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ABSTRACT
In the committee selection problem, we are given 𝑚 candidates,

and 𝑛 voters. Candidates can have different weights. A committee

is a subset of candidates, and its weight is the sum of weights of

its candidates. Each voter expresses an ordinal ranking over all

possible committees. The only assumption we make on preferences

ismonotonicity: If 𝑆 ⊆ 𝑆 ′ are two committees, then any voter weakly

prefers 𝑆 ′ to 𝑆 .
We study a general notion of group fairness via stability: A

committee of given total weight 𝐾 is stable if no coalition of voters

can deviate and choose a committee of proportional weight, so that

all these voters strictly prefer the new committee to the existing

one. Extending this notion to approximation, for parameter 𝑐 ≥ 1,

a committee 𝑆 of weight 𝐾 is said to be 𝑐-approximately stable if

for any other committee 𝑆 ′ of weight 𝐾 ′, the fraction of voters that

strictly prefer 𝑆 ′ to 𝑆 is strictly less than
𝑐𝐾 ′
𝐾

. When 𝑐 = 1, this

condition is equivalent to classical core stability.

The question we ask is: Does a 𝑐-approximately stable committee

of weight at most any given value 𝐾 always exist for constant 𝑐?

It is relatively easy to show that there exist monotone preferences

for which 𝑐 ≥ 2. However, even for simple and widely studied

preference structures, a non-trivial upper bound on 𝑐 has been

elusive.

In this paper, we show that 𝑐 = 𝑂 (1) for allmonotone preference

structures. Our proof proceeds via showing an existence result

for a randomized notion of stability, and iteratively rounding the

resulting fractional solution.
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1 INTRODUCTION
Fair allocation of resources is a widely studied problem in social

choice literature. In several societal decision-making scenarios, the

resources are public goods, meaning that they can be enjoyed by

multiple agents simultaneously. For instance, consider the problem

of locating a fixed number of parks or libraries to serve a popu-

lation [11]. Each such resource provides shared utility to several

members of society. Viewed as a facility location problem, a stan-

dard objective involves locating the facilities to minimize the total

distance traveled by the population to its nearest open facility. How-

ever, such a solution need not be fair: In a city with a dense urban

core and sprawling suburbs, it can lead to the algorithm placing

many more facilities in the suburbs, causing the locations at the

urban core to become overcrowded. In other words, the globally

optimal solution may produce disparate outcomes for different

demographic slices.

Similarly, consider the participatory budgeting problem [6, 15, 17,

20, 21, 29]. Recently, many cities and wards across the world have a

process to put part of their budget to vote. The city chooses several

projects such as repaving streets, installing lights, etc, and each

voter indicates preferences over these projects. The goal of the city

is to choose a subset of projects that is feasible within the budget

to fund. Again, simple schemes to aggregate voter preferences may

overly bias the outcome towards majority preferences, and may

ignore entirely the preferences of a sizable, coherent, minority.

1.1 Committee Selection and Fairness Model
In this paper, we consider an abstract resource allocation model

– committee selection – that captures not only the above two set-

tings, but also several other problems studied in social choice and

in network design. We use the term “committee selection” based

on similar terminology in social choice literature; however, as dis-

cussed below, our model captures general combinatorial selection

problems. In these settings, we study a classical notion of group

fairness, and show that solutions that approximately satisfy this

notion always exist.

Committee Selection. Using social choice parlance, the committee

selection problem models the common scenario of determining a

winning subset, i.e. a committee, from a set of candidates. A set

of voters (or agents) N = [𝑛] = {1, . . . , 𝑛} and a set of candidates

C = [𝑚] are given, and each candidate 𝑖 is associated with a weight

𝑠𝑖 ≥ 0. Let 𝑤 (𝑆) = ∑
𝑖∈𝑆 𝑠𝑖 denote the weight of the committee

𝑆 ⊆ 2
C
. The goal is to find a committee 𝑆 of weight at most a given

value 𝐾 . We note that our results extend to the setting where the
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weight𝑤 (𝑆) is a subadditive function of 𝑆 ; we present the additive

model for simplicity of exposition.

Each voter 𝑣 ∈ N explicitly or implicitly specifies an ordinal

ranking ⪰𝑣 over all possible committees (that is, all possible subsets

of C). Given voter 𝑣 ∈ N and two committees 𝑆1 and 𝑆2, we use

the notation 𝑆2 ≻𝑣 𝑆1 to indicate the voter strictly prefers 𝑆2 to 𝑆1.

We indicate weak preference by 𝑆2 ⪰𝑣 𝑆1. We assume preferences

are complete, so that for every voter 𝑣 and every two committees

𝑆1 and 𝑆2, the voter either (weakly or strongly) prefers 𝑆1 to 𝑆2, or

vice versa; and the preferences are transitive, so that for every voter

𝑣 , if she prefers committee 𝑆1 to 𝑆2 and prefers 𝑆2 to 𝑆3, then she

prefers 𝑆1 to 𝑆3, where the preference is strict if at least one of the

two preferences is strict. The only additional condition we impose

on the preferences is the following:

Monotonicity: If 𝑆1 ⊆ 𝑆2, then ∀𝑣 ∈ N , 𝑆2 ⪰𝑣 𝑆1.
In Section 1.2, we will show that the facility location and partici-

patory budgeting settings described above, as well as several other

problems in social choice and network design, are special cases of

committee selection.

Fairness via Stability. The notion of group fairness or proportion-

ality is a central objective in committee selection. The general idea

appeared in literature more than a century ago [13] and various

incarnations of this notion have gained significant attention re-

cently [2, 3, 7, 9, 15, 16, 27, 33]. Here, each group of voters should

feel that their preferences are sufficiently respected, so that they

are not incentivized to deviate and choose an alternative commit-

tee of proportionally smaller weight. In the common scenario that

we do not know beforehand the exact nature of the demographic

coalitions, we adopt the robust solution concept which requires the

committee to be agnostic to any potential subset of voters deviating.

Formally, we study fairness via the notion of core stability from

economics literature [18, 23, 28, 32, 34]. This uses the notion of

pairwise score defined below.

Definition 1 (Pairwise Score). Given two committees 𝑆1, 𝑆2 ⊆
C, the pairwise score of 𝑆2 over 𝑆1 is the number of voters who

strictly prefer 𝑆2 to 𝑆1: 𝑉 (𝑆1, 𝑆2) := |{𝑣 ∈ N | 𝑆2 ≻𝑣 𝑆1}|.

Given the above definition, we are now ready to define fairness

via core stability as follows.

Definition 2 (Stable Committees (or the Core)). Given a

committee 𝑆 ⊆ C of weight at most𝐾 , the weight limit, a committee

𝑆 ′ ⊆ C of weight 𝐾 ′ blocks 𝑆 iff 𝑉 (𝑆, 𝑆 ′) ≥ 𝐾 ′
𝐾
· 𝑛. A committee 𝑆

is stable (or lies in the core) if no committee 𝑆 ′ blocks it.

In other words, for any 𝛽 ∈ (0, 1] and any 𝛽𝑛 voters, there should
not be another committee of weight at most 𝛽𝐾 , so that all these

𝛽𝑛 voters are strictly better off with the new committee. It is easy

to check that a stable outcome is (weakly) Pareto-optimal among

committees of weight at most 𝐾 , by considering the deviating coali-

tion of all the voters. Furthermore, for every coalition of voters, a

stable committee is also Pareto-optimal relative to committees with

proportionally scaled-down weight.

In economics, this notion of core stability can be justified with

fair taxation [18, 23, 32]: Each voter has an endowment of
𝐾
𝑛 , so

the society together has a budget of 𝐾 . Candidate 𝑖 costs 𝑠𝑖 , and

we select a committee whose weight is at most 𝐾 . If no subset of

voters (blocking committee) with size 𝛽𝑛 can deviate and use their

endowment (𝛽𝐾) to purchase an alternative committee, then the

committee is said to be stable.

1.2 Motivating Examples: Fair Combinatorial
Selection

Our results hold for any monotone purely ordinal preference struc-

ture over committees. As such, it models a wide range of combina-

torial selection problems that have a rich history in social choice,

network design, and related domains.

