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ABSTRACT

We consider an online vector balancing question where T vectors,

chosen from an arbitrary distribution over [−1, 1]n , arrive one-by-

one and must be immediately given a ± sign. The goal is to keep

the discrepancy—the ℓ∞-norm of any signed prefix-sum—as small

as possible. A concrete example of this question is the online inter-

val discrepancy problem where T points are sampled one-by-one

uniformly in the unit interval [0, 1], and the goal is to immediately

color them ± such that every sub-interval remains always nearly

balanced. As random coloring incurs Ω(T 1/2) discrepancy, while

the worst-case offline bounds are Θ(
√
n log(T /n)) for vector balanc-

ing and 1 for interval balancing, a natural question is whether one

can (nearly) match the offline bounds in the online setting for these

problems. One must utilize the stochasticity as in the worst-case

scenario it is known that discrepancy is Ω(T 1/2) for any online

algorithm.

In a special case of online vector balancing, Bansal and Spencer

[BS19] recently show an O(
√
n logT ) bound when each coordi-

nate is independently chosen. When there are dependencies among

the coordinates, as in the interval discrepancy problem, the prob-

lem becomes much more challenging, as evidenced by a recent

work of Jiang, Kulkarni, and Singla [JKS19] that gives a non-trivial

O(T 1/log logT ) bound for online interval discrepancy. Although this

beats random coloring, it is still far from the offline bound.

In this work, we introduce a new framework that allows us

to handle online vector balancing even when the input distribu-

tion has dependencies across coordinates. In particular, this lets

us obtain a poly(n, logT ) bound for online vector balancing under

arbitrary input distributions, and a polylog(T ) bound for online

interval discrepancy. Our framework is powerful enough to capture

other well-studied geometric discrepancy problems; e.g., we ob-

tain a poly(logd (T )) bound for the online d-dimensional Tusnády’s

problem. All our bounds are tight up to polynomial factors.

A key new technical ingredient in our work is an anti-
concentration inequality for sums of pairwise uncorrelated random

variables, which might also be of independent interest.
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1 INTRODUCTION
Consider the following online vector balancing question, originally

proposed by Spencer [Spe77]: vectors v1,v2, . . . ,vT ∈ [−1, 1]n

arrive online, and upon the arrival of vt , a sign εt ∈ {±1} must be

chosen irrevocably, so that the ℓ∞-norm of the signed sum dt =
ε1v1 + . . . + εtvt remains as small as possible. That is, find the

smallest B such that maxt ∈[T ] ∥dt ∥∞ ≤ B. As we shall see later, the
problem arises naturally in various contexts where one wants to

divide an incoming stream of objects, so that the split is as even as

possible along each of the various dimensions that one might care

about.

A naïve algorithm is to pick each sign εt randomly and inde-

pendently, which by standard tail bounds gives B = Θ((T logn)1/2)
with high probability. In most of the interesting settings, T ≫ n,
and a natural question is whether the dependence on T can be

improved from T 1/2
to say, logT , or removed altogether (possibly

with a worse dependence on n).

Offline setting. The offline version of the problem, where the

vectors v1, . . . ,vT are given in advance and the goal is to minimize

maxt ∈[T ] ∥dt ∥∞, is known as the signed-series problem. It was first

studied by Spencer [Spe77], who obtained a bound independent

of T , but exponential in n. This was later improved by Bárány

and Grinberg [BG81] to B ≤ 2n. Chobanyan [Cho94] showed a

beautiful connection between the signed-series problem and the

classic Steinitz problem on the rearrangement of vector sequences—

any upper bound on B also holds for the latter problem. Steinitz

problem has a much longer history, originating from a question of

Riemann and Lévy in the 19th century (c.f. the survey [Bár08] for

some fascinating history). A long-standing conjecture for both the

problems, still open, is that B = O(n1/2). Another notable bound is
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due to Banaszczyk [Ban12], who showed that B = O((n logT )1/2).
While the original argument in [Ban12] was non-constructive, a

polynomial time algorithm to find such a signing was recently given

in [BG17].

In general, there has been extensive work on various offline dis-

crepancy problems over last several decades, and several powerful

techniques such as the partial coloring method [Spe85] and con-

vex geometric methods [Gia97, Ban98, Ban12, MNT14] have been

developed, which significantly improve upon the bounds given by

random coloring. While these initial methods were mostly non-

algorithmic, several new algorithmic techniques and insights have

been developed in recent years [Ban10, LM15, Rot14, ES18, BDG16,

LRR17, BDGL18, DNTT18].

Online setting. The online setting was first studied in the 70’s and
80’s, but it did not receive much interest later as it was realized that

the best guarantees are already achieved by trivial algorithms. In

particular, the T 1/2
dependence on T achieved by random coloring

cannot be improved [Spe77]. See [Spe87, Bár79] for even more spe-

cific lower bounds. The difficulty is that the all-powerful adversary,

upon seeing the signs chosen by the algorithm until time t − 1,

can choose the next input vector vt to be orthogonal to dt−1. Now,
irrespective of the choice of the sign εt , the resulting signed sum

dt satisfies

∥dt ∥
2

2
= ∥dt−1 + εtvt ∥

2

2
= ∥dt−1∥

2

2
+ 2εt ⟨dt−1,vt ⟩ + ∥vt ∥

2

2

= ∥dt−1∥
2

2
+ ∥vt ∥

2

2
. (1)

For any dt−1, one can always pickvt with
1 ∥vt ∥∞ ≤ 1 and ∥vt ∥

2

2
≥

n − 1, resulting in ∥dt ∥
2

2
≥ (n − 1)t , and hence ∥dt ∥∞ = Ω(t1/2) for

all t ∈ [T ] (as long as n > 1).

It is therefore natural to ask if relaxing the power of the adversary,

or making additional assumptions on the input sequence, can lead

to interesting new ideas and to algorithms that performmuch better,

and in particular, give bounds that only mildly depend on T .
A natural assumption is that of stochasticity: if the arriving

vectors are chosen in an i.i.d. manner from some distribution p,
can we maintain that the ℓ∞ norm of the current signed-sum dt—
henceforth, referred to as discrepancy—is poly(n) or poly(n, logT )?

Previous work and challenges. Recently, this stochastic setting
was studied by Bansal and Spencer [BS19], where they considered

the case where p is the uniform distribution on all {−1, 1}n vectors.

They give an online algorithm achieving a bound of O(
√
n) on the

expected discrepancy, matching the best possible offline bound, and

an O(
√
n logT ) discrepancy bound at all times t ∈ [T ], with high

probability.

In general, the algorithmic discrepancy approaches developed

in the last decade do not seem to help in the online setting. This is

because in the offline setting, the algorithms can ensure that the

discrepancy stays low by simultaneously updating the colors of

various elements in a correlated way. In the online setting, however,

the discrepancy must necessarily rise (in the ℓ2 sense) whenever

the incoming vector vt is almost orthogonal to dt−1, which can

happen quite often. The only thing that the online algorithm can

1
For any d ∈ Rn , any basic feasible solution to ⟨d, x ⟩ = 0 with x ∈ [−1, 1]n has at

least n − 1 coordinates ±1.

do is to actively try to cancel this increase, whenever possible, by
choosing the sign εt cleverly.

The algorithm of [BS19] crucially uses that if the coordinates of

vt are independently distributed and mean-zero
2
, then for any dt−1

the incoming vector vt will typically be far from being orthogonal

to dt−1. More quantitatively, the anti-concentration property for in-

dependent random variables gives that for any dt−1 = (d1, . . . ,dn ),
the random vector vt = (X1, . . . ,Xn ) with X1, . . . ,Xn being inde-

pendent and mean-zero satisfies

Ev

[
|⟨dt−1,vt ⟩|

]
= Ω

(( n∑
i=1

d2i · E[Xi ]
2

)
1/2

)
.

Whenever |⟨dt−1,vt ⟩| is large, the algorithm can choose εt appro-
priately to create a negative drift in (1), to offset the increase due to

the ∥vt ∥
2
term. We give a more detailed description below in §2.1.

In many interesting settings, however, the Xi ’s can be depen-
dent. For example, motivated by an envy minimization problem,

Jiang, Kulkarni, and Singla [JKS19] considered the following natural

online interval discrepancy problem: points x1, . . . ,xT arrive uni-

formly in the interval [0, 1], and the goal is to assign them signs on-

line to minimize the discrepancy of every sub-interval of [0, 1]. (For

adversarial arrivals, [JKS19] show poly(T ) lower bounds.) Viewing
the sub-intervals (after proper discretization) as coordinates, this

becomes a stochastic online vector balancing problem, but where

the random variables Xi corresponding to the various sub-intervals
are dependent (details in §2.2). They give a non-trivial algorithm

that achieves T 1/log logT
discrepancy, which is much better than

the T 1/2
bound obtained by random coloring, but still substantially

worse than polylog(T ).
In general, the difficulty with dependent coordinates Xi is that

even a small correlation can destroy anti-concentration, which

makes it difficult to create a negative drift. For example, suppose the

distribution p is mostly supported on vectors with an equal number

of +1 and −1 coordinates. Now if d has the form d = c(1, . . . , 1),
then the incoming vector vt is almost always orthogonal to it, and

∥dT ∥2 can potentially increase as fast as Ω(T 1/2).

In this paper, we focus on the stochastic setting where the coor-

dinates have dependencies, and give several results both for specific

geometric problems and for general vector balancing under arbi-

trary distributions. In general, there are various other ways inwhich

one can relax the power of the adversary, and in §8 we describe

several interesting open questions and directions in this area.

1.1 Our Discrepancy Bounds
We first consider the following interval discrepancy problem. Let

x = x1, . . . ,xT be a sequence of points drawn uniformly in [0, 1]

and let ε1, . . . , εT ∈ {±1} be a signing. For an interval I ⊆ [0, 1],

let 1I denote the indicator function of the interval I . For any time

t ∈ [T ], we define the discrepancy of interval I to be

disct (I ) :=
���ε11I (x1) + · · · + εt 1I (xt )���.

