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ABSTRACT
A quantum walk algorithm can detect the presence of a marked

vertex on a graph quadratically faster than the corresponding ran-

dom walk algorithm (Szegedy, FOCS 2004). However, quantum

algorithms that actually find a marked element quadratically faster

than a classical random walk were only known for the special case

when the marked set consists of just a single vertex, or in the case

of some specific graphs. We present a new quantum algorithm

for finding a marked vertex in any graph, with any set of marked

vertices, that is (up to a log factor) quadratically faster than the

corresponding classical random walk, resolving a question that had

been open for 15 years.

CCS CONCEPTS
• Theory of computation → Quantum computation theory;
Algorithm design techniques; Random walks and Markov chains.
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quantum algorithms, quantum search, quantum walks, search by
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1 INTRODUCTION
As shown by Szegedy [14], quantum walks provide a quadratic

speedup over classical random walks for search tasks. If a classical

random walk hits a marked element in an expected number of HT

steps, called the hitting time, then the quantum walk runs in time
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O
(√

HT

)
. However, this speedup comes with a caveat: the quantum

walk does not necessarily find a marked element, but it can detect a
deviation from the starting state caused by marked elements. This

issue has been well known since Szegedy’s work in 2004, yet so far

it has eluded all attempts to solve it.

Several generalizations of Szegedy’s framework have been pro-

posed, but they only solve this issue in restricted cases. Tulsi [15]

showed how to solve it for the random walk on an 𝑁 × 𝑁 grid

with exactly one marked element. Here, the classical hitting time

is HT = O
(
𝑁 2

log𝑁
)
. While Szegedy’s algorithm detects the pres-

ence of a marked element in O
(√

HT

)
= O

(
𝑁

√
log𝑁

)
steps, mea-

suring the final state of the algorithm only gives themarked element

with probability Θ(1/log𝑁 ). Tulsi showed how to improve this

to Θ(1), with the running time remaining O
(
𝑁

√
log𝑁

)
. Magniez,

Nayak, Richter and Santha [12] extended this to the random walk

on any vertex transitive graph with exactly one marked element.

In addition Magniez, Nayak, Roland and Santha [13] presented

an alternative extension of Szegedy’s work, giving a quantum algo-

rithm for finding a marked vertex that runs in a number of steps

O
(√

1/(𝛿Y)
)
, where 𝛿 is the eigenvalue gap of (the Markov chain

corresponding to) the walk and Y is the probability that a vertex is

initially marked. This bound can be as small as O
(√

HT

)
in certain

cases, but significantly larger in others.

Later, Krovi, Magniez, Ozols and Roland [8] proposed a new

algorithm (based on a new notion of interpolated quantum walk)

that achieves a quadratic advantage for finding a marked element

for a randomwalk on any graph𝐺 with exactly onemarked element.

The same result was achieved by Dohotaru and Høyer [5], using a

different method.

In the general case (with multiple marked elements), the al-

gorithm of Krovi et al. finds a marked element, but takes time

O
(√

HT
+)

where HT
+
is the extended hitting time of the walk. HT

+

is a new quantity obtained by modifying the expression for HT in

terms of eigenvalues and eigenvectors of the walk. If there is only

one marked element, then HT
+ = HT and this yields the quadratic

advantage for the quantum walk. However, HT
+
may be signifi-

cantly larger than HT when there are multiple marked elements,
1

as we show in Section 5.

1
The first version of the paper by Krovi et al. [8] claimed HT

+ = HT for any number

of marked elements but this turned out to be false, as corrected by the authors in later

versions.
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Lastly, for a two-dimensional grid, a quadratic advantage for any

set of marked elements was achieved by Høyer and Komeili [7]

using a divide-and-conquer approach. However, their approach is

specific to the two-dimensional grid and does not seem to generalize

even to grids in higher dimensions.

1.1 Our Contributions
In this paper, we finally resolve the problem of finding a marked

element quadratically faster (up to a log factor) compared to the

classical random walk, on any graph, for any number and any

arrangement of marked elements.

Our main new algorithm combines interpolated walks with the

recently invented quantum fast-forwarding technique of Apers and
Sarlette [2]. Quantum fast-forwarding is a primitive that allows

one to replace 𝑡 steps of a classical random walk with O
(√

𝑡

)
steps

of a quantum walk, in a certain sense. A caveat is that quantum

fast-forwarding may only produce the final state with a very small

success probability. However, in our application, it succeeds with

probability Ω̃(1). This is shown by an insightful argument that

interprets the success probability of quantum fast-forwarding in

terms of the classical random walk. Namely, it corresponds to the

probability that the classical random walk, started in a random

unmarked vertex, visits a marked vertex after 𝑡 steps, but returns

to an unmarked vertex after 𝑡 additional steps. We show that this

probability can be tuned to be Ω̃(1) by adjusting the interpolation

parameter of the walk. After describing some preliminaries in Sec-

tion 2, we discuss Algorithm 1 and the main result in Section 3, and

provide the details of the analysis in Section 4.

In Section 5 we show that the gap between HT
+
and HT can

indeed be very large. We construct an arrangement of marked

elements on an 𝑁 × 𝑁 grid for which HT
+ = Ω(𝑁 2) but HT =

O(𝑓 (𝑁 )) where 𝑓 grows to infinity arbitrarily slowly. This shows

that the algorithm of Krovi et al. can be severely suboptimal when

there are multiple marked elements. The reason is that their algo-

rithm actually solves a harder problem: it samples from the station-

ary distribution restricted to marked vertices (which is the uniform

distribution in case of the grid). Hence, their algorithm may be slow

in cases when sampling from this distribution is substantially more

difficult than just finding some marked element.

In Section 6 we present a second, simpler, new algorithm, which

we conjecture
2
to find a marked element in time O

(√
HT

)
, for an

arbitrary arrangement of marked elements (Conjecture 11). This

second algorithm is also based on the idea of interpolated walks,

but uses it differently from [8]. Namely, Algorithm 2 just runs the

interpolated walk for O
(√

HT

)
steps (instead of using eigenvalue

estimation to produce an eigenstate of the walk, as in [8]). Our

numerical experiments suggest, that for any arrangement of marked

vertices, there is a choice of the interpolation parameter and a choice

of running time 𝑡 = O
(√

HT

)
which results in the walk producing

a marked vertex with probability Ω(1). We tested this conjecture

for all examples with HT
+ ≫ HT that we found.

2
Very recently a slightly weaker version of our conjecture has been proven by Apers,

Gilyén, and Jeffery [1]. They essentially prove Conjecture 11 up to a log factor in the

success probability. Remarkably, their proof heavily builds on the correctness of our

Algorithm 1, and its implementation details.

2 PRELIMINARIES
2.1 Markov Chains and RandomWalks
For a random variable 𝑍 and probability distribution 𝜌 , we will use

𝑍 ∼ 𝜌 to indicate that 𝑍 is distributed according to 𝜌 .

A sequence of random variables 𝑌 = (𝑌𝑖 )∞𝑖=0
is a Markov chain if

for all 𝑖 > 0,

Pr(𝑌𝑖 = 𝑦𝑖 |𝑌0 = 𝑦0, . . . , 𝑌𝑖−1 = 𝑦𝑖−1) = Pr(𝑌𝑖 = 𝑦𝑖 |𝑌𝑖−1 = 𝑦𝑖−1).

A (time-independent) Markov chain on a discrete state space𝑋 with

|𝑋 | = 𝑛 is specified by an 𝑛 × 𝑛 row-stochastic matrix P, whose

𝑥𝑦-entry P𝑥𝑦 denotes the probability that the Markov chain makes

a transition from state 𝑥 ∈ 𝑋 to the state 𝑦 ∈ 𝑋 in one step. For

a distribution 𝜌 on 𝑋 , we say that 𝑌 is a Markov chain evolving

according to P starting from 𝜌 if 𝑌0 ∼ 𝜌 , and for all 𝑖 > 0 and

𝑥,𝑦 ∈ 𝑋 , Pr(𝑌𝑖 = 𝑦 |𝑌𝑖−1 = 𝑥) = P𝑥𝑦 . We will left-multiply with

probability (row) vectors to follow the common conventions in the

literature for Markov chains, so if 𝑌0 ∼ 𝜌 , then 𝑌𝑖 ∼ 𝜌P𝑖
, for any

𝑖 ≥ 0.

We say thatP is ergodic if for a large enough 𝑡 ∈ N all elements of

P𝑡
are non-zero. For an ergodic P there exists a unique stationary

distribution π such that πP = π, and we define the time-reversed
Markov chain as P∗

:= diag(π)−1 · P𝑇 · diag(π). We say that P is

reversible if it is ergodic and P∗ = P. Note that reversibility can be

equivalently expressed by the detailed-balance equations:

∀𝑥,𝑦 ∈ 𝑋 : π𝑥P𝑥𝑦 = π𝑦P𝑦𝑥 , (1)

intuitively meaning that in the stationary distribution for each

pair of states the probability of a transition between the states in

both directions is that same. Moreover, it is easy to see that if P is

reversible then so is P𝑡
for every 𝑡 ∈ N.

For an ergodic Markov chain P, we define the discriminant

matrix 𝐷 such that its 𝑥𝑦-entry is

√
P𝑥𝑦P∗

𝑦𝑥 . It is easy to see that

𝐷 = diag(π)
1

2 · P · diag(π)−
1

2 . (2)

This form has several important consequences. First of all the spec-

tra of P and 𝐷 coincide, and moreover, the vector

√
π that we get

from π by taking the square root element-wise, is a left eigenvector

of 𝐷 with eigenvalue 1. Also from the definition 𝐷𝑥𝑦 =
√
P𝑥𝑦P∗

𝑦𝑥

it follows that for reversible Markov chains, 𝐷 is a symmetric ma-

trix, and therefore its singular values and eigenvalues coincide up

to sign.

Reversible Markov chains are equivalent to random walks on

weighted graphs; for a survey on the topic see Lovász [10]. They

have been used to design search algorithms in various contexts.

Specifically, if P is a random walk on a state space 𝑋 , and𝑀 ⊂ 𝑋 is

a set of marked vertices, then a randomized algorithm that begins

in any vertex 𝑥 ∈ 𝑋 and repeatedly makes a step of the walk, while

checking whether the current state is marked, will eventually find

some 𝑥 ∈ 𝑀 (assuming 𝑀 is non-empty). When the algorithm

starts in the stationary distribution of P, the expected number

of steps needed before a marked vertex is reached is called the

hitting time, and is denoted HT = HT(P, 𝑀). Let 𝑍 be the smallest

number such that 𝑌𝑍 ∈ 𝑀 , where 𝑌 is a Markov chain evolving

according to P starting from π, then HT(P, 𝑀) = E[𝑍 ]. Moreover,
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by Markov’s inequality, for any positive real number 𝑐 we have

Pr(𝑍 > 𝑐HT(P, 𝑀)) ≤ 1

𝑐 .

Thus, for any reversible Markov chain P on 𝑋 , and 𝑀 ⊂ 𝑋 , if

C is the complexity of checking whether 𝑥 ∈ 𝑀 (for an arbitrary

𝑥 ∈ 𝑋 ), U is the cost of taking one step of the walk P, and S
is the cost of sampling according to the stationary distribution,

then there is a randomized algorithm that finds a marked vertex

with high probability in complexity O(S + HT(U + C)). In the next

subsection, we will consider quantum analogues of this procedure.