Participatory Budgeting. This models the civic budgeting

application described above. Each candidate is a public project,

and its weight 𝑠𝑖 equals its cost. Voter 𝑣 has utility 𝑢𝑖𝑣 for

project 𝑖 ∈ C. The value 𝐾 is the total budget available to

the city. The utility of the voter for committee 𝑆 is 𝑢𝑣 (𝑆) =∑
𝑖∈𝑆 𝑢𝑖𝑣 , and the voter prefers committees that provide her

higher utility. This can be generalized to utility functions

that capture complements and substitutes.

Approval Set. This is a special case of the setting described

above that has been widely studied in multi-winner election

literature. In this model [2, 3, 7, 33], we assume each 𝑠𝑖 = 1.

Each voter 𝑣 specifies an approval set 𝐴𝑣 ⊆ C of candidates.

Given two committees 𝑆1 and 𝑆2, 𝑆1 ≻𝑣 𝑆2 iff |𝑆1 ∩ 𝐴𝑣 | >
|𝑆2 ∩𝐴𝑣 |, i.e., the voter prefers committees in which she has

more approved candidates.

Ranking. In this model [14], each candidate has unit weight.

Each voter 𝑣 has a preference ordering over candidates in

C. In this case, 𝑆1 ≻𝑣 𝑆2 iff 𝑣 ’s favorite candidate in 𝑆1 is

ranked higher (in her preference ordering) than her favorite

candidate in 𝑆2.

Facility Location. This is a special case of ranking that is

motivated by the problem of locating public facilities de-

scribed above, and was recently considered by [11]. Here,

the preferences over candidates are dictated by distances

in an underlying metric space. Formally, there is a metric

space 𝑑 over C ∪N . Each location in C is a potential facility.

Given a subset 𝑆 ⊆ C of 𝐾 locations, the cost of voter 𝑣 is

the distance to the closest facility in 𝑆 . A voter prefers 𝑆2 to

𝑆1 if it incurs smaller cost in the former than in the latter.

Network Design. The committee selection problem also mod-

els selection problems in network design and combinatorial

optimization. For instance, consider the non-uniform buy-

at-bulk network design problem [10, 26]. We are given a

multigraph 𝐺 (𝑉 , 𝐸) with a sink node 𝑠 . Each edge 𝑒 ∈ 𝐸
as cost 𝑐𝑒 and length ℓ𝑒 . The length is typically decreasing

with cost, since a more expensive edge would model a faster

road or higher capacity network cable, which would reduce

time it takes to traverse that edge. Between any pair 𝑢, 𝑣 of

vertices, we assume there is an edge 𝑒 = (𝑢, 𝑣) of cost 𝑐𝑒 = 0;

let𝑀 denote the subset of edges with cost 0. A committee is

a subset 𝑆 of edges with non-zero cost that are provisioned,

and its weight is the total cost of its edges. Given committees

𝑆 and 𝑆 ′, an end-node 𝑣 prefers 𝑆 to 𝑆 ′ if the length of the

shortest path (according to the edge lengths ℓ) from 𝑣 to

𝑠 in the subgraph 𝐺 (𝑉 , 𝑆 ∪ 𝑀) is smaller in the subgraph

𝐺 (𝑉 , 𝑆 ′ ∪𝑀).
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1.3 Approximate Stability and Main Result
As shown in [12, 16], there are simple instances with cyclic prefer-

ences where stable committees may not exist; we present such an

instance in Appendix A. This motivates us to consider an approxi-

mate notion of stability.

Definition 3 (𝑐-Approximately Stable Committees). Given

a parameter 𝑐 ≥ 1, and a committee 𝑆 ⊆ C of weight at most 𝐾 , the

weight limit, we say that a committee 𝑆 ′ ⊆ C of weight 𝐾 ′ 𝑐-blocks
𝑆 iff𝑉 (𝑆, 𝑆 ′) ≥ 𝑐 · 𝐾 ′

𝐾
· 𝑛. A committee 𝑆 is 𝑐-approximately stable if

there are no committees 𝑆 ′ that 𝑐-block it.
1

In the taxation interpretation, we scale down the endowment

of each voter by the approximation factor 𝑐 , so that she has an

endowment of
1

𝑐 ·
𝐾
𝑛 . If a subset of voters with size 𝛽𝑛 deviates and

uses their endowment to purchase an alternative committee, this

committee has weight
𝛽
𝑐 𝐾 . Note that when 𝑐 = 1, the solution is

exactly stable. A larger 𝑐 ensures fewer coalitions deviate, and our

goal is to find the minimum 𝑐 for which a 𝑐-approximately stable

solution exists. Theorem 4 (Appendix A) shows that 𝑐 ≥ 2 − 𝜀 for
any constant 𝜀 > 0 even in the Ranking setting.

Our main result is the following general and somewhat surpris-

ing theorem that we prove in the main body of the paper.

Theorem 1. For any monotone preference structure with 𝑛 voters

and𝑚 candidates, arbitrary weights and the cost-threshold 𝐾 , a 32-

approximately stable committee of weight at most 𝐾 always exists.

It is worth noting that prior to our work, no non-trivial result was

known for the existence of approximately stable committees even

in the very special cases of Approval Set and Facility Location

preferences described above.

1.4 Techniques and Other Results
Our proof of Theorem 1 proceeds by first constructing a lottery (or

randomization) over committees of weight𝐾 that is 2-approximately

stable, and iteratively rounding this solution. The first challenge

is to define the appropriate notion of randomized stability. As dis-

cussed in Section 1.5, though stability when committee members

are chosen fractionally is a classical concept, these notions require

convex and continuous preferences over fractional allocations, and

it is not clear how to relate them to deterministic (or integer) solu-

tions that we desire.

Stable Lotteries. We proceed via a different randomized notion

of stability that was first defined in [12]. We define this notion next.

Given a weight 𝐾 , we let Δ denote a distribution (or lottery) over

committees of weight at most 𝐾 .

Definition 4 (Stable Lotteries [12]). A distribution (or lot-

tery) Δ over committees of weight at most 𝐾 is 𝑐-approximately

stable iff for all committees 𝑆 ′ ⊆ C of weight 𝐾 ′, we have:

E
𝑆∼Δ

[
𝑉 (𝑆, 𝑆 ′)

]
< 𝑐 · 𝐾

′

𝐾
· 𝑛.

1
Any 𝑐-approximately stable committee can trivially be modified to become Pareto-

optimal while preserving the value of 𝑐 . To see this, we simply find another committee

that Pareto-dominates this committee. Therefore, Pareto-optimality comes for free in

our setting.

In [12], it was shown that an exactly stable lottery under this

definition exists for Approval Set and Ranking settings, via solv-

ing the dual formulation. However, it was not clear either how to

extend this technique even to Participatory Budgeting prefer-

ences, or what a stable lottery implied about deterministic stable

committees that is our main focus here. In this paper, we resolve

both these questions. As our first contribution, in Section 2, we

show the following.

Theorem 2. For any weight 𝐾 and all monotone preferences, a

2-approximately stable lottery over committees of weight at most 𝐾

always exists.

The proof of the above theorem builds on the proof of the ex-

actly stable lottery for Ranking instances in [12]. The duality proof

in [12] constructed a primal lottery by sequentially rounding can-

didates based on their marginal probability in the dual solution,

while the current proof constructs the primal lottery by sequentially

rounding the committees in the dual solution directly. This allows

us to develop a simple proof for all monotone preference structures;

however, unlike [12], our lottery is only approximately stable.

Once we construct this lottery, our main contribution (Section 3)

is rounding it to show Theorem 1. The randomized stability con-

dition implies the existence of a committee that satisfies a certain

fraction of voters simultaneously, in the sense that it lies not too far

down the preference ordering of these voters. We iteratively elimi-

nate such voters and re-compute the lottery, with the non-trivial

aspect being to ensure that this process preserves approximate

stability.

