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ABSTRACT
We initiate a study of the following problem: Given a continuous

domain Ω along with its convex hull K , a point A ∈ K and a prior

measure µ on Ω, find the probability density over Ωwhose marginal

is A and that minimizes the KL-divergence to µ. This framework

gives rise to several extremal distributions that arise inmathematics,

quantum mechanics, statistics, and theoretical computer science.

Our technical contributions include a polynomial bound on the

norm of the optimizer of the dual problem that holds in a very

general setting and relies on a “balance” property of the measure µ
on Ω, and exact algorithms for evaluating the dual and its gradient

for several interesting settings of Ω and µ. Together, along with the

ellipsoid method, these results imply polynomial-time algorithms

to compute such KL-divergence minimizing distributions in several

cases. Applications of our results include: 1) an optimization char-

acterization of the Goemans-Williamson measure that is used to

round a positive semidefinite matrix to a vector, 2) the computability

of the entropic barrier for polytopes studied by Bubeck and Eldan,

and 3) a polynomial-time algorithm to compute the barycentric

quantum entropy of a density matrix that was proposed as an alter-

native to von Neumann entropy by Band and Park in the 1970s: this

corresponds to the case when Ω is the set of rank one projection

matrices and µ corresponds to the Haar measure on the unit sphere.

Our techniques generalize to the setting of rank k projections using

the Harish-Chandra-Itzykson-Zuber formula, and are applicable

even beyond, to adjoint orbits of compact Lie groups.

CCS CONCEPTS
• Theory of computation → Convex optimization; Quantum in-

formation theory; Semidefinite programming.
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1 INTRODUCTION
Entropy maximizing distributions. Let Ω be a subset of Rd and

let K = hull(Ω) denote the convex hull of Ω. Suppose one is given
an A ∈ K . A natural question arises: Is there a canonical way to
choose a probability measure supported on Ω that can be used to
express A as a convex combination of points on Ω? When Ω is a

discrete and finite set, this problem has been extensively studied

and a canonical probability distribution was proposed by Jaynes

[24, 25]: among all probability distributions that can be used to

expressA as a convex combination of points in Ω, pick the one that
maximizes the Shannon entropy. These distributions are referred

to as maximum entropy (max-entropy) distributions and arise in

machine learning, statistics, mathematics, and theoretical computer

science (TCS). In TCS, these distributions have foundmany uses due

to duality, connections to polynomials, and algorithms to compute

them [1, 2, 11, 13, 19, 34]; see [36].

In this paper we initiate a study of the computability when Ω is

a continuous (and often nonconvex) manifold. Examples of interest

include

V1 := {vv⊤ : v ∈ Rn },

P1 := {vv∗ : v ∈ Cn , ∥v ∥2 = 1},

the set of rank k Hermitian projection matrices

Pk := {Y : Y ∈ Cn×n ,Tr(Y ) = k,Y = Y ∗,Y 2 = Y }

(related to the Grassmanian), or a convex body (where K = Ω).
Unlike the discrete setting, in the continuous setting the notion

of a max-entropy distribution is not well-defined since a canonical

notion of entropy does not necessarily exist. We instead consider

relative entropy, Kullback-Leibler (KL) divergence, with respect to

a prior measure µ on Ω that corresponds to the density function

f (X ) ≡ 1 for all X ∈ Ω. For all of the manifolds mentioned above,

there is a canonical measure that has this property and is called

the uniform measure; see Section 2. This leads us to the following

infinite dimensional convex optimization problem which gives a

canonical way to write A as a convex combination of points in Ω:
Find a measure ν on Ω that is continuous with respect to µ and,

subject to the constraint that the expected point in K with respect

to ν is A, ν minimizes the KL divergence to µ . Note that, by choice,

ν is as close to the distribution µ as possible; hence we call it a

maximum entropy distribution.