For simplicity in the rest of the paper we will work with re-

versible time-independent Markov chains, unless otherwise stated.

2.2 Interpolated Walks and QuantumWalk
Search Algorithms

Interpolated walks. Some previous quantum walk algorithms are

based on the notion of interpolated walk. Intuitively speaking such

a walk works as follows: first it checks whether the current node is

marked. It the node is unmarked, then it performs a normal step of

the walk; but if it is marked, then it performs a normal walk step

only with probability 1 − 𝑠 , and with probability 𝑠 it stays at the

current marked node.

Let us fix some reversibleMarkov chainP andmarked set𝑀 ⊂ 𝑋 .

We first define the absorbing walk operator P ′
as the modified

Markov chain that, once it hits the set of marked vertices𝑀 , stays

where it is. If we arrange the states of𝑋 so that the unmarked states

𝑈 := 𝑋 \𝑀 come first, the matrices P and P ′
have the following

block structure:

P :=

(
P𝑈𝑈 P𝑈𝑀

P𝑀𝑈 P𝑀𝑀

)
, P ′

:=

(
P𝑈𝑈 P𝑈𝑀

0 𝐼

)
.

We define the interpolated walk operator, for 𝑠 ∈ [0, 1), as:

P(𝑠) := (1 − 𝑠)P + 𝑠P ′, (3)

staying at a marked vertex with probability 𝑠 . We denote the cor-

responding discriminant matrix by 𝐷 (𝑠). Let Π𝑀 be the projector

onto marked vertices and let Π𝑈 := 𝐼 − Π𝑀 be the projector onto

unmarked vertices. Then we define π𝑈 := πΠ𝑈 and π𝑀 := πΠ𝑀 as

the row vectors that are obtained by restricting π to sets𝑈 and𝑀 ,

respectively. We denote the probability that an element is marked

in the stationary distribution by 𝑝𝑀 :=
∑
𝑥 ∈𝑀 π𝑥 = ∥π𝑀 ∥

1
. Then

π′
:= π𝑀/𝑝𝑀 is a stationary distribution of P ′

.
3
In analogy to the

definition of P(𝑠) in Eq. (3), let π(𝑠) be a convex combination of π

and π′
, appropriately normalized:

π(𝑠) :=
(1 − 𝑠)π + 𝑠π′

(1 − 𝑠) + 𝑠𝑝𝑀
=

1

1 − 𝑠 (1 − 𝑝𝑀 ) ((1 − 𝑠)π𝑈 + π𝑀 ) . (4)

Krovi et al. [8] showed that for any 𝑠 ∈ [0, 1), P(𝑠) is a reversible
ergodic Markov chain with unique stationary distribution π(𝑠).

Quantum walk operator. For a (reversible) Markov chain P, let

𝑉 (P) be a unitary such that
4

∀𝑥 ∈ 𝑋 : 𝑉 (P)|0̄⟩|𝑥⟩ =
∑
𝑦∈𝑋

√
P𝑥𝑦 |𝑦, 𝑥⟩,

3
In fact, any distribution with support only on marked states is stationary for P′

.

4
Note that here we swapped the role of the two registers compared to some previous

works, in order to make the resemblance with block-encodings [4, 6] more apparent,

see Section 2.3 for more details.

where |0̄⟩ is some fixed reference state. The action of 𝑉 (P) is anal-
ogous to taking one step of the random walk P in superposition.

Let Swap be defined by the action |𝑥,𝑦⟩ ↦→ |𝑦, 𝑥⟩, for all 𝑥,𝑦 ∈ 𝑋 ,

and let Ref = (2|0̄⟩⟨0̄| − 𝐼 ) ⊗ 𝐼 . The corresponding quantum walk
operator is

𝑊 (P) := 𝑉 †(P) Swap𝑉 (P) Ref.
Note that ⟨0̄|⟨𝑥 |𝑊 (P)|0̄⟩|𝑦⟩ =

√
P𝑥𝑦P𝑦𝑥 = 𝐷𝑥𝑦 .

Extended hitting time. For any 𝑠 ∈ [0, 1), suppose that 𝐷 (𝑠) has
eigenvalue decomposition

𝑛∑
𝑘=1

_𝑘 (𝑠) |𝑣𝑘 (𝑠)⟩⟨𝑣𝑘 (𝑠) |,

with _𝑛 (𝑠) = 1, so _𝑘 (𝑠) < 1 for all 𝑘 < 𝑛. Then we can define
5

HT(𝑠) :=

𝑛−1∑
𝑘=1

|⟨𝑣𝑘 (𝑠) |
√
π𝑈 ⟩|2

1 − _𝑘 (𝑠)
,

and

HT
+ (P, 𝑀) := lim

𝑠→1

HT(𝑠),

where |√π𝑈 ⟩ =
∑
𝑥 ∈𝑈

√
π𝑥 |𝑥⟩. We call HT

+
the extended hitting

time. To put this definition into context, note that one can show

HT(P, 𝑀) = ∑𝑛−|𝑀 |
𝑘=1

| ⟨𝑣′
𝑘
|√π𝑈 ⟩ |2
1−_′

𝑘

, where _′
𝑘
ranges over the (≠ 1)

eigenvalues of 𝐷 (1) and |𝑣 ′
𝑘
⟩ are the corresponding eigenvectors.

For a proof see, e.g., [8, Proposition 9].

Quantum walk search algorithms. We introduce the following

black-box (oracle) operations:

• Check(𝑀): checks if a given vertex is marked by mapping

|𝑥⟩|𝑏⟩ to |𝑥⟩|𝑏⟩ if 𝑥 ∉ 𝑀 and |𝑥⟩|𝑏 ⊕ 1⟩ if 𝑥 ∈ 𝑀 , where |𝑥⟩
is the vertex register and 𝑏 ∈ {0, 1};

• Setup(P): construct the superposition

|
√
π⟩ =

∑
𝑥 ∈𝑋

√
π𝑥 |𝑥⟩;

• Update(P): perform one update step. More precisely imple-

ment (separately, controlled versions of
6
) Swap, Ref, and

𝑉 (P)±1
.

Each of these operations has a corresponding associated implemen-

tation cost, which we denote by C, S, and U, respectively.
For implementing the interpolated quantum walk we define a

modified version of the update operator, which is a direct quantum

analogue to the interpolated classical update: if the current vertex

is marked flip a coin and do noting when the result is “heads”,

otherwise proceed as usually. Accordingly the modified quantum

update operator𝑉 (P, 𝑠) for all 𝑥 ∈ 𝑈 acts as 𝐼 ⊗𝑉 (P) on the initial

state |0⟩|0̄⟩|𝑥⟩, and for 𝑥 ∈ 𝑀 acts as

|0⟩|0̄⟩|𝑥⟩ ↦→
√

1 − 𝑠 |0⟩𝑉 (P)|0̄⟩|𝑥⟩ +
√
𝑠 |1⟩|0̄⟩|𝑥⟩.

We define the interpolated quantum walk operator as

𝑊 (𝑠) := 𝑉 †(P, 𝑠) Swap′𝑉 (P, 𝑠) Ref′, (5)

5
Note that this definition slightly differs from the definitions of [8], namely these

quantities are (1 − 𝑝𝑀 )-times smaller here; this additional factor in [8] comes from

conditioning on starting in an unmarked state. Our notation matches other standard

definitions in the literature, and since the interesting regime is when 𝑝𝑀 ≪ 1, this is

anyway an unimportant difference.

6
This is mostly needed for implementing interpolated versions of the quantum walk.
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where Swap
′

:= |0⟩⟨0| ⊗ Swap + |1⟩⟨1| ⊗ 𝐼 and Ref
′

:= (2|0⟩⟨0| ⊗
|0̄⟩⟨0̄| − 𝐼 ) ⊗ 𝐼 . It is easy to see that

⟨0|⟨0̄|⟨𝑥 |𝑊 (𝑠) |0⟩|0̄⟩|𝑦⟩ = 𝐷𝑥𝑦 (𝑠). (6)

Note that𝑊 (𝑠) can be implemented
7
for any 𝑠 ∈ [0, 1) in cost of

order C + U, in the following way. First check whether 𝑥 ∈ 𝑋 is

marked, and if it is, then apply the map |0⟩ ↦→
√

1 − 𝑠 |0⟩ +
√
𝑠 |1⟩ to

the first qubit. Controlled by the first qubit’s state being |0⟩, apply
𝑉 (P) to the last two registers. (From now on for simplicity we will

just write |0̄⟩ instead of |0⟩|0̄⟩ when we work with interpolated

quantum walks𝑊 (𝑠).)
While a classical random walk can find a marked vertex in com-

plexity
8 O(S + HT(U + C)), Krovi et al. [8] showed that using the

quantum walk 𝑊 (𝑠) one can find a marked vertex in complex-

ity O
(
S +

√
HT

+ (U + C)
)
. However, in Section 5, we show that

HT
+
may be much larger than HT. In Section 3, we show that in

fact, a quantum algorithm can find a marked vertex in complexity

Õ
(
S +

√
HT(U + C)

)
, see Theorem 3 (full analysis in Section 4).

2.3 Quantum Fast-forwarding
We will use the quantum fast-forwarding technique of Apers and

Sarlette [2], which allows us to, in some very “quantum” sense,

apply 𝑡 steps of a walk in only

√
𝑡 calls to its update operation. We

state their main result in a slightly adapted form.

Theorem 1 ([2]). Let Y ∈ (0, 1), 𝑠 ∈ [0, 1] and 𝑡 ∈ N. Let P be any
reversible Markov chain on state space 𝑋 , and let Q be the cost of
implementing the (controlled) quantum walk operator𝑊 (𝑠). There
is a quantum algorithm with cost O

(√
𝑡 log(1/Y)Q

)
that takes input

|0̄⟩|𝜓 ⟩ ∈ span{|0̄⟩|𝑥⟩ : 𝑥 ∈ 𝑋 }, and outputs a state that is Y-close to
a state of the form

|0⟩⊗𝑎 |0̄⟩𝐷𝑡 |𝜓 ⟩ + |Γ⟩

where 𝑎 = O(log(𝑡 log(1/Y))) and |Γ⟩ is some garbage state that has
no support on states containing |0⟩⊗𝑎 |0̄⟩ in the first two registers.

To gain some intuition it is useful to think about the walk op-

erator𝑊 as a block-encoding of the discriminant matrix 𝐷 , i.e., a

unitary matrix containing 𝐷 in the top-left corner. In this terminol-

ogy, fast-forwarding reads as implementing a block-encoding of 𝐷𝑡

by using the block-encoding of 𝐷 only roughly

√
𝑡 times. By this

insight one can rederive Theorem 1 via recent qubitisation [11] or

quantum singular value transformation [6] result as well.

Consider the case when we start with the subnormalised vector

|√π𝑈 ⟩ =
∑
𝑥 ∈𝑈

√
π𝑥 |𝑥⟩ and apply the “fast-forwarded” Markov

chain from Theorem 1, before measuring. We show how to re-

express the probability of measuring a marked element in terms of

7
We note that [8, Appendix B.2] also describes a way to implement the interpolated

quantum walk operator with similar complexity but additionally require (query) access

to the diagonal entries of P.