In Section 4, we show that our results extend to the more general

setting where 𝑤 (𝑆) is a subadditive set function, and also to the

setting where there are multiple weight constraints. We also discuss

some settings in which an approximately stable committee can be

efficiently computed.

Exactly Stable Lotteries. When considering lotteries, we haven’t

been able to find an instance of a monotone preference structure

where an exactly stable solution does not exist. The loss of factor

of 2 in Theorem 2 seems to be an artifact of our analysis. Indeed,

in Appendix B, we show a different way of constructing the dual

solution that leads to the following result. We conjecture that this

results extends to all𝐾 , andwe discuss this and other open questions

in Section 5.

Theorem 3 (Proved in Appendix B). For unit-weight candidates

and any number of voters with arbitrary monotone preferences, when

𝐾 ∈ {1, 2, 3}, an exactly stable lottery always exists.

1.5 Related Work
Committee selection is omnipresent in political and economic ac-

tivities of a society: We see it in parliamentary elections, in group-

hiring processes, and in participatory budgeting. Recent work in

social choice [2, 3, 24, 25, 31, 33] has extensively studied the prop-

erties of committee selection rules and established axiomatization

in this field. Furthermore, group fairness in committee selection

arises in areas outside social choice: In a shared-cache system with

multiple users, consider the problem of deciding which parts of

the data to keep in the cache that has only limited storage [19, 22].
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Users gain utility from their data being cached. We can model

this as committee selection where each atomic piece of data corre-

sponds to a candidate. In this context, a fair caching policy provides

proportional speedup to each user.

We now compare our stability notions with some closely related

notions in literature. This will place our technical work in context.

The Lindahl Equilibrium. The notion of stability is the same as

that of the core in cooperative game theory. Scarf [34] first phrased

it in game-theoretic terms, and it has been extensively studied in

public-good settings [15, 18, 23, 28, 32]. Much of this literature

considers convex and continuous preferences, which in our set-

ting implies convex preferences over fractional allocations (that is,

when candidates can be chosen fractionally). The seminal work of

Foley [18] considers the Lindahl market equilibrium. In this equi-

librium, each candidate is assigned a per-voter price. If the voters

choose their utility maximizing allocation subject to spending a

dollar, then (1) they all choose the same fractional outcome; and

(2) for each chosen candidate, the total money collected pays for

that candidate. It is shown via a fixed point argument that such

an equilibrium pricing always exists when fractional allocations

are allowed, and this outcome lies in the core. Though this exis-

tence result is very general, it needs the preferences over fractional

outcomes to be convex and continuous.

For instance, in the case of facility location, a fractional allo-

cation ®𝑦 satisfies

∑
𝑖∈C 𝑦𝑖 ≤ 𝐾 and 𝑦 ∈ [0, 1]. One possible convex

disutility of voter 𝑣 for ®𝑦 is

𝐶𝑣 ( ®𝑦) = min

{∑
𝑖

𝑑𝑖𝑣𝑥𝑖𝑣

����� ∑
𝑖

𝑥𝑖𝑣 = 1; 𝑥𝑖𝑣 ≤ 𝑦𝑖 ∀𝑖
}
.

Though Foley’s result shows there exists an allocation ®𝑦 that is

a core outcome, it is not clear (a) how to compute this fractional

solution efficiently; and (b) more importantly, how to round this

allocation to an approximately stable integer solution. The difficulty

in rounding is because we cannot relax the distances when consid-

ering when a voter can deviate; indeed, if we could relax distances,

the problem becomes very different, and there is an approximately

stable solution (that only relaxes distances and not the size of the

deviating coalition) via a simple greedy algorithm [11].

This motivates using the new notion of randomized stability,

where a deterministic outcome is first drawn from the lottery, and

subsequently the voters who see higher utility deviate. This notion

does not correspond to underlying convex preferences over the

space of lotteries; however, as we show, a stable lottery can now

be converted to an approximately stable committee. Furthermore,

for facility location and more generally, Ranking, this stable

lottery can be efficiently computed [12], while we do not know how

to compute the Lindahl equilibrium efficiently.

Nash Welfare and its Variants. There is extensive work (see [14])

on voting rules where we construct a score 𝜎𝑣 (𝑆) for each voter and
committee, and choose the committee that maximizes

∑
𝑣 𝜎𝑣 (𝑆). For

instance, for Approval Set preferences, the classic Proportional

Approval Voting (PAV) method that dates back more than a cen-

tury [35], assigns 𝜎𝑣 (𝑆) ≈ log(1+|𝐴𝑣∩𝑆 |). More generally, theNash

Welfare objective [1, 3, 15–17, 35] assigns score 𝜎𝑣 (𝑆) = log(𝑢𝑣 (𝑆)),

where 𝑢𝑣 (𝑆) is the utility of the voter for committee 𝑆 . These meth-

ods compute a stable solution when the utility of voters in a de-

viating coalition is scaled down. This requires either knowing or

imputing cardinal utility functions for voters (and does not work

with disutilities), and is otherwise incomparable to the more widely

studied and classical notion of core stability that we consider. where

the committee size on deviation is scaled down and the utilities of

voters are unchanged. Further, for Approval set preferences, the

PAV method is no better than an Ω(
√
𝐾)-approximation to a stable

outcome [12].

A recent line of work [2, 3, 33] has considered a special case of

stability with Approval set preferences, when the coalition that

deviates is not arbitrary, but is cohesive in terms of preferences.

They term this Justified Representation, with generalizations known

both for Approval set and to other preference structures [4, 5]. For

Approval Set, it is shown that the PAV method and its variants

achieve or closely approximate these notions of stability. However,

as mentioned above, the PAV method do not approximate the core

outcome, so that stability is very different in structure from Justified

Representation and its variants.

Finally, our approximation notion scales down the endowment

of the deviating coalition by a factor of 𝑐 . An alternative approach

would have been to approximate the utility of the voters in the

deviating coalition by a factor of 𝑐 . In this model, constant approxi-

mations have been obtained for clustering [11] and for Approval

Set [30]; the latter result uses the PAV method. However, these

results require developing a different technique for each problem,

while our approach has the advantage of being oblivious to the

choice of cardinal utilities while leading to a unifying result for all

preference structures.

2 EXISTENCE OF 2-APPROXIMATELY STABLE
LOTTERIES

In this section, we consider choosing a stable lottery over commit-

tees of weight at most 𝐾 . Recall the definition of stability in this

setting from Definition 4.

We take the approach in [12] and consider the dual formulation

of selecting stable lotteries. The existence of a 𝑐-approximately

stable lottery is equivalent to deciding:

min

Δ
max

𝑆′
E
𝑆∼Δ

[
𝑉 (𝑆, 𝑆 ′) − 𝑐 · 𝑤 (𝑆

′)
𝐾
· 𝑛

]
< 0, (1)

whereΔ is a distribution (lottery) over committees of weight at most

𝐾 . Viewing Δ as a mixed strategy over the “defending” committees

and 𝑆 ′ as the “attacking” strategy, we treat (1) as a zero-sum game.

Duality (or the min-max principle) now allows us to swap the order

of actions by allowing the attacker to use a mixed strategy. (1) is

thus equivalent to

max

Δ𝑎

min

𝑆𝑑 :𝑤 (𝑆𝑑 ) ≤𝐾
E

𝑆𝑎∼Δ𝑎

[
𝑉 (𝑆𝑑 , 𝑆𝑎) − 𝑐 ·

𝑤 (𝑆𝑎)
𝐾
· 𝑛

]
< 0, (2)

where Δ𝑎 is a lottery over committees of weight at most 𝐾 chosen

by the attacker. This dual view provides a convenient tool for show-

ing the existence of approximately stable lotteries. The rest of the

section is devoted to proving Theorem 2, that we restate here.
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Theorem 2. For any value 𝐾 and all monotone preferences, a 2-

approximately stable lottery over committees of weight at most 𝐾

always exists.

2.1 Per-Voter Guarantee
Assume we are given a lottery Δ𝑎 . If there is a committee 𝑆𝑎 in Δ𝑎
with 𝑤 (𝑆𝑎) > 𝐾

2
, then 2 · 𝑤 (𝑆𝑎)

𝐾
· 𝑛 > 𝑛 ≥ 𝑉 (𝑆𝑑 , 𝑆𝑎) for any 𝑆𝑑 .

