaos”), so the same computation
can give wildly different numerical results.

An extreme example of the above difficulties is the art of weather prediction.
A realistic weather model will have such a large number of inputs and parameters
that simply running a numerical computation will require a massive amount of
computing resources; it is, of course, extremely sensitive to errors of computation.
A classical case in point is the Lorenz system suggested by meteorologist Edward
Lorenz in 1963 [Lor63]. It has only three variables and is barely non-linear (just
enough not to have an explicit solution), and nevertheless it possesses a chaotic
attractor [Tuc02] – one of the first such examples in history of mathematics– so
deterministic weather predictions even in such a simplistic model are practically
impossible.

Of course, this difficulty is well known to practitioners, and yet weather predic-
tions are somehow made, and sometimes are even accurate. They are made in the
language of statistics (e.g. there is a 40% chance of rain tomorrow), and are based
on what is broadly known as Monte Carlo technique, pioneered by Ulam and von
Neumann in 1946 [URvN47, MS49, Met87]. Informally speaking, we can throw
random darts to select a large number of initial values; run our simulation for the
desired duration for each of them; then statistically average the outcomes. We then
expect these averages to reflect the true statistics of our system. To set the stage
more formally, let us assume that we have a discrete-time dynamical system

f : D → D, where D is a finite domain in Rn

that we would like to study. Let x̄1, . . . , x̄k be k points in D randomly chosen, for
some k >> 1 and consider the probability measure

(1.1) µk,n =
1

kn

k∑
l=1

n∑
m=1

δf◦m(x̄l),

where δx̄ is the delta-mass at the point x̄ ∈ Rn. The mapping f can either be
given by mathematical formulas, or stand for a computer program we wrote to
simulate our dynamical system. The standard postulate is then that for k, n→∞
the probabilities µk,n converge to a limiting statistical distribution that we can use
to make meaningful long-term statistical predictions of our system.

Let us say that a measure µ on D is a physical measure of f if its basin B(µ) ⊂ D
–that is, the set of initial values x̄ for which the weak limit of 1

n

∑n
m=1 δf◦m(x̄)

equals µ– has positive Lebesgue measure. This means that the limiting statistics of
such points will appear in the averages (1.1) with a non-zero probability. If there
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is a unique physical measure in our dynamical system, then one random dart in
(1.1) will suffice. Of course, there are systems with many physical measures. For
instance, Newhouse [New74] showed that a polynomial map f in dimension 2 can
have infinitely many attracting basins, on each of which the dynamics will converge
to a different stable periodic regime. This in itself, however, is not necessarily an
obstacle to the Monte-Carlo method, and indeed, the empirical belief is that it still
succeeds in these cases.

Our results are most surprising in view of the above computational statistical
paradigm. Namely we consider the simplest examples of non-linear dynamical sys-
tems: quadratic maps of the interval [−1, 1] of the form

fa(x) = ax(1− x), a ∈ (0, 4]

and find an uncountable set of values of a for which:

(1) there exists a unique physical measure µ and its basin B(µ) ⊂ [0, 1] has full
Lebesgue measure.

(2) the measure µ is not computable relative to a.

This means that there is no algorithm that correctly computes µ, even if the param-
eter a is assumed to be provided to the algorithm at no computational cost. Thus,
the Monte-Carlo computational approach fails spectacularly for truly simple maps
– not because there are no physical measures, or too many of them, but because
the “nice” unique limiting statistics cannot be computed, and thus the averages
(1.1) will not converge to anything meaningful in practice.

It is worth drawing a parallel with our recent paper [RY19], in which we studied
the computational complexity of topological attractors of maps fa. Such attractors
capture the limiting deterministic behavior of the orbits. They are always com-
putable, and we found that for almost every parameter a, the time complexity of
computing its attractor is polynomial, although there exist attractors with an arbi-
trarily high computational complexity. In dynamics, both in theory and in practice,
it is generally assumed that long-term statistical properties are simpler to analyze
than their deterministic counterparts. From the point of view of computational
complexity, this appears to be false.