8
We note that in the classical case, S is the cost of classically sampling from π, and U
is the cost of classically sampling a neighbour of the current vertex. These classical

sampling operations may be cheaper than Setup and Update, but in applications, they

are often similar to the quantum costs.

the interpolated walk P(𝑠). The probability of measuring a marked

state is given by the square of:
9Π𝑀𝐷𝑡 (𝑠) |√π𝑈 ⟩

 ≥
Π𝑀𝐷𝑡 (𝑠) |√π𝑈 ⟩

Π𝑀𝐷𝑡 (𝑠) |√π𝑈 ⟩


≥ ⟨√π𝑈 |𝐷𝑡 (𝑠)Π𝑀𝐷𝑡 (𝑠) |√π𝑈 ⟩ by Cauchy-Schwarz

= ⟨√π𝑈 |diag(π(𝑠))
1

2 P𝑡 (𝑠)Π𝑀P𝑡 (𝑠)diag(π(𝑠))−
1

2 |√π𝑈 ⟩
by Eq. (2)

= ⟨√π𝑈 |diag(π)
1

2 P𝑡 (𝑠)Π𝑀P𝑡 (𝑠)diag(π)−
1

2 |√π𝑈 ⟩ by Eq. (4)

=
∑

𝑥,𝑧∈𝑈
π𝑥 ⟨𝑥 |P𝑡 (𝑠)Π𝑀P𝑡 (𝑠) |𝑧⟩. (7)

In the first inequality 𝑡 can be an arbitrary positive integer since

∥𝐷 (𝑠)∥ = 1; in the penultimate equality we have used the fact from

Eq. (4), that π(𝑠) restricted to𝑈 is proportional to π, so for some 𝛼 ,

⟨√π𝑈 |diag(π(𝑠))
1

2 = ⟨√π𝑈 |
√
𝛼diag(π𝑈 )

1

2 , and

diag(π(𝑠))−
1

2 |√π𝑈 ⟩ = 1

√
𝛼

diag(π𝑈 )−
1

2 |√π𝑈 ⟩.

The expression in (7) can be equivalently expressed as⟨π𝑈 |P𝑡 (𝑠)Π𝑀P𝑡 (𝑠)Π𝑈


1

,

which is the probability that upon starting from the stationary

distribution of P and evolving according to P(𝑠), the first vertex is
unmarked, after 𝑡 steps we are at a marked vertex, and after another

𝑡 steps we are at an unmarked vertex again. We summarize this in

the following lemma:

Lemma 2. Let 𝑠 ∈ [0, 1), and P be any reversible Markov process.
Let𝑌 (𝑠) = (𝑌𝑖 (𝑠))∞𝑖=0

be the Markov chain evolving according to P(𝑠)
starting from 𝑌0 (𝑠) ∼ π. Then for any 𝑡, 𝑡 ∈ N, letting 𝑡 ′ = 𝑡 + 𝑡 :Π𝑀𝐷𝑡 (𝑠) |√π𝑈 ⟩

 ≥ Pr(𝑌0 (𝑠) ∈ 𝑈 ,𝑌𝑡 (𝑠) ∈ 𝑀,𝑌𝑡 ′ (𝑠) ∈ 𝑈 ). (8)

Thus, it suffices to lower bound the probability in (8) by Ω̃(1) for
some choice of 𝑠 and 𝑡 = O(HT); this is established by Corollary 7

in Section 4. Note that 𝑡 ′ > 𝑡 can be arbitrarily large in principle,

but we will ultimately choose some 𝑡 ′ = O(HT). In fact, we will

not even directly use Lemma 2, because we can get a slightly better

bound by the direct argument presented in the proof of Corollary 8.

3 THE MAIN RESULT
Our main result is the following.

Theorem 3. Let P be any reversible Markov chain on a finite state
space 𝑋 , and let𝑀 ⊂ 𝑋 be a marked set. Then Algorithm 1 outputs a
vertex 𝑥 from𝑀 with success probability at least 2

3
with cost

O
(
S
√

log(HT) +
√

HT(U + C)
√

log(HT) log log(HT)
)
,

where HT is a known upper bound on HT(P, 𝑀), S is the cost of the
Setup(P) operation, U is the cost of the Update(P) operation, and
C is the cost of the Check(𝑀) operation.

Now we sketch the proof of Theorem 3. The two key ingredients

are Theorem 1 and Corollary 8, which is proven in Section 4.

9
For a parametrizedmatrix𝑀 (𝑠) we denote (𝑀 (𝑠))𝑡 simply by𝑀𝑡 (𝑠) , so for example

P𝑡 (𝑠) ≡ (P (𝑠))𝑡 .
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Algorithm 1 Our new fast-forwarding-based search algorithm

Input: Oracles for the Markov chain P and the marked set𝑀 , and

upper bound HT on HT(P, 𝑀)
Set 𝑇 := 72HT and 𝑆 :=

{
1 − 1

𝑟 : 𝑟 ∈ {1, 2, 4, . . . , 2 ⌈log(36𝑇 ) ⌉ }
}
.

Use Θ
(√

log(𝑇 )
)
rounds of amplitude amplification to amplify the

success probability of steps 1-3:

1.) Use Setup(P) to prepare the state

𝑇∑
𝑡=1

1

√
𝑇
|𝑡⟩

∑
𝑠∈𝑆

1√
|𝑆 |

|𝑠⟩|
√
π⟩.

2.) Perform a binary measurement {Π𝑀 , 𝐼 − Π𝑀 } on the last

register. If the outcome is “marked”, thenmeasure in the com-

putational basis, and output the entry in the last register. Oth-

erwise continue with the (subnormalised) post-measurement

state

𝑇∑
𝑡=1

1

√
𝑇
|𝑡⟩

∑
𝑠∈𝑆

1√
|𝑆 |

|𝑠⟩|√π𝑈 ⟩.

3.) Use quantum fast-forwarding, controlled on the first two

registers, to map |𝑡⟩|𝑠⟩|√π𝑈 ⟩ to |1⟩|𝑡⟩|𝑠⟩𝐷𝑡 (𝑠) |π𝑈 ⟩ + |0⟩|Γ⟩
for some arbitrary |Γ⟩, with precision Y = O

(
1

log(𝑇 )

)
. Finally,

measure the last register and output its content if marked,

otherwise output Non-marked vertex.

Corollary 8 shows that if 𝑇 ≥ 72HT(P, 𝑀), then the success

probability of the above steps 1-3 is Ω
(

1

log(𝑇 )

)
. Therefore, after

O
(√

log(𝑇 )
)
steps of amplitude amplification,

10
the success prob-

ability becomes Ω(1). By Theorem 1 the complexity of step 3 is

O
(√

𝑇 log log(𝑇 ) (U + C)
)
, since𝑊 (𝑠) can be implemented in cost

O(U + C) as in (5). Thus, the complexity of steps 1-3 is

O
(
S +

√
𝑇 log log(𝑇 ) (U + C)

)
,

where S is the complexity of generating |
√
π⟩, using Setup(P).

Amplitude amplification gives a

√
log(𝑇 ) multiplicative overhead.

If no upper bound is known onHT(P, 𝑀), then one can apply the
exponential search algorithm of Boyer, Brassard, Høyer and Tapp

[3] (see also [8, Theorem 24] with similar analysis as in our case),

where we simply run Algorithm 1 with exponentially increasing

guesses of an upper bound HT. This leads to the following corollary.

Corollary 4. Let P be any reversible Markov chain on a finite state
space𝑋 , and let𝑀 ⊂ 𝑋 be amarked set. There is a quantum algorithm
that outputs a vertex 𝑥 from𝑀 with bounded error in expected cost

O
(
S log

1.5 (HT) +
√

HT(U + C)
√

log(HT) log log(HT)
)
,

where HT = HT(P, 𝑀), S is the cost of the Setup(P) operation,
U is the cost of the Update(P) operation, and C is the cost of the
Check(𝑀) operation.

10
In order to avoid “over-amplification”, one can use a random number of amplification

steps, or alternatively use a “fixed-point” version of amplitude amplification [6, 17].

Finally, we briefly describe how the above corollary follows

from Theorem 3. The main idea is to repeatedly run Algorithm 1

until a marked vertex is found, with 4
𝑖
as our guess of an upper

bound for HT in the 𝑖th round of iteration for 𝑖 = 1, 2, 3, etc. Once

𝑖 ≥ 𝑗 := ⌈log
4
(HT)⌉, Theorem 3 guarantees that a marked vertex

is found with probability at least 2/3.

Let 𝐵𝑖 ∈ Θ
(√

𝑖S + 2
𝑖
√
𝑖 log(𝑖) (C + U)

)
denote the upper bound

on the cost of the 𝑖-th round given by Theorem 3; the expected cost

to find a marked element using exponential search is bounded by

𝑗∑
𝑖=1

𝐵𝑖 +
∞∑
𝑘=1

𝐵 𝑗+𝑘Pr(( 𝑗 +𝑘)-th round reached) ≤
𝑗∑

𝑖=1

𝐵𝑖 +
∞∑
𝑘=1

𝐵 𝑗+𝑘3
−𝑘.

By observing that 𝐵 𝑗+𝑘 ≤ O
(
(𝑘 + 1)2𝑘

)
𝐵 𝑗 for 𝑘 ∈ N, we see that

the second sum is of the order 𝐵 𝑗 , and an elementary calculation

shows that the first sum can be bounded by O
(
𝑗
√
𝑗S + 𝐵 𝑗

)
, proving

Corollary 4.

4 ANALYSIS OF FAST-FORWARDING –
THE COMBINATORIAL LEMMA

In this section, we describe the details of the analysis of Algorithm 1

needed for proving Theorem 3.

The main goal is to understand the probabilistic expression (8)

in Lemma 2 that lower bounds the success probability of the fast-

forwarded walk-based search algorithm. In order to lower bound

the right-hand side of (8) by Ω̃(1), we want to prove that there is

some 𝑠 and some random choice of 𝑡, 𝑡 ′ = O(HT) with 𝑡 ′ > 𝑡 (in

fact, 𝑡 ′ could also be much larger than HT) such that starting in the

stationary distribution and running the chain, with constant proba-

bility, the 𝑡-th vertex is marked, and the 𝑡 ′-th vertex is unmarked.

In this section, we reduce this problem to a simple combinatorial

statement, which we prove in Lemma 5.

Let 𝑌 = (𝑌𝑖 )∞𝑖=0
be a Markov chain evolving according to P

starting from 𝑌0 ∼ π.11 In order to address interpolated walks

we define 𝑌 (𝑠) := (𝑌𝑖 (𝑠))∞𝑖=0
to be the same chain as 𝑌 , except

that for every marked vertex in 𝑌 , 𝑌 (𝑠) stays in that vertex for a

length of time that is geometrically distributed with parameter 1−𝑠
(mean

1

1−𝑠 ), before taking a step according to 𝑌 , see Figure 1. More

precisely, let 𝑘1 < 𝑘2 < . . . be the (random) indices such that 𝑌𝑘 𝑗

is marked, and let 𝐿1, 𝐿2, . . . be geometric random variables with

mean
1

1−𝑠 . Let 𝐿𝑗 :=
∑𝑗

𝑗 ′=1
(𝐿𝑗 ′ − 1), then

𝑌𝑖 (𝑠) :=


𝑌𝑖 if 𝑖 ∈ {0, . . . , 𝑘1}
𝑌𝑘 𝑗

if 𝑖 ∈ {𝑘 𝑗 + 𝐿𝑗−1, . . . , 𝑘 𝑗 + 𝐿𝑗 }
𝑌𝑖−�̄�𝑗

if 𝑖 ∈ {𝑘 𝑗 + 𝐿𝑗 + 1, . . . , 𝑘 𝑗+1 + 𝐿𝑗 }.