This implies 𝑉 (𝑆𝑑 , 𝑆𝑎) − 2 ·
𝑤 (𝑆𝑎)
𝐾
· 𝑛 < 0. Therefore, the attacker

can remove these strategies from its lottery, and we can assume Δ𝑎
only has committees with weight at most

𝐾
2
.

Given any distribution Δ𝑎 over committees of weight at most
𝐾
2
,

we need to show there is a defending committee 𝑆𝑑 with weight at

most 𝐾 , such that

E
𝑆𝑎∼Δ𝑎

[
𝑉 (𝑆𝑑 , 𝑆𝑎) − 2 ·

𝑤 (𝑆𝑎)
𝐾
· 𝑛

]
< 0.

Suppose that the strategy Δ𝑎 chooses 𝑆1 with probability 𝛼1,

committee 𝑆2 with probability 𝛼2, . . . , 𝑆𝑡 with 𝛼𝑡 , where 𝑡 = 2
|C |

.

Let

𝛽 = E
𝑆𝑎∼Δ𝑎

[
𝑤 (𝑆𝑎)
𝐾

]
=

∑𝑡
𝑖=1 𝛼𝑖 ·𝑤 (𝑆𝑖 )

𝐾

be the ratio between the expected total weight of the attacking

strategy and 𝐾 , the allowable weight for the defending strategy. We

need to find an 𝑆𝑑 of weight at most 𝐾 so that:

E
𝑆𝑎∼Δ𝑎

[𝑉 (𝑆𝑑 , 𝑆𝑎)] < 2𝛽𝑛. (3)

Wewill construct a distribution Δ𝑑 over committees 𝑆𝑑 that satisfies

a stronger property:

Pr
𝑆𝑑∼Δ𝑑 ,𝑆𝑎∼Δ𝑎

[𝑆𝑎 ≻𝑣 𝑆𝑑 ] < 2𝛽 ∀𝑣 ∈ [𝑛] . (4)

Summing over all voters 𝑣 implies the existence of a lottery Δ𝑑
satisfying (3), and hence a deterministic committee 𝑆𝑑 satisfying

the same. This will imply the theorem statement.

2.2 Dependent Rounding
Let 𝑝𝑖 = min

(
1,
𝛼𝑖
2𝛽

)
for 𝑖 ∈ [𝑡]. We have:

• 𝑝𝑖 ∈ [0, 1] for all 𝑖 ∈ [𝑡]; and
• ∑

𝑖∈[𝑡 ] 𝑝𝑖𝑤 (𝑆𝑖 ) ≤ 1

2𝛽

∑
𝑖∈[𝑡 ] 𝛼𝑖𝑤 (𝑆𝑖 ) =

𝛽𝐾

2𝛽
= 𝐾

2
.

We will construct the defending committee by including each at-

tacker committee 𝑆𝑖 , 𝑖 ∈ [𝑡] with probability 𝑝𝑖 ; the details of which

are below. We use the random variable 𝑋𝑖 to denote whether we in-

clude 𝑆𝑖 in our defending committee 𝑆𝑑 , so that 𝑆𝑑 =
⋃
𝑖∈[𝑡 ]:𝑋𝑖>0 𝑆𝑖 .

We therefore obtain a distribution Δ𝑑 over committees 𝑆𝑑 .

We use the dependent rounding procedure in [8] to construct

{𝑋𝑖 } given the {𝑝𝑖 }. This has the following properties.
• (Almost-Integrality) For any realization of 𝑋𝑖 ’s, all but at

most one of them takes value in {0, 1} (the remaining one

takes value in [0, 1]).
• (Correct Marginals) E[𝑋𝑖 ] = 𝑝𝑖 for all 𝑖 ∈ [𝑡].
• (Preserved Weight) Pr

[∑
𝑖∈[𝑡 ] 𝑤 (𝑆𝑖 ) · 𝑋𝑖 ≤ 𝐾

2

]
= 1.

• (Negative Correlation)E [∏𝑖∈𝑇 (1 − 𝑋𝑖 )] ≤
∏
𝑖∈𝑇 E[1−𝑋𝑖 ] =∏

𝑖∈𝑇 (1 − 𝑝𝑖 ), ∀𝑇 ⊆ [𝑡].

To have full integrality instead of the almost-integrality, in any

realization, we include 𝑆𝑖 in our 𝑆𝑑 as long as 𝑋𝑖 > 0 (instead of

only fully including it when 𝑋𝑖 = 1). Since we assumed𝑤 (𝑆𝑖 ) ≤ 𝐾
2

for all 𝑖 ∈ [𝑡], using the almost-integrality and preserved-weight

conditions, for any realization of {𝑋𝑖 }, the weight of the resulting
𝑆𝑑 satisfies

𝑤 (𝑆𝑑 ) ≤
∑

𝑖∈[𝑡 ]:𝑋𝑖=1

𝑤 (𝑆𝑖 ) +
∑

𝑖∈[𝑡 ]:𝑋𝑖 ∈(0,1)
𝑤 (𝑆𝑖 ) ≤

𝐾

2

+ 𝐾
2

= 𝐾.

2.3 Analysis
Fix a voter 𝑣 . W.l.o.g. assume her preference over the sets in Δ𝑎 are

𝑆1 ⪰𝑣 𝑆2 ⪰𝑣 · · · ⪰𝑣 𝑆𝑡 .

Pr
𝑆𝑑∼Δ𝑑 ,𝑆𝑎∼Δ𝑎

[𝑆𝑎 ≻𝑣 𝑆𝑑 ]

≤
∑
𝑖∈[𝑡 ]

Pr
𝑆𝑎∼Δ𝑎

[𝑆𝑎 = 𝑆𝑖 and 𝑋1 = 𝑋2 = · · · = 𝑋𝑖 = 0]

=
∑
𝑖∈[𝑡 ]

𝛼𝑖 · Pr
𝑆𝑎∼Δ𝑎

[𝑋1 = 𝑋2 = · · · = 𝑋𝑖 = 0]

≤
∑
𝑖∈[𝑡 ]

𝛼𝑖 ·
𝑖∏
𝑗=1

(1 − 𝑝 𝑗 )

=
∑
𝑖∈[𝑡 ]

2𝛽 · 𝑝𝑖 ·
𝑖∏
𝑗=1

(1 − 𝑝 𝑗 ) < 2𝛽.

Here, the first step follows because when the adversary chooses

set 𝑆𝑖 , it only beats 𝑆𝑑 if 𝑆𝑑 included none of 𝑆1, 𝑆2, . . . , 𝑆𝑖 . Here,

we are using the monotonicity of the preference structure: Since

𝑆 𝑗 ⪰𝑣 𝑆𝑖 for 𝑗 ≤ 𝑖 , this implies 𝑆𝑑 ⪰𝑣 𝑆𝑖 when 𝑆 𝑗 ⊆ 𝑆𝑑 . The

second step follows since the realization of the adversary’s lottery

is independent of that of the defender, and since 𝛼𝑖 = Pr[𝑆𝑎 = 𝑆𝑖 ].
The third step follows by the negative correlation property of {𝑋 𝑗 }.
To see the fourth step, note that if 𝛼𝑖 ≥ 2𝛽 , then 𝑝𝑖 = 1, so that

𝛼𝑖 ·
∏𝑖
𝑗=1 (1−𝑝 𝑗 ) = 0 = 2𝛽 ·𝑝𝑖 ·

∏𝑖
𝑗=1 (1−𝑝 𝑗 ). Otherwise, 𝛼𝑖 = 2𝛽𝑝𝑖 .

To see the final inequality, note that

∑
𝑖∈[𝑡 ] 𝑝𝑖

∏
𝑗<𝑖 (1−𝑝 𝑗 ) is the

probability of the following stopping process picking some set: Pick

𝑆1 with probability 𝑝1; if not, pick 𝑆2 with probability 𝑝2, and so on.