We show the following bounds on discrepancy.

2
Note that this holds in the case of uniform distribution over {−1, 1}n .
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Theorem 1.1 (Interval Discrepancy). There is an online al-
gorithm which selects signs εt ∈ {±1} such that, with high proba-
bility3, for every interval I ⊆ [0, 1] we have maxt ∈[T ] disct (I ) =
O(log3T ). Moreover, with constant probability, for any online algo-

rithm, maxI ⊆[0,1]maxt ∈[T ] disct (I ) = Ω
(√

logT
)
.

This gives an exponential improvement over the T 1/log logT

bound of [JKS19], and is tight up to polynomial factors. The lower

bound also improves a previous bound of Ω(log1/4T ) of [JKS19].
There are two natural d-dimensional generalizations of the in-

terval discrepancy problem, and our framework, which we will

describe in §1.2, can handle both of them.

d-dimensional Online Interval Discrepancy: Consider a sequence
of points x1, . . . ,xT drawn uniformly from the unit cube [0, 1]d .

The goal is to simultaneously minimize the discrepancy of every

interval for all the d-coordinates. In other words, to minimize the

following for every interval I and every coordinate i ∈ [d]:

discit (I ) :=
���ε11I (x1(i)) + . . . + εt 1I (xt (i))���.

The offline version of this problem for d ≥ 2 is equiv-

alent to the classic d-permutations problem, where an upper

bound of O(
√
d logT ) [SST97] and a breakthrough lower bound

of Ω(logT ) [NNN12, Fra18] for d ≥ 3, and Ω(
√
d) in general is

known for the worst-case placement of points.

We show the following generalization of Theorem 1.1 that

matches the best offline bounds, up to polynomial factors.

Theorem 1.2 (d-dimensional Interval Discrepancy). There
is an online algorithm which selects signs εt ∈ {±1} such that,
with high probability, for each i ∈ [d] and I ⊆ [0, 1], we have
maxt ∈[T ] disc

i
t (I ) = O(d log

3T ). Moreover, with constant probability,
for any online algorithm there exists an interval I and a coordinate
i ∈ [d], such that maxt ∈[T ] disc

i
t (I ) = Ω

(√
d log (T /d)

)
.

Previously, Jiang et al. [JKS19] could extend their analysis for

online interval discrepancy to the d = 2 case and prove the same

T 1/log logT
bound. However, their proof is rather ad-hoc and does

not seem to generalize to higher d . In contrast, our bound holds for

any d , and is tight up to polynomial factors.

The second natural generalization of interval discrepancy is to

d-dimensional axis-parallel boxes, which gives the following online

version of the extensively studied Tusnády’s Problem.

d-dimensional Online Tusnády’s Problem: Consider a sequence

of points x1, . . . ,xT drawn uniformly from the unit cube [0, 1]d .

The goal is to simultaneously minimize the discrepancy of all axis-

parallel boxes. In other words, to minimize the following for every

box B:

disct (B) :=
���ε11B (x1) + . . . + εt 1B (xt )���.

The (offline) Tusnády’s problem has a fascinating history

(see [Mat09] and references there in), and after a long line of

work, it is known that for the worst-case placement of points, the

offline discrepancy is at most Od (log
d− 1

2 T ) [Nik17] and at least

3
Throughout the paper, “with high probability” means with 1− 1/poly(n, T ) probabil-
ity where the exponent of the polynomial can be made as large as desired, depending

on the constant in the discrepancy upper bound.

Ωd (log
d−1T ) [MN15]. We show the following result in the online

setting, which is tight to within polynomial factors.

Theorem 1.3 (Tusnády’s problem). There is an online algorithm
which selects signs εt ∈ {±1} such that, with high probability, for ev-
ery axis-parallel box B, we havemaxt ∈[T ] disct (B) = Od (log

2d+1T ).
Moreover, for any online algorithm, with constant probability, there
exists a box B such that maxt ∈[T ] disct (B) = Ωd (log

d/2T ).

In contrast, the proof approach of [JKS19] completely breaks

down for the Tusnády’s problem even in two dimensions and does

not give any better lower bounds in terms of d . We recently learned

that results similar to Theorems 1.1 and 1.3 were also obtained

by Dwivedi et al. [DFGGR19], in the context of understanding the

power of online thinning in reducing discrepancy.

Remark:Although all the problems above are stated for uniform

distributions, one can use the probability integral transformation to

reduce any product distribution to the uniform distribution without

increasing the discrepancy, so our results in Theorems 1.2 and 1.3

also apply to any product distribution over [0, 1]d .

Finally, note that Theorem 1.1 follows as a direct corollary of

either of the above theorems.

General distributions. We now consider the setting of arbitrary
distributions for the online vector balancing problem. Here we need

to tackle the orthogonality issue which gave Ω(T 1/2) lower bounds

discussed in (1). As discussed earlier, for the uniform distribution

over {−1,+1}n , Bansal and Spencer [BS19] get around this issue

since this does not happen for the uniform distribution reasonably

often, and hence, E[⟨dt−1,vt ⟩] is large for any vector dt−1. Using

this, they obtain the bound O(n1/2 logT ). Our next result shows
that such a poly(n, logT ) upper bound is possible even for arbitrary

distributions.

Theorem 1.4. (Vector balancing under dependencies) For any
sequence of vectors v1, . . . ,vT ∈ [−1, 1]n sampled i.i.d. from some
arbitrary distribution p, there is an online algorithm which selects
signs εt ∈ {±1} such that, with high probability, we have

max

t ∈[T ]




ε1v1 + . . . + εtvt 



∞
= O(n2(logT + logn)).

In §4.2 we show that the dependencies on n and logT in this

theorem are tight up to polynomial factors as there is an Ω(n1/2 +

(logT /log logT )1/2) lower bound.
All of the above results follow from a general framework that

we discuss next. In addition to the framework below, the key new

technical ingredient is an anti-concentration inequality for depen-

dent random variables, which we describe below in Theorem 1.5.

This may be of independent interest.

1.2 Our Framework
To tackle the orthogonality issue, one of our key idea is to work

with a different basis for the discrepancy vectors. More specifically,

instead of maintaining bounds on the individual coordinate discrep-

ancies dt (i), we maintain bounds on suitable linear combinations

of them. This basis ensures that the (new) coordinates of the incom-

ing vector are uncorrelated, i.e., E[X (i) · X (j)] = E[X (i)] · E[X (j)]
for distinct coordinates i, j. Note that this condition is only on the
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expected values, and is much weaker, e.g., even pairwise indepen-

dence. Once one finds a suitable new basis, which turns out to be an

eigenbasis of the covariance matrix, the anti-concentration bound

for such random variables (proved below in Theorem 1.5), together

with the standard exponential penalty based framework used in

previous works [BS19, JKS19], gives Theorem 1.4.

For our results on geometric discrepancy problems, there is an

additional challenge, we cannot afford to lose a poly(n) factor, as
in Theorem 1.4 above, since the dimension n = Θ(T ). In this case,

however, the update vectors are (logT )-sparse in the original basis

(see §2) and one could hope to utilize this sparsity. Yet another

challenge in this case is that bounding the discrepancy in a new

basis preserves ℓ2-discrepancy in the original basis, but could lead

to a

√
n loss in ℓ∞-discrepancy. To get polylog(T ) bounds, we use a

natural basis from wavelet theory, called the Haar system, which

simultaneously has sparsity, uncorrelation, and avoids the ℓ2 to

ℓ∞ loss. This also easily extends to higher dimensions as these

wavelets can be tensorized in a natural way to get a suitable basis

for higher dimensional versions of the problems. A more detailed

description of our framework is given in §2. Next we discuss our

anti-concentration results.

1.3 Our Anti-Concentration Results for
Non-Independent Random Variables

Suppose X1, . . . ,Xn are independent {−1,+1} random variables

with mean zero. Then, it is well-known that |
∑
i Xi | has mean

Θ(n1/2), and moreover, this value is at least Ω(n1/2) with constant

probability.

Now, on the other hand, consider the following distribution. Let

Hn be n × n Hadamard matrix and let Hn (i) denote its i-th row

for i ∈ [n]. Consider the random vector X = (X1, . . . ,Xn ), where
X = ξ · Hn (i) for a Rademacher random variable ξ ∈ {−1,+1}

and a uniformly chosen i ∈ [n]. Then the Xi ’s are still mean-

zero and {−1,+1}, and in fact, pairwise independent. However,

the magnitude of the sum |
∑
i Xi | behaves very differently from

the i.i.d. setting above. It takes value n with probability only 1/n (if

X = ξ · Hn (1), the row of all 1’s) and is 0 otherwise. In particular

the mean is E[|
∑
i Xi |] = 1 (instead of n1/2 above), and moreover

the entire contribution to the mean comes from an event with

probability only 1/n.
Nevertheless, we can say interesting things about the anti-

concentration of sums of such random variables. In particular, we

show the following results for uncorrelated or pairwise independent

random variables.

Theorem 1.5. (Uncorrelated anti-concentration) For any vector
(a1, . . . ,an ) ∈ R

n , let X1, . . . ,Xn be uncorrelated random variables
that are bounded |Xi | ≤ c , satisfy E[XiX j ] = 0 for all i , j , and have
sparsity s (the number of non-zero Xi ’s in any outcome). Then

E
���∑

i
aiXi

��� ≥ E
[∑

i
|ai |X

2

i

]
·
1

cs
. (2)

Moreover, this bound is tight, even for pairwise independent random
variables.

The tightness holds for the Hadamard example above, where

E|
∑
i Xi | = 1, s = n, c = 1, and E[

∑
i X

2

i ] = n.

Theorem 1.6. (Pairwise independent anti-concentration) For any
(a1, . . . ,an ) ∈ R

n , letX1, . . . ,Xn be mean-zero pairwise independent
random variables with sparsity s ≤ n. Then

E
[���∑

i
aiXi

���] ≥ E
[∑

i
|aiXi |

]
·
1

s
. (3)

Note that this bound is also tight for the Hadamard example.