It is easy to see that the marginal distribution on 𝑌 (𝑠) is a Markov

chain evolving according to P(𝑠) starting from π.12

11
Since we start in the stationary distribution actually this distribution is also transla-

tionally invariant and is the same if we look forward or backward – due to reversibility.

However, our Corollary 7 does not use these properties – by using these properties

one might be able to prove a stronger Ω (1) lower bound for a well-chosen value of 𝑠 .
12
What we have actually described is a coupling of the random variables 𝑌 and 𝑌 (𝑠) ,

such that 𝑌 (𝑠) uses the same randomness source for walking as 𝑌 , but it might delay

transitions at marked vertices, as dictated by the additional independent geometric

random variables. However, note that this is not the same kind of coupling that is

commonly used between Markov chains, where the chains start and also stay together.
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𝑖 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

𝑌𝑖 0 1 2 3 4 3 2 3 4 3 4 3 2 1 . . .

𝑌𝑖 (𝑠) 0 1 2 3 4 4 4 4 3 2 3 4 4 4 3 4 4 4 3 2 1

Figure 1: Example of 𝑌 and 𝑌 (𝑠) when P is a walk on a line, 𝑠 = 3

4
, and 4 is marked.

𝑦 . . .

𝑦 (𝑟 ) . . .

Figure 2: The first row shows a sequence 𝑦 drawn from 𝑌 , and the second its 𝑟 -rescaling 𝑦 (𝑟 ) , for 𝑟 = 4. The first row represents
the sequence of unmarked and marked states visited by P, and the second is an approximation of the sequence of unmarked
and marked states of P(𝑠) for 𝑠 = 1 − 1

𝑟 = 3

4
.

We are only interested in whether a state in the chain is marked

or not, so we map the elements to {marked, unmarked} and denote
by 𝑌𝑖 , 𝑌𝑖 (𝑠) the image of the chains after this mapping. Then we are

interested in lower bounding

Pr

(
𝑌0 (𝑠) = unmarked, 𝑌𝑡 (𝑠) = marked, 𝑌𝑡 ′ (𝑠) = unmarked

)
. (9)

A particular sequence 𝑦 drawn from 𝑌 can then be represented

visually by a sequence of boxes, each of which is either unmarked

(white) ormarked (black). The corresponding coupled sequence𝑦 (𝑠)
of 𝑌 (𝑠) is essentially the same as 𝑦, except that every black box is

replaced with a string of black boxes, whose length is geometrically

distributed with mean 𝑟 = 1

1−𝑠 . Thus, a good approximation of the

sequence 𝑦 (𝑠) is obtained by starting with 𝑦 and replacing each

black box by a black box of length 𝑟 , which we call an 𝑟 -rescaling
of 𝑦, and denote 𝑦 (𝑟 ) , see Figure 2. Note that 𝑟 need not be integral,

but it is convenient and sufficient to assume that it is.

It will be sufficient to show that for some random choices 𝑡, 𝑡 ′ =
O(HT) with 𝑡 ′ > 𝑡 , we have both

(𝑚) 𝑦 (𝑟 )𝑡 = marked and

(𝑢) 𝑦 (𝑟 )
𝑡 ′ = unmarked,

with Ω̃(1) probability (over 𝑌 and the random choice of 𝑡 and 𝑡 ′),
for some 𝑟 = 1

1−𝑠 . Let𝑀
(𝑟 )
𝑦 (𝑎, 𝑏] (resp.𝑈 (𝑟 )

𝑦 (𝑎, 𝑏]) be the set of 𝑖 ∈
{𝑎+1, 𝑎+2, . . . , 𝑏} such that𝑦 (𝑟 )

𝑖
= marked (resp.𝑦

(𝑟 )
𝑖

= unmarked).

If we choose 𝑡 uniformly at random from {𝑎 + 1, . . . , 𝑏}, and 𝑡 ′

uniformly at random from {𝑎′ + 1, . . . , 𝑏 ′}, with 𝑎′ ≥ 𝑏, then the

problem reduces to showing that for a good choice of 𝑟 , with high

probability over 𝑌 , |𝑀 (𝑟 )
𝑦 (𝑎, 𝑏] |/(𝑏 −𝑎) and |𝑈 (𝑟 )

𝑦 (𝑎′, 𝑏 ′] |/(𝑏 ′ −𝑎′)
are both Ω̃(1).

Let 𝑇 = ⌈3HT⌉, and suppose for the sake of this discussion

that no marked vertex has a marked neighbour in P.
13

Then for

any even-length interval {𝑎 + 1, . . . , 𝑏}, the proportion of 𝑡 ∈ {𝑎 +
1, . . . , 𝑏} such that 𝑦𝑡 = marked is at most

1

2
. As a first attempt,

suppose we choose 𝑡 uniformly at random from {1, . . . , 2𝑇 } and 𝑡 ′
uniformly at random from {2𝑇 + 1, . . . , 4𝑇 }. First note that, without
any rescaling (i.e. with 𝑟 = 1), condition (𝑢) always holds, because

13
This could be arranged by making two copies of the graph, ensuring that each

transition switches from one copy of the graph to the other, and only considering the

marked vertices in one copy to be marked. However, we will ultimately not need this

assumption.

|𝑀 (1)
𝑦 (2𝑇, 4𝑇 ] | ≤ 𝑇 . It is also easy to see that upon running the non-

interpolated walk P, with high probability there will be a marked

vertex in the first subsequence of length 𝑇 . Thus, if we choose 𝑠 ≥
1 − 1

𝑇
so that 𝑟 ≥ 𝑇 , then with high probability |𝑀 (𝑟 )

𝑦 (0, 2𝑇 ] | ≥ 𝑇 ,

so condition (𝑚) holds. However, after this rescaling, (𝑢) might no

longer hold. Figure 3 illustrates a 𝑦, for which, before scaling, (𝑢)
holds but not (𝑚), and after scaling by 𝑟 = 𝑇 , (𝑚) holds but not (𝑢).

The difficulty is that by scaling, as we create more marked boxes,

we are pushing unmarked boxes out of the intervals of concern.

There is a bijection between the 𝑖th unmarked box in 𝑦 and the 𝑖th

unmarked box in 𝑦 (𝑟 ) , but its index in 𝑦 (𝑟 ) can increase. To make

this precise, let 𝜎𝑟 (𝑖) ∈ N be the position of the 𝑖th unmarked box

in 𝑦 (𝑟 ) . Consider 𝜎𝑟 (𝑖) as a function of 𝑟 ; if no marked box occurs

before 𝑖 , then 𝜎𝑟 (𝑖) ≡ 𝑖 , but otherwise it is linearly increasing in 𝑟 .

In particular, if𝑚(𝑖) denotes the number of marked boxes before

the 𝑖th unmarked box in 𝑦, then 𝜎𝑟 (𝑖) = 𝑖 +𝑚(𝑖)𝑟 . This suggests
that for small enough values 𝑖 , as long as𝑚(𝑖) ≥ 1 — that is, there

exists 𝑗 < 𝑖 such that 𝑦 𝑗 = marked — there should be a good choice

of 𝑟 that pushes 𝜎𝑟 (𝑖) into the range from which we choose 𝑡 ′.
Our second (and final) strategy will be to choose 𝑡 uniformly at

random from {1, . . . , 3𝑇 }, and 𝑡 ′ uniformly at random from {6𝑇 +
1, . . . , 12𝑇 }. We begin by scaling up by 𝑟0, the largest scaling factor

less than 3𝑇 such that |𝑀 (𝑟 )
𝑦 (𝑇, 3𝑇 ] |/(2𝑇 ) ≤ 3

4
(for the sake of

discussion, suppose it’s exactly
3

4
). Then condition (𝑚) holds for 𝑟0,

and this remains true even if we increase 𝑟 .

It may not be the case that scaling by 𝑟0 ensures that condition

(𝑢) holds with constant probability. However, since

𝑈
(𝑟 )
𝑦 (𝑇, 3𝑇 ]

2𝑇
=

1

4

,

there are Θ(𝑇 ) values 𝑖 with 𝜎𝑟0
(𝑖) = 𝑖 +𝑚(𝑖)𝑟0 ∈ {𝑇 + 1, . . . , 3𝑇 }.

Increasing 𝑟 will only increase the number of marked boxes (ver-

tices) in {1, . . . , 3𝑇 }, thus increasing the probability of satisfying

condition (𝑚), but as marked boxes are being added to the window

{1, . . . , 3𝑇 }, they are pushing unmarked boxes to further positions.

For a high enough value of 𝑟 (but not too high) we will push the 𝑖th

unmarked box into the window {6𝑇 + 1, . . . , 12𝑇 }. We can imagine

searching for this good value 𝑟 by beginning with 𝑟0 and repeatedly

doubling it, as shown in Figure 4.

We formalize this argument in the following combinatorial lemma.
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𝑦 . . .

(𝑚) fails
(too many unmarked)

(𝑢) holds
(many unmarked)

𝑦 (𝑟 ) . . .

(𝑚) holds
(many marked)

(𝑢) fails
(too many marked)

Figure 3: Illustration of the trade-off in the choice of the rescaling

𝑟0 ★ ★★ ★ . . .

2𝑟0 ★ ★★ ★ . . .

4𝑟0 ★ ★★ ★ . . .

8𝑟0 ★ ★★ ★ . . .

Figure 4: Aswe double the scaling factor, we eventually push each unmarked box (vertex) that began in the region {𝑇 +1, . . . , 3𝑇 },
denoted by★ symbols, into the region {6𝑇 +1, . . . , 12𝑇 }, denoted by the right-most red rectangle. The same scaling doesn’t work
for every ★, but for every ★, there is some scaling that works.

Lemma 5 (Combinatorial Lemma). Let 𝑇 ∈ N+, and suppose that
𝑦 = (𝑦1, 𝑦2, . . . ) is a sequence of marked and unmarked boxes of
length at least 12𝑇 , such that

(i) there is at least one marked among the first 𝑇 boxes, and
(ii) at most 𝑇 of the boxes (𝑦𝑇+1, 𝑦𝑇+2, . . . , 𝑦3𝑇 ) are marked.

Let 𝑟0 denote the largest integer such that

|𝑀 (𝑟0)
𝑦 (𝑇, 3𝑇 ] | < 3

2

𝑇,

then 1 ≤ 𝑟0 < 3𝑇 , and for 𝑅 :=

{
1, 2, . . . , 2 ⌊log

2
(12𝑇 ) ⌋

}
we have∑

𝑟 ∈𝑅∩(𝑟0,∞)
|𝑈 (𝑟 )

𝑦 (6𝑇, 12𝑇 ] | ≥ 1

2

𝑇 .