Therefore,

∑
𝑖∈[𝑡 ] 𝑝𝑖

∏
𝑗<𝑖 (1 − 𝑝 𝑗 ) ≤ 1. Thus

∑
𝑖∈[𝑡 ] 𝑝𝑖

∏
𝑗≤𝑖 (1 −

𝑝 𝑗 ) < 1. This proves (4), and hence Theorem 2.

3 EXISTENCE OF APPROXIMATELY STABLE
COMMITTEES

In this section, we show that a 𝑂 (1)-approximately stable commit-

tee always exists. We show this by iteratively rounding the lottery

constructed in Section 2. We first restate Theorem 1.

Theorem 1. For anymonotone preference structure over any num-

ber 𝑛 of voters, and𝑚 of candidates with arbitrary weights, and any

weight 𝐾 , a 32-approximately stable committee of weight at most 𝐾

always exists.

For the proof, fix a deviating committee 𝑆𝑎 of weight 𝑤 (𝑆𝑎).
Suppose our final committee is 𝑇 of weight at most 𝐾 . Our goal is

to show that: 𝑉 (𝑇, 𝑆𝑎) < 32 · 𝑤 (𝑆𝑎)
𝐾
· 𝑛.
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3.1 Good and Bad Committees
Throughout the proof, we fix two constants 0 < 𝛽 ≤ 𝛼 < 1,

whose choice will be determined at the very end. To begin, we

define a subroutine that returns a 2-approximately stable lottery

(via Theorem 2) for any subset of voters, and any committee size.

Definition 5. Given candidate set [𝑚], voter setV ′, and com-

mittee size 𝐾 ′, let Lottery(V ′, 𝐾 ′) return a lottery Δ over com-

mittees of weight at most 𝐾 ′ that is 2-approximately stable for the

set of votersV ′. Similarly, let 𝑉V′ (𝑆, 𝑆𝑎) = |{𝑣 ∈ V ′ | 𝑆𝑎 ≻𝑣 𝑆}| .

Let 𝑥𝑖 be the probability that Δ includes committee 𝑆𝑖 .

Definition 6. Given a voter 𝑣 , we define the set of good and

bad committees relative to Δ, G𝑣 (Δ) and B𝑣 (Δ) respectively, as
follows:

G𝑣 (Δ) =
𝑆 ⊆ C

������ ∑
𝑆𝑖 ⪰𝑣𝑆

𝑥𝑖 ≤ 1 − 𝛽


and

B𝑣 (Δ) =
𝑆 ⊆ C

������ ∑
𝑆𝑖 ⪯𝑣𝑆

𝑥𝑖 ≤ 𝛽
 .

The idea is that the good committees appear sufficiently high

up in 𝑣 ’s ranking, while the bad committees are lower down in the

ranking. The notion of high and low is relative to the probability

mass Δ. The following lemma is immediate.

Claim 1. If 𝑆 ∉ B𝑣 (Δ), then 𝑆𝑎 ≻𝑣 𝑆 only if 𝑆𝑎 ∈ G𝑣 (Δ).

Proof. If 𝑆 ∉ B𝑣 (Δ), then
∑
𝑆𝑖 ⪯𝑣𝑆 𝑥𝑖 > 𝛽 . Thus

∑
𝑆𝑖 ≻𝑣𝑆 𝑥𝑖 <

1 − 𝛽 . Since 𝑆𝑎 ≻𝑣 𝑆 , we have

∑
𝑆𝑖 ⪰𝑣𝑆𝑎 𝑥𝑖 < 1 − 𝛽 , so that 𝑆𝑎 ∈

G𝑣 (Δ). □

The next lemma implies that (a) Any committee 𝑆𝑎 cannot lie

in too many good sets relative to its weight; and (b) There is some

committee (with non-zero support in Δ) that does not lie in more

than a constant fraction of the bad sets. The previous claim rules out

the possibility where too many voters prefer 𝑆𝑎 to such a committee,

relative to the weight of 𝑆𝑎 , which will be crucial for the algorithm

we subsequently design.

Lemma 1. Given Δ = Lottery(V ′, 𝐾 ′), we have the following
upper and lower bounds:

(1) For all committees 𝑆𝑎 , we have��{𝑣 ∈ V ′ �� 𝑆𝑎 ∈ G𝑣 (Δ)}�� < 2

𝛽
· 𝑤 (𝑆𝑎)

𝐾 ′
· |V ′ |.

(2) There exists 𝑆 with non-zero support in Δ such that��{𝑣 ∈ V ′ �� 𝑆 ∉ B𝑣 (Δ)
}�� ≥ (1 − 𝛽) · |V ′ |.

Proof. To see the first part, for any committee 𝑆𝑎 , we have:

1 −∑
𝑆𝑖 ⪰𝑣𝑆𝑎 𝑥𝑖 = Pr𝑆𝑖∼Δ [𝑆𝑖 ≺𝑣 𝑆𝑎] . Summing over 𝑣 ∈ V ′,∑

𝑣∈V′

©­«1 −
∑

𝑆𝑖 ⪰𝑣𝑆𝑎
𝑥𝑖

ª®¬ = E
𝑆𝑖∼Δ
[𝑉V′ (𝑆𝑖 , 𝑆𝑎)] <

2𝑤 (𝑆𝑎)
𝐾 ′

· |V ′ |,

where the inequality comes from the fact that Δ is 2-approximately

stable. Thus there are fewer than
2

𝛽
· 𝑤 (𝑆𝑎)

𝐾 ′ · |V
′ | voters 𝑣 ∈ V ′

with

∑
𝑆𝑖 ⪰𝑣𝑆𝑎 𝑥𝑖 ≤ 1 − 𝛽 , which is necessary for 𝑆𝑎 ∈ G𝑣 (Δ).

To see the second part, suppose 𝑆 ∼ Δ. Then for each 𝑣 ∈ V ′,
since

∑
𝑆𝑖∉B𝑣 (Δ) 𝑥𝑖 ≥ 1 − 𝛽 , we have: Pr [𝑆 ∉ B𝑣 (Δ)] ≥ 1 − 𝛽 .

Therefore, the expected number (over the choice 𝑆 ∼ Δ) of 𝑣 such
that 𝑆 ∉ B𝑣 (Δ) is at least (1 − 𝛽) · |V ′ |. Therefore, there exists an
𝑆 for which the claim holds. □

3.2 Algorithm
Algorithm 1 shows our full procedure. The main idea is the follow-

ing: If we pick a committee 𝑆 that does not lie in B𝑣 (Δ) for most

voters 𝑣 , then by Claim 1, 𝑆𝑎 is forced to lie in G𝑣 (Δ) for these voters
if 𝑆𝑎 beats 𝑆 . But since Δ is 2-approximately stable, by Lemma 1,

there are only a small number of 𝑣 where 𝑆𝑎 can lie in G𝑣 (Δ). We

can therefore remove these set of voters for whom 𝑆 ∉ B𝑣 (Δ), since
𝑆 makes sure no 𝑆𝑎 can capture too many of these voters. This re-

duces the number of voters by a constant factor. For the remaining

voters, we recursively find another committee of smaller (but not

too much smaller) weight, which reduces the number of voters by

another constant factor; and so on. The key point is that the total

weight of all these committees is a geometric sequence, and the

number of voters who can be captured by 𝑆𝑎 in each round is also

a geometric sequence, showing a constant-approximately stable

solution.

Algorithm 1 Iterated Rounding

1: 𝑡 ← 0;V (0) ← [𝑛]; 𝑇 (0) ← ∅; 𝐾 (0) ← (1 − 𝛼)𝐾 .
2: whileV (𝑡 ) ≠ ∅ do
3: Δ(𝑡 ) ← Lottery(V (𝑡 ) , 𝐾 (𝑡 ) ).
4: Let 𝑆 (𝑡 ) be any committee such that���{𝑣 ∈ V (𝑡 ) ��� 𝑆 (𝑡 ) ∉ B𝑣 (

Δ(𝑡 )
)}��� ≥ (1 − 𝛽) · |V (𝑡 ) |.