In general, the bound (3) is stronger than in (2); and a simple ex-

ample in §3.2 shows that (3) cannot hold for uncorrelated random

variables.

Although the anti-concentration properties and the small-ball

probabilities for independent variables have been extensively stud-

ied (c.f. [NV13]), the uncorrelated and pairwise independent setting

does not seem to have been studied before, and Theorems 1.5 and

1.6 do not seem to be known, to the best of our knowledge.

1.4 Applications to Envy Minimization
A classic measure of fairness in the field of fair division is

envy [Fol67, TV85, LMMS04, Bud11]. A recent work of Benade

et al. [BKPP18] introduced the online envy minimization problem

where T items arrive one-by-one. In the two player setting, on ar-

rival of item t ∈ {1, . . . ,T } we get to see the valuations vit ∈ [0, 1]

for both the players i ∈ {1, 2}. The goal is to immediately and

irrevocably allocate the item to one of the players while minimizing

the maximum envy. There are two natural notions of envy: car-

dinal and ordinal (see §7 for definitions). Benade et al. [BKPP18]

show an Ω(T 1/2) lower bound for online envy minimization in the

adversarial model—the reason is similar to Bárány’s [Bár79] lower

bound for online discrepancy. Can we obtain better bounds when

the player valuations are drawn from a distribution?
4

In the special case of product distributions (each player inde-

pendently draws their value), Jiang et al. [JKS19] observed that

the 2-dimensional interval discrepancy bounds also hold for on-

line envy minimization. In particular, they obtained a T 1/log logT

bound on the ordinal envy. Our new interval discrepancy bound

from Theorem 1.2 immediately improves this to anO(log3T ) bound
on ordinal envy. Moreover, we use our vector balancing result to

obtain an O(logT ) bound on the cardinal envy even for general

distributions.

Corollary 1.7. Suppose valuations of two players are drawn i.i.d.
from some distribution p over [0, 1] × [0, 1]. Then, for an arbitrary
distribution p (i.e., player valuations for the same item could be corre-
lated), the online cardinal envy isO(logT ). Moreover, if p is a product
distribution (i.e., player valuations for the same item are independent)
then the online ordinal envy is also O(log3T ).

Paper Organization. The rest of the paper is organized as follows: in
§2, we give an overview of previous challenges and our main ideas.

In §3, we prove our key anti-concentration theorems that are neces-

sary for our upper bounds on discrepancy. In §4, we give upper and

lower bounds for online discrepancy under certain “uncorrelation”

assumptions on the distribution. Then, we apply these bounds in §5

to obtain our vector balancing result (Theorem 1.4). In §6, we again

apply these bounds to obtain our geometric discrepancy results

4
If we make a simplifying assumption that the distribution does not depend on the

time horizon T , better bounds are known [ZP19, DGK
+
14].
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(Theorems 1.2 and 1.3). In §7, we show why our results immediately

apply to online envy minimization. Finally, in §8 we end with some

discussion of open problems and directions.

2 PROOF OVERVIEW
Let us start by reviewing the approach considered by Bansal and

Spencer [BS19] in the case of independent coordinates. We also

discuss the challenges involved in extending it to the setting of

dependent coordinates.

2.1 Independent Coordinates: Bansal and
Spencer

Consider the online vector balancing problem, when each arriving

vector is uniformly chosen from {±1}n , so that all the coordinates

are independent. To design an online algorithm, it is natural to keep

a potential function that keeps track of the discrepancy and chooses

a sign εt for the current vectorvt that minimizes the increase in the

potential. Formally, letdt = ε1v1+ . . .+εtvt denote the discrepancy
vector at time t . For a parameter 0 < λ < 1, define the potential

function

Φt =
∑
i ∈[n]

cosh(λdt (i)),

where dt (i) denotes the ith coordinate of dt and cosh(x) = 1

2
·

(ex + e−x ) for all x ∈ R. One should think of the above potential

function as a proxy for the maximum discrepancy as Φt is domi-

nated by the maximum discrepancy: Φt ≈ eλ ∥dt ∥∞ .
On the arrival of vector vt , the algorithm chooses a sign εt ∈

{±1}, which updates the discrepancy vector to dt = dt−1 + εtvt
and changes the potential from Φt−1 to Φt . If we can show that

whenever Φt > 2n, the drift ∆Φt := Φt − Φt−1 is negative in

expectation for the sign εt chosen by the algorithm, then we can

say that the potential after T arrivals, ΦT , is bounded by poly(nT )
with high probability. This implies cosh(λ∥dT ∥∞) is bounded by

poly(nT ), which means a bound of O(λ−1 logT ) on the maximum

discrepancy.

Let us try to compute the expected drift. Define d = dt−1. By
considering the Taylor expansion, we get cosh(x + δ ) ≤ cosh(x) +
sinh(x)δ + cosh(x)δ2 where sinh(x) = 1

2
· (ex − e−x ) for all x ∈ R.

So,

∆Φt ≈
∑
i ∈[n]

(
λ sinh(λd(i)) · (εtvt (i)) + λ

2
cosh(λd(i)) · (εtvt (i))

2

)
= εtλL + λ

2Q,

where L =
∑
i ∈[n] sinh(λd(i)) · vt (i) is the linear term and Q =∑

i ∈[n] cosh(λd(i)) is the quadratic term from the Taylor expansion

(note that (εtvt (i))
2 = 1). Since the algorithm is free to choose the

sign εt to minimize the drift, ∆Φt ≈ −λ |L| + λ2Q . Now if one can

show that Evt [|L|] ≥
E[Q ]

2λ , we would get that the expected drift

E[∆Φt ] < 0, and this would translate to a good discrepancy bound

of O(λ−1 logT ) if λ is large as described above.

Since cosh(x) and | sinh(x)| only differ by at most 1, we can make

the approximationQ ≈
∑
i ∈[n] | sinh(λd(i))| up to some small error.

So, denoting β = 1/λ and ai = sinh(λd(i)), our task reduces to

proving the following anti-concentration statement:

Question. Let X1, . . . ,Xn be independent random variables with

|Xi | ≤ 1. What is the smallest β such that the following holds:

E
[��� ∑
i ∈[n]

aiXi

���] ≥
1

β
· E

[ ∑
i ∈[n]

|ai |X
2

i

]
. (4)

In the case where the Xi ’s are independent Rademacher (±1)

random variables, classical Khintchine’s inequality and Cauchy-

Schwarz tell us that

E
[��� ∑
i ∈[n]

aiXi

���]≥ 1

√
2

·

( ∑
i ∈[n]

a2i

)
1/2

≥
1

√
2n

( ∑
i ∈[n]

|ai |
)
=

1

√
2n

· E
[ ∑
i ∈[n]

|ai |X
2

i

]
,

so β = O(
√
n), which suffices for the discrepancy application. In

general, whenXi ’s are not Rademacher but are still bounded (|Xi | ≤
1), mean-zero, and independent, then following [BS19] one can still

show that β = O(
√
n).

The above gives a bound ofO(
√
n logT ) on themaximum discrep-

ancy at every time t ∈ [T ]. However, when the input distribution

has dependencies across coordinates, i.e. the Xi ’s are dependent,
one can not take β to be small in general. For example, β → ∞

when all ai ’s are one and a random set of coordinates S ⊂ [n] of
size n/2 (say n is even) take value +1 and the remaining coordinates

in [n] \ S take value −1.

Next we discuss the simplest geometric discrepancy problem—

the interval discrepancy problem in one dimension—where such a

situation already arises if we use the same approach as above.

2.2 Interval Discrepancy: Previous Barriers
Recall, we have T points x1, . . . ,xT chosen uniformly from [0, 1]

which need to be given ±1 signs online. Consider the dyadic inter-
vals Ij,k := [k2−j , (k + 1)2−j ] where 0 ≤ k < 2

j
and 0 ≤ j ≤ logT .

For intuition, imagine embedding the unit interval on a complete

binary tree of height logT ; now sub-intervals corresponding to

every node of the binary tree are dyadic intervals. Note that the

smallest dyadic interval has size 2
− logT = 1/T . By a standard re-

duction, every sub-interval of [0, 1] is contained in a union of some

O(logT ) dyadic intervals, so it suffices to track the discrepancy of

these dyadic intervals.

Denoting by 1I the indicator function for an interval I , define

dt (I ) := ε11I (x1) + . . . + εt 1I (xt ).

Note that |dt (Ij,k )| is the discrepancy of the interval Ij,k at time t .
A natural choice of algorithm is to use the potential function

Φt =
∑
j,k

cosh(λdt (Ij,k )),

which is a proxy for the maximum discrepancy of any dyadic inter-

val. Ideally, we want to set 0 < λ < 1 as large as possible. Defining

dj,k = dt−1(Ij,k ), and doing a similar analysis as before, we derive

∆Φt ≈ εtλL + λ
2Q,

where L =
∑
j,k sinh(λdj,k ) · 1Ij,k (xt ) and Q =

∑
j,k cosh(λdj,k ) ·

1Ij,k (xt )
2
. The problem again reduces to showing an anti-

concentration statement as in Eq. (4) with Xi ’s being the indicators
1Ij,k for all j,k . It turns out that the smallest β one can hope for
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this setting is exponential in the height of the tree (see the full

version [BJSS19] for an example), which for binary trees of height

logT only yields a poly(T ) bound on the discrepancy.

One can still leverage something out of this approach—letting

B = T 1/log logT
, it was shown by Jiang, Kulkarni, and Singla [JKS19]

that by embedding B-adic intervals on a B-ary tree of height

log logT , the above approach gives a sub-polynomial T 1/log logT

bound for the interval discrepancy problem. However, this cannot

be pushed to give a polylog(T ) bound because the above obstruction
does not allow us to handle trees of height logT .

