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Abstract

Given a dynamic graph subject to insertions and deletions of edges, a natural question is
whether the graph presently admits a planar embedding. We give a deterministic fully-dynamic
algorithm for general graphs, running in amortized O(log3 n) time per edge insertion or deletion,
that maintains a bit indicating whether or not the graph is presently planar. This is an exponential
improvement over the previous best algorithm [Eppstein, Galil, Italiano, Spencer, 1996] which
spends amortized O(

√
n) time per update.
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1 Introduction

A linear time algorithm for determining whether a graph is planar was found by Hopcroft and
Tarjan [14]. For the partially dynamic case, where one only allows insertion of edges, the problem was
solved by La Poutré [17], who improved on work by Di Battista, Tamassia, and Westbrook [5, 19, 20],
to obtain a amortized running time of O(α(q, n)) where q is the number of operations, and where α
is the inverse-Ackermann function. Galil, Italiano, and Sarnak [8] made a data structure for fully
dynamic planarity testing with O(n

2
3 ) amortized time per update, which was improved to O(

√
n)

by Eppstein et al. [7].
While there has for a long time been no improvements upon [7], there have been different

approaches in works that address the task of maintaining an embedded graph. In [15], Italiano, La
Poutré, and Rauch present a data structure for maintaining a planar embedded graph while allowing
insertions that do not violate the embedding, but allowing arbitrary deletions; its update time is
O(log2 n). Eppstein [6] presents a data structure for maintaining a dynamic embedded graph, which
handles updates in O(log n) time if the embedding remains plane—this data structure maintains the
genus of the embedding, but does not answer whether another embedding of the same graph with a
lower genus exists.

Pǎtraşcu and Demaine [16] give a lower bound of Ω(log n) for fully-dynamic planarity testing.
For other natural questions about fully-dynamic graphs, such as fully dynamic shortest paths, even
on planar graphs, there are conditional lower bounds based on popular conjectures that indicate
that subpolynomial update bounds are unlikely [2, 1].

In this paper, we show that planarity testing does indeed admit a subpolynomial update time
algorithm, thus exponentially improving the state of the art for fully-dynamic planarity testing. We
give a deterministic fully-dynamic algorithm for general graphs, running in amortized O(log3 n) time
per edge insertion or deletion, that explicitly maintains a single bit indicating whether the graph is
presently planar, and that given any vertex can answer whether the connected component containing
that vertex is planar in worst case O(log n/ log logn) time.

In fact, our algorithm not only maintains whether the graph is presently planar, but also implicitly
maintains how the graph may be embedded in the plane, in the affirmative case. Specifically, we
give a deterministic algorithm that maintains a planar embedding of a fully dynamic planar graph
in amortized O(log3 n) time per edge insertion, and worst case O(log2 n) time per edge deletion. In
this algorithm, attempts to insert edges that would violate planarity are detected and rejected, but
may still change the embedding. The algorithm for fully-dynamic general graphs then follows by a
simple reduction.

Our main result consists of two parts which may be of independent interest. Our analysis goes
via a detailed understanding of flips, i.e. local changes to the embedding, to be defined in Section 1.1.
Firstly, we consider any algorithm for maintaining an embedding that lazily makes no changes to
the embedding upon edge deletion, and that for each (attempted) insertion greedily only does the
minimal (or close to minimal) number of flips necessary to accommodate the edge. We prove that
any such algorithm will do amortized O(log n) flips. Secondly, we show how to find such a sufficiently
small set of flips in worst case O(log2 n) time per flip.

The idea of focusing on flips is not new: In [11], we use insights from Eppstein [6] to improve
upon the data structure by Italiano, La Poutré, and Rauch [15], so that it also facilitates flips, i.e.
local changes to the embedding, and, so that it may handle edge-insertions that only require one
such flip. In [12], we analyze these flips further and show that there exists a class of embeddings
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where only Θ(log n) flips are needed to accommodate any one edge insertion that preserves planarity.
The core idea of our analysis of the lazy greedy algorithm is to define a potential function based

on how far the current embedding is from being in this class. This is heavily inspired by the analysis
of Brodal and Fagerberg’s algorithm for fully-dynamic bounded outdegree orientation [4].

1.1 Maintaining an embedding if it exists

Before stating our results in detail, we will define some crucial but natural terminology for describing
changeable embeddings of dynamic graphs.

Planar graphs are graphs that can be drawn in the plane without edge crossings. A planar graph
may admit many planar embeddings, and we use the term plane graph to denote a planar graph
equipped with a given planar embedding. Given a plane graph, its drawing in the plane defines faces,
and the faces together with the edges form its dual graph. Related, one may consider the bipartite
vertex-face (multi-)graph whose nodes are the vertices and faces, and which has an edge for each
time a vertex is incident to a face. Through the paper, we will use the term corner to denote an
edge in the vertex-face graph, reflecting that it corresponds to a corner of the face in the planar
drawing of the graph.

If a planar graph has no vertex cut-sets of size ≤ 2, its embedding is unique up to reflection. On
the other hand, if a plane graph has an articulation point (cut vertex) or a separation pair (2-vertex
cut), then it may be possible to alter the embedding by flipping [21, 11, 12] the embedding in that
point or pair (see figure 1). Given two embeddings of the same graph, the flip-distance between
them is the minimal number of flips necessary to get from one to the other. Intuitively, a flip can be
thought of as cutting out a subgraph by cutting along a 2-cycle or 4-cycle in the vertex-face graph,
possibly mirroring its planar embedding, and then doing the inverse operation of cutting along a 2-
or 4-cycle in the vertex-face graph. The initial cutting and the final gluing involve the same vertices
but not necessarily the same faces, thus, the graph but not the embedding is preserved.

y

z

y
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y
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(a) Separation flips: reflect and slide.

xx x

(b) Articulation flips: reflect and slide.

Figure 1: Local changes to the embedding of a graph [12].

We use the following terminology: To distinguish between whether the subgraph being flipped is
connected to the rest of the graph by a separation pair or an articulation point, we use the terms
separation flip and articulation flip, respectively. To indicate whether the subgraph was mirrored,
moved to a different location, or both, we use the terms reflect, slide, and reflect-and-slide. Note that
for articulation flips, only slide and reflect-and-slide change which edges are insertable across a face.
For separation flips, note that any slide operation or reflect-and-slide operation may be obtained by
doing 3 or 2 reflect operations, respectively.
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Results. Let n denote the number of vertices of our fully-dynamic graph.

Theorem 1. There is a data structure for fully-dynamic planarity testing that handles edge-insertions
and edge-deletions in amortized O(log3 n) time, answers queries to planarity-compatibility of an edge
in amortized O(log3 n) time, and answers queries to whether the graph is presently planar in worst
case O(1) time, or to whether the component of a given vertex is presently planar in worst case
O(log n/ log log n) time. It maintains an implicit representation of an embedding that is planar on
each planar connected component, and may answer queries to the neighbors of a given existing edge
in this current embedding, in O(log2 n) time.

The result follows by applying a simple extension of the reduction by Eppstein et al. [7, Corollary 1]
to the following theorem:

Theorem 2. There is a data structure for maintaining a planar embedding of a fully-dynamic planar
graph that handles edge-updates and planarity-compatibility queries in amortized O(log3 n) time, edge
deletions in worst-case O(log2 n) time, and queries to the neighbors of a given existing edge in the
current embedding in worst-case O(log2 n) time.

The underlying properties in the data structure above include that the queries may change the
embedding, but the deletions do not change anything aside from the mere deletion of the edge itself.

To arrive at these theorems, we prove some technical lemmas which may be of independent
interest. A weak form of these that is easy to state is the following:

Lemma 3. Any algorithm for maintaining a fully dynamic planar embedding that for each attempted
edge-insertion greedily does the minimal number of flips, and that for each edge deletion lazily
does nothing, will do amortized O(log n) flips per insertion when starting with an empty graph (or
amortized over Ω(n/ log n) operations).

1.2 Article outline

In Section 2, we introduce some of the concepts and data structures that we use to prove our result.
In Section 3 we give the proof of Lemma 3 conditioned on insights and details deferred to Section 6.
In Section 4, we prove Theorem 2 by giving an algorithm (given an edge to insert and an embedded
graph) for greedily finding flips that bring us closer to an embedding that is compatible with the
edge we are trying to insert. In Section 5, we show how the reduction that extends this result to
general graphs, proving Theorem 1.

2 Preliminaries

Since each 3-connected component of a planar graph has a unique embedding up to reflection, the
structure of 3-connected components play an important role in the analysis of embeddings. Namely,
the two-vertex cuts (also known as separation pairs) point to places where there is a choice in
how to embed the graph. Similarly, any cutvertex (also known as articulation point) points to a
freedom in the choice of embedding. In the following, we will define the BC tree and the SPQR
tree which are structures that reflect the 2-connected components of a connected graph and the
3-connected components of a 2-connected graph, respectively. Then, related to the understanding of
a combinatorial embedding, we will define flips which are local changes to the embedding, and the
notion of flip distance between embedded graphs.
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BC trees, as described in [9, p. 36], reflect the 2-connected components and their relations.

Definition 4. Let x be a vertex in a connected loopless multigraph G. Then x is an articulation
point if G− {x} is not connected.

Definition 5. A (strict) BC tree for a connected loopless multigraph G = (V,E) with at least 1
edge is a tree with nodes labelled B and C, where each node v has an associated skeleton graph Γ(v)
with the following properties:
• For every node v in the BC tree, V (Γ(v)) ⊆ V .
• For every edge e ∈ E there is a unique node v = b(e) in the BC tree such that e ∈ E(Γ(v)).
• For every edge (u, v) in the BC tree, V (Γ(u)) ∩ V (Γ(v)) 6= ∅ and either u or v is a C node.
• If v is a B node, Γ(v) is either a single edge or a biconnected graph.
• If v is a C node, Γ(v) consists of a single vertex, which is an articulation point in G.
• No two B nodes are neighbors.
• No two C nodes are neighbors.

The BC tree for a connected graph is unique. The (skeleton graphs associated with) the B nodes
are sometimes referred to as G’s biconnected components. In this paper, we use the term relaxed
BC tree as defined in [12] to denote a tree that satisfies all but the last condition. Unlike the strict
BC tree, the relaxed BC tree is not unique.

SPQR trees Reflecting the structure of the 3-connected components, we rely on the SPQR tree.

Definition 6 (Hopcroft and Tarjan [13, p. 6]). Let {a, b} be a pair of vertices in a biconnected
multigraph G. Suppose the edges of G are divided into equivalence classes E1, E2, . . . , Ek, such that
two edges which lie on a common path not containing any vertex of {a, b} except as an end-point
are in the same class. The classes Ei are called the separation classes of G with respect to {a, b}. If
there are at least two separation classes, then {a, b} is a separation pair of G unless (i) there are
exactly two separation classes, and one class consists of a single edge1, or (ii) there are exactly three
classes, each consisting of a single edge2

Definition 7 ([10]). The (strict) SPQR tree for a biconnected multigraph G = (V,E) with at least
3 edges is a tree with nodes labeled S, P, or R, where each node x has an associated skeleton graph
Γ(x) with the following properties:
• For every node x in the SPQR tree, V (Γ(x)) ⊆ V .
• For every edge e ∈ E there is a unique node x = b(e) in the SPQR tree such that e ∈ E(Γ(x)).
• For every edge (x, y) in the SPQR tree, V (Γ(x)) ∩ V (Γ(y)) is a separation pair {a, b} in G,

and there is a virtual edge ab in each of Γ(x) and Γ(y) that corresponds to (x, y).
• For every node x in the SPQR tree, every edge in Γ(x) is either in E or a virtual edge.
• If x is an S node, Γ(x) is a simple cycle with at least 3 edges.
• If x is a P node, Γ(x) consists of a pair of vertices with at least 3 parallel edges.
• If x is an R node, Γ(x) is a simple triconnected graph.
• No two S nodes are neighbors, and no two P nodes are neighbors.

The SPQR tree for a biconnected graph is unique (see e.g. [5]). In this paper, we use the term
relaxed SPQR tree as defined in [12] to denote a tree that satisfies all but the last condition. Unlike
the strict SPQR tree, the relaxed SPQR tree is not unique.

1So in a triconnected graph, the endpoints of an edge do not constitute a separation pair.
2So the graph consisting of two vertices connected by 3 parallel edges is triconnected.
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Pre-split BC trees and SPQR trees. Once the BC tree or the SPQR is rooted, one may form
a path decomposition [18] over them. Given a connected component, one may form its BC tree and
an SPQR tree for each block. In [12], we show how to obtain a balanced combined tree for each
component, inspired by [3], where the heavy paths reflect not only the local SPQR tree of a block,
but also the weight of the many other blocks.

Given a heavy path decomposition, [12] introduced presplit versions of BC trees and SPQR trees,
in which cutvertices, P nodes and S nodes that lie internal on heavy paths have been split in two,
thus transforming the strict BC tree or SPQR tree into a relaxed BC or SPQR tree.

Flip-finding. In [11] we give a structure for maintaining a planar embedded graph subject to
edge deletions, insertions across a face, and flips changing the embedding. It operates using the
tree-cotree decomposition of a connected plane graph; for any spanning tree, the non-tree edges form
a spanning tree of the dual graph where faces and vertices swap roles. The data structure allows
the following interesting operation: Mark a constant number of faces, and search for vertices along
a path in the spanning tree that are incident to all marked faces. Or, dually, mark a number of
vertices and search for faces along a path in the cotree. This mark-and-search operation is supported
in O(log2 n) time. Originally, in [11], we use the mark-and-search operation to detect single flips
necessary to bring a pair of vertices to the same face. It turns out this operation is more powerful
than previously assumed, and we will use it as part of the machinery that finds all the possibly many
flips necessary to bring a pair of vertices to the same face.

Good embeddings In [12], a class of good embeddings are provided that share the property that
any edge that can be added without violating planarity only requires O(log n) flips to the current
embedding. The good embeddings relate to the dynamic balanced heavy path decompositions of BC
trees and SPQR trees in the following way: For all the articulation points and separation pairs that
lie internal on a heavy path, the embedding of the graph should be favorable to the possibility of
an incoming edge connecting the endpoints of the heavy path, if possible. No other choices to the
embedding matter; the properties of the heavy path decomposition ensure that only O(log n) such
choices may be unfavorable to accommodating any planarity-preserving edge insertion.