5: W (𝑡 ) ←
{
𝑣 ∈ V (𝑡 )

��� 𝑆 (𝑡 ) ∉ B𝑣 (
Δ(𝑡 )

)}
.

6: V (𝑡+1) ← 𝑉 (𝑡 ) \W (𝑡 )
.

7: 𝑇 (𝑡+1) ← 𝑇 (𝑡 ) ∪ 𝑆 (𝑡 ) .
8: 𝐾 (𝑡+1) ← 𝛼𝐾 (𝑡 ) .
9: 𝑡 ← 𝑡 + 1.
10: end while
11: return 𝑇 𝑓 ← 𝑇 (𝑡 ) .

3.3 Analysis
Line 4 in Algorithm 1 is correct by Lemma 1. We next bound the

weight of the final set.

Lemma 2. 𝑤 (𝑇 𝑓 ) ≤ 𝐾 .

Proof. 𝑤 (𝑇 𝑓 ) ≤ ∑
𝑡 ≥1𝑤 (𝑆 (𝑡 ) ) ≤

∑
𝑡 𝛼

𝑡−1 (1 − 𝛼)𝐾 ≤ 𝐾 . □

We finally show that the resulting set is approximately stable,

completing the proof of Theorem 1.

Lemma 3. When 𝛼 = 1

2
and 𝛽 = 1

4
, then𝑇 𝑓 is a 32-approximately

stable committee of weight at most 𝐾 .

Proof. Given 𝑆𝑎 , since V = [𝑛] =
⋃
𝑡 ≥1W (𝑡 )

and 𝑇 𝑓 =⋃
𝑡 ≥1 𝑆

(𝑡 )
, using monotonicity, we have:

𝑉

(
𝑇 𝑓 , 𝑆𝑎

)
≤

∑
𝑡 ≥1

𝑉W (𝑡 )

(
𝑇 𝑓 , 𝑆𝑎

)
≤

∑
𝑡 ≥1

𝑉W (𝑡 )

(
𝑆 (𝑡 ) , 𝑆𝑎

)
.
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Since 𝑆 (𝑡 ) ∉ B𝑣
(
Δ(𝑡 )

)
for 𝑣 ∈ W (𝑡 )

, by Claim 1, 𝑆𝑎 ≻𝑣 𝑆 (𝑡 ) only

if 𝑆𝑎 ∈ G𝑣
(
Δ(𝑡 )

)
. By Lemma 1,���{𝑣 ∈ V (𝑡 ) ��� 𝑆𝑎 ∈ G𝑣 (

Δ(𝑡 )
)}��� < 2

𝛽
· 𝑤 (𝑆𝑎)
𝐾 (𝑡 )

· |V (𝑡 ) |.

Note now that |V (𝑡 ) | ≤ 𝛽 |V (𝑡−1) |, so that |V (𝑡+1) | ≤ 𝛽𝑡𝑛. Fur-

thermore, 𝐾 (𝑡 ) = 𝛼𝐾 (𝑡−1) , so that 𝐾 (𝑡+1) = 𝛼𝑡 (1 − 𝛼)𝐾 . Therefore,

𝑉W (𝑡 )

(
𝑆 (𝑡 ) , 𝑆𝑎

)
≤

���{𝑣 ∈ V (𝑡 ) ��� 𝑆𝑎 ∈ G𝑣 (
Δ(𝑡 )

)}���
<
2

𝛽
· 𝑤 (𝑆𝑎)
𝐾 (𝑡 )

· |V (𝑡 ) |

≤
(
𝛽

𝛼

)𝑡−1
· 2

(1 − 𝛼)𝛽 ·
𝑤 (𝑆𝑎)
𝐾
· 𝑛.

Summing over all 𝑡 , we have

𝑉

(
𝑇 𝑓 , 𝑆𝑎

)
≤

∑
𝑡 ≥1

𝑉W (𝑡 )

(
𝑆 (𝑡 ) , 𝑆𝑎

)
<

2𝛼

𝛽 (1 − 𝛼) (𝛼 − 𝛽) ·
𝑤 (𝑆𝑎)
𝐾
· 𝑛.

This is minimized when 𝛽 = 𝛼
2
. Setting 𝛼 = 1

2
, this is at most

32 · 𝑤 (𝑆𝑎)
𝐾
· 𝑛, completing the proof. □

4 EXTENSIONS
We now present some extensions of the above results to the setting

where weights are subadditive, and there are multiple weight con-

straints. We also show settings in which the Algorithm 1 has an

efficient implementation.

4.1 General Weight Functions
Subadditive Weights. A careful reader may have observed that

the only property we have used in the proofs of Theorems 1 and 2

is that𝑤 (𝑆1 ∪ 𝑆2) ≤ 𝑤 (𝑆1) +𝑤 (𝑆2). Therefore, we have:

Corollary 1. There is a 32-approximately stable committee for

any subadditive weight function 𝑤 (𝑆) over committees, and any

monotone preferences of the voters.

Multiple Constraints.We note that Theorems 1 and 2 naturally

extend to the following setting with multiple weight constraints. In

the multi-constraint setting, there are𝑄 types of resources, and the

weight limit of the 𝑖-th resource is 𝐾𝑖 . Given a subadditive weight

𝑤 𝑗 (𝑆) for committee 𝑆 and resource 𝑗 , we select a committee 𝑆

so that all 𝑄 constraints 𝑤 𝑗 (𝑆) ≤ 𝐾𝑗 are respected. A coalition

V ′ ⊆ V should only have access to
|V′ |
|V | ·𝐾𝑗 amount of resource 𝑗 .

Definition 7 (Stable Committees: Multiple Constraints).

Given a committee 𝑆 ⊆ C of weight at most (𝐾1, 𝐾2, . . . , 𝐾𝑄 ), a
committee 𝑆 ′ ⊆ C of weight (𝐾 ′

1
, 𝐾 ′

2
, . . . , 𝐾 ′

𝑄
) blocks 𝑆 iff𝑉 (𝑆, 𝑆 ′) ≥

𝐾 ′𝑗
𝐾𝑗
· 𝑛 for all 𝑗 ∈ [𝑄]. A committee 𝑆 is stable if no committee 𝑆 ′

blocks it.

Notions of 𝑐-approximately stable committees and lotteries can

be similarly generalized. By normalizing the weights, we can as-

sume the cost limits are 𝐾1 = 𝐾2 = · · · = 𝐾𝑄 = 𝐾 . Redefine the

weight of a committee 𝑆 to be the maximum weight across the

resources, i.e., 𝑤 (𝑆) := max𝑗 ∈[𝑄 ] 𝑤 𝑗 (𝑆). This weight function is

also subadditive. Further, any (𝑐-approximately) stable solution in

the new single-resource instance would also be 𝑐-approximately

stable in the original multi-resource one: It is straightforward to

verify all 𝑄 constraints are satisfied in the original setting and the

no-deviation requirements are exactly the same in both settings.

We therefore have:

Corollary 2. There is a 32-approximately stable committee in

the setting with 𝑄 ≥ 1 resources.

4.2 Running Time
Our main result above is that of existence of approximately sta-

ble committees. If preferences are arbitrary, then we can find this

solution by brute-force calculation of 𝑉 (𝑆, 𝑆 ′) for all pairs of fea-
sible committees (𝑆, 𝑆 ′), which takes time exponential in 𝐾 . Our

algorithm has comparable running time, and the bottleneck is con-

structing a stable lottery efficiently. Indeed, Algorithm 1 runs in

poly(𝑚,𝑛) time if we can find an approximately stable lottery with

polynomial size support in polynomial time. Achieving this for

Approval Set or Participatory Budget setting is still an open

question. We now present some settings where a more efficient

implementation is possible.

We first define the following notion of (𝑐, 𝐿)-approximately sta-

ble committee, generalizing the notion defined in [12] to arbitrary

weights.