2.3 Interval Discrepancy: A New Potential and
the BDG Inequality

To get around the previous problem, we take a different approach

and instead of directly using the discrepancies in the potential

Φt , we work with linear combinations of discrepancies with the

following desirable properties. First, if there is a bound on these

linear combinations then it should imply a bound on the original

discrepancies. Second, and more importantly, the term L in ∆Φt
can be viewed as a martingale, which leads to much better anti-

concentration properties, i.e., smaller β in (4).

More specifically, consider the previous embedding of the dyadic

intervals of length at least 1/T on the complete binary tree of depth

logT . For any interval Ij,k , let the left half interval be I lj,k and

the right half interval be I rj,k , and consider the difference of their

discrepancies

d−t (Ij,k ) := dt (I
l
j,k ) − dt (I

r
j,k ).

Note that if |dt (Ij,k )| ≤ α and also |d−t (Ij,k )| ≤ α , then both

|dt (I
l
j,k )| ≤ α and |dt (I

r
j,k )| ≤ α . A simple inductive argument

now shows that if |dt ([0, 1])| ≤ α and the differences of discrep-

ancy for every dyadic interval Ij,k satisfies |d−t (Ij,k )| ≤ α , then
every dyadic interval also has discrepancy at most α , thus satisfy-
ing the first property above. So let us consider a different potential

function:

Ξt := cosh(λdt (I0,0)) +
∑
j,k

cosh(λd−t (Ij,k ))

with j,k ranging over all the dyadic intervals (corresponding to

internal nodes of the tree) and 0 < λ < 1 is a parameter that we

want to set as large as possible. Denoting d−j,k = d−t−1(Ij,k ), as

before, we can write ∆Ξt ≈ εtλL + λ
2Q , with

L = sinh(λdt (I0,0)) +
∑
j,k

sinh(λd−j,k ) · X j,k (xt ) and

Q = cosh(λdt (I0,0)) +
∑
j,k

cosh(λd−j,k ) · X j,k (xt )
2,

where X j,k = 1I lj,k
−1I rj,k for any interval Ij,k . Note that X j,k takes

value 1 on the left half of Ij,k , and −1 on the right half of Ij,k , and
is zero otherwise.

Anti-concentration via Martingale analysis. Now we show how

the random variable L can be viewed as a (logT )-step martingale.

Let us view a uniform point x ∈ [0, 1] as being sampled one bit at a
time, starting with the most significant bit. At any point where j

bits of x have been revealed, the interval Ij,k on the jth level of the

dyadic tree is determined. Now, consider the process that starts with

the value Y0 = sinh(λd0,0) at the root and at any time 0 ≤ j ≤ logT ,

the process is on some node of the jth level. Conditioned on this

node being Ij,k , the payoff Yj := ajX j where aj = sinh(d−j,k ) and

X j equals 1 if the process moves to the left child and equals −1

otherwise. Defining Lj = Y0+Y1 . . .+Yj , it follows that the sequence
L0, . . . ,LlogT is a martingale and L = L

logT .

Moreover, by the approximation cosh(x) ≈ | sinh(x)|, we get

that Q = |Y0 | + |Y1 | + . . . + |Y
logT |. Letting a0 = Y0 and X0 = 1,

the question then becomes—what is the smallest β such that the

following holds:

E

������
logT∑
i=0

aiXi

������ ≥
1

β
· E


logT∑
i=0

|ai |X
2

i

 =
1

β
· E


logT∑
i=0

|ai |

 .
For martingales, a statement similar to Khintchine’s inequal-

ity is implied by the well-known Burkholder-Davis-Gundy (BDG)

inequality:

E

[
max

t ≤logT

��� t∑
i=0

aiXi

���] ≥ c · E


( logT∑
i=0

a2i

)
1/2


for a positive constant c . One can also prove (see the appendix in

the full version) that

(1 + logT ) · E

������
logT∑
i=0

aiXi

������ ≥ E

[
max

t ≤logT

��� t∑
i=0

aiXi

���] .
Then, similar to the analysis for independent Rademacher random

variables, using Cauchy-Schwarz,

(1 + logT ) · E

������
logT∑
i=0

aiXi

������ ≥ c · E


( logT∑
i=0

a2i

)
1/2


≥

c√
logT

· E


logT∑
i=0

|ai |

 .
So we can conclude that β = polylog(T ), which gives a polylog(T )
bound on interval discrepancy.

How to extend this analysis to d-dimensional Tusńady’s prob-

lem? The martingale analysis above strongly relied on the inter-

val structure of the problem, which is not clear even for the two-

dimensional Tusńady’s problem. To answer this question, we take

a much more general view of our online discrepancy problem.
5

2.4 A More General View of Changing Basis
One can also view the above analysis of the interval discrepancy

problem as a more general underlying principle—that of working

with a different basis. For example, let us take a linear algebraic ap-

proach to interval discrepancy and consider it as a vector balancing

problem in RD , where D = {Ij,k | 0 ≤ j ≤ logT , 0 ≤ k < 2
j } is

the set of all dyadic intervals. When a new point x ∈ [0, 1] arrives,

the coordinate I ∈ D of the update vector vt is given by

vt (I ) = 1I (x).

5
The more general view in fact gives a (slightly) better bound for interval discrepancy

than the martingale based argument above. However, we include this martingale

argument here, as it is insightful and could be useful for other problems.

1144



Online Vector Balancing and Geometric Discrepancy STOC ’20, June 22–26, 2020, Chicago, IL, USA

Note that the update vt lives in aT -dimensional subspaceV of the

(2T − 1)-dimensional space RD since the T -intervals, I
logT ,k , at

the bottom layer determine the rest of the coordinates.

The original potential function Φ from §2.1 corresponded to

working with the original basis, but with the potential function Ξ
from §2.3, our approach consisted of bounding the ℓ∞-discrepancy

in a different basis of the subspaceV . In general, wemay choose any

basis and then define a potential function as the sum of hyperbolic-

cosines of the coordinates. To choose the right basis, we need several

properties from it, but most importantly we need uncorrelation.

Uncorrelation and anti-concentration via the Eigenbasis. Recall
that we say random variables X ,Y are uncorrelated if E[XY ] =
E[X ] ·E[Y ], which is a condition only on the expected values of the

random variables. Using Theorem 1.5, to show anti-concentration

it suffices that the coordinates in the new basis are mean-zero and

uncorrelated, i.e., Ev [v(i)v(j)] = 0 for distinct coordinates i, j.
For our vector balancing results under arbitrary distributions in

Theorem 1.4, we work in an eigenbasis of the covariance matrix. As

will be shown in the proof later, standard results from linear algebra

imply that the coordinates are uncorrelated in any eigenbasis. Our

next lemma uses this anti-concentration (along with the hyperbolic

cosine potential) to bound discrepancy in the new basis in terms of

sparsity—number of non-zero coordinates—of the incoming vectors.

Lemma 2.1. (Bounded discrepancy) Let p be a distribution sup-
ported over s-sparse vectors in [−1, 1]n satisfying Ev∼p[v(i)v(j)] = 0

for all i , j ∈ [n]. Then for vectors v1, . . . ,vT sampled i.i.d. from
p, there is an online algorithm that maintains O(s(logn + logT ))
discrepancy with high probability.

Even though this lemma implies low discrepancy in the new

basis, we need to be careful in bounding discrepancy in the original

basis.

Sparsity and going back to the original basis. As discussed briefly

in §1.2, although working in an eigenbasis allows us to obtain poly-

nomial bounds for vector balancing, this is apriori not sufficient

for our polylogarithmic geometric discrepancy bounds. There are

two main challenges—firstly, working in a new basis might lose

any sparsity that we might have in the original basis; e.g., in the

one-dimensional interval discrepancy problem the arriving vectors

are (logT )-sparse (dyadic intervals) in the original basis, but could

be Ω(T )-sparse in the new basis; and secondly, even if one can find

a new basis where the coordinates are uncorrelated and have low

sparsity, Lemma 2.1 only implies low ℓ∞-discrepancy in the new

basis. So going back to the original basis might lose us a factor

√
n

more (we can only claim ℓ2-discrepancy is the same). Recall, when

we view interval discrepancy as vector balancing, n = Θ(T ), so we

cannot afford losing

√
n. Fortunately, there is a special basis consist-

ing of Haar wavelets that allows us to prove polylog(T ) geometric

discrepancy bounds.

2.5 Haar Wavelets: Polylogarithmic Geometric
Discrepancy

There is a natural orthogonal basis associatedwith the unit interval—

the basis of Haar wavelet functions. These consist of functions Ψj,k
(formally defined in §6.1). Together these functions are known to

form an orthogonal basis for functions on the unit interval with

bounded L2-norm.

Associated with the one-dimensional Haar wavelets is a natural

martingale, which is the same martingale that our previous anal-

ysis in §2.3 relied on (e.g., X j,k = Ψj+1,k in the notation of §2.3.).

It turns out that the Haar wavelets have nice orthogonality and

sparsity properties that allow us to use Lemma 2.1—in particular,

Ex [h(x)h
′(x)] = 0 for distinct Haar wavelet functions h , h′ and x

sampled uniformly from [0, 1]. Moreover, moving from the basis of

Haar wavelets to the original basis does not incur any additional

loss in the discrepancy bound, since for any dyadic interval I , one
can show that its discrepancy satisfies |dt (I )| ≤ α ∥1̂I ∥1, where α
is a bound on the discrepancy in the Haar basis and ∥1̂I ∥1 is the
ℓ1-norm of the function 1I in the Haar basis. We prove that this

ℓ1-norm is one, so |dt (I )| ≤ α . This gives a more direct proof of the

polylog(T ) interval discrepancy bound and also extends easily to

the d-dimensional interval discrepancy problem.

Tusánady’s problem. Given the above framework of working

in the Haar basis, our extension to the d-dimensional Tusńady’s

problem now naturally follows. For example, in two dimensions,

we work with the basis of Haar wavelet functions which is formed

by a taking tensor product Ψj,k × Ψj′,k ′ of the one dimensional

wavelets. These functions form an orthogonal basis for all bounded

product functions over [0, 1]2 and have nice sparsity properties.