The class of extremal entropy maximizing distributions that

arise in this manner have several properties that have led to their

appearance, implicitly or explicitly, in several different areas:

• the work of Klartag (inspired by a work of Gromov) on the

isotropic constant [15, 27],
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• the work of Khatri andMardia on theMatrix Bingham distribution

in statistics with applications to various scientific and engineering

problems [6, 21, 26],

• as shown here, the work of Goemans andWilliamson on rounding

semidefinite programs [14],

• the works of Güler, Bubeck and Eldan on barrier functions for

interior point methods [7, 17, 18],

• the works of Band, Park, and Slater that defined the barycentric

quantum entropy and proposed it as an alternative to the von

Neumann entropy in the 1970s [3, 30, 35].

Computability of entropy maximizing distributions. One of the
reasons why the entropy maximizing problem defined earlier is

interesting (and unifies the above problems) is duality: the dual

optimization problem roughly has the form:

inf

Y
⟨Y ,A⟩ + log

∫
X ∈Ω

e−⟨Y ,X ⟩dµ(X ),

where ⟨·, ·⟩ is an inner product and µ is the given measure. If strong

duality holds, it can be shown that the optimal distribution ν⋆ to

the entropy maximizing problem can be described by the optimizer

Y⋆
to the dual above: ν⋆(X ) ∝ e−⟨Y

⋆,X ⟩
for X ∈ Ω. As for com-

putability of ν⋆, Y⋆
lives in a small, convex, and finite dimensional

(same dimension asK) domain. Hence in principle, one could hope

to represent ν⋆ efficiently. However, bounding the running time of

a optimization method to find Y⋆
reduces to 1) a bounding some

norm of Y⋆
and, 2) coming up with efficient algorithms to compute∫

X ∈Ω
e−⟨Y ,X ⟩dµ(X ) for matrices Y with that norm. These are the

main technical problems studied in this paper.

1.1 Our Contributions
The main contributions of this paper are to initiate a study of the

computability of entropy maximizing distributions on continuous

domains, to present an ellipsoid method-based framework to com-

pute them, to derive polynomial time algorithms for computing

maximum entropy distributions for specific manifolds mentioned

earlier, and to present implications to some of the applications listed

above.

The continuous maximum entropy framework and duality. Our
general framework is presented Section 3. The focus is on the setting

when the manifold Ω and the base measure µ is fixed to either the

set of all rank onematrices over reals (V1) with themeasure induced

by Lebesgue measure on Rn , or the set of all rank k projections

over complexes (Pk ) for k ≥ 1 with the appropriate Haar measure.

The input consists of an element A (which is a matrix in the cases

of interest) and the goal is to compute a representation for ν⋆ that

is the KL-divergence minimizing distribution to µ with marginal

A. We start by writing down the dual of this optimization problem

(see Figure 1). We show (see the full version) that strong duality

holds under Slater’s condition – that there is a density function that

is strictly positive (and bounded) on Ω and has marginal A. This
is implied by the condition that A is in the relative interior of the

convex hull K of Ω, which is true quite generally. Strong duality

implies that the optimal measure ν⋆ is determined by the optimal

dual solution Y⋆
as ν⋆(X ) ∝ e−⟨Y

⋆,X ⟩
; see Theorem 4.1.

Norm of the optimal dual solution. However, to solve the dual

convex program one needs, at the bare minimum, that the norm of

Y⋆
is reasonably bounded. It is not difficult to see that as A tends

to the boundary of K , the optimal measure is concentrated on a

face ofK implying that the norm of Y⋆
must tend to infinity. Thus,

one needs some assumption on the “interiority” of A to ensure

polynomial time computability. The situation is exacerbated by

the fact that the Y⋆
appears in the exponent and, hence, to have

any hope of computability of the entropy maximizing distribution,

the bound on Y⋆
should be polynomial in the bit complexity of

A. Unlike the case when Ω is discrete (studied in [34]), the fact

that the base measure µ is continuous makes it harder. Our main

contribution towards the problem of bounding the norm of Y⋆

involves identifying a certain “balance” property of the measure

µ on the manifold Ω (Definition 4.1) and showing that, roughly,

∥Y⋆∥ ≤ poly(d, 1/η)whereη is the distance ofA from the boundary

of K ; see Theorem 4.2. We show that this balance property holds

for a wide class of manifolds and obtain as corollaries a bound of

poly(n, 1/η) for both Ω = Pk (Corollary 7.4) and when Ω is an

n-dimensional convex body (Corollary 4.15). This bounding box

result is quite general and expected to find further applications.