We note that computability of invariant measures has been studied before [Roj08,
GHR10, GR11, BBRY11]. In [GHR10] for instance the authors construct contin-
uous maps of the circle for which computable invariant measures do not exists.
In the context of symbolic systems, there have been some recent works studying
the computational properties of the limiting statistics, see e.g. [HdMS16], and of
thermodynamic invariants (see e.g. in [HM10, BW18]). The computational com-
plexity of individual trajectories in Hamiltonian dynamics has been addressed in
e.g. [KTZ18]. Long-term unpredictability is generally associated with dynamical
systems containing embedded Turing machines (see e.g. the works [Moo91, MK99,
KCG94, BGR12, BRS15]). Dynamical properties of Turing machines viewed as
dynamical systems have similarly been considered (cf. [Kur97, Jea14]). Yet we are
not aware of any studies of the limiting statistics in this latter context. We also
point out that a different notion of statistical intractability in dynamics, based on
the complexity of a mathematical description of the set of limiting measures, has
been introduced and studied in [Ber17, BB19].

From a practical point of view, some immediate questions arise. Our examples
are rare in the one-parameter quadratic family fa(x) = ax(1− x). However, there
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are reasons to expect that in more complex multi-parametric, multi-dimensional
families they can become common. Can they be generic in a natural setting? As the
results of [BB19] suggest, the answer may already be ”yes” for quadratic polynomial
maps in dimension two. Furthermore, even in the one-dimensional quadratic family
fa it is natural to ask what the typical computational complexity of the limiting
statistics is – even if it is computable in theory, it may not be in practice.

2. Preliminaries

Statistical simulations and computability of probability measures. We
give a very brief summary of relevant notions of Computability Theory and Com-
putable Analysis. For a more in-depth introduction, the reader is referred to e.g.
[BY08]. As is standard in Computer Science, we formalize the notion of an algo-
rithm as a Turing Machine [Tur36]. We will call a function f : N→ N computable
(or recursive), if there exists a Turing Machine M which, upon input n, outputs
f(n). Extending algorithmic notions to functions of real numbers was pioneered
by Banach and Mazur [BM37, Maz63], and is now known under the name of Com-
putable Analysis. Let us begin by giving the modern definition of the notion of
computable real number, which goes back to the seminal paper of Turing [Tur36].
By identifying Q with N through some effective enumeration, we can assume algo-
rithms can operate on Q. Then a real number x ∈ R is called computable if there
is an algorithm M which, upon input n, halts and outputs a rational number qn
such that |qn−x| < 2−n. Algebraic numbers or the familiar constants such as π, e,
or the Feigenbaum constant are computable real numbers. However, the set of all
computable real numbers RC is necessarily countable, as there are only countably
many Turing Machines.

We now define computability of functions over [0, 1]. Recall that for a continuous
function f ∈ C0([0, 1]), a modulus of continuity consists of a function δ : Q ∩
(0, a)→ Q ∩ (0, a) such that |f(x)− f(y)| ≤ ε whenever |x− y| ≤ δ(ε). A function
f : [0, 1] → [0, 1] is computable if it has a computable modulus of continuity and
there is an algorithm which, provided with a rational number which is δ(ε)-close to
x, outputs a rational number which is ε-close to f(x).

Computability of probability measures, say over [0, 1] for instance, is defined by
requiring the ability to compute the expected value of computable functions.

Definition 2.1. Let (fi) be any sequence of uniformly computable functions over
[0, 1]. A probability measure µ over [0, 1] is computable if there exist a Turing
Machine M which on input (i, ε) (with ε ∈ Q) outputs a rational M(i, ε) satisfying

|M(i, ε)−
∫
fi dµ| < ε.

We note that this definition it compatible with the notion of weak convergence
(see Section 3.1) of measures in the sense that a measure is computable if and only
if it can be algorithmically approximated (in the weak topology) to an arbitrary
degree of accuracy by measures supported on finitely many rational points and with
rational weights. Moreover, this definition also models well the intuitive notion of
statistical sampling in the sense that a measure µ is computable if and only if there
is an algorithm to convert sequences sampled from the uniform distribution into
sequences sampled with respect to µ.
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In this paper, we will be interested in the computability properties of invariant
measures of quadratic maps of the form ax(1 − x), with a ∈ R. As is standard
in computing practice, we will assume that the algorithm can read the value of a
externally in order to compute µ. More formally, let us denote Dn ⊂ R the set of
dyadic rational numbers with denominator 2−n. We say that a function φ : N→ Q
is an oracle for a ∈ R if for every m ∈ N

φ(m) ∈ Dm and d(φ(m), a) < 2−(m−1).