Projections and meets For vertices x, y, and z on a tree, we use meet(x, y, z) to denote the
unique common vertex on all 3 tree paths between x, y, and z. Alternatively meet(x, y, z) can be
seen as the projection of x on the tree path from y to z. For a vertex x and a fundamental cycle C
in a graph with some implied spannning tree, let πC(x) denote the projection of x on C. Note that
if (y, z) is the non-tree edge closing the cycle C then πC(x) = meet(x, y, z).

3 Analyzing the number of flips in the lazy greedy algorithm

This section is dedicated to the proof of Lemma 3. We define some distance measures and a concept
of good embeddings, and single out exactly the properties of these that would be sufficient for the
lazy analysis to go through. All proofs that these sufficient conditions indeed are met are deferred to
Section 6, thus enabling us to give an overview within the first limited number of pages.

Definition 8. We will consider only two kinds of flips:
• An articulation flip at a takes a single contiguous subsequence of the edges incident to a out,

possibly reverses their order, and inserts them again, possibly in a different position.
• A separation flip at s, t reverses a contiguous subsequence of the edges incident to each of s, t.
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Definition 9. We will distinguish between two types of separation flips at s, t:
• In a P flip, each of the two subgraphs consist of at least 2 {s, t}-separation classes.
• In an SR flip, at least one of the two subgraphs consist of a single {s, t}-separation class.

Definition 10. A separation flip at s, t is clean if the first and last edges in each of the subsequences
being reversed are biconnected, and dirty otherwise. A clean separation flip preserves the sets of
edges that could participate in an articulation flip. All articulation flips are considered clean.

Definition 11. Given vertices u, v, a flip is called critical (for u, v) if exactly one of u and v is in
the subgraph being flipped.

Definition 12. For a planar graph G, let Emb(G) denote the graph whose nodes are planar
embeddings of G, and (H,H ′) is an edge if H ′ is obtained from H by applying a single flip. As a
slight abuse of notation we will also use Emb(G) to denote the set of all planar embeddings of G.
Furthermore, for vertices u, v in G let Emb(G;u, v) denote the (possibly empty) set of embeddings
of G that admit insertion of (u, v).

We will often need to discuss distances in some (pseudo)metric between a particular embedding
H ∈ Emb(G) and some particular subset of embeddings S ⊆ Emb(G). For this, we define (for any
metric or pseudometric dist)

dist(H,S) = dist(S,H) := min
H′∈S

dist(H,H ′)

Definition 13. For any two embeddings H,H ′ of the planar graph G, that is, H,H ′ ∈ Emb(G),
we say that a path from H to H ′ in Emb(G) is clean if every flip on the path is clean.
• Let distclean(H,H ′) be the length of a shortest clean path from H to H ′.
• Let distsep(H,H ′) be the minimum number of separation flips on a clean path from H to H ′.
• Let distP (H,H ′) be the minimum number of P flips on a clean path from H to H ′.

Observation 14. distclean is a metric, and distsep and distP are pseudometrics, on Emb(G).

In Section 6, we define two families of functions related to these particular (pseudo) metrics.
Intuitively, for each τ ∈ {clean, sep,P}, any planar graph G containing vertices u, v, and any
embedding H ∈ Emb(G):
• critical-costτ (H;u, v) is the number of flips of type τ needed to accommodate (u, v) (if possible).
• solid-costτ (H;u, v) is the number of flips of type τ needed to reach a “good” embedding that

accommodates (u, v) (if possible).
We will state the properties we need for these functions here, in the form of Lemmas (to be proven
once the actual definition has been given).

Lemma 15. For any planar graph G with vertices u, v, and any embedding H ∈ Emb(G),

solid-costτ (H;u, v) ≥ critical-costτ (H;u, v) ≥ 0

solid-costclean(H;u, v) ≥ solid-costsep(H;u, v) ≥ solid-costP(H;u, v)

critical-costclean(H;u, v) ≥ critical-costsep(H;u, v) ≥ critical-costP(H;u, v)

And if G ∪ (u, v) is planar,

critical-costclean(H;u, v) = 0 ⇐⇒ H ∈ Emb(G;x, y)
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Lemma 16. Let u, v be vertices in a planar graph G, let H ∈ Emb(G) and let H ′ ∈ Emb(G) be the
result of a single flip σ in H. Define

∆ critical-costτ := critical-costτ (H ′;u, v)− critical-costτ (H;u, v)

∆ solid-costτ := solid-costτ (H ′;u, v)− solid-costτ (H;u, v)

then ∆ critical-costτ ∈ {−1, 0, 1}, ∆ solid-costτ ∈ {−1, 0, 1}, and

∆ critical-costτ 6= 0 =⇒ σ is a critical flip ⇐⇒ ∆ solid-costτ = ∆ critical-costτ

Lemma 17. Let u, v be vertices in a planar graph G, and let H ∈ Emb(G).
• If critical-costτ (H;u, v) > 0 then there exists a clean flip in H such that the resulting H ′ ∈

Emb(G) has critical-costτ (H ′;u, v) < critical-costτ (H;u, v).
• If solid-costτ (H;u, v) > 0 then there exists a clean flip in H such that the resulting H ′ ∈

Emb(G) has solid-costτ (H ′;u, v) < solid-costτ (H;u, v).

The main motivation for defining critical-cost comes from the following

Corollary 18. Let G be a planar graph, let u, v be vertices in G such that G ∪ (u, v) is planar, and
let H ∈ Emb(G). Then

distτ (H,Emb(G;u, v)) = critical-costτ (H;u, v).

Proof. “≥” follows from Lemmas 15 and 16, and “≤” follows from Lemma 17.

With these properties in hand, we can now redefine what we mean by a good embedding in a
quantifiable way:

Definition 19. Given a planar graph G with vertices u, v, the good embeddings of G with respect
to u, v is the set

Emb?(G;u, v) := {H ∈ Emb(G) | solid-costclean(H;u, v) = 0}

And the set of all good embeddings of G is

Emb?(G) :=
⋃
u,v

Emb?(G;u, v) = {H ∈ Emb(G) | min
u,v

solid-costclean(H;u, v) = 0}

Note that this definition is not the same as in [12], although the underlying ideas are the same.
With this definition, we get

Corollary 20. Let G be a planar graph, let u, v be vertices in G, and let H ∈ Emb(G). Then

distτ (H,Emb?(G;u, v)) = solid-costτ (H;u, v)

distτ (H,Emb?(G)) = min
u,v

solid-costτ (H;u, v)

Proof. “≥” follows from Lemmas 15 and 16, and “≤” follows from Lemma 17.

The reason we call these embeddings good is the following property

7



Lemma 21. Given a planar graph G with vertices u, v and any H ∈ Emb?(G), then

distclean(H,Emb?(G;u, v)) ∈ O(log n)

Corollary 22. Given a planar graph G with vertices u, v and any H ∈ Emb(G), then

distτ (H,Emb?(G)) ≤ distτ (H,Emb?(G;u, v)) ≤ distτ (H,Emb?(G)) +O(log n)

Proof. The first inequality follows from Emb?(G) ⊇ Emb?(G;u, v). For the second, letH ′ ∈ Emb?(G)
minimize distτ (H,H ′). By Corollary 20 and Lemmas 15 and 21,

distτ (H ′,Emb?(G;u, v)) ≤ distclean(H ′,Emb?(G;u, v)) ∈ O(log n)

and the result follows by the triangle inequality.

Lemma 23. Given a planar graph G with vertices u, v, such that G ∪ (u, v) is planar, and any
H ∈ Emb(G;u, v). Then

solid-costτ (H;u, v) = solid-costτ (H ∪ (u, v);u, v)

Everything so far has been stated in terms of clean flips. Most of our results do not depend on
this, due to the following lemma (Proved in Section 6.3).

Lemma 24. A dirty separation flip corresponds to a clean separation flip and at most 4 articulation
flips. At most one of these 5 flips change solid-costτ or critical-costτ .

Theorem 25. Let p, q, r ∈ N0 be nonnegative integer constants. Let A be a lazy greedy algorithm
for maintaining a planar embedding with the following behavior:
• A does no flips during edge deletion; and
• during the attempted insertion of the edge (u, v) into an embedded graph H, A only uses critical
flips; and
• this sequence of flips can be divided into steps of at most r flips, such that each step (except
possibly the last) decreases the following potential by at least 1:

critical-costclean(H;u, v) + p · critical-costsep(H;u, v) + q · critical-costP(H;u, v)

Then, A uses amortized O(log n) steps per attempted edge insertion.

Proof. Let G be a planar graph with vertices u, v, such that G ∪ (u, v) is planar, let H0 ∈ Emb(G)
be the embedding before inserting (u, v) and let H1, . . . ,Hk ∈ Emb(G) be the embedded graphs
after each “step” until finally Hk ∈ Emb(G;u, v).

Define distalg = distclean +p · distsep +q · distP. Then distalg is a metric on Emb(G), and for each
H ∈ Emb(G) we can define

Φ(H) = distalg(H,Emb?(G))

Φ(H;u, v) = distalg(H,Emb?(G;u, v))

By Corollary 22 Φ(H) ≤ Φ(H;u, v) ≤ Φ(H) +O(log n).
By assumption, distalg(H,Emb(G;u, v)) is strictly decreasing in each step, and by Lemma 16,

Φ(H;u, v) decreases by exactly the same amount. In particular, after k steps it has decreased by at
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X0

Xk

Xk ∪ (u, v)

H ∈ Emb?(G)

Y ∈ Emb?(G;u, v)

Y ′ ∈ Emb?(G ∪ (u, v);u, v)

H ′ ∈ Emb?(G ∪ (u, v))

Φ(X0)

Φ(X0;u, v) ≤ Φ(X0) +O(log n)
k

Φ(Xk;u, v) ≤ Φ(X0;u, v)− k

O(log n)

0 Φ(Xk ∪ (u, v);u, v) = Φ(Xk;u, v) 0

O(log n)
Φ(Xk ∪ (u, v)) ≤ Φ(Xk ∪ (u, v);u, v)

Emb(G)

Emb(G;u, v)

Emb(G ∪ (u, v))

Figure 2: Illustration of the proof of Theorem 25.

least k, so Φ(Hk;u, v) ≤ Φ(H0;u, v)−k ≤ Φ(H0)+O(log n)−k. By Lemma 23, Φ(Hk∪(u, v);u, v) =
Φ(Hk;u, v), so

Φ(Hk ∪ (u, v)) ≤ Φ(Hk ∪ (u, v);u, v) = Φ(Hk;u, v) ≤ Φ(H0;u, v)− k ≤ Φ(H0) +O(log n)− k

The same argument holds when an attempted insert stops after k steps because G ∪ (u, v) is not
planar. Since the potential Φ(H) increases by at most O(log n) and drops by at least the number of
steps used, the amortized number of steps for each attempted insert is O(log n).

For deletion it is even simpler, as

Φ(H − (u, v)) ≤ Φ(H − (u, v);u, v) = Φ(H;u, v) ≤ Φ(H) +O(log n)

Thus, each deletion increases the potential by O(log n). However, as we start with an empty edge
set, the number of deletions is upper bounded by the number of insertions, and so each edge can
instead pay a cost of O(log n) steps when inserted to cover its own future deletion. In other words,
deletions are essentially free.

As a direct consequence, our main lemma holds.

Lemma 3. Any algorithm for maintaining a fully dynamic planar embedding that for each attempted
edge-insertion greedily does the minimal number of flips, and that for each edge deletion lazily
does nothing, will do amortized O(log n) flips per insertion when starting with an empty graph (or
amortized over Ω(n/ log n) operations).

Proof. Set p = q = 0 and r = 1 in the lemma above, and the result follows.

Our algorithm may not decrease critical-cost in every step. To simplify the description of how
and when it changes, we associate each type of flip with one of the critical-costτ as in Corollary 27:
• A P flip is associated with critical-costP
• An SR flip is associated with critical-costsep
• An articulation flip is associated with critical-costclean
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A flip is potential-decreasing/potential-neutral/potential-increasing if it changes its associated cost
by −1/0/1 respectively.

Using the following lemma (proved in Section 6)

Lemma 26. Any SR flip or articulation flip leaves critical-costP and solid-costP unchanged, and
any articulation flip leaves critical-costsep and solid-costsep unchanged.

we can simplify Theorem 25 to.

Corollary 27. Let A be a lazy greedy algorithm for planar embeddings that does no flips during
edge deletion, and that during attempted edge insertion only uses critical flips such that
• Each flip (except possibly the last) is potential-decreasing or potential-neutral.
• For some constant r, no sequence of r consecutive flips are potential-neutral.

Then A uses amortized O(log n) steps per attempted edge insertion.

Proof. Simply use p = r + 1, q = r2 + 2r + 1, r = r in Theorem 25, and note that Lemma 26
guarantees the resulting potential is strictly decreasing in each round of at most r flips.

4 A Greedy Flip-Finding Algorithm

We use the data structure from [11] to represent the current embedding. This structure maintains
interdigitating spanning trees (also known as the tree co-tree decomposition) for the primal and dual
graphs under flips, admissible edge insertions, and edge deletions in worst case O(log2 n) time per
operation. In particular it supports the linkable(u, v) operation, which in worst case O(log2 n)
time either determines that u and v has no face in common and returns “no”, or returns some pair of
corners ((u, f), (v, f)) where f is a common face.

Furthermore, the structure allows for a mark-and-search operation, in which a constant number
of faces may be “marked”, and vertices along a path on the spanning tree that are incident to all
marked faces may be sought after in O(log2 n) time. (Dually, one may mark vertices and search for
faces in the same time, ie. O(log2 n).)

4.1 Algorithm overview

We want to use this structure to search for the flips needed to insert a new edge (u, v) that is not
admissible in the current embedding. For simplicity, we will present an algorithm that fits the
framework in Corollary 27, rather than insisting on finding a shortest sequence of clean flips. This is
sufficient to get amortized O(log n) flips, and with O(log2 n) overhead per flip, amortized O(log3 n)
time for (attempted) edge insertion. If desired, the algorithm can be made to detect if it has made
non-optimal flips and backtrack to use an optimal sequence of flips without affecting the asymptotic
amortized running time.

At the highest possible level of abstraction, our algorithm is just the multi-flip-linkable
routine from Algorithm 1. In the following we will go into more detail and provide detailed proofs.
We will assume full knowledge of how to use the mark-and-search features from [11] to e.g. search a
path in the dual tree for the first face containing a given pair of vertices.