Computing the integral in the dual for matrix manifolds. A bound

on the norm of Y⋆
allows us to show that we can use the ellipsoid

method to solve the dual convex program, provided the measure

µ is balanced on Ω, and we can evaluate the dual and its gradient

at a specified Y of norm up to that of Y⋆
. The tasks of evaluating

the dual and its gradient essentially reduce to the computation of

the integral

∫
X ∈Ω

e−⟨Y ,X ⟩dµ(X ). In the case when Ω = V1 with µ
being the measure induced by the Lebesgue measure, we observe

that the dual optimization problem is finite only when Y ≻ 0, and

thus we need to evaluate the integral only for such aY . The integral
above then turns out to have a simple formula: roughly, log detY .

In other interesting cases, computing such an integral turns out

to be a nontrivial task. In the case when Ω = P1 and µ1 is the

uniform measure induced by the Haar measure on the complex

unit sphere, the entropy maximizing measure cannot be obtained

by solving the problem first for V1 and then “projecting” it on the

sphere; see Section 6.2. Further, the integral does not reduce to a

product of n integrals as in the Lebesgue case, and there is no easy

way around this. We need an algorithm to integrate the density

e−v
∗Yv

over the complex unit sphere where the only thing we know

about Y is that it is Hermitian. Neither the density is log-concave,

nor the support (unit sphere) is convex. Our main contribution

here is to give an exact algorithm to compute this integral whose

running time depends single exponentially on the bit complexity

of the input Y to it (Theorem 4.5). As remarked earlier, because Y
is being exponentiated, this is the best one can hope for and also

turns out to be sufficient to obtain polynomial time algorithms for

computing maximum entropy distributions on P1.

Interestingly, the algorithm to compute this integral and its proof

relies on an connection between the manifold P1 and the probabil-

ity simplex in n dimensions. Specifically, one can naturally push

forward the entropy maximizing measure from P1 to a log-linear

measure on the corresponding simplex. There are then algorithms

to sample from such a density function on the simplex to estimate

such an integral; however, to obtain an 1 + δ approximation to
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it, the running time of these methods depends polynomially on

1/δ instead log 1/δ . We give an exact algorithm to compute this

integral. Our method relies on Laplace transforms, is elementary,

and a significant effort is needed to deal with the case when Y has

repeated eigenvalues. Importantly, this viewpoint also leads us to

an exact algorithm for computing such an integral for Pk for k > 1

using the Harish-Chandra-Itzykson-Zuber formula [12, 20, 23, 37];

see Theorem 6.1.

Efficient algorithm via the ellipsoid method. Our general ellipsoid
method-based algorithm requires 1) a full dimensional embedding

of hull(Ω) in a d-dimensional real Hilbert space, 2) µ is a balanced

measure on Ω, 3) Ω is contained in a ball of radius r , 4) the point A
is in the η-interior of hull(Ω) and, 5) that we have an exact count-

ing/integrating oracle. It runs in time polynomial in d, 1/η, log r
and log 1/ε, to solve the dual problem to an additive ε ; see Theorem
4.4. Our bound on the norm of Y⋆

and exact algorithms to compute

the dual objective/gradient for the case of Pk imply a polynomial

time algorithm to compute the entropy maximizing measure in this

case whenA is in the polynomial interior of hull(Pk ); see Corollary

4.10.