We amend our definitions of computability of a probability measure µ by allowing
oracle Turing Machines Mφ where φ is any function as above. On each step of the
algorithm, Mφ may read the value of φ(m) for an arbitrary m ∈ N. This approach,
usually referred to as computability relative to a, allows us to separate the questions
of computability of a parameter a from that of the measure.

Invariant measures of quadratic polynomials and the statement of the
main result. As before, we denote

fa(x) = ax(1− x).

For a ∈ [0, 4], this quadratic polynomial maps the interval [0, 1] to itself. We will
view fa : [0, 1]→ [0, 1] as a discrete dynamical system, and will denote fna the n-th
iterate of fa.

A measure µ is called physical or Sinai-Ruelle-Bowen (SRB) if

(2.1)
1

n

n−1∑
k=0

δfkx → µ

for a set of positive Lebesgue measure. It is known that if a physical measure
exists for a quadratic map fa, a ∈ [0, 4], then it is unique and (2.1) is satisfied for
Lebesgue almost all x ∈ [0, 1].

Main Theorem. There exists parameters a ∈ (0, 4) for which the quadratic map
fa(x) = ax(1− x) has a physical measure µ which is not computable relative to a.

3. Proof of the Main Theorem

The proof is based on a delicate construction in one-dimensional dynamics de-
scribed in [HK90], which will allow us to construct maps fa with physical measures
which selectively charge points in a countable set of periodic orbits. To give precise
formulations, we will need to introduce some further concepts.

3.1. Setting the stage. It will be convenient to recall that weak convergence
of measures on [0, 1] is compatible with the notion of Wasserstein-Kantorovich
distance, defined by:

W1(µ, ν) = sup
f∈1-Lip([0,1])

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣
where 1-Lip([0, 1]) is the space of Lipschitz functions on [0, 1], having Lipschitz
constant less than one.
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For a ∈ [0, 4] and x ∈ [0, 1], we set

νna (x) =
1

n

n−1∑
k=0

δfk
ax
.

We will make use of the following folklor fact (see e.g. [dMvS93]):

Proposition 3.1. Suppose, for a ∈ [0, 4] the map fa has an attracting periodic
orbit of period p:

x0
fa7→ x1

fa7→ · · · fa7→ xp−1
fa7→ x0,

∣∣∣∣ ddxfpa (x0)

∣∣∣∣ < 1.

Let

µ ≡ 1

p

p−1∑
k=0

δxk
.

Then µ is the unique physical measure of fa (so, in particular, the attracting orbit
is unique); and

W1(νna (x), µ)→ 0

uniformly on a set of full Lebesgue measure in [0, 1].

For a ∈ (0, 4] consider the third iterate ga ≡ f3
a . We start by noting that there

exists a parameter value c ∈ (3.85, 4) such that the following holds:

gc(0.5) 6= g2
c (0.5) = g3

c (0.5).

If we denote βc = g2
c (0.5), then β′c ≡ gc(0.5) = 1− βc, and denoting Ic ≡ [β′c, βc] 3

0.5, we have

gc(Ic) = Ic;

both endpoints of Ic map to βc. The restriction gc|Ic maps both halfs (Lc = [β′, 0.5]
and Rc = [0.5, β]) of the interval Ic onto the whole Ic in a monotone fashion (that
is, it folds Ic over itself).

For a ∈ [c, 4], there exists a continuous branch βa of the fixed point

ga(βa) = βa,

and we again set β′a = 1−βa (so ga(β′a) = βa), and Ia ≡ [β′a, βa]. Now, if a ∈ (c, 4],
the image

ga(Ia) ) Ic, with ga(0, 5) < β′a.

Thus, there is a pair of sub-intervals La = [β′a, la], Ra = [ra, βa] inside Ia which are
mapped monotonely over Ia by ga (the endpoints la, ra are both mapped to β′a.
See Figure 1 for an illustration.

Assigning values 0 to La, and 1 to Ra we obtain symbolic dynamics on the set
of points

Ca ≡ {x ∈ Ia such that gna (x) ∈ Ia for all n ∈ N}.
If a = c, then, of course, Ca = Ia. Otherwise, the following is well-known:

Proposition 3.2. If a ∈ (c, 4) then Ca is a Cantor set, and the symbolic dynamics
conjugates ga|Ca

to the full shift on {0, 1}.
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f 3

β

β

0.5β'

β'

J0

2f

g=

L R

Figure 1. Some iterates of f ≡ fa for a ∈ (c, 4] (we drop the
subscript a for simplicity in all notations in the figure).