Proof. By assumption (ii) we have |𝑀 (1)
𝑦 (𝑇, 3𝑇 ] | ≤ 𝑇 , so 𝑟0 ≥ 1.

By assumption (i) for any 𝑟 ≥ 3𝑇 we have |𝑀 (𝑟 )
𝑦 (𝑇, 3𝑇 ] | = 2𝑇 , and

so 𝑟0 < 3𝑇 .

Similarly to the notation introduced before, let 𝑦 (𝑟 ) denote the
𝑟 -rescaling of 𝑦 and let 𝜎𝑟 (𝑖) denote the index of the 𝑖-th unmarked

box in 𝑦 (𝑟 ) . As discussed before, then 𝜎𝑟 (𝑖) = 𝑖 +𝑚(𝑖)𝑟 , where𝑚(𝑖)
denotes the number of marked boxes before the 𝑖-th unmarked box

in 𝑦. To prove the second part of the lemma, we will show that

∀𝑖 : 𝜎𝑟0
(𝑖) ∈ {𝑇 + 1, . . . , 3𝑇 },

∃𝑟 ∈ 𝑅 : 𝑟 > 𝑟0 and 𝜎𝑟 (𝑖) ∈ {6𝑇 + 1, . . . , 12𝑇 }. (10)

In other words, if the 𝑖-th marked box in 𝑦 (𝑟0)
is in the interval

{𝑇 +1, . . . , 3𝑇 }, then it gets shifted into the interval {6𝑇 +1, . . . , 12𝑇 }
in 𝑦 (𝑟 ) , for some 𝑟 ∈ 𝑅 ∩ (𝑟0,∞). Note that when 𝜎𝑟0

(𝑖) > 𝑇 , we

must have𝑚(𝑖) ≥ 1, by the assumption that at least one of the first

𝑇 boxes is marked. We will show that the desired statement holds

for 𝑟 = 2
𝑘
, where 𝑘 = ⌊log

2

12𝑇−𝑖
𝑚 (𝑖) ⌋, so clearly 𝑘 ≤ ⌊log

2
(12𝑇 )⌋. We

indeed have 𝜎𝑟 (𝑖) = 𝑖 +𝑚(𝑖)2𝑘 ∈ {6𝑇 + 1, . . . , 12𝑇 }, since

𝑖 +𝑚(𝑖)2𝑘 ≤ 𝑖 +𝑚(𝑖) 12𝑇 − 𝑖

𝑚(𝑖) = 12𝑇

and

𝑖 +𝑚(𝑖)2𝑘 ≥ 𝑖 +𝑚(𝑖) 12𝑇 − 𝑖

2𝑚(𝑖) > 6𝑇 .

To finish the proof of (10), note that since 3𝑇 ≥ 𝜎𝑟0
(𝑖) = 𝑖 +𝑚(𝑖)𝑟0,

we have 𝑟0 ≤ (3𝑇 − 𝑖)/𝑚(𝑖), therefore 𝑟 = 2
𝑘 > 6𝑇−𝑖

𝑚 (𝑖) > 2𝑟0.

The second claim in the lemma follows from (10), because

|{𝑖 : 𝜎𝑟0
(𝑖) ∈ {𝑇 + 1, . . . , 3𝑇 }}| = |𝑈 (𝑟0)

𝑦 (𝑇, 3𝑇 ] | ≥ 1

2

𝑇

by the definition of 𝑟0. By (10), each of these ≥ 1

2
𝑇 unmarked ver-

tices contributes to at least one term of

∑
𝑟 ∈𝑅∩(𝑟0,∞) |𝑈

(𝑟 )
𝑦 (6𝑇, 12𝑇 ] |.

□

Even if we replace the fixed rescalings of each marked element

in 𝑦 (𝑟 ) with independent geometric random variables, any fixed

set of marked elements gets a total rescaling that is within a factor

2 of its expected length with probability at least
7

16
. This fact is

formalised in the following lemma, proven in Appendix B:

Lemma 6. Let 𝑝 ∈ (0, 1], 𝑡 ∈ N and 𝑍 =
∑𝑡
𝑖=1

𝐺𝑖 , where 𝐺𝑖 are
independent geometric random variables with parameter 𝑝 . Then

Pr

(
𝑡

2𝑝
≤ 𝑍 ≤ 2𝑡

𝑝

)
≥ 7

16

. (11)

We can now conclude with a statement about the random walk

P(𝑠) that we will use to analyze our quantum algorithm. The final

statement we need is proven in Corollary 8. We first prove the

following corollary.
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Corollary 7. Let P be a (not necessarily reversible) Markov chain.
Let 𝜌 be any distribution (not necessarily stationary). Let 𝐸 be the event
that: the first vertex sampled according to 𝜌 is unmarked; a marked
vertex is encountered within the first𝑇 steps of P (equivalently P(𝑠));
and at most 𝑇 of the next 2𝑇 steps of P (equivalently, the next 2𝑇

steps of P(𝑠) that do not consist of staying at a marked vertex) go to
a marked vertex.

Let 𝑟 ∈ 𝑅 :=

{
1, 2, 4, . . . , 2 ⌊log

2
(12𝑇 ) ⌋

}
, 𝑡 ∈ {1, . . . , 3𝑇 } and 𝑡 ′ ∈

{3𝑇 +1, . . . , 24𝑇 } be chosen uniformly at random, then for 𝑠 = 1− 1

𝑟 :

E𝑡,𝑡 ′,𝑟
[
Pr𝑌0 (𝑠)∼𝜌 (𝑌0 (𝑠) ∈𝑈 ,𝑌𝑡 (𝑠) ∈𝑀,𝑌𝑡 ′ (𝑠) ∈𝑈 |𝐸)

]
=Ω

(
1

log(𝑇 )

)
.

Proof. When sampling 𝑌 (𝑠), we distinguish between:

(i) the randomness used, when at a marked vertex, to decide

whether to skip or take a step of the walk according to P,

and

(ii) the randomness used for choosing a neighbouring vertex to

transition to (assuming a step is to be taken), according to P.

The second type of randomness, (ii), is exactly the randomness of 𝑌

(recall that 𝑌 is a Markov chain that is coupled to 𝑌 (𝑠) in the sense

that if 𝑌 (𝑠) does not stay at the current vertex, then it moves as 𝑌 ).

We can assume without loss of generality that the Markov chain

𝑌 is terminated after 24𝑇 steps. This makes the treatment concep-

tually simpler, for example we can simply treat 𝐸 as a finite set of

length-24𝑇 paths, and therefore we can write

E𝑡,𝑡 ′,𝑟
[
Pr𝑌0 (𝑠)∼𝜌 (𝑌0 (𝑠) ∈𝑈 ,𝑌𝑡 (𝑠) ∈𝑀,𝑌𝑡 ′ (𝑠) ∈𝑈 |𝐸)

]
= (12)

=
∑
𝑦∈𝐸

Pr(𝑌 = 𝑦 |𝐸)
∑
𝑟 ∈𝑅

1

|𝑅 |
∑
𝑦 (𝑠)

Pr(𝑌 (𝑠) = 𝑦 (𝑠) |𝑌 = 𝑦)𝑝𝑞,

where

𝑝 :=
|{𝑡 ∈ {1, . . . , 3𝑇 } : 𝑦𝑡 (𝑠) ∈ 𝑀}|

3𝑇
,

𝑞 :=
|{𝑡 ′ ∈ {3𝑇 + 1, . . . , 24𝑇 } : 𝑦𝑡 ′ (𝑠) ∈ 𝑈 }|

21𝑇
.

Let us study a fixed path𝑦 ∈ 𝐸, and a fixed 𝑟 ∈ 𝑅, i.e., 𝑠 = 1

1−𝑟 . We

will examine the corresponding coupled paths 𝑦 (𝑠) ∈ 𝑌 (𝑠). For14
𝐵 ∈ [24𝑇 ] let

𝐵
𝑦 := (𝑦1, 𝑦2, . . . , 𝑦𝑘 ) be the shortest truncation of 𝑦

such that the 𝑟 -rescaling of
𝐵
𝑦 has length at least 𝐵, and let

𝐵
𝑦 (𝑠) be

the sequence where we apply the random geometric rescalings of

𝑦 (𝑠) to the marked elements of
𝐵
𝑦. Let 𝑟 (𝐵) be the average rescaling

applied in
𝐵
𝑦 (𝑠). Let ℓ be the length of

3𝑇
𝑦 (𝑠); if 𝑟 (3𝑇 ) ≥ 𝑟/2, then

3𝑇𝑝 ≥ |{𝑡 ∈ [min(ℓ, 3𝑇 )] :
3𝑇𝑦𝑡 (𝑠) ∈ 𝑀}| ≥ 1

2

|𝑀 (𝑟 )
𝑦 (0, 3𝑇 ] |, (13)

since |{𝑡 ∈ [min(ℓ, 3𝑇 )] :
3𝑇
𝑦𝑡 (𝑠) ∈ 𝑈 }| ≤ 1

2
|𝑈 (𝑟 )

𝑦 (0, 3𝑇 ] |.
Similarly, if 𝑟 (6𝑇 ) ≥ 𝑟/2, and 𝑟 (12𝑇 ) ≤ 2𝑟 . Then the unmarked

vertices of𝑦 (𝑟 ) in {6𝑇 +1, 6𝑇 +2, . . . , 12𝑇 }may be moved and spread

out in𝑦 (𝑠), but they will all occur within the range {3𝑇 +1, . . . , 24𝑇 }:

|{𝑡 ′ ∈ {3𝑇 + 1, . . . , 24𝑇 } : 𝑦𝑡 ′ (𝑠) ∈ 𝑈 }| ≥ |𝑈 (𝑟 )
𝑦 (6𝑇, 12𝑇 ] |. (14)

Let 𝐹 be the event that 𝑟 (3𝑇 ) ≥ 𝑟/2, 𝑟 (6𝑇 ) ≥ 𝑟/2, and 𝑟 (12𝑇 ) ≤ 2𝑟 .

Let us partition
12𝑇

𝑦 to three parts according to the subsequences

3𝑇
𝑦 and

6𝑇
𝑦; if in all three parts the corresponding average rescal-

ings of the marked elements of 𝑦 (𝑠) are within [ 𝑟
2
, 2𝑟 ], then 𝐹 holds.

14
For 𝑛 ∈ N we use the notation [𝑛] as a shorthand for {1, 2, . . . , 𝑛}.

Since the geometric variables of the three parts are independent, by

Lemma 6 we always get Pr(𝐹 ) ≥ (7/16)3
. Thus, continuing from

(12), we have:∑
𝑦∈𝐸

Pr(𝑌 = 𝑦 |𝐸)
∑
𝑟 ∈𝑅

1

|𝑅 |
∑
𝑦 (𝑠)

Pr(𝑌 (𝑠) = 𝑦 (𝑠) |𝑌 = 𝑦)𝑝𝑞

≥
∑
𝑦∈𝐸

Pr(𝑌 = 𝑦 |𝐸)
∑
𝑟 ∈𝑅

1

|𝑅 | Pr(𝐹 |𝑌 = 𝑦)
|𝑀 (𝑟 )

𝑦 (0, 3𝑇 ] |
6𝑇

|𝑈 (𝑟 )
𝑦 (6𝑇, 12𝑇 ] |

21𝑇

by Eqs. (13)-(14)

≥ 1

|𝑅 |

(
7

16

)
3 ∑
𝑦∈𝐸

Pr(𝑌 = 𝑦 |𝐸)
∑
𝑟 ∈𝑅

|𝑀 (𝑟 )
𝑦 (0, 3𝑇 ] |

6𝑇

|𝑈 (𝑟 )
𝑦 (6𝑇, 12𝑇 ] |

21𝑇

by Lemma 6

≥ 1

|𝑅 |

(
7

16

)
3 ∑
𝑦∈𝐸

Pr(𝑌 = 𝑦 |𝐸) 1

4

1

42

, by Lemma 5

= Ω

(
1

|𝑅 |

)
= Ω

(
1

log𝑇

)
. □

We can now conclude with the statement we needed in the

analysis of our algorithm in Section 3.