1.2 Applications
SDP rounding. One approach to semi-definite programming

(SDP) based approximation algorithms, starting with the work of

Goemans-Williamson [14] for the maximum cut problem, is SDP

rounding. Here, typically,A is a positive semi-definite (PSD) matrix,

that is computed using a SDP relaxation to some non-convex prob-

lem, and one of the goals is to round A to a vector. This involves

choosing a distribution on the set V1 defined above, and typical

choices have been somewhat magical and lack an explanation. In

the Goemans-Williamson setting, A is an n ×n PSD matrix, and the

density ν on Ω they choose to express A as a convex combination

is as follows: pick a vector v ∈ Rn from the normal distribution

with covariance matrix A. We show that this distribution is the

maximum entropy distribution ν⋆ (corresponding toA) onV1 with

base measure induced by the Lebesgue measure on Rn , thus giving
an optimization characterization of this measure; see Corollary 4.14.

The proof relies on strong duality and a closed form expression for

the dual objective integral onV1; see Theorem 4.1.

Quantum entropy. In quantum mechanics, a density matrix ρ is

a trace one complex n × n PSD matrix and describes the statistical

state of a system. The extreme points in the set of density matrices

are the pure states or P1. von Neumann defined a notion of entropy

[38] of ρ that is computed by first writing ρ as a convex combination∑n
i=1

λiuiu
∗
i , where {ui }i ∈[n] is an orthonormal basis for Cn , and

then computing the negative Shannon entropy of the λi ’s. While

the von Neumann entropy is a mathematically elegant notion, it

was vigorously argued in the 1970s that it does not capture the

uncertainty in ρ [3, 30, 35]. In fact, von Neumann’s way to write ρ
as a convex combination of pure states can be viewed as “the most

terse”, or entropyminimizing one. In the same papers, an alternative

way to define entropy of a density matrix was suggested – as the

entropy of the entropy maximizing distribution with marginal ρ
– and referred to as the barycentric quantum entropy. Unlike the

von Neumann entropy, that has a simple formula (−Tr ρ log ρ)),

the barycentric entropy did not have an efficient algorithm that

could compute it. Our algorithm to compute entropy maximizing

distributions for P1 mentioned above directly implies a polynomial

time algorithm to compute the barycentric entropy of a density

matrix (that is sufficiently in the interior) along with the probability

density that achieves it; see Corollary 4.13.

Entropic barrier function. Bubeck and Eldan in [7] proved that

the entropic barrier of a convex body K ⊆ Rd is a (1 + o(1))n-self-
concordant barrier on K . Roughly speaking, this barrier function,

for a point in K is defined to be the optimal value of a dual maxi-

mum entropy optimization problem when Ω = K and the measure

is the Lebesgue measure on K . The computability of this barrier

function for a point K is not known in general. One obstacle is to

get a reasonable bound on the optimal solution. An almost direct

consequence of Theorem 4.2 implies such a bound for points that

are sufficiently in the interior of K ; see Corollary 4.15.

2 PRELIMINARIES
Notation. Let C,R,R+,N denote the complex, real, nonnegative

real, and natural numbers respectively. For k,n ∈ N, let Ck×n and

Rk×n denote the sets of k×n complex and real matrices respectively.

A matrix M ∈ Cn×n is said to be Hermitian if A = A∗
where ∗

denotes the conjugate transpose. A Hermitian matrix M is said

to be PD (positive definite) and PSD (positive semidefinite) if its

eigenvalues are positive and nonnegative respectively. For an n × n
matrixX , we define diag(X ) to be the length-n vector of the diagonal
entries ofX . If x is a vector, thenwe define diag(x) to be the diagonal
matrix with entries the entries of x . For any k,n ∈ N, we equip

the vector space Ck×n with the Frobenius inner product ⟨Y ,Z ⟩ :=

Tr(YZ ∗). We also denote ∥Y ∥ :=
√
⟨Y ,Y ⟩. Note that ⟨Y ,Z ⟩ ∈ R

whenever Y ,Z are Hermitian, so that the set of n × n Hermitian

matrices is a real Hilbert space of dimension n2
. Also ⟨Y ,Z ⟩ ≥ 0

whenever Y ,Z are PSD. We further let Bε (Y ) denote the open ε-ball
centered at Y in the space in which Y lives (e.g., the n×n Hermitian

matrices). Finally, we let hull(S) denote the convex hull of a set S
in some ambient vector space.