In particular, every periodic sequence of 0’s and 1’s corresponds to a unique
periodic orbit in Ca with this symbolic dynamics. These orbits clearly move con-
tinuously with a, and can be easily computed given a and the symbolic sequence as
the unique fixed points of the corresponding monotone branches of iterates of ga.

We enumerate all periodic sequences of 0′s and 1’s as follows. A sequence with a
smaller period will precede a sequence with a larger period. Within the sequences
of the same period, the ordering will be lexicographic, based on the convention
1 ≺ 0. We let

{p1
a,n, . . . , p

kn
a,n}

be the periodic orbit of ga in Ca which corresponds to the n-th symbolic sequence
in this ordering (note that the first one is βa). We denote

Pera(n) = ∪2
j=0f

j
a({p1

a,n, . . . , p
kn
a,n}),

which is, clearly, a periodic orbit of fa. Let us denote

λa(n) =
1

|Pera(n)|
∑

x∈Pera(n)

δx.

3.2. Main construction. Our arguments will be based on the results of F. Hof-
bauer and G. Keller in [HK90]; see also the earlier paper of S. Johnson [Joh87],
which uses similar language to ours.

Let us develop some further notation. For x ∈ [0, 1] and a ∈ [0, 4] we let Ωa(x)

denote the set of weak limits of the sequence νna (x) = 1
n

∑n−1
k=0 δfk

ax
. Let us denote

P ⊂ (c, 4] the collection of parameters a such that the following holds:

• fa has a unique physical probability measure µa;
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• denoting ma(n) ≡ µa(Pera(n)), we have

(3.1)

∞∑
n=1

ma(n) = 1.

Thus, the charge of the physical measure µa resides in the periodic orbits in the
Cantor set Ca.

We will formulate the following direct consequence of the main result (Theo-
rem 5) of [HK90]1:

Theorem 3.3. There exists an infinite set P̂ ⊂ P such that the following holds:

(1) Ωa(x) = Ωa(0.5) = {µa} for Lebesgue almost every x;
(2) for any sequence of non-negative reals {ln}n∈N with

∑
ln = 1, the subset of

a ∈ P̂ for which ma(n) = ln is dense in P̂.

We will outline the idea of the construction of such maps below, but the complete
proof of Theorem 3.3 is quite technical and goes beyond the scope of this paper.

We start with the following “simple” example:

Example 1: The set

Ωa(0.5) = λa(1) =
1

3
(δβa + δfa(βa) + δf2

a(βa))

and Ω(x) = Ω(0.5) for almost every x (compare with Theorem 1 of [HK90]).

Consider again Figure 1 as an illustration. We note that there exists an interval J0

to the right of the fixed point βa such that the following holds:

• f2
a (J0) c [β′a, βa];

• Denote by ψa the branch of g−1
a which fixes βa. Then the interval J0 is

contained in the domain of definition of ψa. Thus, there is an orbit

J−n ≡ ψna (J0)→ βa (here f3n
a (J−n) = J0).

Moving the parameter a ∈ (c, 4], we can place the image g2
a(0.5) at any point of

J−n1
, for an arbitrary n1. If the value of n1 is large, then the ga-orbit of 0.5 will

spend a long time in a small neighborhood of βa, before hitting some x1 ∈ J0.
Adjusting the position of a ∈ (c, 4], we can ensure that f2

a (x1) is inside J−n2 for an
even larger n2, so the orbit returns to an even smaller neighborhood of βa where it
will spend an even longer time. Continuing increasing nk’s as needed so the orbit of
0.5 spends most of its time in ever smaller neighborhoods of βa, we can ensure that
the averages νna (0.5) = 1

n

∑n−1
k=0 δfk

a (0.5) converge to the delta masses supported on
the orbit of βa.

Proceeding in this way, for an arbitrarily large l ∈ N and x ∈ [β′a, βa] we can find
a ∈ (c, 4] and m > 2−l such that:

(1) the distance

W1(νma (0.5)− λa(1)) < 2−l;

(2) the iterate fma (0.5) lies in J0;
(3) the next iterate fm+1

a (0.5) = 0.5.