Let a1, . . . , ak−1 be the articulation points on u · · · v, and let a0 = u and ak = v. For 1 ≤ i ≤ k
let Bi be the biconnected component (or bridge) containing ai−1 · · · ai. Our algorithm “cleans up”
this path by sweeping from a0 = u to ak = v. At all times the algorithm keeps track of a latest
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Algorithm 1
1: function multi-flip-linkable(u, v)
2: u′ ← u
3: while u′ 6= v do
4: if u′, v biconnected then
5: v′ ← v
6: else
7: v′ ← first articulation point on u′ · · · v.
8: if not do-separation-flips(u′, v′) then . Do all separation flips needed in Bi+1.
9: return “no”

10: do-articulation-flips(u, u′, v′, v) . Do articulation flips required by Bi+1.
11: . Now u shares a face with v′, and (if v′ 6= v) with at least one edge in Bi+2.
12: u′ ← find-next-flip-block(u, u′, v′, v) . Skip to next relevant ai
13: return “yes” . u, v are now in same face

articulation point u′ = ai seen on u · · · v (initially u′ = a0 = u) such that either u′ = u or (u, u′) is
admissible in the current embedding. We will further maintain the invariant that (unless i = k)
there is a common face of u and ai that contains at least one edge from Bi+1. In the round where
u′ = ai the algorithm sets v′ = ai+1 and does the following:

1. It finds and applies all separation flips in Bi+1 needed to make (ai, ai+1) admissible, or detects
(after some number of flips) that Bi+1 ∪ (ai, ai+1) — and therefore G ∪ (u, v) — is nonplanar.

2. It finds at most one articulation flip at u′ and at most one articulation flip at v′, such that
afterwards u shares a face with v′ = ai+1, and (if v′ 6= v) with at least one edge from Bi+2.

3. It finds the first aj with j ≥ i+ 1 such that either: the next iteration of the loop finds at least
one flip; or no more flips are needed and aj = v. It then sets u′ ← aj .

The algorithm stops when u′ = v. By our invariant (u, v) is admissible if it reaches this point.

Lemma 28. If G ∪ (u, v) is planar and H0 ∈ Emb(G), this algorithm finds a sequence of graphs
H1, . . . ,Hk ∈ Emb(G) such that Hk ∈ Emb(G;u, v). The main loop performs O(k) iterations.

Proof. If G ∪ (u, v) is planar, then for every block Bi+1 there exists some (possibly empty) set of
separation flips such that H ∪ (ai, ai+1) is planar. Thus, after line 8 we know that ai and ai+1 share
a face. And by our invariant, we also know that u = a0 and u′ = ai share a face, incident to at least
one edge from Bi+1.

Now the call to do-articulation-flips in line 10 uses at most 2 articulation flips to update
the invariant so u shares a face with v′ and (if v 6= v′) with at least one edge in Bi+2.

Finally, the call to find-next-flip-block in line 12, updates u′ to the largest aj so the invariant
still holds. In particular, either a separation flip is needed in Bj+1, or an articulation flip is needed
in aj+1 before the face shared by u = a0 and aj+1 is incident to an edge in Bj+2.

Thus, in every iteration after (possibly) the first, at least one flip is performed. Thus if we stop
after k flips, the number of iterations is at most k + 1.

We stop with H 6∈ Emb(G;u, v) only if there is a block Bi+1 where do-articulation-
flips(ai, ai+1) returns “no” because we have detected that G ∪ (u, v) is nonplanar.

Otherwise we keep making progress, and will eventually have u′ = v. By our invariant (u, v) are
now in the same face, and thus Hk ∈ Emb(G;u, v).
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4.2 find-next-flip-block

The simplest part of our algorithm is the find-next-flip-block function in Algorithm 2 we use to
move to the next “interesting” articulation point, or to vertex v if we are done.

By interesting is meant the following: it is an articulation point aj on the BC-path from u to v
such that a flip in either aj , Bj+1, or aj+1 is necessary in order to bring u and v to the same face.

Algorithm 2

1: function find-next-flip-block(u, u′, v′, v)
2: . u shares a face with v′, and (if v′ 6= v) with at least one edge in Bi+2.
3: if v′ 6= v then
4: fu, c

1
u, c

2
u ← find-bounding-face(u, v′, v) . fu is incident to u.

5: fv, c
1
v, c

2
v ← find-bounding-face(v, v′, u)

6: if fu = fv then
7: if v incident to fu then
8: return v
9: return last internal node on u · · · v touching fu on both sides.

10: return v′

11: function find-bounding-face(u, a, v)
12: cu ← any corner incident to u; cv ← any corner incident to v
13: f ← first face on the dual path cu · · · cv touching a on both sides.
14: cL, cR ← first corners on left and right side of cu · · · cv that are incident to both a and f .
15: return f, cL, cR

Lemma 29. If a0 and ai+1 share a face containing at least one edge from Bi+2, then in worst case
O(log2 n) time find-next-flip-block(a0, ai, ai+1, ak) either returns the last aj (i < j < k) such
that a0 and aj share a face containing at least one edge from Bj+1; or ak if a0 and ak share a face.

Proof. First note that the running time is O(log2 n) because the dominating subroutine is the mark-
and-search algorithm from [11] called a constant number of times in Find-bounding-face(. . .),
and once on line 9.

For correctness, assume a = ai+1 is an articulation point separating u = a0 from v = ak. Then
there is at least one articulation point in the dual graph incident to a, and all such articulation
points lie on a path in the dual tree. By assumption, u lies in the bounding face of ai and ai+1, that
is, in the face f returned by Find-bounding-face(u, ai, ai+1). Now there are four basic cases:

1. If ai+2 does not lie in f , then we have indeed reached a block where flips are necessary, and
the algorithm returns ai+1 as desired. (See Figure 3)

2. On the other hand, if ai+2 lies in f but only has corners incident to f on one side, then we are
in a case where a flip in ai+2 is necessary to bring u to the same face as v, and the algorithm
returns ai+1 as desired. (See Figure 4)

3. Thirdly, it may be the case that ai+2 is incident to f on both sides of the path, in which
case no flips in ai+1, Bi+1, or ai+2 are necessary. In this case there is a non-trivial segment of
articulation points ai+1, ai+2, . . . that lie in f . Our algorithm will now return the last such aj
incident to f on both sides of the path. Here, we have two sub-cases. If aj+1 is not incident to
f , this indicates that either we have reached a point aj where an articulation flip is needed, or,
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we have reached a block Bj where flips are needed. On the other hand, if aj+1 is incident to f
but only on one side, we are in the case where an articulation flip in aj+1 is needed to bring u
and v to the same face. In both cases, our algorithm returns aj as desired. (See Figure 5)

4. Finally, we may be in the case where v lies in the same face as u and we are done, but in
this case, the face f must be the shared face: Namely, since u and v are separated by at least
one articulation point a in the primal graph with a incident to some face f on both sides of
the tree-path from u to v, then there is a 2-cycle through f and a in the vertex-face graph
separating u from v, and thus, f must be the unique face shared by all articulation points on
any path u · · · v. (See Figure 6)

a0
B1

a1 ai
Bi+1

ai+1

Bi+2

ai+2

Figure 3: Lemma 29 case 1: ai+2 does not lie in f . find-next-flip-block(a0, ai, ai+1, ak) returns
ai+1.

a0
B1

a1 ai
Bi+1

ai+1

Bi+2 ai+2

ai+3

Figure 4: Lemma 29 case 2: the path a0 · · · ak touches f on only one side in ai+2.
find-next-flip-block(a0, ai, ai+1, ak) returns ai+1.

a0
B1

a1 ai
Bi+1

ai+1

Bi+2

ai+2 aj−1
Bj

aj
Bj+1

ak

Figure 5: Lemma 29 case 3: find-next-flip-block(a0, ai, ai+1, ak) returns aj with i+ 1 < j < k.

a0
B1

a1 ai
Bi+1

ai+1

Bi+2

ai+2 ak−1
Bk

ak

Figure 6: Lemma 29 case 4: find-next-flip-block(a0, ai, ai+1, ak) returns ak.

4.3 do-articulation-flips

The next piece of our algorithm is the do-articulation-flips function in Algorithm 3.

Lemma 30. If a0 and ai share a face containing at least one edge from Bi+1, and ai and ai+1 share
a face, then in O(log2 n) time do-articulation-flips(a0, ai, ai+1, ak) does at most one articulation
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Algorithm 3

Require: u′, v′ linkable
1: function do-articulation-flips(u, u′, v′, v)
2: if u = u′ then
3: if v′ = v then
4: . Nothing to do
5: else
6: fv, c

1
v, c

2
v ← find-bounding-face(v, v′, u)

7: if fv not incident to u′ then
8: cu, cv ← linkable(u′, v′)
9: articulation-flip(c1v, c2v, cv)
10: else
11: if v′ = v then
12: fu, c

1
u, c

2
u ← find-bounding-face(u, u′, v)

13: if fu not incident to v′ then
14: cu, cv ← linkable(u′, v′)
15: articulation-flip(c1u, c2u, cu)
16: else u 6= u′ and v′ 6= v
17: fv, c

1
v, c

2
v ← find-bounding-face(v, v′, u)

18: fu, c
1
u, c

2
u ← find-bounding-face(u, u′, v)

19: if fu = fv then
20: . Nothing to do
21: else if u′ incident to fv then
22: cu ← any corner between u′ and fv
23: articulation-flip(c1u, c2u, cu)
24: else if v′ incident to fu then
25: cv ← any corner between v′ and fu
26: articulation-flip(c1v, c2v, cv)
27: else
28: cu, cv ← linkable(u′, v′)
29: articulation-flip(c1u, c2u, cu)
30: articulation-flip(c1v, c2v, cv)

flip at each of ai and ai+1, each of which are critical. Afterwards, a0 shares a face with ai+1, and (if
i ≤ k − 2) with at least one edge in Bi+2.

Proof. The running time of do-articulation-flips(· · · ) is O(log2 n) because it does a constant
number of calls to find-bounding-face(· · · ), linkable(· · · ), and articulation-flip(· · · ), which
each take worst case O(log2 n) time. The number and location of the articulation flips done is
likewise clear from the definition, and since each of the flips move exactly one of u and v, any flips
done are critical.
• If no articulation flips are done: u and v are already in the same face. (See Figure 7)
• If an articulation flip is done at v′ = ai+1 but not at u′ = ai: Bi+2 is flipped into a face

containing u in line 9 if u = u′, or a face containing u′ and Bi (and hence u) in line 26 otherwise.
(See Figure 8)
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• If an articulation flip is done at u′ = ai but not at v′ = ai+1: Bi (and hence u) is flipped into
a face containing v′ in line 15 if v′ = v, or a face containing v′ and Bi+2 in line 23 otherwise.
(See Figure 9)
• If articulation flips are done at both u′ = ai and v′ = ai+1: Both Bi (and hence u) and Bi+2

are flipped into the same face in lines 29–30. (See Figure 10)
In each case the postcondition is satisfied.

a0 ai−1
Bi

ai
Bi+1

ai+1

Bi+2

ai+2

Figure 7: do-articulation-flips(a0, ai, ai+1, ak): If fu = fv there is nothing to do.

a0ai−1

Bi
ai

Bi+1

ai+1

Bi+2

ai+2

fu fv

Figure 8: do-articulation-flips(a0, ai, ai+1, ak): When fu 6= fv and ai+1 ∈ fu, we may use any
corner between fu and ai+1 to flip Bi+2 into.

a0 ai−1
Bi

ai

Bi+1

ai+1Bi+2

ai+2

fu

fv

Figure 9: do-articulation-flips(a0, ai, ai+1, ak): When fu 6= fv and ai ∈ fv, we use any corner
between fv and ai to flip Bi into.

a0 ai−1
Bi

ai

Bi+1

ai+1

Bi+2

ai+2

fu

fv

Figure 10: do-articulation-flips(a0, ai, ai+1, ak): When ai+1 6∈ fu and ai 6∈ fv, use a
linkable(ai, ai+1) query to find the corners where (ai, ai+1) could be inserted, and flip into those
corners.
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Lemma 31. During execution of multi-flip-linkable(u, v), the pattern of articulation flips is as
follows:
• If do-articulation-flips(a0, ai, ai+1, ak) does a flip at ai, it is potential-decreasing.
• If do-articulation-flips(a0, ai, ai+1, ak) does a flip at ai+1 that is not potential-decreasing,
then it is potential-neutral, the following find-next-flip-block(a0, ai, ai+1, ak) returns ai+1,
and in the next iteration either:

– do-separation-flips(ai+1, ai+2) returns “no”; or
– do-separation-flips(ai+1, ai+2) does at least one flip; or
– do-articulation-flips(a0, ai+1, ai+2, ak) does a potential-decreasing articulation flip at
ai+1.

Proof. If do-articulation-flips(a0, ai, ai+1, ak) does a flip at u′ = ai, it is because u and v′ does
not yet share a face and at least one flip at ai is needed to bring them together. By our invariants,
u does share a face with both ai and at least one edge of Bi+1. Observe that no amount of clean
separation flips can help bringing them together, and thus any clean path in Emb(G) from H to
H ′ ∈ Emb(G;u, v) contains at least one separation flip at ai. In particular, any shortest path
contains exactly one such flip, and thus this flip is potential-decreasing.

On the other hand, if do-articulation-flips(a0, ai, ai+1, ak) does a flip at u′ = ai+1 because
some other block B′ is incident to ai+1 on both sides of u · · · v, then it can happen that (after
all separation flips in Bi+2 are done) u is still not sharing a face with ai+2 even though ai+1 is
(See Figure 11). In this case, a second articulation flip is needed at ai+1 (which will be potential-
decreasing). However, if ai shares a face with B′, the first flip at ai+1 could have been skipped, and
we would reach the invariant state with one fewer flips. In this case, and only this case, the first flip
the algorithm does at ai+1 is potential-neutral. Now observe that if we do such a potential-neutral
flip, the following find-next-flip-block(a0, ai, ai+1, ak) must return ai+1, because either ai+1

does not share a face with ai+2 and do-separation-flips(ai+1, ai+2) will behave as described, or
ai+1 does share a face with ai+2 but a0 does not share a face with ai+2 so the second articulation
flip at ai+1 is done as described.

a0
B1

a1 ai
Bi+1

ai+1

Bi+2

ai+2 B′

Figure 11: Example where do-articulation-flips makes a potential-neutral flip at ai+1, moving
Bi+2 into the outer face. With or without this flip, we still need to flip B1 · · ·Bi+1 into a face
containing ai+2.