Manifolds. In general, we let Ω be any smooth manifold that is

embedded in a d-dimensional real Hilbert space V with inner prod-

uct ⟨·, ·⟩. Let L(X ) = B denote the affine space in which hull(Ω)
is full dimensional, i.e., every element X ∈ hull(Ω) satisfies the
equation L(X ) = B. The concrete manifolds we consider are collec-

tions of matrices with some structure. In particular, for fixed n ∈ N,
consider the following manifold within Cn×n . An n ×n rank-k PSD
projection is a PSD matrix with k eigenvalues equal to 1 and the

rest equal to 0.

Pk = Pk (n) := {n × n rank-k PSD projections}.

Note that Pk is also a manifold within the space of n ×n Hermitian

matrices.
1
Other manifolds we consider are the complex unit sphere

Sn
C

⊂ Cn (which is related to P1), the manifold of all rank one

matrices (not necessarily trace one):V1 := {vv⊤ : v ∈ Rn }, and a

convex body K ⊂ Rn .

1
Note that Pk is homeomorphic to a Grassmannian, i.e., the manifold of k -dimensional

subspaces within an n-dimensional space. The homeomorphism is explicitly given as

the map which sends a rank-k PSD projection to the k -dimensional subspace given

by its image.
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We would also like to consider the convex hull of a given man-

ifold Ω. To make sense of such a notion, we need to consider the

manifold as being embedded in some ambient vector space. This

ambient space often the space of n×n Hermitian matrices in our ex-

amples. In general, we refer to the elements of hull(Ω) asmarginals
or marginals matrices.

Group actions. It is useful to understand the symmetries of some

of the manifolds mentioned above in terms of groups that act on

them. Recall that an n × n unitary matrix is an invertible matrix U
for whichU −1 = U ∗

, and an n×n orthogonal matrix is an invertible

matrix O for which O−1 = O⊤
. The unitary and orthogonal groups

(U (n) and O(n)) act on the manifolds discussed above as follows:

• U (n) acts on column vectors in Sn
C
and on hull(Sn

C
) by left

multiplication.

• U (n) acts on Pk and on hull(Pk ) by conjugation.

• O(n) acts on V1 and on hull(V1) by conjugation.

Note that the actions of U (n) on Sn
C
and on P1 are compatible in

the sense that for x ∈ Sn
C
and U ∈ U (n), we have (Ux)(Ux)∗ =

U (xx∗)U ∗
where xx∗ ∈ P1.

Relative interior. The convex set hull(Ω) is not necessarily full

dimensional in the ambient Hilbert space. To define a notion of

interior for hull(Ω), we restrict to the minimal affine subspace in

which Ω lives (this is given explicitly byL(X ) = B discussed above).

More generally, we make the following definition.

Definition 2.1 (Relative interior). Fix a convex subset S in a
vector spaceV , and letVL,B be the minimal affine subspace in which
S lives. We say that Y ∈ V is in the η-interior of S (for η > 0) if

Bη (Y ) ∩VL,B ⊆ S .

We say that Y is in the interior of S if there exists η > 0 such that Y
is in the η-interior of S .

Here we usually consider S = Pk (n), and we will be interested

in the case where η ≥ 1

poly(n) .