1Note that the set of physical measures constructed in Theorem 5 of [HK90] includes convex
combinations of λa(n). Compare also with Theorem 1 of [HK90]
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Property (3) ensures that the critical point 0.5 is periodic with period m + 1.
Since f ′a(0.5) = 0, we have (fm+1

a )′(0.5) = 0, so this is a (super)attracting periodic
point. Proposition 3.1 implies that the physical measure µa for fa is supported on
the orbit of 0.5, and thus

W1(µa − λa(1)) < 2 · 2−l.
Again, by Proposition 3.1 and considerations of continuity, there exist n > m and
ε > 0 such that for any a′ with |a′ − a| < ε, we have

W1(νna′(x)− λa(1)) < 4 · 2−l

for any x in a set of length 1− 2−l.
Assuming ε is small enough, we again have ga′(0.5) slightly to the right of βa′

and we can repeat the above steps inductively to complete the construction.
As a next step, we construct an asymptotic measure supported on two periodic

orbits:

Example 2: the set Ω(0.5) = a1λ1(1) + a2λa(n) for n > 1 and a1 + a2 = 1.

Let p ∈ Pera(n) and, as before, denote by 3kn its period. Letting φ denote the
branch of f−3kn

a fixing p, we again find a φ-orbit

J ′0 7→ J ′−1 7→ J ′−2 7→ · · · , with J ′−k → p,

where

fsa(J0) c [β′a, βa]

for a univalent branch of the iterate fsa .
Now we can play the same game as in Example 1, alternating between entering

the orbit J−k close to the point βa, and the orbit J ′−k close to p. In this way, we
can achieve the desired limiting asymptotics with any values a1, a2.

The above construction can be clearly modified for any countable collection of
periodic orbits in Ca, as required for the proof of Theorem 3.3.

3.3. Constructing non computable physical measures.

Definition 3.1. Let us define a very particular subset P̃ ⊂ P̂ as follows: a ∈ P̃ if

(3.2) ma(2n− 1) +ma(2n) = 2−n for all n ∈ N.

For convenience of reference, let us formulate a corollary of Theorem 3.3:

Proposition 3.4. Suppose, a ∈ P̃. Then, for every ε > 0, l ∈ N and s ∈ {0, 1},
there exists a′ > a such that

• a′ ∈ P̃;
• |a− a′| < ε;
• ma(n) = ma′(n) for all n /∈ {2l, 2l − 1} and
• ma′(2l − s) = 2−l.

Let (τi)i∈N be the smallest collection of functions containing the step continuous
functions of rational intervals, and which is closed by rational linear combinations
and scalar multiplication. Note that this is a countable collection of functions that
can be enumerated in an effective way.

We construct a parameter a for which the map fa = ax(1 − x) has a unique
physical measure µa such that for any Turing Machine Mφ with an oracle φ for a,
that computes a probability measure, there exists i and ε > 0 such that
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|Mφ(i, ε)−
∫
τi dµ| > ε.

Our construction can be thought of as a game between a Player and infinitely
many opponents, which will correspond to the sequence consisting of machines Mφ

n

that compute some probability measure. The opponents try to compute µa by
asking the Player to provide an oracle φ for a, while the Player tries to chose the
bits of a in such a way that none of the opponents correctly computes µa.

We show that the Player always has a winning strategy: it plays against each
machine, one by one, asking the machine to compute the expected value of a partic-
ular function τi to a certain degree of accuracy. The machine then runs for a while,
asking the Player to provide more and more bits of a, until it eventually halts and
outputs a rational number. Then the Player reveals the next bit of a and shows
that the machine’s answer is incompatible with µa. The details are as follows.

We will proceed inductively. Let Mφ
1 ,M

φ
2 , . . . be some enumeration of all the

machines with an oracle for a that compute some probability measure. At step n
of the induction, we will have a parameter an ∈ (c, 4) and a natural number ln such
that:

(1) an ∈ P̃;
(2) there exists i = i(n) ∈ N such that either

• Mφ
n (τi, 2

−n/100) ≤ 2−n/2 whereas µan(τi) ∼ 2−n; or
• Mφ

n (τi, 2
−n/100) > 2−n/2 whereas µan(τi) ∼ 0

In other words, given an oracle for an, the machine Mφ
n cannot correctly

approximate the value of µan at τi;
(3) |µan−1

(τi(k))− µan(τi(k))| < 2−3n for all k < n;

(4) |an − an−1| < 2−3ln .