4.4 If u, v are biconnected (do-separation-flips)

The remaining piece of our algorithm, and by far the most complicated, consists of the do-
separation-flips function in Algorithm 4, and its subroutines.
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The general idea in do-separation-flips(u, v) is to repeatedly find and apply a separation flip
σ (uniquely described by a tuple of 4 corners forming a 4-cycle in the vertex-face graph), such that
• The vertices incident to σ form a separation pair {s, t}, separating u from v.
• u is incident to at least one of the faces fu, fv incident to σ.
• σ partitions (the edges of) H into two subgraphs Hu, Hv, with u ∈ Hu\{s, t} and v ∈ Hv\{s, t}.
We call such a flip a u-flip (w.r.t. v), and the corresponding Hu a u-flip-component (w.r.t. v).

We call a u-flip maximal if it maximizes the size (e.g. edges plus vertices) of Hu.
A given u-flip-component Hu remains a u-flip-component if we flip it, so we may require that

each step flips a strictly larger subgraph than the previous. If no strictly larger Hu exists and u and
v still do not share a face, we conclude that G ∪ (u, v) is nonplanar and stop.

Algorithm 4
1: function do-separation-flips(u, v)
2: s← 0
3: while not linkable(u, v) do . Separation flip needed in block bounded by u, v
4: s′, σ ← find-first-separation-flip(u, v)
5: if s′ ≤ s then return “no”
6: Execute separation flip σ
7: s← s′

8: return “yes”

Lemma 32. Assume that find-first-separation-flip(u, v) runs in worst case O(log2 n) time,
and in each step:
• If G ∪ (u, v) is planar it finds a maximal u-flip.
• If G ∪ (u, v) is non-planar it either:

– finds a maximal u-flip; or
– finds a u-flip such that the next u-flip-component found has the same size; or
– finds no u-flip.

Then do-separation-flips(ai, ai+1) does only critical separation flips in worst case O(log2 n) time
per flip, and:
• If G ∪ (u, v) is planar, every flip is potential-decreasing.
• If G ∪ (u, v) is nonplanar every flip except the last is potential-decreasing.

Proof. The running time is worst case O(log2 n) per flip, by our assumption, and because the
linkable(u, v) query and actually executing the flip takes O(log2 n) in the underlying data structure
from [11]. By definition, any u-flip is a critical flip, so all the flips performed are critical. By
assumption, each tuple of corners σ that we consider (except the last) bound a maximal u-flip-
component. If the flip described by σ is a P flip, there may be two possible choices if the node
containing u on the u, v-critical path in the SPQR tree is an S node. However, either choice is
potential-decreasing, as it brings the two neighbors to the involved P node that are on the critical
path together. If the flip described by σ is not a P flip, it is potential-decreasing unless the first node
X that is not included in Hu on the u, v-critical path in the SPQR tree is an R node that is cross
(i.e. the virtual edges in Γ(X) corresponding to the path do not share a face). If X is cross, G∪ (u, v)
is nonplanar, and the flip will be the last we execute, since no larger Hu exists after the flip.
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Let B = (VB, EB) be the biconnected component of G that contains u, v, and suppose u, v do
not share a face in G (otherwise u and v would be linkable and find-first-separation-flip(u, v)
would not be called). Consider the u, v-critical path X1 · · ·Xk with u ∈ X1, v ∈ Xk in the SPQR
tree for B. Observe that if k = 1 our assumption that u, v do not share a face means that X1 is an
R node, and no flip exists that can make u and v linkable. Assume therefore that k > 1. Then X1

and Xk are distinct, and by definition of u, v-critical path none of them are P nodes.
To aid in our discussion, we need to name certain subsets of the edges of EB based on their

relationship with the SPQR nodes on the u, v-critical path X1 · · ·Xk in the SPQR tree for B.

Definition 33. Let eu and ev be the edges incident to u and v on the primal spanning tree path
u · · · v. For each i with 1 ≤ i ≤ k define:

E<i :=


∅ if i = 1

the separation class
of eu w.r.t. Xi−1∩Xi

otherwise E≥i := EB \ E<i

E>i :=


∅ if i = k

the separation class
of ev w.r.t. Xi∩Xi+1

otherwise E≤i := EB \ E>i

Ei := E≤i ∩ E≥i E6=i := EB \ Ei

Now E1, . . . , Ek is a partition of EB, so for each e ∈ EB there is a unique index i = index(e) such
that e ∈ Ei. Furthermore, for each 1 ≤ i ≤ k the set Ei is associated with the node Xi

Since u and v are biconnected, there exists two internally vertex-disjoint paths between u and v.
Let ps, pt be an arbitrary pair of internally vertex-disjoint paths from u to v. We will use ps and pt

to define some further concepts, and then argue (e.g. in Lemmas 34 and 35) that these definitions
do not depend on the particular choice of ps, pt.

For 1 ≤ i ≤ k − 1 let {si, ti} = Xi ∩Xi+1 such that si ∈ ps and ti ∈ pt, and let s0 = t0 = u and
sk = tk = v. Let fu be any face maximizing the maximum i such that fu contains all of u, si, and ti.
Note that the candidates for fu do not depend on the specific choice of ps and pt, but only on the
structure of the SPQR tree and the current embedding. Together, ps ∪ pt form a simple cycle in G
which we call a u, v-critical cycle. This cycle partitions the plane into two regions. Call the region
containing fu the fu-side region and the other the anti-fu-side region.

For each node Xi on the u, v-critical path in the SPQR tree, any u, v-critical cycle corresponds
to a unique cycle in Γ(Xi), and the partition into fu-side and anti-fu-side regions carry over into
Γ(Xi).
• If Xi is a P node, we say that Xi is fu-blocking if the fu-side region of Γ(Xi) contains any

edges, and anti-fu-blocking if the anti-fu-side region contains any edges.
• If Xi is an R node, we say that Xi is fu-blocking (resp. anti-fu-blocking) if the fu-side (resp.
anti-fu-side) region of Γ(Xi) does not contain a face incident to all of si−1, ti−1, si, ti. (Note
that this holds even for i = 1 and i = k).
• If Xi is an S node it is neither fu-blocking nor anti-fu-blocking.

A node that is both fu-blocking and anti-fu-blocking is simply called blocking. A blocking R node is
also called a cross node.

Lemma 34. If G ∪ (u, v) is planar let r = k, otherwise let r be the minimum index such that Xr is
a cross node. Then r is well-defined and depends only on G and the vertices u, v.
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Proof. This is trivial if G ∪ (u, v) is planar, so suppose not. Then G ∪ (u, v) contains either a K5

subdivision containing (u, v) or a K3,3 subdivision containing (u, v). In particular, the SPQR tree
for G ∪ (u, v) contains an R node whose skeleton graph contains such a subdivision. When deleting
(u, v) from G∪ (u, v), this R node splits into the u, v-critical path X1 · · ·Xk in G. This path contains
at least one R node containing a K4 subdivision, and since G ∪ (u, v) is nonplanar, for at least one
such R node Xi the vertices {si−1, ti−1, si, ti} = (Xi−1 ∩Xi)∪ (Xi ∩Xi+1) do not all share a face in
Γ(Xi).

Lemma 35. Let r be defined as in Lemma 34. If u and v do not share a face, then for 1 ≤ i ≤ r
whether Xi is (anti-)fu-blocking depends only on the choice of fu and the current embedding, and is
independent of the particular choice of u, v-critical cycle.

Proof. For any S or P node Xi with 2 ≤ i ≤ k, the vertices si and ti are completely determined by
si−1 and ti−1, and do not depend on the particular choice of ps, pt. The same is true for every R
node Xi with 2 ≤ i ≤ r − 1, since by definition of r these are not both fu- and anti-fu-blocking.
Thus s2, . . . , sr−1 and t2, . . . , tr−1 are completely determined by s1, t1. There are only two possible
ways to map {s1, t1} to the two vertices in X1 ∩X2, so s1, . . . , sr−1 and t1, . . . , tr−1 are uniquely
defined up to an exchange of every s and t with its opposite. Now consider any two u, v-critical
cycles C1, C2, and a node Xi with 1 ≤ i ≤ r.
• If Xi is an S node, it is by definition neiher fu- nor anti-fu-blocking, and this does not depend

on the choice of critical cycle.
• If Xi is a P node, then 1 < i < r and the cycle in Γ(Xi) does not depend on which critical

cycle is used, only on which neighbors Xi has on the u, v-critical path in the SPQR tree. Thus
the definition of fu-side and anti-fu-side region, and hence Xis status as fu- or anti-fu-blocking
does not depend on the choice of critical cycle, but only on the choice of fu and the current
embedding.
• If Xi is an R node, and is not cross there is a unique face of Γ(Xi) that contains all of
si−1, si, ti−1, ti, and this face is in the fu-side region of C1 if and only if it is in the fu-side
region of C2. Thus, Xi is fu- or anti-fu-blocking with respect to C1 if and only it is with
respect to C2.
• If Xi is a cross node, this does not depend on the choice of u, v-critical cycle but only on
G, u, v. By definition Xi is both fu- and anti-fu-blocking in both C1 and C2.

Observation 36. Suppose u and v do not share a face, let fu be given, and let r be defined as in
Lemma 34. Let b ∈ {1, . . . , r} be the minimum index such that Xb is fu-blocking. Then b depends
only on u, v, the current embedding, and the choice of fu, and is independent of the particular choice
of u, v-critical cycle.

Since we assume k > 1, if b = 1 then by definition X1 is cross and no u-flip exists. For the
remainder of this section, we will therefore assume that b > 1 (and thus 1 < b ≤ r ≤ k).

In each step of our algorithm, to maximize the size of Hu we must find the face fu and the
separation pair {sb−1, tb−1}. In addition, we must find a second face fv, such that Hu corresponds
to the region on one side of the 4-cycle fu, sb−1, fv, tb−1 in the vertex-face graph.

4.4.1 choose-best-flip

The first thing we observe is that if we can somehow guess (or compute) the faces fu and fv bounding
(a candidate to) the maximal u-flip-component, then the function choose-best-flip(u, v, fu, fv)
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from Algorithm 5 can compute the size and corners of the proposed flip. In addition, if a given pair of
faces are “obviously not” bounding the maximal u-flip-component (either because no u-flip-component
is bounded by these faces, or because a larger component can be easily found), this function can
detect and report it.

Definition 37. Define a u-flip-component Hu to be locally maximal if, given the corners σ, and the
separation pair {sj , tj}, and faces f ′u, f ′v incident to σ:
• No other u-flip-component bounded by f ′u, f ′v is larger than Hu; and
• No other u-flip-component incident to sj , tj and f ′u is larger than Hu.

Any maximal u-flip-component is also locally maximal, so any pair of faces that do not bound a
locally maximal u-flip-component can be rejected.

Lemma 38. Given vertices u, v that do not share a face and a 4-tuple of corners σ we can in worst
case O(log2 n) time determine if σ bounds a locally maximal u-flip-component.

Proof. Let fu, fv be the faces, and {sx, sy} the separation pair incident to σ. If u 6∈ fu or {u, v} ∩
{sx, sy} 6= ∅, σ does not bound a u-flip-component.

Let Hu 3 u,Hv be the subgraphs of H on the two sides of σ. If v 6∈ Hv then σ does not bound a
u-flip-component, otherwise Hu is a u-flip-component and we must determine if it is locally maximal.

Let C be the fundamental cycle in H closed by the first primal edge on the dual path fu · · · fv.
Now C ∩Hv is a path from sx to sy. If any internal node on this path is incident to both fu and fv,
then Hu is not locally maximal.

Let e∗ be the dual of the first edge on the primal tree path sx · · · sy, and let C∗ be the fundamental
cycle closed by e∗ in the dual tree. Then σ cuts C∗ into an fu · · · fv path through each of Hu

∗ and
Hv
∗. Let f ′v be the first face on the path from fv to fu in C∗ ∩Hv

∗ that is incident to both sx and
sy, and let σ′ be any 4 corners between (fv, sx), (fv, sy), (f

′
v, sx), (f ′v, sy). Let H ′u 3 u,H ′v be the

subgraphs of H on the two sides of σ′. If v 6∈ H ′v then Hu is not locally maximal.
Otherwise Hu is locally maximal. Each step of this test can be done in worst case O(log2 n) time

using the data structure from [11].

Lemma 39. Let fu, fv be faces. If fu, fv are incident to the corners σ bounding a locally maximal
u-flip-component Hu, then choose-best-flip(u, v, fu, fv) in Algorithm 5 returns a tuple (s, σ)
where s is the size of Hu. Otherwise (0,⊥) is returned. In either case, the total time is worst case
O(log2 n).

Proof. If fu, fv are valid then by definition u ∈ fu and u 6∈ fv (and thus fu 6= fv). Let e be any
primal edge on the dual tree path from fu to fv, and consider the fundamental cycle C closed by
e. By construction, C has fu and fv on opposite sides, so any common vertex of fu and fv must
be on C. In particular, we must have si, ti ∈ C, and if no vertex in C is incident to both fu and
fv then fu and fv do not bound a valid u-flip-component. We want the flip-component containing
u to be as large as possible, which means the flip-component containing v must be as small as
possible. Let pv = πC(v) and let px, py be the neighbors of pv on C. Then at least one of the edges
{(px, pv), (pv, py)} is in the flip-component of v. Suppose (x, y) is this edge, then the separation pair
{sx, sy} we want will consist of the first vertex incident to both fu and fv in each direction on C
away from (x, y). If G is not biconnected, there may be multiple corners between each of sx, sy and
each of fu, fv. To truly minimize the size of the flip-component of v, we must choose the nearest 4
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Algorithm 5
1: function choose-best-flip(u, v, fu, fv)
2: . Determine maximum u-flip in fu, fv
3: if u ∈ fu and u 6∈ fv then
4: e← the first primal edge on the dual tree path from fu to fv.
5: C ← fundamental cycle of e
6: if ∃w ∈ C incident to both fu and fv then
7: pv ← πC(v); px, py ← neighbors of pv on C
8: for (x, y) ∈ {(px, pv), (pv, py)} do
9: sx, sy ← vertices on C incident to fu and fv closest to (x, y) in each direction

10: cux, c
u
y ← corners at sx, sy nearest to (x, y) on the fu side

11: cvx, c
v
y ← corners at sx, sy nearest to (x, y) on the fv side

12: σ ← (cux, c
u
y , c

v
y, c

v
x)

13: if σ bounds a locally maximal u-flip-component then . σ is a valid u, v-flip
14: s← size of u-flip-component of σ
15: return (s, σ)

16: return (0,⊥)

corners to (x, y). This gives us 4 corners (cux, c
u
y , c

v
y, c

v
x), and by Lemma 38 we can test if these bound

a locally maximal u-flip-component and compute its size in worst case O(log2 n) time. Note that if
both candidates for (x, y) are valid, they will give the same answer, so it is ok to stop as soon as we
find one that is valid. If none of the two candidates for (x, y) give a valid flip, then fu, fv did not
bound a locally maximal u-flip-component, and we return (0,⊥).