Measures and densities. Often, the manifolds Ω we consider have

some geometric structure (e.g., it is a manifold with a group action),

and we want to consider measures which interact nicely with this

structure. To make sure this happens, we restrict to the class of

measures which are given by continuous density functions on Ω. To
make sense of this, we need a natural base measure µ on Ω which

corresponds to the density function f (X ) ≡ 1. (E.g., in the case of

Ω = Cn or Ω = Rn , the Lebesgue measure often plays this role.) In

particular, the support of µ should be equal to Ω.
In the case of Ω = Pk , there is a canonical measure which is ap-

propriately called the uniform measure: we define µk be the unique

unitarily invariant measure on Pk , whereU (n) acts by conjugation

(as discussed above). Hence, equivalently (and more formally), we

restrict to the class of measures on Pk which are absolutely contin-

uous with respect to µk . We also consider the standard Lebesgue

measure on Rn for convex bodies and its pushforward measure µ
through the mapv 7→ vv⊤ onV1. Note that S

n
C
also has a canonical

unitarily invariant measure, usually called the Haar measure. The

pushforward of this measure through the map v 7→ vv∗ yields the
unitarily invariant measure µ1 on P1.

Integration/Counting oracle. We are interested in computing the

following exponential integral for a given Y in our Hilbert space V .

Definition 2.2 (Exponential integrals). Fix n ∈ N and let µ
be a measure with support Ω, a manifold embedded in the real Hilbert
space V . We define the following function on an input Y ∈ V :

E(Y ) = Eµ (Y ) := log

∫
Ω
e−⟨Y ,X ⟩dµ(X ).

Whenever µ = µk and Ω = Pk , we use the following shorthand nota-
tion Ek (Y ).We sometimes also refer to these integrals as exponential
integrals.

A strong integration/counting oracle for Ω and µ outputs two quan-

tities, given an element Y from the ambient Hilbert space V of

Ω:

(1) Eµ (Y )
(2) the matrix ∇Eµ (Y ), defined so that the following holds for

any Z ∈ V :

⟨∇Eµ (Y ),Z ⟩ =
d

dt
Eµ (Y + tZ )

����
t=0

.

In the case of Ω = Pk , Y and Z are Hermitian. Further, since the

measure µk is unitarily invariant, we can assume that Y is diagonal

and expect the running time of the counting oracle should depend

polynomially on n and the number of bits needed to represent e−yi

for any i , where y1, . . . ,yn are the eigenvalues (diagonal elements)

of Y .
As we will show, in the special case when Ω = V1 and µ is the

pushforward of the Lebesgue measure, we can compute the integral

Eµ (Y ) exactly in time polynomial in the bit complexity of Y due to

a direct formula. This happens because the measure µ is a product

measure, which is not the case for µk .

3 THE MAXIMUM ENTROPY FRAMEWORK
In this section we present our maximum entropy convex program.

Fix a manifold Ω in a d-dimensional real Hilbert space with inner

product ⟨·, ·⟩, and let L(X ) = B denote the corresponding affine

space containing Ω. Let µ be the base measure on Ω and A in

K := hull(Ω). Our goal is to find a density function ν with marginal

A that minimizes the KL-divergence with respect to µ.
We use the shorthand Primµ (A) (or Primk (A) if µ = µk ) to refer

to this primal optimization program.Wemainly consider the case of

µ = µk and Ω = Pk or Ω = V1 with µ the pushforward of Lebesgue
measure. In these cases Y will comes from some subspace of the

n×n Hermitianmatrices. Drawing from the intuition that these base

measures are uniform over the manifold, and hence in some sense

maximize entropy, we say the KL-divergence minimizing measure

is entropy maximizing. However, we note that this framework is

also applicable to other base measures, in particular to the case

when Ω is a convex body in Rd and µ is the Lebesgue measure. The

fact that the entropy integral (without the minus sign) is convex as

a function of the density ν follows from the fact that this integral

is precisely the KL divergence between the probability distribution

corresponding to ν and the distribution µ. Convexity of the KL

divergence for probability distributions is then a well-known fact.