Definition 8 ((𝑐, 𝐿)-Approximately Stable Committee). A

committee 𝑆 ⊆ C of weight at most an integer value 𝐾 is (𝑐, 𝐿)-
approximately stable for 1 ≤ 𝐿 ≤ 𝐾 if there is no committee 𝑆 ′ with
at most 𝐿 candidates such that 𝑉 (𝑆, 𝑆 ′) ≥ 𝑐 · 𝑤 (𝑆

′)
𝐾
· 𝑛.

In the Approval set setting, a (1, 1)-stable committee is exactly

a committee that satisfies Justified Representation [2], which in it-

self is a non-trivial property. If we restrict the attacking committees

𝑆𝑎 to have at most 𝐿 candidates, the number of such committees

is 𝑂

(
𝑚𝐿

)
. It is now easy to show that the (2 + 𝜀, 𝐿)-approximately

stable lottery in Section 2 can be computed in time poly

(
𝑚𝐿, 𝑛, 1𝜀

)
via the multiplicative weight update (MWM) method for solving

zero-sum games. The idea is that given a distribution over 𝑆𝑎 , the

defending strategy involves dependent rounding over this distribu-

tion and hence runs in poly

(
𝑚𝐿

)
time. The number of rounds of

MWMwill be polynomial in the number of attacking strategies and

1

𝜀 , and the resulting distribution over defending strategies will have

a support of size poly

(
𝑚𝐿, 1𝜀

)
. This implies Algorithm 1 is efficient

for constant 𝐿.

Corollary 3. For any 1 ≤ 𝐿 ≤ 𝐾 , a (32 + 𝜀, 𝐿)-approximately

stable committee can be computed in poly

(
𝑚𝐿, 𝑛, 1𝜀

)
time.

In the Ranking setting with additive weights, it is easy to ob-

serve that a committee is 𝑐-approximately stable iff it is (𝑐, 1)-
approximately stable. This directly implies the following.

Corollary 4. For sufficiently small constant 𝜀 > 0, a (32 + 𝜀)-
approximately stable committee for Ranking and Facility Loca-

tion preferences, even when candidates have arbitrary (additive)

weights, can be computed in poly

(
𝑚,𝑛, 1𝜀

)
time.
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This can be improved to a (16 + 𝜀)-approximation when the

candidates are unweighted, since an exactly stable lottery exists in

this setting [12]. We emphasize that prior to this, no such result

was known, even for existence of an approximately stable solution

for these preferences.

5 OPEN QUESTIONS
There are several challenging open questions, both for existence

and computation.

• Does an exactly stable lottery always exist for all monotone

preference structures? We show its existence for committees

of weight 𝐾 ≤ 3 and unit-weight candidates in Appendix B.

Though there is some intuition that the problem in Section 2

resembles fractional knapsack and hence must overflow the

knapsack while rounding, our proof for 𝐾 = 3 shows that

this intuition is misleading. Indeed, our proof uses a different

rounding procedure than standard dependent rounding, and

it is an open question whether such a procedure always

exists.

• Does an exactly stable committee exist for the Approval set

setting? For this specific setting, no counterexample to exact

stability is known.

• For Approval Set or Participatory budgeting, can an

approximately stable lottery (and hence a deterministic ap-

proximation) be efficiently computed? Unlike ranking and

Facility Location settings, it is possible that a solution is

not reasonably approximately stable, but no deviating coali-

tion is small. (See, e.g., the Ω(
√
𝐾) lower bound example

for PAV rules in [12].) On the other hand, though there are

exponentially many committees, the preference structure in

these settings is simple and we cannot rule out polynomial

time algorithms.

• Does a 2-approximately stable committee always exist for

any monotone preference structure? We conjecture that The-

orem 4 in Appendix A is in fact tight, and the factor of 32 in

Theorem 1 can possibly be lowered by other approaches.

A LOWER BOUND ON APPROXIMATION
It is relatively easy to construct a Participatory Budgeting pref-

erence profile where a (2− 𝜀)-approximately stable committee does

not exist. This instance has cyclic preferences. There are 𝑚 can-

didates {𝑐𝑖 }𝑖∈[𝑚] of unit weight, and 𝑛 = 𝑚 voters {𝑣𝑖 }𝑖∈[𝑛] . Let
𝐾 = 2 − 𝜀

2
. The preference of 𝑣𝑖 is:

𝑐𝑖 ≻ 𝑐𝑖+1 ≻ · · · ≻ 𝑐𝑚 ≻ 𝑐1 ≻ · · · ≻ 𝑐𝑖−1 .
Any feasible committee is some single candidate 𝑐𝑖 , but all voters

except 𝑣𝑖 can deviate and choose 𝑐𝑖−1 (or 𝑐𝑚 if 𝑖 = 1). Therefore,

the approximation ratio is at least
𝑚−1
𝑛 · 𝐾 = 𝑚−1

𝑚 ·
(
2 − 𝜀

2

)
> 2 − 𝜀

when𝑚 is large enough.

We now strengthen this example to show that even for the Rank-

ing setting with unit-weight candidates and integral committee

weight𝐾 , there exist instances where a (2−𝜀)-approximately stable

committee does not exist.

Theorem 4. In the unweighted Ranking setting, for any constant

𝜀 > 0, (2 − 𝜀)-approximately stable deterministic committees of

integral size 𝐾 may not exist.

Proof. For any positive integer 𝑟 ≥ 2 and ℓ , we construct the

following instance with 𝑛 = 𝑟 · ℓ voters and𝑚 = 𝑟 · ℓ candidates.
We view the candidates {𝑐𝑖, 𝑗 }𝑖∈[𝑟 ], 𝑗 ∈[ℓ ] as a matrix with 𝑟 rows

and ℓ columns. The voters are {𝑣𝑖, 𝑗 }𝑖∈[𝑟 ], 𝑗 ∈[ℓ ] , where 𝑣𝑖, 𝑗 has the
following preference:

• For candidates not in the same row, her preference is

𝑐𝑖, 𝑗𝑖 ≻ 𝑐𝑖+1, 𝑗𝑖+1 ≻ · · · ≻ 𝑐𝑟, 𝑗𝑟 ≻ 𝑐1, 𝑗1 ≻ · · · ≻ 𝑐𝑖−1, 𝑗𝑖−1
for any 𝑗1, 𝑗2, · · · , 𝑗𝑟 .
• For candidates in the same row 𝑖 ′, her preference is

𝑐𝑖′, 𝑗 ≻ 𝑐𝑖′, 𝑗+1 ≻ · · · ≻ 𝑐𝑖′,ℓ ≻ 𝑐𝑖′,1 ≻ · · · ≻ 𝑐𝑖′, 𝑗−1 .

Let 𝐾 = 𝑟 − 1. For any deterministic committee 𝑆𝑑 of size 𝐾 , there

must be some 𝑖 ∈ [𝑟 ], so that no candidate from the 𝑖-th row is in

𝑆𝑑 , and at most one candidate from the (𝑖 + 1)-th (or first if 𝑖 = 𝑟 )

row is in 𝑆𝑑 . Otherwise, every row where no candidate is selected

must be followed by a row where at least 2 candidate is selected.

Thus, on average, at least 1 candidate is selected from each row,

contradicting with 𝐾 = 𝑟 − 1.
Let the candidate in the (𝑖 + 1)-th row in 𝑆𝑑 be 𝑐𝑖+1, 𝑗 if there is

one. Notice that 𝑐𝑖+1, 𝑗−1 is preferred to 𝑆𝑑 by at least 2ℓ − 1 voters:
those in the 𝑖-th row and the (𝑖 + 1)-th row except 𝑣𝑖+1, 𝑗 . Therefore,

the approximation ratio 𝑐 is at least
(2ℓ−1)𝐾

𝑛 =
(2ℓ−1) (𝑟−1)

ℓ𝑟 , which

is close to 2 when ℓ and 𝑟 are large. □

B EXISTENCE OF EXACTLY STABLE
LOTTERY FOR 𝐾 ∈ {1, 2, 3}

In this section, we strengthen the result in Section 2 in the follow-

ing special case: Each candidate has unit weight, and 𝐾 ∈ {1, 2, 3}.
There are𝑚 candidates and 𝑛 voters with arbitrary monotone pref-

erences over committees. In this setting, we show that there is a

different way of constructing a dual solution that yields an exactly

stable lottery. This opens up the possibility that the analysis in Sec-

tion 2 is not tight even for larger values of 𝐾 . Indeed, we conjecture

that there is an exactly stable lottery for any 𝐾 and any monotone

preference structure.