4.4.2 find-single-flip-candidates

Our task is thus to compute (candidates for) fu and fv. In [11] we considered the special case where
G ∪ (u, v) is planar and a single flip is needed to admit (u, v). The function find-single-flip-
candidates in Algorithm 6 is essentially the same as is described in [11], but instrumented to
return a bit more information which will become important later.

Definition 40. A fundamental cycle C is separating if fu and fv are on opposite sides of C. If
Xb is the first fu-blocking node on X1 . . . Xr then a fundamental cycle C is good when either C is
separating or C intersects both E≤b and E>b.

Definition 41. A tuple (f ′u, f
′
v, C, e

′
u, e
′
v) is a candidate tuple if f ′u and f ′v are faces, C is a fundamental

cycle, and e′u, e′v ∈ C. A candidate tuple is good if f ′u = fu, C is good as defined in Definition 40,
index(e′u) = mine∈C index(e), and index(e′v) = maxe∈C index(e). A good candidate tuple is correct
if furthermore f ′v = fv.

Lemma 42. find-single-flip-candidates(u, v) from Algorithm 6 runs in worst case O(log2 n)
time and returns a set of at most 20 candidate tuples.

Proof. The result set starts empty and changes only by addition of elements, and simple counting
shows that either exactly 2, or at most 2 · 2 · 2 + 2 · 2 · 2 + 2 · 2 = 20 elements are added, and by
construction each element added is trivially a candidate tuple.
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For each element added, we use a constant number of elementary operations each taking worst
case constant time, and a constant number of the following operations:
• Find the first or last edge on a path in the primal or dual tree.
• Find the faces incident to an edge in the primal tree.
• Compute the meet of 3 faces in the dual tree.
• Determine if two faces are the same.
• Find the primal edge corresponding to an edge in the dual tree.
• Given a fundamental cycle C and a vertex w ∈ C, find the edges on C incident to w.
• Given a fundamental cycle C and faces f1, f2 determine if they are on the same side of C.
• Given a fundamental cycle C and a vertex w 6∈ C, find the projection πC(w) ∈ C.

Using the data structure from [11], each of these operations can be done in worst case O(log n)
time.

Lemma 43. If G∪ (u, v) is planar and only one flip is needed at fu, fv to admit (u, v), then at least
one (f ′u, f

′
v, ·, ·, ·) ∈ find-single-flip-candidates(u, v) from Algorithm 6 is correct.

Proof. We consider the 4 cases for how the fundamental separating cycles may relate to u and v,
and show that in each case we find at least one correct candidate tuple.
If some fundamental separating cycle contains both u and v, then any such cycle C sepa-

rates uL from uR and vL from vR. In particular a primal nontree edge e closes such a cycle
if and only if it is on both uL · · ·uR and vL · · · vR. But then we also have fLu 6= fRu and
e ∈ fLu · · · fRu . We therefore execute Line 9–16 exactly when such a separating cycle exists, and
C is such a separating cycle. By definition, eu, e1u, e2u ∈ E1 and ev, e1v, e2v ∈ Ek, and the cycle
C separates uL from uR, so there exists an f ∈ {uL, uR} that is on the same side of C as fu.
For this value of f , we must have fu ∈ f1u · · · f2u , fu ∈ f1u · · · f1v , and fu ∈ f2u · · · f1v , and thus
fu = meet(f1u , f

2
u , f

1
v ) and (meet(f1u , f

2
u , f

1
v ), ·, C, eu, ev) is a good candidate tuple. Similarly, if

only one flip is needed to admit (u, v) then fv is on the opposite side of C from f , and we must
have that fv ∈ f̄1v · · · f̄2v , fv ∈ f̄1v · · · f̄1u , and fv ∈ f̄2v · · · f̄1u , and thus fv = meet(f̄1v , f̄

2
v , f̄

1
u) and

(meet(f1u , f
2
u , f

1
v ),meet(f̄1v , f̄

2
v , f̄

1
u), C, eu, ev) is a correct candidate tuple.

If no fundamental separating cycle contains both u and v, but some contains u, then
fLu = fRu and fLv = fRv and Line 19–27 gets executed. Any such cycle must separate either
uL or uR from the rest of {uL, uR, vL, vR}, and in particular it must separate uL or uR from
f?u . In this case there must exist an f ∈ {uL, uR} \ {f?u} that is on the opposite side of
such a cycle from f?u , and in fact the first primal edge on the dual tree path from f?u to f
closes such a separating cycle C. By definition, eu, e1u, e2u ∈ E1 and there exists e′v ∈ {e1v, e2v}
with index(e′v) = maxe∈C index(e). Exactly one face f ′v incident to e′v is on the same side
of C as fu. Given this face f ′v and the corresponding faces f1u , f2u incident to e1u, e2u on the
same side of C as f ′v, we have fu ∈ f1u · · · f2u , fu ∈ f1u · · · f ′v, and fu ∈ f2u · · · f ′v, and thus
fu = meet(f1u , f

2
u , f

′
v) and (meet(f1u , f

2
u , f

′
v), ·, C, eu, e′v) is a good candidate tuple. If only one

flip is needed to admit (u, v) then fv is on all of vL · · · vR, vL · · · f?u , vR · · · f?u , and thus fv = f?v
and (meet(f1u , f

2
u , f

′
v), f

?
v , C, eu, e

′
v) is a correct candidate tuple.

If no fundamental separating cycle contains both u and v, but some contains v, then
fLu = fRu and fLv = fRv and Line 28–36 gets executed. Any such cycle must separate either
vL or vR from the rest of {uL, uR, vL, vR}, and in particular it must separate vL or vR from
f?v . In this case there must exist an f ∈ {vL, vR} \ {f?v } that is on the opposite side of such
a cycle from f?v , and in fact the first primal edge on the dual tree path from f?v to f closes
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such a separating cycle C. By definition, ev, e1v, e2v ∈ Ek and there exists e′u ∈ {e1u, e2u} with
index(e′u) = mine∈C index(e). In this case, fu is on all of uL · · ·uR, uL · · · f?v , uR · · · f?v , and
thus fu = f?u and (f?u , ·, C, e′u, ev) is a good candidate tuple. Exactly one face f ′u incident to e′u
is on the same side of C as fv. Given this face f ′u and the corresponding faces f1v , f2v incident
to e1v, e2v on the same side of C as f ′u, we have fv ∈ f1v · · · f2v , fv ∈ f1v · · · f ′u, and fv ∈ f2v · · · f ′u,
and thus fv = meet(f1v , f

2
v , f

′
u) and (f?u ,meet(f1v , f

2
v , f

′
u), C, e′u, ev) is a correct candidate tuple.

If no fundamental separating cycle contains u or v, then fLu = fRu and fLv = fRv and Line 37–
44 gets executed. Assuming only one flip is needed to admit (u, v), then fu and fv are simply
the f?u and f?v found in the algorithm. Specifically, since u and v are not already linkable,
f?u 6= f?v . Since there exists e′u ∈ {e1u, e2u} with index(e′u) = mine∈C index(e) and e′v ∈ {e1v, e2v}
with index(e′v) = maxe∈C index(e), at least one of the candidates is correct.

Lemma 44. If Xb is the first fu-blocking node on X1 . . . Xr and 1 < b < r, then at least one of the
candidates (f ′u, ·, C, e′u, e′v) ∈ find-single-flip-candidates(u, v) from Algorithm 6 is good.

Proof. Since, for every cycle C, we try all relevant edges near πC(u) and πC(v), we need only argue
that f ′u is fu and C is good; if one of the tuples contains a good cycle and the correct fu, then one
of the tuples will be good.

If there exists a fundamental separating cycle through at least one of u, v then (by the same
arguments as in Lemma 43) for some such cycle C, (fu, ·, C, e′u, e′v) is among the returned candidates.
Since C is separating, it is by definition good, and thus this tuple is clearly good.

Otherwise no fundamental separating cycle contains any of u or v. Let f?u = fLu = fRu and
f?v = fLv = fRv . Then, because 1 < b < r, it must be the case that f?u 6= f?v . Thus, let e be the first
primal edge on the dual tree path from f?u to f?v . Note that if f?u 6∈ fv · · · f?v , then that edge e closes
a fundamental cycle that is separating and therefore good. Suppose therefore that f?u ∈ fv · · · f?v .
Then e ∈ Eb. Furthermore the path fv · · · f?v cuts E≤b such that not all of sb−1, tb−1, sb, and tb are
connected in E≤b \ (fv · · · f?v ). Thus, the fundamental cycle closed by any primal edge on fv · · · f?v
must go through E>b. In particular the edge e closes a cycle C intersecting E>b. Thus C is good,
since it intersects both Eb and E>b-
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Algorithm 6
1: function find-single-flip-candidates(u, v)
2: eu, ev ← the first and last edge on the primal tree path from u to v.
3: uL, uR ← left and right face indident to the first edge on the primal tree path from u to v.
4: vL, vR ← left and right face indident to the first edge on the primal tree path from v to u.
5: fLu ← meet(uL, uR, vL); fRu ← meet(uL, uR, vR)
6: fLv ← meet(vL, vR, uL); fRv ← meet(vL, vR, uR)
7: result ← ∅
8: if fLu 6= fRu then
9: . Handles case of a fundamental cycle through u and v.

10: e← primal edge corresponding to first edge on dual tree path fLu · · · fRu
11: C ← fundamental cycle closed by e
12: e1u, e

2
u, e

1
v, e

2
v ← the edges incident to u, v on C

13: for f ∈ {uL, uR} do
14: f1u , f

2
u , f

1
v , f

2
v ← faces incident to e1u, e2u, e1v, e2v on the same side of C as f .

15: f̄1u , f̄
2
u , f̄

1
v , f̄

2
v ← faces incident to e1u, e2u, e1v, e2v on the opposite side of C from f .

16: result ← result ∪{(meet(f1u , f
2
u , f

1
v ),meet(f̄1v , f̄

2
v , f̄

1
u), C, eu, ev)}

17: else fLu = fRu and fLv = fRv
18: f?u ← fLu ; f?v ← fLv
19: . Handles case of a fundamental separating cycle through u but none through u, v.
20: for f ∈ {uL, uR} \ {f?u} do
21: e← first primal edge on dual tree path from f?u to f
22: C ← fundamental cycle closed by e
23: e1u, e

2
u, e

1
v, e

2
v ← the edges incident to u, πC(v) on C

24: for e′v ∈ {e1v, e2v} do
25: for f ′v ∈ faces incident to e′v do
26: f1u , f

2
u ← faces incident to e1u, e2u on the same side of C as f ′v.

27: result ← result ∪{(meet(f1u , f
2
u , f

′
v), f

?
v , C, eu, e

′
v)}

28: . Handles case of a fundamental separating cycle through v but none through u, v.
29: for f ∈ {vL, vR} \ {f?v } do
30: e← first primal edge on dual tree path from f?v to f
31: C ← fundamental cycle closed by e
32: e1u, e

2
u, e

1
v, e

2
v ← the edges incident to πC(u), v on C

33: for e′u ∈ {e1u, e2u} do
34: for f ′u ∈ faces incident to e′u do
35: f1v , f

2
v ← faces incident to e1v, e2v on the same side of C as f ′u.

36: result ← result ∪{(f?u ,meet(f1v , f
2
v , f

′
u), C, e′u, ev)}

37: . Handles case of no fundamental separating cycle through u or v.
38: if f?u 6= f?v then
39: e← first primal edge on dual tree path from f?u to f?v
40: C ← fundamental cycle closed by e
41: e1u, e

2
u, e

1
v, e

2
v ← the edges incident to πC(u), πC(v) on C

42: for e′u ∈ {e1u, e2u} do
43: for e′v ∈ {e1v, e2v} do
44: result ← result ∪{(f?u , f?v , C, e′u, e′v)}
45: return result
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4.4.3 find-first-separation-flip

Algorithm 7
1: function find-first-separation-flip(u, v)
2: . Assumes u, v are biconnected and do not share a face.
3: candidates ← find-single-flip-candidates(u, v)
4: . Test for single flip
5: for (fu, fv, ·, ·, ·) ∈ candidates do
6: if v ∈ fv then
7: (s, σ)← choose-best-flip(u, v, fu, fv)
8: if s > 0 then
9: return (s, σ)

10: . Not single flip. If first flip exists, then first fu-blocking node Xb has 1 < b < r.
11: result ← (0,⊥)
12: for (fu, ·, C, e′u, e′v) ∈ candidates do
13: . Assume fu is correct, C is good, and e′u, e′v ∈ C are in the first/last Ej with Ej ∩C 6= ∅.

14: . Handle cases where E>b ∩ C 6= ∅.
15: f ′v ← face incident to e′v on same side of C as fu.
16: if fu 6= f ′v then . If fu = f ′v we are not in this case.
17: (x, y)← first primal edge on dual tree path fu · · · f ′v.
18: result← max{result,

find-sep-P11(u, v, fu, C, e
′
u, e
′
v, x, y), . C separating and P

find-sep-R11(u, v, fu, C, e
′
u, e
′
v, x, y), . C separating and R

find-sep-P10(u, v, fu, C, e
′
u, e
′
v, x, y), . C not separating and P

find-sep-R10(u, v, fu, C, e
′
u, e
′
v, x, y) . C not separating and R

}

19: . Handle cases where E>b ∩ C = ∅.
20: e1v, e

2
v ← the edges on C incident to πC(v)

21: f̄1v , f̄
2
v ← the faces incident to e1v, e2v on the opposite side of C from fu.

22: f̄3v ← any face incident to v e.g. vL or vR
23: f̄1 ← meet(f̄1v , f̄

2
v , f̄

3
v )

24: result ← max{result,choose-best-flip(u, v, fu, f̄1)}
25: for f̄2 ∈ {f̄1v , f̄2v } \ {f̄1} do . Otherwise f̄2 can not be the right face
26: (x, y)← first primal edge on the dual tree path from f̄1 to f̄2
27: result← max{result,

find-sep-P0x(u, v, fu, C, e
′
u, e
′
v, x, y), . P

find-sep-R01(u, v, fu, C, e
′
u, e
′
v, x, y) . C separating and R

} . In this case it is impossible to have C not separating and R

28: return result

Lemma 45. Consider find-first-separation-flip in Algorithm 7. Suppose (fu, ·, C, e′u, e′v) is
good in Line 13, and E>b∩C 6= ∅ and C is separating. Then in Line 16, fu 6= f ′v and the first primal
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edge (x, y) on the dual tree path from fu to f ′v is in Eb and closes a good fundamental cycle C ′ such that
C ′\C is a path πC(x) · · ·πC(y) in Eb. Furthermore, if Xb is a P node, {πC(x), πC(y)} = {sb−1, tb−1}.