Base of the induction. We start by letting a be any of the parameters in P̃.
We note that ma(1) +ma(2) = 2−1. It follows that there exists τ = τi(1) such that

|µa(τ)−ma(1)| < 2−1/2002, and

(3.3) Supp τ ∩ Per(j) = ∅ for all 1 < j < 10.

We now let the machine Mφ
1 compute the expected value of τ with precision

2−1/100, giving it a as the parameter. Let l1 be the last time a bit of a is queried

by Mφ
1 during the computation. By Proposition 3.4, for any s ∈ {0, 1} there exists

a′ such that

• |a− a′| < 2−3l1 ;

• a′ ∈ P̃;
• ma′(2− s) = 2−1.

Let q = Mφ
1 (τ, 2−1/100). There are two possibilities:

Case 1. If q ≤ 2−1/2, we chose a′ above so as to have ma′(1) = 2−1;
Case 2. If q > 2−1/2, we chose a′ above so as to have ma′(2) = 2−1 (and therefore

ma′(1) = 0);

2Note that the mass of the higher periodic points that may fall in an open set containing
Pera(1) goes to zero as the diameter of the open set goes to zero.
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We then let a1 ≡ a′. By 3.3, |µa1(τ)−ma1(1)| < 2−10. Note that up to the first l

bits, a0 and a1 are indistinguishable and therefore the machine Mφ
1 will return the

same answer for both parameters. It follows that the machine Mφ
1 cannot correctly

approximate µa1 at τ .

Step of the induction. Assume an−1 ∈ P̃ has been defined. Then it holds

man−1
(2n− 1) +man−1

(2n) = 2−n,

and there exists τ = τi(n) such that |µan−1(τ)−man−1(2n− 1)| < 2−n/200 and

(3.4) Supp τ ∩ Per(j) = ∅ for all 2n− 1 < j < 10n.

Once again, we let the machine Mφ
n compute the expected value of τ with pre-

cision 2−n/100, giving it an−1 as the parameter. Let ln be the last time a bit of

an−1 is queried by Mφ
1 during the computation. By Proposition 3.4 again, for any

s ∈ {0, 1} there exists a′ such that

• |an−1 − a′| < 2−3ln ;

• a′ ∈ P̃;
• man−1

(t) = ma′(t) for all t /∈ {2n− 1, 2n} and
• ma′(2n− s) = 2−n.

Let q = Mφ
n (τ, 2−n/100). There are two possibilities:

Case 1. If q ≤ 2−n/2, we chose a′ above so as to have ma′(2n− 1) = 2−n;
Case 2. If q > 2−n/2, we chose a′ above so as to have ma′(2n) = 2−n (and therefore

ma′(2n− 1) = 0);

We then let an ≡ a′. Since τ satisfies property 3.4, we have that |µan(τ)−man(2n−
1)| < 2−10n. Note that up to the first ln bits, an−1 and an are indistinguishable,
and thus the machine Mφ

n will return the same answer for both parameters. It
follows that the machine Mφ

n cannot correctly approximate µan at τ . Moreover,
property 3.4 again and the fact that (by construction) an satisfies

man−1(t) = man(t) for all t /∈ {2n− 1, 2n},
guarantee that Condition (3) is satisfied as well. We now let a∞ = limn an and
claim that µa∞ has the required properties. Indeed, Condition (2) ensures that
for every n there is a step function τi(n) at which machine Mφ

n fails to compute
correctly the expected value for µan , and Condition (3) guarantees that the same
holds for µa∞ .