Moreover, we prove that for any axis-parallel box, the ℓ1-norm of

the Haar basis coefficients is one, so we do not lose any additional

factor in the discrepancy bound while moving from the Haar basis

to the original basis. This gives a polylogarithmic bound for two-

dimensional Tusńady’s problem, and also extends easily to higher

dimensions.

Notation. All logarithms in this paper will be base two. For any

integer k , throughout the paper [k] will denote the set {1, . . . ,k}.

For a vectoru ∈ Rd , we useu(i) to denote the ith coordinate ofu for

i ∈ [d]. Given another vector v ∈ Rd , the notation u ≤ v denotes

that u(i) ≤ v(i) for each i ∈ [d]. The all ones vector is denoted by

1. Given a distribution p, we use the notation x ∼ p to denote an

element x sampled from the distribution p. For a real function f , we
will write Ex∼p[f (x)] to denote the expected value of f (x) under x
sampled from p. If the distribution is clear from the context, then

we will abbreviate the above as Ex [f (x)].

3 ANTI-CONCENTRATION ESTIMATES
In this section we prove the anti-concentration results: we first

prove it for uncorrelated random variables, and then give an im-

proved bound for pairwise independent random variables. Although

in the rest of this paper we only use the weaker bound for uncorre-

lated random variables, we think the improved anti-concentration

for pairwise independent random variables is of independent inter-

est and will find applications in the future.

3.1 Pairwise Uncorrelated Random Variables
The following anti-concentration bound will be used in our discrep-

ancy applications.

Theorem 1.5. (Uncorrelated anti-concentration) For any vector
(a1, . . . ,an ) ∈ R

n , let X1, . . . ,Xn be uncorrelated random variables
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that are bounded |Xi | ≤ c , satisfy E[XiX j ] = 0 for all i , j , and have
sparsity s (the number of non-zero Xi ’s in any outcome). Then

E
���∑

i
aiXi

��� ≥ E
[∑

i
|ai |X

2

i

]
·
1

cs
. (2)

Moreover, this bound is tight, even for pairwise independent random
variables.

Note that if we have pairwise uncorrelated mean-zero random

variables X1, . . . ,Xn , then we get E[XiX j ] = E[Xi ] · E[X j ] = 0, so

the above lemma implies anti-concentration in this case. The bound

in the above lemma is tight because of the Hadamard example

described previously in §1.3.

The following is the main claim in the proof of Theorem 1.5.

Roughly it says that E
��� ∑i aiXi

��� ≥ 1

c · maxk ∈[n] E[|ak |X
2

k ]. Com-

bined with the observation that

max

k ∈[n]
E[|ak |X

2

k ] ≥
1

n
· E

[∑
k

|ak |X
2

k

]
,

this implies Theorem 1.5 when sparsity s = n. However, to get

inequality (2) in terms of sparsity s , the statement of the claim has

to be more refined.

Claim 3.1. For any (a1, . . . ,an ) ∈ Rn and random variables
X1, . . . ,Xn satisfying |Xi | ≤ c and E[XiX j ] = 0 for distinct i, j,
the following holds for any k ∈ [n],

E

[���∑
i
aiXi

��� · 1Xk,0

]
≥

1

c
· E[|ak |X

2

k ].

Proof. Using that |Xk | ≤ c , we have

c · E

[���∑
i
aiXi

��� · 1Xk,0

]
≥ E

[���∑
i
aiXi

��� · |Xk |]
≥ E

[
sign(ak )

(
akX

2

k +
∑
i,k

aiXiXk

)]
.

Since E[XiXk ] = 0 for i , k , it follows that

c · E

[���∑
i
aiXi

��� · 1Xk,0

]
≥

∑
i
ai · sign(ak ) · E [XiXk ]

= E
[
|ak |X

2

k
]
. □

When combined with the following easy claim, this will prove

Theorem 1.5.

Claim 3.2. Let Y1, . . . ,Yn be correlated random variables such that
for any outcome at most s of them are non-zero. Moreover, suppose
there is a random variable L which satisfies

E
[
|L| · 1Yk,0

]
≥ E

[
|Yk |

]
for all k ∈ [n].

Then, E[|L|] ≥ 1

s
∑
k E[|Yk |].

Proof. Sum the given inequality for all k ∈ [n] to get∑
k

E
[
|Yk |

]
≤

∑
k

E
[
|L| · 1Yk,0

]
= E

[
|L| ·

∑
k

1Yk,0

]
≤ E

[
|L| · s

]
.

□

Proof of Theorem 1.5. Applying Claim 3.1 and Claim 3.2 (with

L =
∑
i aiXi and Yi =

1

c · |ai |X
2

i ), we get that

E

[���∑
i
aiXi

���] ≥ E

[∑
k

|ak |X
2

k

]
·
1

cs
. □

3.2 Pairwise Independent Random Variables
In the special case of pairwise independent random variables, it is

possible to obtain an improved inequality over Theorem 1.5.

Theorem 1.6. (Pairwise independent anti-concentration) For any
(a1, . . . ,an ) ∈ R

n , letX1, . . . ,Xn be mean-zero pairwise independent
random variables with sparsity s ≤ n. Then

E
[���∑

i
aiXi

���] ≥ E
[∑

i
|aiXi |

]
·
1

s
. (3)

Notice, (3) immediately implies (2) for mean-zero pairwise in-

dependent random variables with |Xi | ≤ c . One cannot hope to
prove the stronger statement (3) for uncorrelated random variables.

See the full version [BJSS19] for an example and the proof of Theo-

rem 1.5.

4 ONLINE DISCREPANCY UNDER
UNCORRELATED ARRIVALS

In this section we consider the vector balancing problem in the

special case when the input distribution has uncorrelated coor-

dinates. All our upper and lower bounds will then follow from

choosing a suitable basis to reduce the original problem to a basis

with uncorrelated coordinates.

4.1 Upper Bounds
We say a vector in Rd is s-sparse if it has at most s non-zero coordi-
nates. The following lemma bounds the discrepancy for uncorre-

lated sparse distributions.

Lemma 2.1. (Bounded discrepancy) Let p be a distribution sup-
ported over s-sparse vectors in [−1, 1]n satisfying Ev∼p[v(i)v(j)] = 0

for all i , j ∈ [n]. Then for vectors v1, . . . ,vT sampled i.i.d. from
p, there is an online algorithm that maintains O(s(logn + logT ))
discrepancy with high probability.

Proof of Lemma 2.1. Our algorithm will use the same potential

function approach described in §2, and uses our anti-concentration

lemma from §3 to argue that the potential always remains polyno-

mially bounded.

Algorithm. At any time step t , let dt = ε1v1 + . . . + εtvt denote
the current discrepancy vector after the signs ε1, . . . , εt ∈ {±1}

have been chosen. Set λ = 1

2s and define the potential function

Φt :=
∑
i ∈[n]

cosh(λdt (i)).

When the vector vt arrives, the algorithm chooses the sign εt that
minimizes the increase Φt − Φt−1.
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Bounded Positive Drift. Let us fix a time t . To simplify the nota-

tion, let ∆Φ = Φt − Φt−1, let d = dt−1, and let v = vt .
After choosing the sign εt , the discrepancy vector dt = d + εtv .

To bound the change ∆Φ, since cosh′(x) = sinh(x) and sinh
′(x) =

cosh(x), using Taylor expansion

∆Φ ≤
∑
i

(
λ sinh(λd(i)) · (εtv(i)) + λ

2
cosh(λd(i)) · (εtv(i))

2

)
,

where the last inequality follows since | sinh(x)| ≤ cosh(x) for all
x ∈ R, and since |εtv(i)| ≤ 1 and λ < 1, the higher order terms in

the Taylor expansion are dominated by the first and second order

terms.

Set L =
∑
i sinh(λd(i))v(i), and Q∗ =

∑
i cosh(λd(i))v(i)

2
, and

Q =
∑
i | sinh(λd(i))|v(i)

2
. Since cosh(x) ≤ | sinh(x)| + 1 for x ∈ R

and |v(i)| ≤ 1, we have Q∗ ≤ Q + n. Therefore,

∆Φ ≤ εt · λ · L + λ2 ·Q + λ2n.

Since, the algorithm chooses εt to minimize the increase in the

potential:

∆Φ ≤ −λ · |L| + λ2 ·Q + λ2n.

Now, since Ev [v(i)v(j)] = 0 for all i, j ∈ [n], we can apply Theorem

1.5 with Xi = v(i) and ai = sinh(λd(i)) to get that Ev [|L|] ≥
1

s · E[Q] = 2λ · E[Q], which yields that

Ev [∆Φ] ≤ −λ ·Ev [|L|]+λ
2 ·Ev [Q]+λ

2n ≤ −λ2 ·Ev [Q]+λ
2n ≤ n.

Discrepancy Bound. The above implies that for any time t ∈ [T ],
the expectation E[Φt ] ≤ nT . By Markov’s inequality and a union

bound over the T time steps, with probability at least 1 −T−2
, the

potential Φt ≤ nT 4
for every time t ∈ [T ]. Since at any time t , we

have cosh(λ ∥dt ∥∞) ≤ Φt , this implies that with probability at least

1 −T−2
, the discrepancy at every time is

O

(
log(nT 4)

λ

)
= O(s(logn + logT )),

which finishes the proof of Lemma 2.1. □

4.2 Lower Bounds
We now show that the dependence on s and logT in Lemma 2.1,

cannot be improved up to polynomial factors. In particular, a lower

bound of Ω(s1/2), even when the time horizon is T = n, follows
directly from the following more general statement for the vector

balancing problem under distributions with uncorrelated coordi-

nates. This general version will later also imply our lower bounds

for geometric discrepancy.