Proof. Since (fu, ·, C, e′u, e′v) is good and E>b ∩ C 6= ∅ we specifically have e′v ∈ E>b. Since the first
fu-blocking node on X1 · · ·Xk has index b < index(e′v), that means fu 6= f ′v. Let (x, y) be the first
primal edge on the dual tree path from fu to f ′v. Since C is a fundamental cycle, the path fu · · · f ′v
will stay on one side of C, thus (x, y) ∈ Eb and
• if Xb is a P node the dual tree path fu · · · f ′v cuts every separation class w.r.t. {sb−1, tb−1} on

the fu side of C, separating sb−1 = sb from tb−1 = tb. Thus, (x, y) is in a different separation
class w.r.t. {sb−1, tb−1} from any edge on C and we must have {sb−1, tb−1} = {πC(x), πX(y)}.
The cycle C ′ closed by (x, y) is either separating (and contains e′u ∈ E≤b), or contains e′v ∈ E>b.
• if Xb is an R node the dual tree path fu · · · f ′v cuts Eb, separating sb−1 and sb from tb−1
and tb. Thus, the fundamental cycle C ′ closed by (x, y) must connect x to y via primal tree
paths x · · ·πC(x) ⊆ Eb and y · · ·πC(y) ⊆ Eb, and the primal tree path πC(x) · · ·πC(y) which
(assuming Xb is not a cross node) must go via either sb−1 · · · tb−1 ⊆ E<b (thus C ′ is separating
and contains e′u) or sb · · · tb ⊆ E>b (and contains e′v).

In either case, C ′ is good.

Lemma 46. Consider find-first-separation-flip in Algorithm 7. Suppose (fu, ·, C, e′u, e′v) is
good in Line 13, and E>b ∩ C 6= ∅ and C is not separating. Then in Line 16, fu 6= f ′v and the first
primal edge (x, y) on the dual tree path from fu to f ′v is in E≤b and closes a good fundamental cycle
C ′ intersecting E<b.

Proof. Since fu and f ′v are on the same side of C, by construction, the dual tree path fu · · · f ′v must
contain fv. But then, the first edge (x, y) closes a separating fundamental cycle. If (x, y) is in E<b
we are done, so suppose (x, y) ∈ Eb which is the only remaining case. Then, either x or y is separated
from C in Eb \ (fu · · · f ′v). But then, the primal tree path x · · · y must go via sb−1 · · · tb−1 ⊆ E<b.

Lemma 47. Let C be a good cycle that is not separating, let e1, e2 be the edges incident to πC(u)
on C, and let f1v , f2v be the faces incident to e1, e2 on the same side of C as fu, then f1v 6= f2v and
fv ∈ f1v · · · f2v .

Proof. Since C is good and not separating, then by definition C intersects both E≤b and E>b but not
E<b, and in particular Eb ∩ C consists of a path sb · · · tb. Since u, v are assumed to be biconnected,
f1v and f2v are distinct. Furthermore let s′ be the first vertex on the primal tree path from πC(u) to
u such that the remaining path s′ · · ·u ⊆ E<b, then s′ ∈ {sb−1, tb−1}.

Since sb and tb are distinct, at least one of them is different from πC(u), and thus at least one of
f1v and f2v is incident to an edge on a path in Eb ∩ (C ∪ T ) from sb or tb to s′. Suppose without loss
of generality that tb 6= πC(u) and that f2v is incident to the first edge on πC(u) · · · tb. Since tb ∈ fv
and s′ ∈ fv, the path s′ · · · tb in C ∪ T together with (an imaginary edge (tb, s

′) through) fv form a
closed curve separating f1v from f2v . Since s′ · · · tb is in C ∪ T , the path f1v · · · f2v does not cross it,
and thus it must contain fv.

Lemma 48. Let C be a good cycle with E>b ∩C = ∅, let e1, e2 be the edges incident to πC(v) on C,
and let f̄1v , f̄2v be the faces incident to e1, e2 on the opposite side of C from fu, then f̄1v 6= f̄2v and
fv ∈ f̄1v · · · f̄2v .
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Proof. Since C is good and does not intersect E>b, we must have that C is separating and Eb ∩ C
contains a path sb−1 · · · tb−1. Since u, v are assumed to be biconnected f̄1v and f̄2v are distinct.
Furthermore let s′ be the first vertex on the primal tree path from πC(v) to v such that the remaining
path s′ · · · v ⊆ E>b, then s′ ∈ {sb, tb}.

Since sb−1 and tb−1 are distinct, at least one of them is different from πC(v), and thus at least
one of f̄1v and f̄2v is incident to an edge on a path in Eb ∩ (C ∪ T ) from sb−1 or tb−1 to s′. Suppose
without loss of generality that tb−1 6= πC(v) and that f̄2v is incident to the first edge on πC(v) · · · tb−1.
Since tb−1 ∈ fv and s′ ∈ fv, the path s′ · · · tb−1 in C ∪ T together with (an imaginary edge (tb−1, s

′)
through) fv forms a closed curve separating f̄1v from f̄2v . Since s′ · · · tb−1 is in C ∪ T , the path
f̄1v · · · f̄2v does not cross it and so must contain fv.

Lemma 49. Consider find-first-separation-flip in Algorithm 7. If (fu, ·, C, e′u, e′v) is good in
Line 13, and E>b ∩ C = ∅. Then in Line 23 if f̄1 6= fv then for at least one f̄2 ∈ {f̄1v , f̄2v } \ {f̄1},
the first primal edge (x, y) on the dual tree path from f̄1 to f̄2 closes a good fundamental cycle C ′

intersecting E>b.

Proof. By Lemma 48 f̄1v 6= f̄2v and fv ∈ f̄1v · · · f̄2v . Furthermore, assuming v 6∈ fv also fv and f̄3v are
distinct. If f̄1 = fv we are done, so suppose f̄1 6= fv. Then either fv 6∈ f̄1v · · · f̄1 or fv 6∈ f̄2v · · · f̄1.
Choose j ∈ {0, 1} such that fv 6∈ f1+jv · · · f̄1, then the first primal edge (x, y) on the dual tree path
from f̄1 to f2−jv closes a cycle C ′ separating f1+jv · · · f̄1 · · · f̄3v from fv · · · f2−jv .

If (x, y) ∈ E≤b then the path f̄3v · · · f̄1 · · · fv cuts E≤b, separating sb from tb. But then the primal
tree path from sb to tb is contained in E>b, and is part of C ′. Thus C ′ intersects both E≤b and E>b
and is therefore good.

Otherwise (x, y) ∈ E>b, and f̄1v · · · f̄2v cuts E>b, separating sb from tb. But then the primal tree
path from sb to tb is contained in E≤b, and is part of C ′. Thus C ′ intersects both E≤b and E>b and
is therefore good.

Algorithm 8

1: function find-sep-P11(u, v, fu, C, e′u, e′v, x, y)
2: . Handle cases where Xb is a P node and E>b ∩ C 6= ∅ and C is separating.
3: f̄u, f̄v ← face incident to e′u, e′v on opposite side of C from fu.
4: px ← πC(x); py ← πC(y)
5: if px 6= py then . If px = py we are not in this case.
6: fv ← first face on f̄v · · · f̄u incident to both px and py
7: return choose-best-flip(u, v, fu, fv)

8: return (0,⊥)

Lemma 50. If (fu, ·, C, e′u, e′v) is good, E>b ∩ C 6= ∅, C is separating, (x, y) closes a fundamental
cycle C ′ such that C ′ \C is a path πC(x) · · ·πC(y) in Eb with {πC(x), πC(y)} = {sb−1, tb−1}, and Xb

is a P node, then find-sep-P11(u, v, fu, C, e
′
u, e
′
v, x, y) in Algorithm 8 returns the size and corners

of a maximal u-flip.

Proof. Since C is separating, fv is on the opposite side of C from fu, and thus by construction
f̄u and f̄v are on the same side of C as fv. The path sb−1 · · · tb−1 together with (an imaginary
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edge (sb−1, tb−1) through) fv forms a closed curve separating f̄u from f̄v, so fv ∈ f̄u · · · f̄v. Since fv
maximizes the size of the u-flip-component, it must be the first face on this path that defines a valid
flip, which it does if and only if it contains sb−1, tb−1. Given the correct fv, the rest follows from
Lemma 39.

Algorithm 9

1: function find-sep-P10(u, v, fu, C, e′u, e′v, x, y)
2: . Handle cases where Xb is a P node and E>b ∩ C 6= ∅ and C is not separating.
3: f ′v ← the face incodent to e′v on the same side of C as fu.
4: px ← πC(x); py ← πC(y)
5: if px 6= py then . If px = py we are not in this case.
6: fv ← first face on f ′v · · · fu incident to both px and py
7: return choose-best-flip(u, v, fu, fv)

8: return (0,⊥)

Lemma 51. If (fu, ·, C, e′u, e′v) is good, E>b ∩ C 6= ∅, C is not separating, (x, y) closes a good
fundamental cycle intersecting E<b, and Xb is a P node, then find-sep-P10(u, v, fu, C, e

′
u, e
′
v, x, y)

in Algorithm 9 returns the size and corners of a maximal u-flip.

Proof. Since C is good but not separating, C ∩ E<b = ∅, C ∩ Eb 6= ∅, and C ∩ E>b 6= ∅. Thus, C
contains sb−1, tb−1 and since C is a fundamental cycle C contains the tree path sb−1 · · · tb−1. Since
C ′ is a good fundamental cycle through E<b it must also contain that tree path, and we must have
(x, y) ∈ E<b and thus {πC(x), πC(y)} = {sb−1, tb−1}.

Furthermore, since C is not separating fv is on the same side of C as fu, and thus by construction
f ′v is on the same side of C as fv. The path sb−1 · · · tb−1 together with (an imaginary edge (sb−1, tb−1)
through) fv forms a closed curve separating fu from f ′v, so fv ∈ fu · · · f ′v. Since fv maximizes the
size of the u-flip-component, it must be the first face on this path that defines a valid flip, which it
does if and only if it contains sb−1, tb−1. Given the correct fv, the rest follows from Lemma 39.

Lemma 52. Suppose Xb is an R node. Let C and C ′ be good fundamental cycles such that C ∪ C ′
consists of 3 internally vertex-disjoint paths P<, P=, P> between a pair of distinct vertices px, py,
where P< ∩ E<b 6= ∅, P= ⊆ Eb, and P> ∩ E>b 6= ∅. Let C ′′ = P< ∪ P>, let e ∈ C ′′ \ Eb, and
let e1x, e2x, e1y, e2y be the edges incident to px, py on C ′′. Let f, f1x , f2x , f1y , f2y be the faces incident to
e, e1x, e

2
x, e

1
y, e

2
y on the same side of C ′′ as fv. Then there exists fx ∈ {f1x , f2x} and fy ∈ {f1y , f2y } such

that fv = meet(f, fx, fy).

Proof. Suppose that e ∈ E<b (the case e ∈ E>b is symmetric). Since Xb is an R node, at least one
of sb−1 6= sb and tb−1 6= tb holds. We may assume without loss of generality that sb−1 6= sb and that
px is on the sb−1 · · · sb path in C ′′ ∩ Eb. Then there exists at least one ex ∈ {e1x, e2x} ∩ Eb, and at
least one ey ∈ {e1y, e2y} ∩ E≥b. Let fx ∈ {f1x , f2x}, fy ∈ {f1y , f2y } be the corresponding faces.

Now fv ∈ f · · · fx and fv ∈ f · · · fy because C ′′ ∩ E<b consists of a path sb−1 · · · tb−1 which
together with (an imaginary edge (sb−1, tb−1) through) fv forms a closed curve separating f from fx
and fy.

Similarly fv ∈ fx · · · fy because the path sb−1 · · · sb in C ∩Eb together with (an imaginary edge
(sb−1, sb) through) fv forms a closed curve separating fx from fy.
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Algorithm 10

1: function find-sep-R11(u, v, fu, C, e′u, e′v, x, y)
2: . Handle cases where Xb is an R node and E>b ∩ C 6= ∅ and C is separating.
3: result ← (0,⊥)
4: f̄u, f̄v ← face incident to e′u, e′v on opposite side of C from fu.
5: px ← πC(x); py ← πC(y)
6: if px 6= py then . If px = py we are not in this case.
7: e1x, e

2
x, e

1
y, e

2
y ← edges on C incident to px, py, with e1x, e1y closest to e′u

8: f̄1x , f̄
2
x , f̄

1
y , f̄

2
y ← faces incident to e1x, e2x, e1y, e2y on the same side of C as f̄u

9: for f̄x ∈ {f̄1x , f̄2x} do
10: for f̄y ∈ {f̄1y , f̄2y } do
11: fv ← meet(f̄u, f̄x, f̄y)
12: result ← max{result,choose-best-flip(u, v, fu, fv)}
13: return result

Since fv is on all 3 paths f · · · fx, f · · · fy, and fx · · · fy, we have fv = meet(f, fx, fy).

Lemma 53. Suppose Xb is an R node. Let C≤ ⊆ E≤b and C≥ ⊆ E≥b be good fundamental cycles
with at most one vertex in common. Let e ∈ (C≤∪C≥)\Eb, and let e1x, e2x, e1y, e2y be the edges incident
to px = πC≤(v), py = πC≥(u) on C≤, C≥. Let f, f1x , f2x , f1y , f2y be the faces incident to e, e1x, e2x, e1y, e2y
on the same side of C≤, C≥ as fv. Then there exists fx ∈ {f1x , f2x} and fy ∈ {f1y , f2y } such that
fv = meet(f, fx, fy).

Proof. Suppose that e ∈ E<b (the case e ∈ E>b is symmetric). Then there exists at least one
ex ∈ {e1x, e2x} ∩ Eb. Let fx ∈ {f1x , f2x} be the corresponding face. By Lemma 47 or 48 f1y 6= f2y and
fv ∈ f1y · · · f2y , so there exists fy ∈ {f1y , f2y } such that fv ∈ fx · · · fy.