4. Conclusion

Ever since the first numerical studies of chaotic dynamics appeared in the early
1960’s (such as the work of Lorenz [Lor63]), it has become commonly accepted
among practitioners that computers cannot, in general, be used to make determin-
istic predictions about future behavior of nonlinear dynamical systems. Instead, the
standard practice now is to make statistical predictions. This approach is based
on the Monte Carlo method, pioneered by Ulam and von Neumann at the dawn of
the computing age. It is universal and powerful – and only requires access to the
dynamical system as a black box, which is then subjected to a number of statisti-
cal trials. Applications of the Monte Carlo technique are ubiquitous, ranging from
weather forecasts to simulating nuclear weapons tests (nuclear weapons design was,
of course, the original motivation of its inventors).
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Our result raises a disturbing possibility that even for the most simple family of
examples of non-linear dynamical systems the Monte Carlo method can fail. Given
one of our examples as a black box, no algorithm can find its limiting statistics.
How common such examples are in higher-dimensional families of dynamical sys-
tems, and whether one is likely to encounter one in practice remain exciting open
questions.
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[GR11] M. Gács, P.; Hoyrup and C. Rojas, Randomness on computable probability spaces – a

dynamical point of view, Theory Comput. Syst. 48 (2011), no. 465.
[HdMS16] Benjamin Hellouin de Menibus and Mathieu Sablik, Characterisation of sets of limit

measures after iteration of a cellular automaton on an initial measure, Ergodic Theory

and Dynamical Systems 38 (2016), no. 2, 601–650.
[HK90] F. Hofbauer and G. Keller, Quadratic maps without asymptotic measure, Comm. Math.

Phys. 127 (1990), 319–337.

[HM10] M. Hochman and T. Meyerovitch, Characterization of the entropies of multidimen-
sional shifts of finite type., Annals of Mathematics 171 (2010), no. 3, 2011–2038.

[Jea14] E. Jeandel, Computability of the entropy of one-tape Turing machines, 31st Inter-

national Symposium on Theoretical Aspects of Computer Science (STACS), LIPIcs.
Leibniz Int. Proc. Inform., vol. 25, 2014, pp. 421–432.

[Joh87] S. Johnson, Singular measures without restrictive intervals, Commun. Math. Phys.

110 (1987), 185–190.
[KCG94] P. Koiran, M. Cosnard, and M. Garzon, Computability with low-dimensional dynamical

systems, Theoret. Comput. Sci. 132 (1994), no. 1-2, 113–128.

[KTZ18] Akitoshi Kawamura, Holger Thies, and Martin Ziegler, Average-case polynomial-time
computability of Hamiltonian dynamics, 43rd International Symposium on Mathemat-

ical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool,
UK, 2018, pp. 30:1–30:17.

[Kur97] Petr Kurka, On topological dynamics of Turing machines., Theoret. Comput. Sci. 174
(1997), 203–2016.

[Lor63] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130–141.

[Maz63] S. Mazur, Computable Analysis, vol. 33, Rosprawy Matematyczne, Warsaw, 1963.

[Met87] N. Metropolis, The beginning of the Monte Carlo method, Los Alamos Science Special
Issue (1987), 125–130.

[MK99] C. Moore and P. Koiran, Closed-form analytic maps in one and two dimensions can
simulate universal Turing machines., Theoret. Comput. Sci. 210 (1999), no. 1, 2217–
223.

[Moo91] C. Moore, Generalized shifts: unpredictability and undecidability in dynamical systems,

Nonlinearity 4 (1991), no. 2, 199–230.
[MS49] N. Metropolis and Ulam. S., The Monte Carlo method, Journal of the American Sta-

tistical Association 44 (1949), 335–341.
[New74] S. Newhouse, Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9–18.



14 HOW TO LOSE AT MONTE CARLO

[Roj08] C. Rojas, Randomness and ergodic theory: an algorithmic point of view, Ph.D. thesis,

Ecole Polytechnique, 2008.

[RY19] Cristobal Rojas and Michael Yampolsky, Computational intractability of attractors in
the real quadratic family, Advances in Mathematics 349 (2019), 941 – 958.

[Tuc02] W. Tucker, A rigorous ODE solver and Smale’s 14th problem, Found. Comp. Math. 2

(2002), 53–117.
[Tur36] A. M. Turing, On computable numbers, with an application to the Entscheidungsprob-

lem, Proceedings, London Mathematical Society (1936), 230–265.

[URvN47] S. Ulam, R.D. Richtmyer, and J. von Neumann, Statistical methods in neutron diffu-
sion, Los Alamos Scientific Laboratory report LAMS 551 (1947).


	1. Introduction
	2. Preliminaries
	Statistical simulations and computability of probability measures
	Invariant measures of quadratic polynomials and the statement of the main result.

	3. Proof of the Main Theorem
	3.1. Setting the stage
	3.2. Main construction
	3.3. Constructing non computable physical measures

	4. Conclusion
	References