Lemma 4.1. Let p be a distribution supported over vectors in
[−1, 1]n with ℓ2-norm k , such that for every i , j ∈ [n] we have
Ev∼p[v(i)v(j)] = 0. Then, for any online algorithm that receives as
input vectors v1, . . . ,vn sampled i.i.d. from p, with probability at
least 3/4, the discrepancy is Ω(k) at some time t ∈ [n].

We remark that the above lower bound may not hold if the

algorithms are offline.

Proof of Lemma 4.1. Since the distribution p over inputs is

fixed, we may assume that the algorithm is deterministic. Let

dt = ε1v1 + . . . + εtvt denote the discrepancy vector at any time

t ∈ [n]. Consider the quadratic potential function:

Φt := ∥dt ∥
2

2
=

∑
i ∈[n]

|dt (i)|
2.

We will need the following claim that shows Φt increases in

expectation for any online algorithm. Let us define ∆Φt = Φt −Φt−1.

Claim 4.2. Conditioned on any v1, . . . ,vt−1 and signs ε1, . . . , εt−1
such that ∥dt−1∥∞ ≤ k

4
, we have

Evt [∆Φt ] ≥ k2/2 (5)

where the expectation is taken only over the update vt ∼ p.

Proof. Set ∆Φ = ∆Φt , vector v = vt , and d = dt−1. When the

update v arrives, note that dt = d + εtv . Therefore, the increase in
the potential is given by

∆Φ =
n∑
i=1

(
2d(i) · εtv(i) +

(
εtv(i)

)
2

)
(6)

= 2εt
( n∑
i=1

d(i)v(i)
)
+ ∥v ∥2

2
= 2L + k2, (7)

where L = εt
(∑n

i=1 d(i)v(i)
)
.

To bound the expected value of L, we use Jensen’s inequality
and Ev [v(i)v(j)] = 0 for i , j to get:

(Ev [L])
2 ≤ Ev [L

2]

=

n∑
i=1

|d(i)|2 · Ev [v(i)
2] +

∑
i,j

d(i)d(j) · Ev [v(i)v(j)]

=

n∑
i=1

|d(i)|2 · Ev [v(i)
2] ≤ ∥d ∥2∞ ·

n∑
i=1
Ev [v(i)

2]

= ∥d ∥2∞ k2 ≤
k4

16

.

Therefore, plugging the above in (6), we get

Ev [∆Φ] ≥ −2 · |Ev [L]| + k
2 ≥ −2 ·

(k4
16

)
1/2
+ k2 ≥

k2

2

. □

To prove Lemma 4.1 using the last claim, we define τ to be the

first time that ∥dτ ∥∞ > k/4 if such a τ exists, or τ = n otherwise.

Let us define a new potential Φ∗
t which remains the same as Φt for

t ≤ τ and increases by k2/2 deterministically for every t > τ .
Note that for all possible random choices,

Φ∗
n ≤ Φτ−1 +

nk2

2

≤
nk2

16

+
nk2

2

,

where the second inequality holds since ∥dτ−1∥∞ ≤ k/4 and there-

fore, Φτ−1 ≤ 1

16
· nk2.

Moreover, let E be the event that ∥dt ∥∞ ≤ k/4 for every t ≤ n.
Note that when E occurs then the final potential Φ∗

n ≤ 1

16
· nk2.

Defining p = P[E], we have

E[Φ∗
n ] ≤ p ·

nk2

16

+ (1−p)

(
nk2

16

+
nk2

2

)
=

nk2

16

+ (1−p)
nk2

2

. (8)

Moreover, from Claim 4.2 and the definition of Φ∗
t , it follows

that E[Φ∗
n ] ≥

1

2
· nk2. Comparing this with (8) yields that p ≤ 1/8.

Hence, with probability at least 7/8, the discrepancy must be k/4
at some point. □
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Dependence on T . We next show that the discrepancy must be

Ω((logT /log logT )1/2) with high probability even when n = O(1)
(we assume n ≥ 2 throughout this discussion). We only sketch

the proof here as the arguments are standard. The idea is that for

large T , there is a high probability of getting a long enough run of

consecutive vectors with each vt almost orthogonal to dt−1.
Let p be the uniform distribution

6
over vectors on the unit sphere

Sn−1. For any vector u ∈ Rn , and v sampled from p, there is a

universal constant c so that for all δ ≤ 1, we have P[|⟨u,v⟩| ≤
δ ∥u∥2/n

1/2] ≥ cδ .
Let β ≥ 1 be some parameter that we optimize later. Setting

δ = 1/(4β) gives that whenever ∥dt−1∥2 ≤ βn1/2, there is at least
c/(4β) probability that |⟨dt−1,vt ⟩| ≤ 1/4, and hence irrespective of

the sign εt ,

∥dt ∥
2

2
≥ ∥dt−1∥

2

2
− 2|⟨dt−1,vt ⟩| + ∥vt ∥

2

2
≥ ∥dt−1∥

2

2
+ 1/2.

So for any τ consecutive steps, with at least (c/4β)τ probability,

this happens at every step (or the ℓ2-discrepancy already exceeds

βn1/2 at some step), and hence the discrepancy has ℓ2-norm at least

Ω(τ 1/2).
Partitioning the time horizon T into T /τ disjoint blocks, and

setting β = log(T ), and τ = Ω(logT /log logT ), the probability such

a run does not occur in any block is at most (1 − (c/4β)τ )(T /τ ) =

T−Ω(1)
by our choice of the parameters. This gives the claimed

lower bound.

5 ONLINE VECTOR BALANCING:
POLYNOMIAL BOUNDS

In this section, we prove our vector balancing result for arbitrary

distributions.

Theorem 1.4. (Vector balancing under dependencies) For any
sequence of vectors v1, . . . ,vT ∈ [−1, 1]n sampled i.i.d. from some
arbitrary distribution p, there is an online algorithm which selects
signs εt ∈ {±1} such that, with high probability, we have

max

t ∈[T ]




ε1v1 + . . . + εtvt 



∞
= O(n2(logT + logn)).

Proof of Theorem 1.4. Without loss of generality, we may as-

sume that the distribution p is symmetric, i.e. bothv and−v have the

same probability density, since we can always multiply the incom-

ing vectorv with a Rademacher ±1 random variable without chang-

ing the problem. Let P ∈ Rd×d denote the covariance matrix of our

input distribution, and since p is symmetric, we get P = Ev∼p[vv
T ].

LetU denote the orthogonal matrix whose columnsu1, . . . ,un form

an eigenbasis for P . Note that in terms of its spectral decomposition,

P =
∑n
k=1 λkuku

T
k for λk ∈ R.

To prove our discrepancy bound, instead of working in the orig-

inal basis, we will view our problem as a vector balancing problem

in the basis given by the columns ofU . Now the update sequence

is given by w1, . . . ,wT where wt =
1√
n
· UTv is the normalized

update vector in the basisU .

6
Our argument works for a wide class of distributions p, as long as for any dt−1 ∈ Rn ,
the random incoming vectorvt sampled from p has a non-trivial probability of having a
small inner product with dt−1 . We only give the argument for the uniform distribution

on the unit sphere for simplicity.

Since ∥v ∥2 ≤
√
n and orthogonal matrices preserve ℓ2-norm,

we have ∥UTv ∥2 = ∥v ∥2 ≤
√
n. It follows that for any t , we have

∥wt ∥∞ ≤ ∥wt ∥2 =
1√
n
· ∥UTv ∥2 ≤ 1. Furthermore, any two co-

ordinates of the update vectorswt ’s are uncorrelated, i.e., for any

i , j ∈ [n] we have

E[wt (i) ·wt (j)] =
1

n
E[⟨ui ,v⟩⟨uj ,v⟩] =

1

n
uTi Puj = 0,

where the last equality holds since P =
∑n
k=1 λku

T
k uk .

Thus, we can use the online algorithm from Lemma 2.1 to select

signs ε1, . . . , εT ∈ {±1}. Let dt = ε1v1 + . . . + εtvt denote the

discrepancy in the original basis. Now using the trivial bound of

s ≤ n on sparsity in Lemma 2.1, we get that with high probability,

1

√
n




UTdt





∞
= O(n(logn + logT )).

Again, using that orthogonal matrices preserve ℓ2-norm,

∥dt ∥∞ ≤ ∥dt ∥2 = ∥UTdt ∥2

≤
√
n ·




UTdt





∞
= O(n2(logn + logT )). □

6 ONLINE GEOMETRIC DISCREPANCY:
POLYLOGARITHMIC BOUNDS

In this section, we will prove our results on geometric discrepancy

problems. For this, we will need a special basis of orthogonal func-

tions on the unit interval called the Haar system. We briefly review

its properties.

6.1 Preliminaries: Haar System
Let Ψ : R→ R denote the mother wavelet function

Ψ(x) =


1 if 0 ≤ x < 1

2

−1 if
1

2
≤ x < 1

0 otherwise.

The unnormalized Haar wavelet functions are defined as follows:

let Ψ0,0(x) = 1 for all x ∈ R , and for any j ∈ N∗ and 0 ≤ k < 2
j−1

define

Ψj,k (x) := Ψ(2j−1x − k).

We call j as the scale and k as the shift of the wavelet.
The Haar wavelet functions have nice orthogonality properties.

In particular, let x be drawn uniformly from the unit interval [0, 1].

Then, one can easily check that

Ex [Ψj,k (x)
2] = 2

−(j−1)
for j > 0,

Ex [Ψj,k (x)] = 0 for j > 0,

Ex [Ψj,k (x)Ψj′,k ′(x)] = 0 unless j = j ′ and k = k ′.

(9)

The Haar wavelet functions are not just orthogonal, but they

form an orthogonal basis (not orthonormal), called the Haar system,

for the class of functions on the unit interval with bounded L2-
norm. In particular, we have the following proposition where for

j ∈ Z≥0 we denote Hj =
⋃

0≤k<2j−1 {Ψj,k } and let H =
⋃
j≥0Hj .