Now fv ∈ f · · · fx and fv ∈ f · · · fy because C≤ ∩ E<b consists of a path sb−1 · · · tb−1 which
together with (an imaginary edge (sb−1, tb−1) through) fv forms a closed curve separating f from fx
and fy.

Since fv is on all 3 paths f · · · fx, f · · · fy, and fx · · · fy, we have fv = meet(f, fx, fy).

Lemma 54. If (fu, ·, C, e′u, e′v) is good, E>b ∩ C 6= ∅, C is separating, (x, y) closes a funda-
mental cycle C ′ such that C ′ \ C is a path πC(x) · · ·πC(y) in Eb, and Xb is an R node, then
find-sep-R11(u, v, fu, C, e

′
u, e
′
v, x, y) in Algorithm 10 returns the size and corners of a maximal

u-flip.

Proof. By Lemma 39 it is sufficient to show that at least one of the candidates to fv used in the
calls to choose-best-flip(u, v, fu, fv) is correct. This follows directly from Lemma 52 with e = e′u
and the fact that f̄u is on the same side of C as fv.

Lemma 55. If (fu, ·, C, e′u, e′v) is good, E>b ∩ C 6= ∅, C is not separating, (x, y) closes a good
fundamental cycle intersecting E<b, and Xb is an R node, then find-sep-R10(u, v, fu, C, e

′
u, e
′
v, x, y)

in Algorithm 11 returns the size and corners of a maximal u-flip.

Proof. By Lemma 39 it is sufficient to show that at least one of the candidates to fv used in the
calls to choose-best-flip(u, v, fu, fv) is correct.
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Algorithm 11

1: function find-sep-R10(u, v, fu, C, e′u, e′v, x, y)
2: . Handle cases where Xb is an R node and E>b ∩ C 6= ∅ and C is not separating.
3: result ← (0,⊥)
4: f ′v ← the face incodent to e′v on the same side of C as fu.
5: C ′ ← fundamental cycle of (x, y)
6: px ← πC(x); py ← πC(y)
7: if px 6= py then . The two cycles have common edges (case I)
8: e1x, e

1
y ← edges on C ′ \ C incident to px, py

9: if e′u ∈ C ′ then
10: e2x, e

2
y ← edges on C \ C ′ incident to px, py

11: else e′u 6∈ C ′
12: e2x, e

2
y ← edges on C ∩ C ′ incident to px, py

13: f1x , f
2
x , f

1
y , f

2
y ← faces incident to e1x, e2x, e1y, e2y on the same side of C,C ′ as f ′v

14: for fx ∈ {f1x , f2x} do
15: for fy ∈ {f1y , f2y } do
16: fv ← meet(f ′v, fx, fy)
17: result ← max{result,choose-best-flip(u, v, fu, fv)}
18: else px = py . The two cycles have no common edges (case X or H)
19: e1u, e

2
u ← edges incident to πC′(v) on C ′

20: e1v, e
2
v ← edges incident to πC(u) on C

21: f1u , f
2
u , f

1
v , f

2
v ← faces incident to e1u, e2u, e1v, e2v on the same side of C,C ′ as f ′v

22: for fx ∈ {f1u , f2u} do
23: for fy ∈ {f1v , f2v } do
24: fv ← meet(f ′v, fx, fy)
25: result ← max{result,choose-best-flip(u, v, fu, fv)}
26: return result

If px 6= py then C ∪ C ′ consists of 3 internally vertex-disjoint paths from px to py, and by
Lemma 52 with e = e′v there exists fx ∈ {f1x , f2x} and fy ∈ {f1y , f2y } such that fv = meet(f ′v, fx, fy).

Otherwise px = py, and C and C ′ has at most one vertex in common, so by Lemma 53 with
e = e′v there exists fx ∈ {f1x , f2x} and fy ∈ {f1y , f2y } such that fv = meet(f ′v, fx, fy).

Lemma 56. If (fu, ·, C, e′u, e′v) is good, E>b ∩ C = ∅, (x, y) closes a good fundamental cycle
intersecting E>b, and Xb is a P node, then find-sep-P0x(u, v, fu, C, e

′
u, e
′
v, x, y) in Algorithm 12

returns the size and corners of a maximal u-flip.

Proof. Since C is good and E>b ∩ C = ∅, C is separating and contains sb−1, tb−1 as well as the tree
path sb−1 · · · tb−1. Since C ′ is a good fundamental cycle through E>b it must also contain that tree
path, and we must have (x, y) ∈ E>b and thus {πC(x), πC(y)} = {sb−1, tb−1}.

Furthermore, since C is separating fv is on the opposite side of C from fu, and thus by
construction f̄u and f̄ are on the same side of C as fv. The path sb−1 · · · tb−1 together with (an
imaginary edge (sb−1, tb−1) through) fv forms a closed curve separating f̄ from f̄u, so fv ∈ f̄ · · · f̄u.
Since fv maximizes the size of the u-flip-component, it must be the first face on this path that
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Algorithm 12

1: function find-sep-P0x(u, v, fu, C, e′u, e′v, x, y)
2: . Handle cases where Xb is a P node and E>b ∩ C = ∅.
3: f̄u, f̄v ← face incident to e′u, e′v on opposite side of C from fu.
4: C ′ ← fundamental cycle of (x, y)
5: px ← πC(x); py ← πC(y)
6: if px 6= py then . If px = py we are not in this case.
7: f̄ ← the face incident to (x, y) on the same side of C ′ as f̄u
8: fv ← first face on f̄ · · · f̄u incident to both px and py
9: return choose-best-flip(u, v, fu, fv)

10: return (0,⊥)

defines a valid flip, which it does if and only if it contains sb−1, tb−1. Given the correct fv, the rest
follows from Lemma 39.

Algorithm 13

1: function find-sep-R01(u, v, fu, C, e′u, e′v, x, y)
2: . Handle cases where Xb is an R node and E>b ∩ C = ∅ and C is separating.
3: result ← (0,⊥)
4: f̄u, f̄v ← face incident to e′u, e′v on opposite side of C from fu.
5: C ′ ← fundamental cycle of (x, y)
6: px ← πC(x); py ← πC(y)
7: if px 6= py then . The two cycles have common edges (case I)
8: if e′v ∈ C ′ then
9: e1x, e

1
y ← edges on C \ C ′ incident to px, py

10: else e′v 6∈ C ′
11: e1x, e

1
y ← edges on C ∩ C ′ incident to px, py

12: e2x, e
2
y ← edges on C ′ \ C incident to px, py

13: f̄1x , f̄
2
x , f̄

1
y , f̄

2
y ← faces incident to e1x, e2x, e1y, e2y on the same side of C,C ′ as f̄u

14: for f̄x ∈ {f̄1x , f̄2x} do
15: for f̄y ∈ {f̄1y , f̄2y } do
16: fv ← meet(f̄u, f̄x, f̄y)
17: result ← max{result,choose-best-flip(u, v, fu, fv)}
18: else px = py . The two cycles have no common edges (case X or H)
19: e1u, e

2
u ← edges incident to πC(v) on C

20: e1v, e
2
v ← edges incident to πC′(u) on C ′

21: f̄1u , f̄
2
u , f̄

1
v , f̄

2
v ← faces incident to e1u, e2u, e1v, e2v on the same side of C,C ′ as f̄u

22: for f̄x ∈ {f̄1u , f̄2u} do
23: for f̄y ∈ {f̄1v , f̄2v } do
24: fv ← meet(f̄u, f̄x, f̄y)
25: result ← max{result,choose-best-flip(u, v, fu, fv)}
26: return result
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Lemma 57. If (fu, ·, C, e′u, e′v) is good, E>b ∩ C = ∅, E<b ∩ C 6= ∅, (x, y) closes a good funda-
mental cycle intersecting E>b, and Xb is an R node, then find-sep-R01(u, v, fu, C, e

′
u, e
′
v, x, y) in

Algorithm 13 returns the size and corners of a maximal u-flip.

Proof. By Lemma 39 it is sufficient to show that at least one of the candidates to fv used in the
calls to choose-best-flip(u, v, fu, fv) is correct.

If px 6= py then C ∪ C ′ consists of 3 internally vertex-disjoint paths from px to py, and by
Lemma 52 with e = e′u there exists f̄x ∈ {f̄1x , f̄2x} and f̄y ∈ {f̄1y , f̄2y } such that fv = meet(f̄u, f̄x, f̄y).

Otherwise px = py, and C and C ′ has at most one vertex in common, so by Lemma 53 with
e = e′u there exists f̄x ∈ {f̄1x , f̄2x} and f̄y ∈ {f̄1y , f̄2y } such that fv = meet(f̄u, f̄x, f̄y).

Lemma 58. If (fu, ·, C, e′u, e′v) is good, E>b ∩ C = ∅, and E<b ∩ C = ∅, then Xb is a P node.

Proof. Follows directly from the definition of fu, C, e′u, e′v being correct.

Lemma 59. find-first-separation-flip(u, v) in Algorithm 7 runs in worst case O(log2 n) time,
and:
• If G ∪ (u, v) is planar it always finds a maximal u-flip.
• If G ∪ (u, v) is non-planar it either:

– finds a maximal u-flip; or
– finds a u-flip σ such that immediately calling find-first-separation-flip(u, v) again
after executing σ will return a u-flip σ′ of the same size; or

– finds no u-flip.

Proof. If G ∪ (u, v) is planar and only one flip is needed to admit (u, v), then by Lemma 43 our
find-single-flip-candidates algorithm will find a correct candidate tuple, and then by Lemma 39
choose-best-flip will select the corresponding maximal u-flip, and this will be returned.

Otherwise, let b be the minimum index of an fu-blocking node. If b = 1 then no u-flip exists and
so no u-flip is found. If 1 < b < r, by Lemma 44 at least one of the candidate tuples is good. Let
(fu, ·, C, e′u, e′v) be the good candidate tuple. Let E1, . . . , Ek be as in Definition 33. We will case by
how C intersects E>b, and then by whether C separates fu from fv, and then, finally, by whether
the Xb is a P or an R node.
• If C ∩ E>b 6= ∅

– if C is separating, then by Lemma 45, (x, y) closes a good fundamental cycle C ′, such
that C ′ \ C is a path in Eb, and:
∗ If Xb is a P node, {si, ti} = {πC(x), πC(y)} so by Lemma 50, we return the maximal
u-flip.
∗ If Xb is an R node, then by Lemma 54, we return the maximal u-flip.

– if C is not separating, then by Lemma 46, (x, y) closes a good fundamental cycle C ′

intersecting E<b, and:
∗ If Xb is a P node, then by Lemma 51, we return the maximal u-flip.
∗ If Xb is an R node, then by Lemma 55, we return the maximal u-flip.

• If C ∩E>b = ∅ then by Lemma 49 at least one of the (x, y) we try closes a cycle C ′ intersecting
E>b, and:
– If Xb is a P node, then by Lemma 56, we return the maximal u-flip.
– If Xb is an R node, then, by Lemma 58, C ′ is separating. Then, by Lemma 57, we return

the maximal u-flip.
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Finally, if b = r and G ∪ (u, v) is nonplanar then we may find a non-maximal u-flip σ. This
flip will be in some separation pair {sj , tj} with j < b − 1, and since every flip is chosen by a
call choose-best-flip(u, v, fu, f

′
v) to be maximal for fu, f ′v, Xj is not an S node. But then after

performing the flip, Xj will be the first fu-blocking node, and since σ was locally maximal it
will not be anti-fu-blocking. By the previous argument we are guaranteed that the next call to
find-first-separation-flip(u, v) finds the unique (since Xj is not anti-fu-blocking) maximal
u-flip, which is the inverse of σ and therefore has the same size.

We are finally ready to prove a main theorem:

Theorem 2. There is a data structure for maintaining a planar embedding of a fully-dynamic planar
graph that handles edge-updates and planarity-compatibility queries in amortized O(log3 n) time, edge
deletions in worst-case O(log2 n) time, and queries to the neighbors of a given existing edge in the
current embedding in worst-case O(log2 n) time.

Proof. Consider the function multi-flip-linkable(u, v) from Algorithm 1. By Lemma 59 and
Lemma 32 each do-separation-flips(u, v) runs in O(log2 n) time per flip, and only does critical
potential-decreasing flips (and at most one critical flip that is not potential-decreasing). Similarly, by
Lemma 30 each do-articulation-flips(u, u′, v′, v) runs in O(log2 n) time and only does critical
potential-decreasing or potential-neutral flips. By Lemma 31 any such potential-neutral flip is
immediately followed by either a potential-decreasing flip (either a separation flip or an articulation
flip) or by the final flip. Thus by Corollary 27 with r = 2, multi-flip-linkable(u, v) does amortized
O(log n) flips.

By Lemma 29, each find-next-flip-block(u, u′, v′, v) call also runs in O(log2 n) time. By
Lemma 28 the main loop in multi-flip-linkable(u, v) iterates amortized O(log n) times, and we
have shown that each iteration takes O(log2 n) time (in addition to the time taken by the separation
flips). Thus the total amortized time for multi-flip-linkable(u, v) is O(log3 n).

Using that, the remaining edge insertion and deletion is trivial. And the queries to the embedding
are handled directly by the underlying data structure from [11].

5 Allowing non-planar insertions

In [7, p.12, proof of Corollary 1], Eppstein et al. give a reduction from any data structure that
maintains a planar graph subject to deletions and planarity-preserving insertions and answers queries
to the planarity-compatibility of edges, to a data structure that allows the graph to be non-planar
and furthermore maintains whether the graph is presently planar, at the same amortized time.
The reduction uses the following simple and elegant argument: If some component of the graph is
non-planar, keep a pile of not-yet inserted edges, and upon a deletion, add edges from the pile until
either the pile is empty or a new planarity-blocking certificate edge is found.