Efficiently solving this convex program directly is a priori impos-

sible as the support of ν is infinite. To find a succinct representation
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Primal Dual

sup

ν

[
−

∫
Ω
ν (X ) log (ν (X ))dµ(X )

]
subject to:

ν : Ω → R≥0, µ-measurable∫
Ω
Xν (X )dµ(X ) = A∫

Ω
ν (X )dµ(X ) = 1

inf

Y
FA(Y ) = inf

Y

[
⟨Y ,A⟩ + log

∫
Ω
e−⟨Y ,X ⟩dµ(X )

]
subject to:

L(Y ) = 0

Figure 1: Primal and dual maximum entropy convex programs for A in the interior of hull(Ω).

for the optimal ν⋆, we turn to the dual program (see Figure 1),

which gives us a nice representation of the max-entropy density

function ν⋆. We often use the shorthand Dualµ (A) (or Dualk (A) if
µ = µk ) to refer to this program.

In the case of Pk with uniform measure µk , the optimal solution

to Dualk (A) is given by a Hermitian matrix Y⋆
. By strong duality

(see Theorem 4.1), this in turn shows that the max-entropy density

function ν⋆ takes on a nice form:

ν⋆(X ) ∝ e−⟨Y
⋆,X ⟩ .

As a note, in the case of Ω = Pk this matrix Y⋆
is only unique up

to a shift by a multiple of the identity matrix. Issues arising from

non-uniqueness can be handled by restricting to the minimal affine

subspace in which hull(Pk ) lives, as referred to in the discussion

surrounding Definition 2.1. However, as A tends to the boundary

of hull(Ω), Y⋆
can be seen to tend to infinity as the support of the

measure ν⋆ tends to lower dimensions.

4 FORMAL STATEMENT OF OUR RESULTS
4.1 Mathematical and Computational Results
Our first result shows that strong duality holds.

Theorem 4.1 (Strong duality). Let Ω be a manifold that is
embedded in a d-dimensional real Hilbert space with an inner product
⟨·, ·⟩, and let µ be a measure supported on Ω. For anyA in the relative
interior of the convex hull of Ω, the optimal values of the primal and
dual objective functions coincide, and the corresponding max-entropy
distribution has density function of the form ν⋆(X ) ∝ e−⟨Y

⋆,X ⟩ for
some Y⋆.

The proof of this result uses standard techniques and thus is omitted

from this paper (see the full version). This result applied to Pk
and µk shows that optimizing Dualk (A) is in fact equivalent to

optimizing Primk (A), and therefore the max-entropy measure has

the exponential form described above.

With strong duality in hand, we focus on the computability of

the optimal matrix Y⋆
for the dual program. To do this we use a

version of the ellipsoid algorithm (see Theorem 8.1), for which we

need two things.

First, we need an upper bound on some norm of the dual optimal

solution. If Y⋆
is the optimal solution, then the number of itera-

tions of the ellipsoid algorithm depends on log ∥Y⋆∥. That said, it

may seem that a bound depending on e1/η
, where η is such that

Bη (A) ⊂ hull(Ω), is enough to achieve polynomial dependence on

1

η . However, this is not enough, since the integral appearing in

the dual is polynomially dependent on the number of bits needs to

represent e−yi , where the yi ’s are the entries or eigenvalues of a
given input Y . Hence, we actually need polynomial dependence on

1

η , which is achieved in our bounding box result below. Note that

this issue is not surprising, as it crops up in exactly the same way

in the discrete maximum entropy case (see [34]).

We give here a bounding box result which is more general than

we need for the rank-k projections case (Ω = Pk and µ = µk ). It
relies on a key “balance” property of the measures. This notion

extends important properties of the discrete uniform measure to

continuous measures on manifolds and is one of the key notions

we introduce.

Definition 4.1 (Balanced measure). A measure µ is said to be
balanced if for any δ > 0 and X ∈ Ω ⊆ Rd , we have that at least
exp(−poly(δ−1,d)) of the mass of µ is contained in the δ -ball about
X .

We see in Definition 7.2 how this notion can be used to give a more

refined notion of interior (beyond the η parameter discussed above).

Conceptually, it allows us to give an measure-theoretic relaxation

of the notion of a separating hyperplane.