Proposition 6.1 ([Wal04], Chapter 5). For any f : [0, 1] → R such
that Ex [f (x)2] < ∞, we have

f =
∑
h∈H

f̂ (h) · h(x)
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where f̂ (h) = Ex [f (x )h(x )]
Ex [h(x )2]

is the corresponding coefficient in the Haar
system basis for h ∈ H .

Indeed, since the Haar system forms an orthogonal basis, we

also have that

Ex [f (x)
2] =

∑
h∈H

f̂ (h)2 · Ex [h(x)
2].

A simple corollary of Proposition 6.1 is that H ⊗d
is an orthog-

onal basis for the linear space spanned by all functions over the

unit cube [0, 1]d that have a product structure and bounded L2-

norm. In particular, let h = (h1, . . . ,hd ) be an element of H ⊗d

which we will view as a function from [0, 1]d → R by defining

h(x) =
∏d

i=1 hi (x(i)) for x ∈ [0, 1]d . Note that distinct h and h′ are

orthogonal since for x drawn uniformly from [0, 1]d ,

Ex [h(x)h
′(x)] =

d∏
i=1
Ex (i)[hi (x(i))h

′
i (x(i))] = 0. (10)

Moreover, any product function can be expressed by functions in

H ⊗d
as given in the following proposition

7
.

Proposition 6.2. For any f : [0, 1]d → R such that f (x) =∏d
i=1 fi (x(i)) for some fi : [0, 1] → R satisfying Ex (i)[fi (x(i))2] <

∞, we have that
f =

∑
h∈H⊗d

f̂ (h)h,

where f̂ (h) = Ex [f (x )h(x )]
Ex [h(x )2]

.

Proof. Expressing each fi in the Haar system basis using Propo-

sition 6.1, we get the statement of the proposition by tensoring. □

Let H≤j =
⋃
j′≤j Hj′ , and define H<j ,H>j ,H≥j analogously.

Then, we have the following lemma about the Haar system decom-

position of indicator functions of dyadic intervals.

Proposition 6.3. Let 1Iℓ,m denote the indicator function for the
interval Iℓ,m =

[
m2

−ℓ , (m + 1)2−ℓ
)
. Then,∑

h∈H0

|̂1Iℓ,m (h)| = 2
−ℓ ,∑

h∈Hj

|̂1Iℓ,m (h)| = 2
−(ℓ+1−j) for any 1 ≤ j ≤ ℓ and

1̂Iℓ,m (h) = 0 for any h ∈ H>ℓ .

In particular, we have
∑
h∈H |̂1Iℓ,m (h)| =

∑
h∈H≤ℓ

|̂1Iℓ,m (h)| = 1.

See the full version [BJSS19] for a proof of Proposition 6.3.

We also get a similar proposition about dyadic boxes. In par-

ticular, let ℓ = (ℓ1, . . . , ℓd ) for non-negative integers ℓi ’s and

let m = (m1, . . . ,md ) for integers 0 ≤ mi < 2
ℓi
. Let H ⊗d

≤ℓ
=

H≤ℓ1 × · · · × H≤ℓd . Then, for the dyadic box

Iℓ,m = Iℓ1,m1
× · · · × Iℓd ,md ,

we have the following proposition. Below we write min{e, f} to
denote the vector whose ith coordinate is min{e(i), f(i)} for e, f ∈
Rd .

7
More generally, Proposition 6.2 holds for any L2-integrable function f ∈ L2([0, 1]d ),
as the linear span of product functions with domain [0, 1]d is dense in L2([0, 1]d ).

Proposition 6.4. Let 1Iℓ,m denote the indicator function for the
dyadic box Iℓ,m . Then,∑

h∈H⊗d
j

|̂1Iℓ,m (h)| = 2
−∥min{ℓ,ℓ+1−j } ∥1 for any j ≤ ℓ and

1̂Iℓ,m (h) = 0 for any h < H≤ℓ .

In particular, we have
∑

h∈H⊗d

|̂1Iℓ,m (h)| =
∑

h∈H⊗d
≤ℓ

|̂1Iℓ,m (h)| = 1.

The proof of the above proposition follows from Proposition 6.3

by tensoring.

6.2 Online Interval Discrepancy Problem
Now we prove Theorem 1.2 for the d-dimensional interval discrep-

ancy problem. Let x = (x1, . . . ,xT ) be a sequence of points in [0, 1]
d

and let ε ∈ {±1}T be a signing. For any interval I ⊆ [0, 1] and time

t ∈ [T ], recall that the discrepancy of interval I along coordinate

direction i at time t is denoted

discit (I , x, ε) :=
���ε11I (x1(i)) + · · · + εt 1I (xt (i))���.

We will just write discit (I ) when the input sequence and signing is

clear from the context.

6.2.1 Upper Bounds. To maintain the discrepancy of all intervals,

it will suffice to bound the discrepancy of every dyadic interval

Ij,k = [k2−j , (k+1)2−j ) of length at least 1/T along every coordinate

direction i . Let D = {Ij,k | 0 ≤ j ≤ logT , 0 ≤ k < 2
j }. Then, we

prove the following.

Lemma 6.5. Given any sequence x1, . . . ,xT sampled independently
and uniformly from [0, 1]d , there is an online algorithm that chooses
a signing such that w.h.p. for every time t ∈ [T ], we have

max

i ∈[d ]
discit (I ) = O(d log

2T ) for all I ∈ D .

Before proving Lemma 6.5, we first show why it implies the

upper bound in Theorem 1.2.

Proof of the upper bound in Theorem 1.2. Without loss of

generality, it suffices to consider half-open intervals. Every half-

open interval I ⊆ [0, 1] can be decomposed as a union of at most

2 logT disjoint dyadic intervals inD and two intervals I1 ⊆ I
logT ,k

and I2 ⊆ I
logT ,k ′ for some 0 ≤ k,k ′ < T . Note that the length of I1

and I2 is at most 2
− logT = 1/T . We can then write,

discit (I ) ≤ (2 logT ) ·max

I ∈D
discit (I ) + disc

i
t (I1) + disc

i
t (I2).

Applying the algorithm from Lemma 6.5, the discrepancy of

every dyadic interval can be bounded w.h.p. by O(d log2T ). The
last two terms can be bounded by N1 and N2 respectively where

N1 (resp. N2) is the number of points whose projections on any of

the i coordinates is in I1 (resp. I2).
The probability that a random point z drawn uniformly from

[0, 1]d has some coordinate z(i) for i ∈ [d] in I1 or I2 is at most

2d/T . It follows that E[N1 +N2] ≤ 2d , so by Chernoff bounds, with

probability at least 1 −T−4
, the number N1 + N2 ≤ 4d logT .

Overall, w.h.p. for any interval I , we have

max

i ∈[d ]
discit (I ) ≤ 2 logT · (d log2T ) + 4d logT = O(d log3T ). □
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Next, we prove the missing Lemma 6.5.

Proof of Lemma 6.5. We will consider the d-dimensional in-

terval discrepancy problem as a vector balancing problem in��[d] × H≤logT
��
dimensions, where H≤logT are the Haar wavelet

functions with scale parameter at most logT . Note that |H≤logT | =

T , so the update vector in the vector balancing version will be

Td-dimensional. Let us abbreviateH ′ = H≤logT .

At any time when the point xt ∈ [0, 1] arrives, then the (i,h)

coordinate of the update vector vt ∈ [−1, 1]d×H
′

is given by

vt (i,h) = h(xt (i)).

Note that all the coordinates (i,Ψ0,0) for i ∈ [d] will always have
the same value where Ψ0,0 is constant Haar wavelet. So, to apply

the online algorithm given by Lemma 2.1 we will only consider

the subspace spanned by the coordinates (i,h) where i ∈ [d] and
h , Ψ0,0 and the extra coordinate (1,Ψ0,0).

Let us check first that we satisfy the conditions Lemma 2.1. First,

note that the ∥vt ∥∞ ≤ 1 and the vector vt has at most d logT + 1
non-zero coordinates, since for any fixed scale 0 ≤ j ≤ logT and

any point z ∈ [0, 1], all but one of the values {h(z)}h∈Hj are zero.

The last condition to check is that the coordinates of the vector

vt are uncorrelated. This is a consequence of (9), since whenever
coordinates (i,h) and (i ′,h′) satisfy i , i ′ or h , h′, we have

Evt [vt (i,h) · vt (i
′,h′)] = Ext [h(xt (i)) · h

′(xt (i
′))] = 0.

To elaborate more, first note that we cannot have h = h′ = Ψ0,0
since we are working in the aforementioned subspace. Now, if i , i ′

then the coordinates xt (i) and xt (i) are sampled independently from

[0, 1], and Ez [h(z)] = 0 for h , Ψ0,0 when z is drawn uniformly

from [0, 1]. Otherwise, for i = i ′ but h , h′, it follows from the

orthogonality of the Haar system that Ez [h(z)h
′(z)] = 0.

Next, applying the online algorithm from Lemma 2.1, we select

signs ε1, . . . , εT such that we get an ℓ∞ bound on the vector dt =∑
l ≤t εlvl . In particular, with high probability we have

|dt (i,h)| =
���∑
l ≤t

εlh(xl (i))
��� = O(d log2T ) for any i ∈ [d],h ∈ H ′.

Note that the bound on |dt (i,Ψ0,0)| for i , 1 then follows because

|dt (i,Ψ0,0)| = |dt (1,Ψ0,0)|.
To finish the proof, we need to bound the discrepancy of every

dyadic interval in terms of ∥dt ∥∞. Note that for any dyadic interval

I ∈ D, its coefficients in the Haar system basis 1̂I (h) = 0 for

h ∈ H>logT using Proposition 6.3. Now, for any i ∈ [d] and dyadic

interval I ∈ D, we can write

discit (I ) =
���∑
l ≤t

εl 1I (xl (i))
��� = ���∑

l ≤t

εl
∑
h∈H′

1̂I (h)h(xl (i))
���

=

��� ∑
h∈H′

1̂I (h)
(∑
l ≤t

εlh(xl (i))
)��� = ��� ∑

h∈H′

1̂I (h)dt (i,h)
���

≤ ∥dt ∥∞ ·

( ∑
h∈H′

|̂1I (h)|
)
≤ ∥dt ∥∞ = O(d log2T ),

where the second last inequality follows again from Proposition 6.3.