To maintain not only whether the graph is planar but maintain for each component whether it is
planar, it becomes necessary to keep a pile of not-yet inserted edges for each nonplanar connected
component. To maintain the connected components, we run an auxiliary fully-dynamic connectivity
structure for the entire graph [22], maintaining a spanning forest and the non-tree edges. We may
mark the edges indicating whether they are inserted or not-yet inserted in the planar subgraph, and
we may mark vertices indicating whether they are incident to not-yet inserted edges. When an edge
deletion causes a non-planar component to break into two, a spanning tree breaks into two, say, Tu
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and Tv. For each i ∈ {u, v}, we may efficiently find not-yet inserted edges incident to Ti, and insert
them into the planar subgraph of the component spanned by Ti. We may continue until either all
edges for that component are handled or until we find the first planarity violating edge. The method
for efficiently finding not-yet inserted edges follows the exact same outline as the method for finding
candidate replacement edges in the connectivity structure [22]. Thus, the time spent on each edge
becomes O(log n/ log logn) worst-case for finding it, plus O(log3 n) amortized time for inserting it.
We have thus shown

Theorem 1. There is a data structure for fully-dynamic planarity testing that handles edge-insertions
and edge-deletions in amortized O(log3 n) time, answers queries to planarity-compatibility of an edge
in amortized O(log3 n) time, and answers queries to whether the graph is presently planar in worst
case O(1) time, or to whether the component of a given vertex is presently planar in worst case
O(log n/ log log n) time. It maintains an implicit representation of an embedding that is planar on
each planar connected component, and may answer queries to the neighbors of a given existing edge
in this current embedding, in O(log2 n) time.

6 Defining critical-cost and solid-cost

The goal of this section is to properly define the two function families critical-costτ and solid-costτ
mentioned earlier so we can prove the claimed properties.

The general idea is for each function to define a set of struts, which are edges that can be inserted
in G without violating planarity, and then measure the total number of flips needed to accommodate
all of them.

critical-costτ (H;u, v) =
∑

(x,y)∈critical-struts(G;u,v)

distτ (H,Emb(G;x, y))

solid-costτ (H;u, v) =
∑

(x,y)∈solid-struts(G;u,v)

distτ (H,Emb(G;x, y))

We want our struts to have the following properties for any planar graph G with vertices u, v:
S1) G ∪ solid-struts(G;u, v) is simple and planar.
S2) For any H,H ′ ∈ Emb(G) with distclean(H,H ′) = 1, there is at most one strut (x, y) ∈

solid-struts(G;u, v) such that distclean(H,Emb(G;x, y)) 6= distclean(H ′,Emb(G;x, y)).
S3) If H ∈ Emb(G) admits solid-struts(G;u, v) then for any u′, v′ there exists H ′ ∈ Emb(G) that

admits solid-struts(G;u′, v′) such that distclean(H,H ′) ∈ O(log n).
S4) If G ∪ (u, v) is simple and planar, then solid-struts(G;u, v) = solid-struts(G ∪ (u, v);u, v) ∪
{(u, v)}.

S5) critical-struts(G;u, v) ⊆ solid-struts(G;u, v).
S6) For (u, v) ∈ G, critical-struts(G;u, v) = ∅.
S7) For (u, v) 6∈ G, critical-struts(G;u, v) = {(u, v)} if and only if G ∪ (u, v) is planar.
S8) If G ∪ (u, v) is nonplanar, and v = a0, B1, a1, . . . , Bk, ak = v are the endpoints, biconnected

components/bridges, and articulation points on u · · · v in G, then
(a) For each Bi such that Bi ∪ (ai−1, ai) is nonplanar, critical-struts(G;u, v) contains a set

Si of struts with both endpoints in Bi such that ai−1 and ai are triconnected in Bi ∪ Si
and Bi ∪ Si is planar.
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(b) For each maximal subsequence a`−1, B`, a`, . . . , Bh, ah such that G ∪ (a`−1, ah) is planar,
and such that at least one Bi with ` ≤ i ≤ h is not a bridge, critical-struts(G;u, v)
contains a strut (a`−1, ah).

Assuming our struts have these properties, we can now prove our Lemmas about the costs.

Proof of Lemma 15. The inequality solid-costτ (G;u, v) ≥ critical-cost(G;u, v) ≥ 0 follows from
property S5 and the definition of solid-costτ and critical-costτ . The inequalities solid-costclean ≥
solid-costsep ≥ solid-costP and critical-costclean ≥ critical-costsep ≥ critical-costP also follow, be-
cause in general distclean ≥ distsep ≥ distP. Finally, if G ∪ (u, v) is planar, then by property S7,
critical-struts(G;u, v) = {(u, v)} so critical-costclean(H;u, v) = distclean(H; Emb(G;u, v)), which is
0 if and only if H ∈ Emb(G;u, v).

Proof of Lemma 16. Follows directly from properties S2 and S5, and the definition of critical flip.

Proof of Lemma 17. From the definition of critical-costτ and solid-costτ as a sum over distτ , it is
clear that if the cost is nonzero there exists a flip of type τ that decreases at least one of the terms.
But by property S2, this is then the only term that changes so this flip also decreases the sum.

Proof of Lemma 21. By definition of H ∈ Emb?(G), there exists vertices umin, vmin such
that solid-cost(H;umin, vmin) = 0. By definition of solid-costclean that means H admits
solid-strutsclean(G;umin, vmin). Then by Property S3 there exists H ′ ∈ Emb(G) that admits
solid-struts(G;u, v) and has distclean(H,H ′) ∈ O(log n). Since H ′ admits solid-struts(G;u, v),
H ′ ∈ Emb?(G;u, v), and thus distclean(H,Emb?(G;u, v)) ≤ distclean(H,H ′) ∈ O(log n).

Proof of Lemma 23. By Property S4, the only difference between solid-struts(G;u, v) and
solid-struts(G ∪ (u, v);u, v) is that the first includes the strut (u, v). Since H ∈ Emb(G;u, v),
distclean(H,Emb(G;u, v)) = 0 so removing this term does not change the sum. By Property S2, the
possible flips for every other strut (u′, v′) is unaffected, meaning that dist(H,Emb(G;u′, v′)) =
dist(H ∪ (u, v),Emb(G ∪ (u, v);u′, v′)). In other words, solid-cost(H;u, v) = solid-cost(H ∪
(u, v);u, v).

Proof of Lemma 26. Follows directly from the definition of critical-costτ and solid-costτ as a sum∑
(x,y) distτ (H;x, y), and the definition of distτ . By definition an SR flip can not change any distP,

and an articulation flip can not change any distP or distsep.

6.1 Biconnected planar graphs

Let SPQR(B;u, v) denote the solid paths in the pre-split SPQR tree for the biconnected component
B with critical vertices u, v.

Let β be a solid path in SPQR(B;u, v). The relevant part of β is the maximal subpath that does
not end in a P node.

Single solid SPQR path, simple case If β consists only of a P node, or the relevant part of β
is only a single node, define the struts relevant for β as:

struts(β) =

{
{(u, v)} if β is the critical path, (u, v) 6∈ B, and G ∪ (u, v) is planar
∅ otherwise
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Single solid SPQR path, general case Otherwise let X1, . . . , Xd be the relevant part of β.
For 1 ≤ j < d let {sj , tj} = Xj ∩Xj+1 be the separation pair that separates Xj from Xj+1. For
1 < j < d we call the node Xj cross if Xj is an R node, and the virtual edges (sj−1, tj−1) and (sj , tj)
do not share a face in Γ(Xj). If β is the critical path, we can assume without loss of generality that
u ∈ X1 and v ∈ Xd, and we say that X1 (resp. Xd) is cross if it is an R node and u (resp. v) does
not share a face with (s1, t1) (resp. (sd−1, td−1)).

Let γ = X`, . . . , Xh be a maximal subpath of X1, . . . , Xd such that Xj is not a cross node
for ` < j < h. Let uγ be the smallest-labelled vertex in Γ(X`) − {s`, t`} that shares a face
with (s`, t`) (counting u as having label −∞). Similarly let vγ be the smallest-labelled vertex in
Γ(Xh)− {sh−1, th−1} that shares a face with (sh−1, th−1) (counting v as having label −∞).

We can now define the struts relevant for β as

struts(β) = {(uγ , vγ) | γ is such a maximal subpath}

Combining the struts for a SPQR tree

critical-struts(B;u, v) =
⋃

β∈SPQR(B;u,v)
β is critical

struts(β)

off-critical-struts(B;u, v) =
⋃

β∈SPQR(B;u,v)
β is not critical

struts(β)

solid-struts(B;u, v) = critical-struts(B;u, v) ∪ off-critical-struts(B;u, v)

6.2 General planar graphs

Let BC(G;u, v) denote the set of solid paths in the forest of pre-split BC trees for a planar graph G
with critical vertices u, v.

Let α be a solid path in BC(G;u, v). The relevant part of α is the maximal subpath that does
not end in a C node.

Single solid BC path, simple case If α consists only of a C node, define

critical-struts(α) = ∅
off-critical-struts(α) = ∅

solid-struts(α) = ∅

Single solid BC path, general case In [12] we defined a set of struts for each such path and
used it to choose a critical path in the SPQR tree for each biconnected component. Since those
struts might make the graph non-planar, we need a new set; we want to substitute every non-planar
strut with a family of “maximal” planar struts in the following sense. Let B1, . . . , Bk be the B nodes
on α, for 1 < i < k let ai = Bi ∩Bi+1, and let (a0, ak) be the strut defined for α in [12]. Note that
if α is the critical path in BC(G;u, v) then we may assume without loss of generality that a0 = u
and ak = v.
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Now define

critical-struts(α) = {critical-struts(Bi; ai−1, ai) | G ∪ (ai−1, ai) is nonplanar }

∪

(a`−1, ah)

∣∣∣∣∣∣
(a`−1, ah) 6∈ G and
B`, . . . , Bh is a maximal subpath of α such that
G ∪ (a`−1, ah) is planar


off-critical-struts(α) =

k⋃
i=1

off-critical-struts(Bi; ai−1, ai)

solid-struts(α) = critical-struts(α) ∪ off-critical-struts(α)

Combining the struts from a forest of BC trees Now define:

critical-struts(G;u, v) =
⋃

α∈BC(G;u,v)
α is critical

critical-struts(α)

off-critical-struts(G;u, v) =

 ⋃
α∈BC(G;u,v)
α is critical

off-critical-struts(α)

 ∪
 ⋃

α∈BC(G;u,v)
α is not critical

solid-struts(α)


solid-struts(G;u, v) = critical-struts(G;u, v) ∪ off-critical-struts(G;u, v)

6.3 Proving the required properties

Lemma 60. The definition of critical-struts(G;u, v) and solid-struts(G;u, v) in Section 6.1 and 6.2
have property S1–S8.

Proof. Every clean separation flip in Emb(G) corresponds to an edge or a P node in a SPQR tree for
a biconnected component of G. The way the struts are chosen for biconnected graphs, means that
no two struts “cover” the same edge or P node. Similarly, each possible articulation flip in Emb(G)
correspond to a C node, and no two struts cover the same C node. Thus any flip in H ∈ Emb(G)
can affect distτ (H,Emb(G;x, y)) for at most 1 strut (x, y) proving Property S2.

Since each strut (x, y) is chosen so G ∪ (x, y) is simple and planar, and inserting one strut can
not prevent the insertion of another, G ∪ solid-struts(G;u, v) is planar and Property S1 holds.

In [12], we showed that it takes only O(log n) simple operations (merging or splitting S,P
and C nodes, and changing edges between solid and dashed) to get from the pre-split BC/SPQR
trees for G with respect to u, v to the trees with respect to u′, v′. Each of these operations
affect only at most 2 solid paths, and by our definition, at most one strut on each of these
paths. The total change in solid-costτ for each of these O(log n) operations is at most a con-
stant, so |solid-costτ (H;u, v) − solid-costτ (H;u′, v′)| ∈ O(log n). If H admits solid-struts(G;u, v)
then solid-costclean(H;u, v) = 0, so solid-costclean(H;u′, v′) ∈ O(log n). For each strut (x, y) ∈
solid-struts(G;u′, v′) with distclean(H,Emb(x, y)) > 0 there exists some flip that will reduce
this distance. After O(log n) such flips we arrive at a new embedding H ′ ∈ Emb(G) with
solid-costclean(H ′;u′, v′) = 0, which means H ′ admits solid-struts(G;u′, v′). By construction
distclean(H,H ′) ∈ O(log n), so this proves Property S3.

Property S5 follows trivially from the definition of solid-struts(G;u, v) as the (disjoint) union of
critical-struts(G;u, v) and off-critical-struts(G;u, v).
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Property S6 follows by noting that in the definition, every edge added as a strut is conditioned
on the edge not being in the graph.

Property S7 can be seen by considering the definition of critical-struts(α). If (u, v) 6∈ G and G ∪
(u, v) is planar, then for the critical path α ∈ BC(G;u, v), the maximal subpath found in the definition
is exactly the one that starts in u and ends in v. So in this case, critical-struts = {(u, v)}. If G∪(u, v)
is not planar (u, v) 6∈ solid-struts(G;u, v) by Property S1, and hence (u, v) 6∈ critical-struts(G;u, v)
by Property S5, and in particular critical-struts(G;u, v) 6= {(u, v)}.

If G ∪ (u, v) is simple and planar, our definition guarantees that (u, v) ∈ solid-struts(G;u, v).
By definition of the pre-split BC/SPQR trees, the only change to the solid paths when inserting
(u, v) is the contraction of the critical path in the BC tree, and in all the SPQR trees on the
critical path. All other solid paths in the pre-split BC/SPQR tree remain unchanged. In partic-
ular off-critical-struts(G;u, v) = off-critical-struts(G ∪ (u, v);u, v), and together with Property S6
and S7 and the fact that solid-struts(G;u, v) is the disjoint union of critical-struts(G;u, v) and
off-critical-struts(G;u, v) this proves Property S4.

Property S8 follows by simple inspection. Case S8a follows from using maximal subpaths in the
definition in Section 6.1. Similarly, Case S8b follows from using maximal subpaths in the definition
in Section 6.2.

Proof of Lemma 24. If the clean separation flip at s, t changes solid-costτ or critical-costτ , it must
be internal to a unique solid path β in some SPQR tree. Since it is internal, even if β is the critical
path for some x, y, then {x, y} ∩ {s, t} = ∅. Thus, s, t are not internal to any solid path in the BC
tree, and do not have any contribution to solid-costτ or critical-costτ that can change.

If the clean separation flip does not change solid-costτ or critical-costτ , it may be incident to
the end of a critical path m(x, y). However, at most 2 of the at most 4 articulation flips contain
neighboring blocks on the solid path in the BC tree. If 2 of them do, then the flip does not change
whether or not they share a face, and so solid-costτ and critical-costτ are unchanged. Otherwise at
most 1 of the at most 4 articulation flips change solid-costτ or critical-costτ , as desired.

7 Conclusion

We have given an amortized O(log3 n) time algorithm for updating whether a graph is still planar
after the insertion or deletion of an edge. This is close but not equal to the theoretical lower bound of
Ω(log n) [16]. An interesting open question is whether this time bound can be improved, or whether
an algorithm with worst-case polylogarithmic update time exists.
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