Corollary 8. Let P be a reversible ergodic Markov chain, and let
π be its stationary distribution. If 𝑝𝑀 ≤ 1/9, 𝑇 ≥ 3HT, and 𝑅 is as
defined in Corollary 7, then choosing 𝑠 ∈ 𝑆 = {1 − 1

𝑟 : 𝑟 ∈ 𝑅} and
𝑡 ∈ [24𝑇 ] uniformly at random, we get

E
𝑠,𝑡

[Π𝑀𝐷𝑡 (𝑠) |√π𝑈 ⟩
2

]
= Ω

(
1

log(𝑇 )

)
.

Proof. First we prove that the event 𝐸 in Corollary 7 holds

with constant probability. The probability that the initial vertex

is marked is 𝑝𝑀 ≤ 1/9. The probability that the Markov chain

does not hit a marked vertex in 𝑇 ≥ 3HT steps is at most 1/3 by

Markov’s inequality. Finally, the expected number of marked sites

in the first 3𝑇 steps is 𝑝𝑀3𝑇 ≤ 𝑇 /3, therefore the probability that

there are more than 𝑇 marked vertices in the first 3𝑇 steps is at

most 1/3 by Markov’s inequality. By the union bound we get the

probability of the complement of 𝐸 is at most 1/9 + 1/3 + 1/3 = 7/9,

therefore 𝐸 holds with probability at least 2/9.

Let us define |𝑣𝑡 (𝑠)⟩ := Π𝑀𝐷𝑡 (𝑠) |√π𝑈 ⟩, and recall that 𝑡 = 𝑡 ′−𝑡 .
Since Pr(𝐸) ≥ 2

9
, by Corollary 7 we have

Ω(1) =
∑
𝑠∈𝑆

∑
𝑡,𝑡 ∈[24𝑇 ]

∑
𝑥,𝑧∈𝑈

π𝑥 ⟨𝑥 |P𝑡 (𝑠)Π𝑀P𝑡 (𝑠) |𝑧⟩
(24𝑇 )2

by Corollary 7

=
∑
𝑠∈𝑆

∑
𝑡,𝑡 ∈[24𝑇 ]

⟨√π𝑈 |𝐷𝑡 (𝑠)Π𝑀𝐷𝑡 (𝑠) |√π𝑈 ⟩
(24𝑇 )2

by Eq. (7)

=
∑
𝑠∈𝑆

∑
𝑡,𝑡 ∈[24𝑇 ]

⟨𝑣𝑡 (𝑠) |𝑣𝑡 (𝑠)⟩
(24𝑇 )2

≤
∑
𝑠∈𝑆

∑
𝑡,𝑡 ∈[24𝑇 ]

𝑣𝑡 (𝑠)𝑣𝑡 (𝑠)
(24𝑇 )2

by Cauchy-Schwartz

=
∑
𝑠∈𝑆

©«
∑

𝑡 ∈[24𝑇 ]

𝑣𝑡 (𝑠)
24𝑇

ª®¬
2

≤
∑
𝑠∈𝑆

∑
𝑡 ∈[24𝑇 ]

𝑣𝑡 (𝑠)2

24𝑇
,

where the last inequality follows from the fact that the arithmetic

mean is always upper-bounded by the root-mean square. □
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5 EXAMPLE WITH HT
+ ≫ HT

A torus is a graph containing 𝑛 = 𝑁 2
vertices organized in 𝑁

rows and 𝑁 columns; there is a vertex (𝑥1, 𝑥2) for all 𝑥1, 𝑥2 ∈
{0, 1, . . . , 𝑁 − 1}. A vertex (𝑥1, 𝑥2) has four neighbours, (𝑥1 + 1, 𝑥2),
(𝑥1−1, 𝑥2), (𝑥1, 𝑥2+1) and (𝑥1, 𝑥2−1), where the addition is modulo

𝑁 . To prevent the graph from being bipartite, we add a self-loop at

each vertex, so that at any vertex the random walker moves to any

of the four neighbours with probability 0.2 and stays at the same

vertex also with probability 0.2.

We start by observing that the extended hitting time HT
+
in the

case of a torus can be lower bounded as follows.

Lemma 9. Let𝑀 ⊂ {0, 1, . . . , 𝑁 − 1}2 be a set of marked vertices of
the 𝑁 × 𝑁 torus. Let𝑚 = |𝑀 | and 𝜔 = exp(2𝜋 i/𝑁 ), then

HT
+ ≥ 5

4𝜋2

𝑁 2

𝑚2

���� ∑
(𝑥1,𝑥2) ∈𝑀

𝜔𝑥1

����2 . (15)

The proof is deferred to Appendix A.

Next we describe an example of a marked set whose extended

hitting time can be much larger than the hitting time.

Lemma 10. Suppose that positive integers 𝑑1, 𝑘1, 𝑑, 𝑁 satisfy the
following requirements:
(C1) 𝑘1𝑑1 = 𝑜 (𝑁 );
(C2) 𝑁 = 𝑜 (𝑘1𝑑);
(C3) 𝑑2

log𝑑 = 𝑜
(
𝑁 2

)
;

(C4) 𝑑1 is a divisor of 𝑑 and 𝑑 is a divisor of 𝑁 .
Define a marked set𝑀 on the 𝑁 × 𝑁 torus as𝑀1 ∪𝑀2, where

𝑀1 = {( 𝑗1𝑑1, 𝑗2𝑑1) 0 ≤ 𝑗1, 𝑗2 ≤ 𝑘1 − 1}
and

𝑀2 = {( 𝑗1𝑑, 𝑗2𝑑) 0 ≤ 𝑗1, 𝑗2 < 𝑁 /𝑑}.
Then the extended and classical hitting times for the set𝑀 satisfy

HT
+ = Ω(𝑁 2) and HT = O

(
𝑑2

log𝑑

)
= 𝑜

(
HT

+),
respectively.

In Figure 5 an illustration with 𝑑1 = 1, 𝑘1 = 15, 𝑑 = 6 and 𝑁 = 36

is depicted, with different colours for𝑀1 \𝑀2,𝑀2 \𝑀1 and𝑀1∩𝑀2.

An example of parameters satisfying (C1)-(C4) is 𝑑1 = 1, 𝑘1 =

𝑎 2
𝑎2

, 𝑑 = 𝑎2
and 𝑁 = 𝑎2

2
𝑎2

, for an integer 𝑎 > 1. For such

parameters Lemma 10 implies bounds HT = O
(
log

2 𝑁 log log𝑁

)
and HT

+ = Ω(𝑁 2), thus there is a Ω̃
(
𝑁 2

)
gap between the extended

hitting time HT
+
and the classical hitting time HT.

Proof of Lemma 10. We begin by noting that the sets 𝑀2 and

𝑀1 overlap, since 𝑑1 |𝑑 by (C4). The set 𝑀 consists of 𝑘2

1
vertices

forming a small, dense subgrid 𝑀1, and the remaining marked

vertices of𝑀2 forming a sparser subgrid in the rest of the torus.

Since𝑚 = |𝑀 | ≤ |𝑀1 | + |𝑀2 | = 𝑘2

1
+ (𝑁 /𝑑)2

, the constraint (C2)

implies𝑚 = O
(
𝑘2

1

)
; from (C1) we conclude𝑚 = 𝑜 (𝑁 2). Also by (15)

HT
+ = Ω

(
𝑁 2 |𝜌 |2/𝑚2

)
, (16)

where 𝜌 is defined by

𝜌 =
∑
𝑥 ∈𝑀

𝜔𝑥1 =
∑
𝑥 ∈𝑀1

𝜔𝑥1 +
∑
𝑥 ∈𝑀2

𝜔𝑥1 −
∑

𝑥 ∈𝑀1∩𝑀2

𝜔𝑥1 .

𝑀1 \𝑀2 𝑀2 \𝑀1 𝑀1 ∩𝑀2

Figure 5: Illustration of the marked set with 𝑑1 = 1, 𝑘1 = 15,
𝑑 = 6 and 𝑁 = 36.

The first summand on the RHS is∑
𝑥 ∈𝑀1

𝜔𝑥1 = 𝑘1

𝑘1−1∑
𝑗=0

𝜔 𝑗𝑑1 = 𝑘1

𝜔𝑘1𝑑1 − 1

𝜔𝑑1 − 1

,

while the second summand is a multiple of

𝑁 /𝑑−1∑
𝑗=0

𝜔 𝑗𝑑 =

(
𝜔𝑁 − 1

)
/
(
𝜔𝑑 − 1

)
= 0

because 𝑑 |𝑁 by (C4). Therefore

𝜌 = 𝑘1

𝜔𝑘1𝑑1 − 1

𝜔𝑑1 − 1

−
∑

𝑥 ∈𝑀1∩𝑀2

𝜔𝑥1 .

It is easy to see that𝑀1 ∩𝑀2 = {( 𝑗1𝑑, 𝑗2𝑑) 0 ≤ 𝑗1, 𝑗2 < 𝑘}, where
𝑘 = ⌈𝑘1𝑑1/𝑑⌉, and similar arguments as previously yield

𝜌 = 𝑘1

𝜔𝑘1𝑑1 − 1

𝜔𝑑1 − 1

− 𝑘
𝜔𝑘𝑑 − 1

𝜔𝑑 − 1

.

By the reverse triangle inequality,

|𝜌 | ≥ 𝑘1

���𝜔𝑘1𝑑1 − 1

�����𝜔𝑑1 − 1

�� −𝑘

���𝜔𝑘𝑑 − 1

�����𝜔𝑑 − 1

�� =
𝑘1 sin

𝜋𝑘1𝑑1

𝑁

sin
𝜋𝑑1

𝑁

−
𝑘 sin

𝜋𝑘𝑑
𝑁

sin
𝜋𝑑
𝑁

. (17)
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From (C1) and (C3) we obtain 𝑘𝑑 ≤ 𝑘1𝑑1 + 𝑑 = 𝑜 (𝑁 ), therefore
𝑘1𝑑1

𝑁
= 𝑜 (1), 𝑘𝑑

𝑁
= 𝑜 (1) and sin

𝜋𝑘1𝑑1

𝑁
= Θ

(
𝑘1𝑑1

𝑁

)
, sin

𝜋𝑘𝑑
𝑁

= Θ
(
𝑘𝑑
𝑁

)
,

sin
𝜋𝑑1

𝑁
= Θ

(
𝑑1

𝑁

)
, sin

𝜋𝑑
𝑁

= Θ
(
𝑑
𝑁

)
. Consequently,

𝑘1 sin
𝜋𝑘1𝑑1

𝑁

sin
𝜋𝑑1

𝑁

= Θ(𝑘2

1
),

𝑘 sin
𝜋𝑘𝑑
𝑁

sin
𝜋𝑑
𝑁

= Θ(𝑘2) = Θ

(
𝑘2

1

𝑑2

1

𝑑2

)
= 𝑜

(
𝑘2

1

)
;

here the last bound follows from 𝑑1 = 𝑜 (𝑑), which is implied by

(C1) and (C2).