Theorem 3. For unit-weight candidates and any number of voters

with arbitrary monotone preferences, when 𝐾 ∈ {1, 2, 3}, an exactly

stable lottery always exists.

The 𝐾 = 1 case is trivial. In the 𝐾 = 2 case, w.l.o.g. we can

assume the attacking strategy Δ𝑎 only comprises committees of

size 1. This is because having a size-𝐾 committee 𝑆𝑎 in Δ𝑎 does

not help the attacker even if all voters prefer 𝑆𝑎 to 𝑆𝑑 . Then the

𝐾 = 2 case is covered by Lemma 4 below. Therefore we focus on

the 𝐾 = 3 case. We adopt the duality view introduced in Section 2.

Given any attacking strategy Δ𝑎 , w.l.o.g. assume it only comprises

committees of size 1 and size 2 for the same reason that having a

size-𝐾 committee in Δ𝑎 does not help.

Let 𝑝 = Pr𝑆𝑎∼Δ𝑎
[|𝑆𝑎 | = 1], so that Pr𝑆𝑎∼Δ𝑎

[|𝑆𝑎 | = 2] = 1 − 𝑝 .
Note that the expected weight of Δ𝑎 is 𝑝 + 2(1 − 𝑝).

Case 1. Suppose 𝑝 ∈ {0, 1}. In that case, all committees in the

support of Δ𝑎 have the same weight. The following lemma now

shows the existence of an exactly stable lottery.
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Lemma 4. For any 𝐾 ′ ≤ 𝐾 , if every committee in the support of

Δ𝑎 has exactly the same weight 𝐾 ′, then an exactly stable lottery

over committees of size at most 𝐾 always exists.

Proof. Given Δ𝑎 , we draw 𝑆1, 𝑆2, . . . , 𝑆𝑡 independently from Δ𝑎
where 𝑡 =

⌊
𝐾
𝐾 ′

⌋
. Let 𝑆𝑑 =

⋃
𝑖∈[𝑡 ] 𝑆𝑖 so |𝑆𝑑 | = 𝑡𝐾 ′ ≤ 𝐾 . Now we

need to show

E
𝑆𝑎∼Δ𝑎

[
𝑉 (𝑆𝑑 , 𝑆𝑎) −

𝐾 ′

𝐾
· 𝑛

]
< 0.

For any voter 𝑣 ∈ [𝑛], Pr𝑆𝑎∼Δ𝑎
[𝑆𝑎 ≻𝑣 𝑆𝑑 ] is the probability that

𝑆𝑎 is strictly most preferred among 𝑆𝑎, 𝑆1, 𝑆2, . . . , 𝑆𝑡 , each of which

is independently drawn from Δ𝑎 . Thus

Pr
𝑆𝑎∼Δ𝑎

[𝑆𝑎 ≻𝑣 𝑆𝑑 ] ≤
1

𝑡 + 1 <
𝐾 ′

𝐾
.

Summing over 𝑣 ∈ N gives the desired result. □

Case 2. From now on, we will assume 𝑝 ∈ (0, 1). For convenience,
we useΔ1 andΔ2 to denote the conditional distributions ofΔ𝑎 when
𝑆𝑎 is of weight 1 and 2, respectively. That is, for any 𝑆 ⊆ C,

Pr
𝑆1∼Δ1

[𝑆1 = 𝑆] = Pr
𝑆𝑎∼Δ𝑎

[𝑆𝑎 = 𝑆 | |𝑆𝑎 | = 1],

Pr
𝑆2∼Δ2

[𝑆2 = 𝑆] = Pr
𝑆𝑎∼Δ𝑎

[𝑆𝑎 = 𝑆 | |𝑆𝑎 | = 2] .

We construct a defending committee using the following procedure:

• With probability 𝑝2, independently draw two committees

from Δ1 and let 𝑆𝑑 be their union.

• Otherwise (with probability 1 − 𝑝2), independently draw

one committee from Δ1 and one from Δ2 and let 𝑆𝑑 be their

union.

Denote the distribution of 𝑆𝑑 as Δ𝑑 , which is the defending strategy.

To prove Theorem 3, we need to show

E
𝑆𝑎∼Δ𝑎,𝑆𝑑∼Δ𝑑

[𝑉 (𝑆𝑑 , 𝑆𝑎)] <
𝑝 + 2(1 − 𝑝)

3

· 𝑛. (5)

Fix voter 𝑣 . Consider the committees in decreasing order of

voter preference. We say that a committee 𝑆𝑎 appears at position

𝑥 ∈ [0, 1] if the total probability mass in Δ𝑎 of committees 𝑆 ≺𝑣 𝑆𝑎
is 𝑥 . For convenience, we assume 𝑥 is continuous; this will only

help the attacking strategy in the proof below. Similarly, let 𝑓 (𝑥)
denote the total probability mass in Δ𝑎 of 𝑆 ≺𝑣 𝑆𝑎 with |𝑆 | = 1, and

𝑔(𝑥) denote the total probability mass in Δ𝑎 of 𝑆 ≺𝑣 𝑆𝑎 with |𝑆 | = 2.

Clearly, 0 ≤ 𝑓 (𝑥) ≤ 𝑝 , 0 ≤ 𝑔(𝑥) ≤ 1 − 𝑝 , and 𝑓 (𝑥) + 𝑔(𝑥) ≤ 𝑥 .
Now, if the attacker chooses 𝑆𝑎 at position 𝑥 (where 𝑥 is uni-

formly at random in [0, 1]), the probability that the defender chooses
one 𝑆 ≺𝑣 𝑆𝑎 conditioned on |𝑆 | = 1 is

𝑓 (𝑥)
𝑝 . Similarly, the probabil-

ity that the defender chooses one 𝑆 ≺𝑣 𝑆𝑎 conditioned on |𝑆 | = 2

is
𝑔 (𝑥)
1−𝑝 . Since the defender chooses two committees of unit weight

with probability 𝑝2, and one committee of weight one and the other

of weight 2 with probability 1 − 𝑝2, we have:

Pr
𝑆𝑎∼Δ𝑎,𝑆𝑑∼Δ𝑑

[𝑆𝑎 ≻𝑣 𝑆𝑑 ]

≤𝑝2
∫

1

0

(
𝑓 (𝑥)
𝑝

)
2

d𝑥 + (1 − 𝑝2)
∫

1

0

𝑓 (𝑥)
𝑝
· 𝑔(𝑥)
1 − 𝑝 d𝑥

≤ 1
𝑝
·
∫

1

0

(
(1 + 𝑝) · 𝑥 · 𝑓 (𝑥) − 𝑓 2 (𝑥)

)
d𝑥, (6)

where the first inequality enumerates the quantile of 𝑆𝑎 in Δ𝑎 .
To maximize (6), an integral over a quadratic function of 𝑓 (𝑥) if

we fix 𝑝 and 𝑥 , we should have 𝑓 (𝑥) = min

(
𝑝,
(1+𝑝)𝑥

2

)
. Thus,

Pr
𝑆𝑎∼Δ𝑎,𝑆𝑑∼Δ𝑑

[𝑆𝑎 ≻𝑣 𝑆𝑑 ]

≤ 1
𝑝
·
(∫ 2𝑝

1+𝑝

0

(1 + 𝑝)2 · 𝑥2
4

d𝑥 +
∫

1

2𝑝

1+𝑝

(
(1 + 𝑝) · 𝑥 · 𝑝 − 𝑝2

)
d𝑥

)
=
1

𝑝
·
(
𝑝2

3

+ 𝑝 (1 − 𝑝)
2

)
=
1

2

− 𝑝
6

<
2 − 𝑝
3

,

where the final inequality follows since 𝑝 < 1. Summing over the

voters gives (5), and hence proves Theorem 3.
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