□

6.2.2 Lower Bounds.

Proof of the lower bound in Theorem 1.2. Set A = T /d .
We will again consider thed-dimensional interval discrepancy prob-

lem as a vector balancing problem in

��[d] × H≤logA
��
dimensions

whereH≤logA are the Haar wavelet functions with scale parameter

at most logA. Note that |H≤logT | = A, so the update vector in the

vector balancing version will be T -dimensional. Let us abbreviate

H ′ = H≤logA.

At any time when the point xt ∈ [0, 1]d arrives, then the (i,h)
coordinate of the update vector vt is given by

vt (i,h) =

{
0 if h = Ψ0,0

h(xt (i)) otherwise.

Here we are essentially ignoring the coordinates (i,h) with h =
Ψ0,0. Since for any fixed scale 0 < j ≤ logA and any point z ∈ [0, 1],

all but one of the values {h(z)}h∈Hj are zero, the vector vt has

d logA non-zero coordinates all of which take value ±1. It follows

that the Euclidean norm of any update vector vt is
√
d logA.

Furthermore, from the orthogonality of the Haar system, it fol-

lows that the coordinates of the vector vt are uncorrelated:

Evt [vt (i,h)vt (i
′,h′)] = Ext [h(xt (i))h

′(xt (i
′))] = 0.

Then, applying Lemma 4.1, we get that with probability at least

3/4, there is a t ∈ [T ] and a coordinate (i,h) with h , Ψ0,0 such

that |dt (i,h)| = Ω(
√
d logA).

Let h = Ψj,k for some j,k where j > 0 (recall that coordinates

(i,h)where h = Ψ0,0 are always 0). Then, by definition h = 1I1 −1I2
where I1 and I2 are the first and second halves of the interval Ij−1,k .
In this case,

|dt (i,h)| =
���( ∑
s≤t

εt 1I1 (xs )
)
−

( ∑
s≤t

εt 1I2 (xs )
)���

≤ 2max

{
|disct (I1)|, |disct (I2)|

}
.

Therefore, substitutingA = T /d , there exists an interval I such that

discit (I ) = Ω

(√
d log

(
T
d

))
. □

6.3 Online Tusnády’s Problem
Given the above framework of working in the Haar basis, our

extension to thed-dimensional Tusńady’s problem naturally follows

by taking tensor products of the one dimensional wavelets. See the

full version [BJSS19] for full proofs.

7 APPLICATIONS TO ONLINE ENVY
MINIMIZATION

In this section we use our vector balancing and two-dimensional

interval discrepancy results to bound online envy. Let us first give

the formal definition of envy.

Recall that there are two players and T items where for item t ∈
{1, . . . ,T }, the valuation of the player i ∈ {1, 2} is vit ∈ [0, 1]. The

cardinal envy is the standard notion of envy studied in fair division,

which is the max over every player the difference between the

player’s valuation for the other player’s allocation and the player’s

valuation for their own allocation [LMMS04, Bud11]. Formally, if
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Player i is allocated set Si by an algorithm, the cardinal envy is

defined as

envyC (v1, v2, S1, S2) := max

{ ∑
t ∈S2

v1t−
∑
t ∈S1

v1t ,
∑
t ∈S1

v2t−
∑
t ∈S2

v2t
}
.

The notion of ordinal envy is defined ignoring the precise item

valuations, but only with respect to the relative ordering of the

items. Roughly, it is the worst possible cardinal envy for [0, 1]

valuations consistent with any given relative ordering. Thus for

valuations in [0, 1] the ordinal envy is always at least the cardinal

envy [JKS19]. For i ∈ {1, 2}, let πi denote the decreasing order with
respect to the valuationsvit . Denote π

t
i the first t items in the order

π . If Player i is allocated set Si , the ordinal envy is defined as

envyO (π1,π2, S1, S2) := max

t ≥0

{
|S2∩π

t
1
|−|S1∩π

t
1
| , |S1∩π

t
2
|−|S2∩π

t
2
|

}
.

Jiang et al. [JKS19] discuss three equivalent definitions of ordinal

envy.

Next, we prove Corollary 1.7, which is restated below.

Corollary 1.7. Suppose valuations of two players are drawn i.i.d.
from some distribution p over [0, 1] × [0, 1]. Then, for an arbitrary
distribution p (i.e., player valuations for the same item could be corre-
lated), the online cardinal envy isO(logT ). Moreover, if p is a product
distribution (i.e., player valuations for the same item are independent)
then the online ordinal envy is also O(log3T ).

Proof. When the player valuations are drawn independently in

[0, 1], the “moreover” part is immediate from the following lemma

of [JKS19] along with our Theorem 1.2 for 2-dimensional interval

discrepancy.

Lemma 7.1 (Lemma 26 in [JKS19]). For two players with indepen-
dent valuations, any upper bound for 2-dimensional interval discrep-
ancy problem also holds for 2-player online ordinal envy minimiza-
tion.

Next, we bound online cardinal envy under arbitrary distri-

butions. In the following lemma we reduce this problem to 2-

dimensional vector balancing.

Lemma 7.2. For two players taking values from an arbitrary dis-
tribution p over [0, 1] × [0, 1], any upper bound for 2-dimensional
vector balancing problem also holds for 2-player online cardinal envy
minimization.

Proof. For i ∈ {1, 2}, let uit denote the valuation of Player i for

t th item.We define the corresponding vectorvt = (u1t ,−u2t ). If our
online vector balancing algorithm assigns the next vectorvt a + sign,
we give the item to Player 2, and otherwise we give it to Player 1.

The crucial observation is that dt (1) and dt (2) capture precisely
the cardinal envy of Players 1 and 2, respectively. Thus, any bound

∥dt ∥∞ implies a bound on the maximum cardinal envy. □

The last lemma when combined with Theorem 1.4 finishes the

proof of Corollary 1.7. □

8 OPEN PROBLEMS AND DIRECTIONS
We close this paper by mentioning some interesting open prob-

lems that seem to require fundamental new techniques, and new

directions in online discrepancy that remain unexplored.

Improving the dependence on n for general distributions. Theorem
1.4 gives a bound ofO(n2 logT ) for online vector balancing problem
under inputs sampled from an arbitrary distribution. However, an

optimal dependence of O(n1/2) on n is achievable in the special

case where the distribution has independent coordinates [BS19],

and also in the offline setting with worst-case inputs [Ban12]. This

motivates the following question.

Question 1. Given an arbitrary distribution p supported over
[−1, 1]n , is there an online algorithm that maintains discrepancy
√
n · polylog(T ) on a sequence of T inputs sampled i.i.d. from p?

As the anti-concentration bound in Theorem 1.5 for uncorre-

lated variables is a n1/2 factor worse than that for independent

random variables, even getting a dependence of n · polylog(T ) is an
interesting first step.

Bounds in terms of sparsity. Several natural problems such as the

d-dimensional interval discrepancy and d-dimensional Tusnády’s

problem are best viewed as vector balancing problems where the

input vectors are sparse. Thismotivates the following online version

of the Beck-Fiala problem, where the online sequence x1, . . . ,xT
is chosen independently from some distribution p supported over

s-sparse n-dimensional vectors over [−1, 1]n . In the offline setting

with worst-case inputs (and where we care about the discrepancy

of every prefix), the methods of Banaszczyk [Ban12] give a bound

of (s logT )1/2.

Question 2. Given an arbitrary distribution p supported over s-
sparse vectors in [−1, 1]n , is there an online algorithm that maintains
discrepancy poly(s, logT , logn) on a sequence of T inputs sampled
i.i.d. from p?

Resolving the above question would imply polylogarithmic

bounds for Tusnády’s problem in d-dimensions (similar to that

in Theorem 1.3) in the much more general setting where the points

xT are sampled from an arbitrary distribution over points in [0, 1]d .

Currently, Theorems 1.2 and 1.3 only hold when the points xt are

sampled from a product distribution on [0, 1]d .

Prophet model. The last decade has seen several online problems

being studied in the prophet model where the online inputs are

sampled independently from known non-identical distributions (see,
e.g., [Luc17]). The model clearly generalizes the i.i.d. model and for

point mass distributions it captures the offline problem. This model

becomes useful for online problems where the adversarial arrival

guarantees are weak, which raises the following question.

Question 3. Given arbitrary distributions p1, . . . , pT supported
over vectors in [−1, 1]n , is there an online algorithm that maintains
discrepancy poly(n, logT , logn) on a sequence of T inputs where
vector vt is sampled independently from pt ?

The techniques in Theorem 1.4 do not work since the eigenbasis

may change with each arrival. It will be also interesting to study

this prophet model for distributions over s-sparse vectors.

Oblivious adversary model. A very interesting direction that is

strictly harder than the above stochastic settings is to understand
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online vector balancing when the adversary is oblivious or non-

adaptive, i.e., the adversary chooses the entire input sequence (with-

out any stochastic assumptions) beforehand and is not allowed to

change the inputs later based on the execution of the algorithm.

Recall that if the adversary is fully adaptive, then one cannot

hope to prove a bound better than Θ(T 1/2), but this might be possi-

ble for oblivious adversaries.

Question 4. Is there an online algorithm that maintains discrep-
ancy poly(n, logT ) on any sequence of T vectors in [−1, 1]n chosen
by an oblivious adversary?

One could also consider the same question in the Beck-Fiala

setting, and ask if better bounds are possible when there is sparsity.

Question 5. Is there an online algorithm that maintains discrep-
ancy poly(s, logT , logn) on any sequence of T vectors in [−1, 1]n

that are s-sparse and chosen by an oblivious adversary?

Resolving Questions 4 and 5 would also have implications for

both online geometric discrepancy and online envy minimization

problems in the oblivious adversary setting.
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