Now (17) gives |𝜌 | = Ω(𝑘2

1
). Combining this with (16) and the

previously obtained bound𝑚 = O
(
𝑘2

1

)
, we conclude that the ex-

tended hitting time satisfies

HT
+ = Ω

(
𝑁 2 |𝜌 |2

𝑚2

)
= Ω

(
𝑁 2𝑘4

1

𝑘4

1

)
= Ω(𝑁 2). (18)

Next we bound HT. Notice that by the linearity of expectation

HT =
∑
𝑥 ∈𝑈 𝜋𝑥HT𝑥 (𝑀) and HT𝑥 (𝑀) is the expected number of

steps for the random walker to reach𝑀 for the first time, starting

from vertex 𝑥 . It follows that HT ≤ max𝑥 ∈𝑈 HT𝑥 (𝑀). For any fixed
𝑥 ∈ 𝑈 , HT𝑥 (𝑀) cannot decrease when reducing the marked set

(i.e., when some marked vertices are removed from𝑀 and added

to the unmarked set𝑈 ), hence we have

HT ≤ max

𝑥 ∈𝑈
HT𝑥 (𝑀) ≤ max

𝑥∉𝑀2

HT𝑥 (𝑀2).

Therefore it suffices to show that HT𝑥 (𝑀2) = O
(
𝑑2

log𝑑
)
when

only the subgrid𝑀2 is marked and 𝑥 is any vertex not belonging

to 𝑀2. However, the classical random walk with the marked set

𝑀2 is equivalent to the random walk in the 𝑑 × 𝑑 torus with a

single marked element (by identifying each vertex (𝑥1, 𝑥2) with
the unique vertex (𝑥 (0)

1
, 𝑥

(0)
2

) satisfying 𝑥1 ≡ 𝑥
(0)
1

(mod 𝑑), 𝑥2 ≡
𝑥
(0)
2

(mod 𝑑) and 𝑥
(0)
1

, 𝑥
(0)
2

∈ {0, 1, . . . , 𝑑 − 1}). Since, in the case

of a 𝑑 × 𝑑 torus with a single marked element, all hitting times

HT𝑦 (with 𝑦 being a non-marked vertex) are of order O
(
𝑑2

log𝑑
)

[9, Eq. 10.29], the desired bound HT𝑥 (𝑀2) = O
(
𝑑2

log𝑑
)
follows.

Hence, returning to the marked set 𝑀 , the classical hitting time

is HT = O
(
𝑑2

log𝑑
)
= 𝑜

(
𝑁 2

)
by (C3), and we conclude that HT =

𝑜
(
HT

+)
. □

An intuitive explanation for this result is that the algorithm of

Krovi et al. [8] actually solves a more difficult problem: it generates

the uniform superposition over |𝑥⟩, 𝑥 ∈ 𝑀 (with the starting state

being the uniform superposition over all vertices |𝑥⟩). Almost all

of the marked vertices are, however, concentrated in𝑀1 which is a

small part of the grid. A typical component of the starting state is at

a distance Ω(𝑁 ) from𝑀1. Therefore, any algorithm that generates

the uniform superposition over |𝑥⟩, 𝑥 ∈ 𝑀 from this starting state

must take Ω(𝑁 ) steps, even though the classical hitting HT time is

much smaller.

The running time 𝑂 (
√

HT
+) = 𝑂 (𝑁

√
log𝑁 ) achieved by the

algorithm of [8] is quite close to the Ω(𝑁 ) lower bound. So, in our

example, this algorithm is close to being optimal for generating

the uniform superposition of marked vertices but is very far from

being optimal for the task of simply finding a marked vertex.

6 A SIMPLE QUANTUMWALK ALGORITHM
As discussed in Section 2.2, our quantum walk uses three registers.

Register R2 corresponds to a Hilbert spaceH containing the basis

states |𝑥⟩ identified with the vertices of the graph. Register R1 is an

ancillary register initialized to the reference state |0̄⟩. Additionally,
another ancilla register R3 initialized to |0⟩ ∈ C2

, will be attached

and used for checking whether the current vertex in R2 is marked.

Now we describe a quantum walk algorithm with a fixed in-

terpolation parameter 𝑠 ∈ [0, 1) and a predetermined number of

quantum walk steps 𝑡 ∈ N.

Algorithm 2 Quantum walk algorithm

Input: Oracles for the Markov chain P and the marked set𝑀 ,

interpolation parameter 𝑠 , and the number of iterations 𝑡

1.) Prepare the state |0̄⟩|
√
π⟩ with Setup(P).

2.) Apply 𝑡 times the operator𝑊 (𝑠) on R1R2.

3.) Attach R3, apply Check(𝑀) on R2R3, measure R3.

4.) If R3 = 1, then measure R2 in the vertex basis, output the

outcome. Otherwise, output No marked vertex found.

It is obvious that the complexity of the algorithm is of the order

S + 𝑡 · (U + C). We conjecture that (under the assumption that the

probability to draw amarked vertex from the stationary distribution

is at most 0.5) there always exists an interpolation parameter 𝑠 such

that Algorithm 2 finds a marked vertex with high probability in

𝑡 = O
(√

HT

)
steps:

Conjecture 11. Let P be a reversible, ergodic Markov chain with
stationary distribution π; suppose that 𝑀 is a set of marked states
which satisfies 𝑝𝑀 =

∑
𝑥 ∈𝑀 π𝑥 < 0.5. Then there exists a value

𝑠 ∈ [0, 1) and a positive integer 𝑡 = O
(√

HT

)
such that Algorithm 2

succeeds with probability Ω(1).
The success probability can be lower-bounded by a quantity

expressible in terms of the discriminant matrix 𝐷 (𝑠). Let

𝑝success =
(𝐼 ⊗ Π𝑀 )𝑊 𝑡 (𝑠) |0̄⟩|

√
π⟩

2

be the probability of obtaining a marked vertex in the last step of

Algorithm 2. This can be lower-bounded by(𝐼 ⊗ Π𝑀 )Π0𝑊
𝑡 (𝑠) |0̄⟩|

√
π⟩

2

=: 𝑞𝑡 (𝑠), (19)

where Π0 := |0̄⟩⟨0̄| ⊗ 𝐼 . The following lemma
15

implies that 𝑞𝑡 (𝑠) =Π𝑀𝐷𝑡 (𝑠) |
√
π⟩

2

, where 𝐷𝑡 (𝑠) = 𝑇𝑡 (𝐷 (𝑠)) for 𝑇𝑡 the Chebyshev
polynomial of the first kind of degree 𝑡 .

Lemma 12. The quantum walk operator𝑊 𝑡 (𝑠), when restricted to
|0̄⟩ in the first register, acts as the 𝑡-th Chebyshev polynomial of the
first kind applied to the discriminant matrix 𝐷 (𝑠), i.e.,

Π0𝑊
𝑡 (𝑠)Π0 = |0̄⟩⟨0̄| ⊗ 𝐷𝑡 (𝑠),

where 𝐷𝑡 (𝑠) = 𝑇𝑡 (𝐷 (𝑠)) and 𝑇𝑡 is the Chebyshev polynomial of the
first kind of degree 𝑡 , applied (in the matrix function sense) to the
matrix 𝐷 (𝑠). Equivalently, 𝐷𝑡 (𝑠) can be defined via the recurrence
relations

𝐷0 (𝑠) = 𝐼 , 𝐷1 (𝑠) = 𝐷 (𝑠), (20)

𝐷𝑡+1 (𝑠) = 2𝐷𝑡 (𝑠) · 𝐷 (𝑠) − 𝐷𝑡−1 (𝑠), 𝑡 ∈ N. (21)

15
For a generalization of this claim see [6, Lemma 9 & Theorem 17].
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Proof. Recall that𝑊 (𝑠) =𝑊 (𝑠) · (2Π0 − 𝐼 ⊗ 𝐼 ) where𝑊 (𝑠) =
𝑉 †(P, 𝑠) Swap′𝑉 (P, 𝑠). Moreover, the idempotence of Π0 gives

𝑊 (𝑠)Π0 =𝑊 (𝑠) · (2Π0 − 𝐼 ⊗ 𝐼 )Π0 =𝑊 (𝑠)Π0 . (22)

For the proof by induction on 𝑡 , notice that the claim trivially

holds for 𝑡 = 0. When 𝑡 = 1, the statement (due to (22)) is equivalent

to Eq. (6). Suppose that the claim has been proven for all integers

between 1 and 𝑡 , and consider Π0𝑊
𝑡+1 (𝑠)Π0. We have

Π0𝑊
𝑡+1 (𝑠)Π0 = Π0𝑊

𝑡−1 (𝑠) ·
(
𝑊 (𝑠) · (2Π0 − 𝐼 ⊗ 𝐼 )

)
𝑊 (𝑠)Π0

= 2Π0𝑊
𝑡−1 (𝑠)𝑊 (𝑠)Π0𝑊 (𝑠)Π0 − Π0𝑊

𝑡−1 (𝑠)𝑊 (𝑠)𝑊 (𝑠)Π0

= 2Π0𝑊
𝑡−1 (𝑠)𝑊 (𝑠)Π0𝑊 (𝑠)Π0 − Π0𝑊

𝑡−1 (𝑠)𝑊 (𝑠)𝑊 (𝑠)Π0

(by Eq. (22))

= 2Π0𝑊
𝑡 (𝑠)Π0 · Π0𝑊 (𝑠)Π0 − Π0𝑊

𝑡−1 (𝑠)Π0 .

(since𝑊 2 (𝑠) = 𝐼 and Π2

0
= Π0)

By the inductive hypothesis, the obtained quantity equals |0̄⟩⟨0̄| ⊗
(2𝐷𝑡 (𝑠) · 𝐷1 (𝑠) − 𝐷𝑡−1 (𝑠)). We conclude that indeed

Π0𝑊
𝑡+1 (𝑠)Π0 = |0̄⟩⟨0̄| ⊗ 𝐷𝑡+1 (𝑠),

where 𝐷𝑡+1 (𝑠) is defined by the recurrence relations (20)-(21). We

finish by noting that these recurrence relations define the Cheby-

shev polynomials of the first kind. □

In the following we describe some examples illustrating the

dependence of 𝑞𝑡 (𝑠) on the interpolation parameter 𝑠 .

Example 6.1. Consider the example described in Section 5, with

parameter 𝑎 = 3 (i.e., 𝑑1 = 1, 𝑘1 = 1536, 𝑑 = 9, and 𝑁 = 4608). It

can be calculated that the classical hitting time of the marked set

is HT = 162.98 . . ., whereas the extended hitting time is HT
+ =

1.01 . . . · 10
7
(the lower bound in Lemma 10 gives HT

+ ≥ 1.69 · 10
6
,

by (15) and (17)).

In Figure 6, we plot the lower bound (19) on the success probabil-

ity of Algorithm 2. As we will also see in Section 4, it is natural to

replace the interpolation parameter 𝑠 ∈ [0, 1) with 𝑟 = 1/(1 − 𝑠) ∈
[1,∞). (The parameter 𝑟 is also equal to the expected number of

steps until the interpolated walk makes a transition according to

the original random walk at a marked vertex.)

Figure 6 shows two quantities (as functions of 𝑟 ):

• the maximum of the bound (19) over 𝑡 ≤ ⌈3
√

HT⌉, denoted
𝑞(𝑟 ) (units on the left axis);

• the minimal value of 𝑡 which achieves 𝑞(𝑟 ), denoted by

𝜏 (𝑟 ) := min

{
𝑡 ≥ 0 𝑞𝑡

(
1 − 1

𝑟

)
= 𝑞(𝑟 )

}
(with units on the right axis; represented in

√
HT units).

Furthermore, we indicate parameter values 𝑟1 =
1−𝑝𝑀
𝑝𝑀

(which

corresponds to the value of 𝑠 used in [8] for their Θ
(√

HT
+)
-time

algorithm) and 𝑟2 = HT (a plausible upper bound on the optimal 𝑟 )

by vertical dash-dotted and dashed lines, respectively.

From Figure 6 it can be noticed that the optimal value is 𝑟 =

96.61 . . . ≈ 𝑑2
and it allows Algorithm 2 to find a marked vertex in

𝑡 = 21 ≈ 1.65

√
HT steps with probability exceeding 0.98. This value

of 𝑟 is substantially bigger than the value 𝑟1 ≈ 7.191 corresponding

to the algorithm of [8].
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Figure 6: Bounds on Algorithm 2 in Example 6.1. The hor-
izontal axis (𝑟 ) represents the interpolation parameter 𝑠 =

1 − 1

𝑟 ; 𝜏 (𝑟 ) denotes the best choice of time 𝑡 and 𝑞(𝑟 ) de-
notes the best lower bound on the success probability of Al-
gorithm 2, as described below.
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Figure 7: Some properties of the family of interpolated quan-
tum walks in Example 6.2. For notation and explanation of
the plotted quantities see Figure 6.

Example 6.2. Let 𝐺𝑘 be the graph consisting of a single central

node 𝑥0 and 𝑘 paths of length 𝑘2
; all paths have a common endpoint

𝑥0 and the remaining vertices are distinct (i.e., 𝐺𝑘 is a modified

version of the star graph with 𝑘 rays of length 𝑘2
). In each vertex

the random walker stays in the same vertex with probability 0.5

and with probability 0.5 moves to a neighbour vertex (in case of

several neighbours, the probability 0.5 splits evenly among them to

move to a particular neighbour). Let𝑀 be one of the 𝑘 paths, not

including the central node.

When 𝑘 = 15, the classical hitting time is HT = 80090.95 . . .,

whereas the extended hitting time is HT
+ = 1016848.98 . . .. As

previously, we change variables 𝑟 = 1/(1−𝑠) and plot 𝑞(𝑟 ) and 𝜏 (𝑟 )
on the left and right axis of Figure 7, respectively. Again, values

𝑟1 =
1−𝑝𝑀
𝑝𝑀

and 𝑟2 = HT are indicated by vertical lines. As indicated

by Figure 7, at 𝑟 ≈ 𝑘2
Algorithm 2 finds a marked vertex with

probability at least 0.59 in less than 2.31

√
HT steps.
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A PROOF OF LEMMA 9
Lemma 9. Let𝑀 ⊂ {0, 1, . . . , 𝑁 − 1}2 be a set of marked vertices of
the 𝑁 × 𝑁 torus. Let𝑚 = |𝑀 | and 𝜔 = exp(2𝜋 i/𝑁 ), then

HT
+ ≥ 5

4𝜋2

𝑁 2

𝑚2

���� ∑
(𝑥1,𝑥2) ∈𝑀

𝜔𝑥1

����2 . (15)

Proof. While the vertices (𝑥1, 𝑥2) of the torus graph can be or-

dered arbitrarily, we use the lexicographic ordering (i.e., (𝑥1, 𝑥2) ≺
(𝑥 ′

1
, 𝑥 ′

2
) iff 𝑥1 < 𝑥 ′

1
or 𝑥1 = 𝑥 ′

1
and 𝑥2 < 𝑥 ′

2
), Then P is formed

accordingly to this ordering, i.e., the first row (column) of P corre-

sponds to the vertex (0, 0), the second row (column) corresponds

to the vertex (0, 1), and so on. Now P is an (𝑁 2) × (𝑁 2) BCCB
(block circulant with circulant blocks) matrix [16, Definition 5.27]

and can be diagonalized using the discrete Fourier transform as [16,

Proposition 5.31]

P = (𝐹𝑁 ⊗ 𝐹𝑁 )diag(Λ) (𝐹𝑁 ⊗ 𝐹𝑁 )†,
where Λ is the vector of the eigenvalues of P, ⊗ stands for the

Kronecker product and

𝐹𝑁 =
1

√
𝑁

©«

1 1 1 . . . 1

1 𝜔 𝜔2 . . . 𝜔𝑁−1

1 𝜔2 𝜔4 . . . 𝜔2(𝑁−1)

. . .

1 𝜔𝑁−1 𝜔2(𝑁−1) . . . 𝜔 (𝑁−1) (𝑁−1)

ª®®®®®®®¬
,

𝜔 := exp

(
2𝜋 𝑖
𝑁

)
. It can be verified by direct calculation (or by apply-

ing the two-dimensional discrete Fourier transform as described in

[16, Proposition 5.31]) that the eigenvalues of the matrix P are

_ 𝑗,𝑘 =
1

5

(
1 + 2 cos

2𝜋 𝑗

𝑁
+ 2 cos

2𝜋𝑘

𝑁

)
, 𝑗, 𝑘 ∈ {0, 1, . . . , 𝑁 − 1},

and the corresponding eigenvectors are |𝑣 𝑗,𝑘 ⟩ = 𝑤 ( 𝑗) ⊗𝑤 (𝑘)
,

𝑤 ( 𝑗)
:=

1

√
𝑁

(
1 𝜔 𝑗 𝜔2𝑗 . . . 𝜔 (𝑁−1) 𝑗

)𝑇
.

By [8, Theorem 17], the extended hitting time is related to the in-

terpolated hitting time HT(0) via HT
+ = 𝑝−2

𝑀
HT(0), where HT(0)

is defined as

HT(0) =
∑

𝑗=0..𝑁−1

𝑘=0..𝑁−1

( 𝑗,𝑘)≠(0,0)

��⟨𝑣 𝑗,𝑘 |√π𝑈 ⟩
��2

1 − _ 𝑗,𝑘
.

Since the stationary distribution π is uniform, we have |π𝑈 ⟩ =
1

𝑁

∑
𝑥 ∈𝑈 |𝑥⟩; moreover,

1 − _ 𝑗,𝑘 =
2 − 2 cos

2𝜋 𝑗
𝑁

+ 2 − 2 cos
2𝜋𝑘
𝑁

5

=
4

5

(
sin

2
𝜋 𝑗

𝑁
+ sin

2
𝜋𝑘

𝑁

)
and ∑

𝑥 ∈𝑈
⟨𝑥 |𝑣 𝑗,𝑘 ⟩ =

1

𝑁

∑
(𝑥1,𝑥2) ∈𝑈

𝜔 𝑗𝑥1+𝑘𝑥2 ,

thus we arrive at

HT
+ =

5

4

1

𝑚2

∑
𝑗=0..𝑁−1

𝑘=0..𝑁−1

( 𝑗,𝑘)≠(0,0)

���� ∑
(𝑥1,𝑥2) ∈𝑈

𝜔 𝑗𝑥1+𝑘𝑥2

����2
sin

2 𝜋 𝑗
𝑁

+ sin
2 𝜋𝑘

𝑁

. (23)

For all pairs ( 𝑗, 𝑘) ≠ (0, 0), 0 ≤ 𝑗, 𝑘 ≤ 𝑁 − 1, we have

𝑁−1∑
𝑥1=0

𝑁−1∑
𝑥2=0

𝜔 𝑗𝑥1+𝑘𝑥2 =
∑

(𝑥1,𝑥2) ∈𝑀
𝜔 𝑗𝑥1+𝑘𝑥2 +

∑
(𝑥1,𝑥2) ∈𝑈

𝜔 𝑗𝑥1+𝑘𝑥2 = 0,

hence we can rewrite (23) as

HT
+ =

5

4𝑚2

∑
𝑗=0..𝑁−1

𝑘=0..𝑁−1

( 𝑗,𝑘)≠(0,0)

���� ∑
(𝑥1,𝑥2) ∈𝑀

𝜔 𝑗𝑥1+𝑘𝑥2

����2
sin

2 𝜋 𝑗
𝑁

+ sin
2 𝜋𝑘

𝑁

. (24)

Finally, we lower bound the RHS of (24) by a single term ( 𝑗 = 1, 𝑘 =

0) of the sum, and use that sin
𝜋
𝑁

≤ 𝜋
𝑁
, yielding (15). □

B CONCENTRATION OF SUMS OF
GEOMETRIC RANDOM VARIABLES

Lemma 6. Let 𝑝 ∈ (0, 1], 𝑡 ∈ N and 𝑍 =
∑𝑡
𝑖=1

𝐺𝑖 , where 𝐺𝑖 are
independent geometric random variables with parameter 𝑝 . Then

Pr

(
𝑡

2𝑝
≤ 𝑍 ≤ 2𝑡

𝑝

)
≥ 7

16

. (11)

Proof. Let 𝐺 be a geometric random variable of parameter 𝑝 ,

then it has expectation value 1/𝑝 and variance (1 − 𝑝)/𝑝2 ≤ 1/𝑝2
.

Moreover Pr(𝐺 ≤ 𝑘) = 1 − (1 − 𝑝)𝑘 for all 𝑘 ∈ N. In particular,

Pr(⌊1/(2𝑝)⌋ < 𝐺 ≤ ⌊2/𝑝⌋) = (1 − 𝑝) ⌊1/(2𝑝) ⌋ − (1 − 𝑝) ⌊2/𝑝 ⌋ ≥ 7

16

.

More generally 𝑍 has negative binomial distribution.

One can check that for every 𝑡 ∈ [7] and all 𝑝 ∈ (0, 1] we have
that Pr(⌊𝑡/(2𝑝)⌋ < 𝑍 ≤ ⌊2𝑡/𝑝⌋) ≥ 7/16, see Figure 8.

On the other hand the variance of 𝑍 is at most
𝑡
𝑝2
, so

Pr

(
|𝑍 − 𝑡/𝑝 | ≥ 𝑡

2𝑝

)
≤ 4

𝑡

by Chebyshev’s inequality, which implies the claim for 𝑡 ≥ 8. □

Figure 8: A plot of Pr

(
𝑡

2𝑝 ≤ 𝑍 ≤ 2𝑡
𝑝

)
as a function of 𝑝, illus-

trating Equation (11) for 𝑡 = 1, 2, . . . , 7.
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