We now state the main bounding box result. The precise bound

is given in Theorem 7.2.

Theorem 4.2 (Bounding box). Let µ be a measure supported
on a manifold Ω embedded in a d-dimensional real Hilbert space.
Suppose that µ is balanced, in the sense of Definition 4.1. Further, let
A be an element of the η-interior of the convex hull of Ω. Then there
is an optimal solution Y⋆ to the dual program such that: ∥Y⋆∥ ≤

poly(η−1,d).

Corollary 7.4 and Corollary 4.15 give bounds for rank-k projections

and convex bodies as corollaries.

Remark 4.3. Our bounding box result significantly generalizes
the discrete case (Theorem 2.7 in [34]). Uniform distribution in the
discrete case has atoms of uniformly strictly positive (at worst singly-
exponentially small) mass at all points, and this implies a bound on
optimal dual solutions. In the continuous case this is no longer true,
the notion of balance then fills the gap.

Second, at each step of the ellipsoid algorithm, we need to be able to

evaluate the dual objective function and its gradient at given input
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Y . The hardest part of such a computation comes in evaluating Eµ ,

the exponential integral portion of the objective function. We show

that if we have access to such an evaluation oracle, then under

very general conditions, we can compute the maximum entropy

distribution.

Theorem 4.4 (Ellipsoid method-based general algorithm).

Let µ be a balanced measure with support on a manifold Ω embedded
in a d-dimensional real Hilbert space. Let the affine space in which Ω
lies, L(X ) = B, be given as input (L,B). Assume that Ω is contained
in a ball of radius r . There exists an algorithm that, given A in the
η-interior of hull(Ω), any ε > 0, and a strong counting/integration
oracle for the exponential integral Eµ (Y ), returns Y ◦ such that

FA(Y
◦) ≤ FA(Y

⋆) + ε

where FA is the objective function for the dual program Dualµ (A),
and Y⋆ is an optimum of the dual program. The running time of the
algorithm is polynomial in d , η−1, log(ε−1), log(r ), and the number
of bits needed to represent A, L, and B.

Our next result says that in fact we have an efficient strong counting

oracle for Ek on the domain Pk with measure µk .

Theorem 4.5 (Counting oracle for Pk ). There is an algorithm
that, given n ∈ N, k ∈ [n], an n×n real diagonal matrix Y = diag(y),
and a δ > 0, returns numbers Ē, Ḡ such that

(1) |Ē − Ek (Y )| ≤ δ
(2) |Ḡ − ∇Ek (Y )| ≤ δ ,

where Ek is the exponential integral defined above (and in Definition
2.2). The running time of the algorithm is polynomial in n, log( 1

δ ),
and the number of bits needed to represent e−yi for any i ∈ [n].

The proof of this theorem for k = 1 is elementary but relies on the

interesting connection between the complex unit sphere and the

probability simplex. This connection also yields an exact sampling

algorithm.

Proposition 4.6 (Rank-one Sampling). Let Y = diag(y) be a
real diagonal n × n matrix. The following process produces samples
from the measure e−⟨Y ,X ⟩dµ1(X ) on P1.

(1) Samplev from the measure e−⟨y,v ⟩dµ∆1
(v) on the simplex ∆1

by iteratively sampling vi conditioned on v1, . . . ,vi−1.
(2) Sample z1, . . . , zn independently uniformly from the complex

unit circle.
(3) Construct X := (z

√
v)(z

√
v)∗ ∈ P1 where z

√
v is the column

vector (z1

√
v1, . . . , zn

√
vn ).

For k > 1, the proof of Theorem 4.5 above relies on the Harish-

Chandra-Itzykson-Zuber formula; see Theorem 6.1.

Remark 4.7. In the case ofV1 with the pushforward of Lebesgue
measure, there is an exact formula to compute the corresponding dual
optimum for positive definite marginals A: Y⋆ = 1

2
A−1; see Corollary

9.4. Positive-definiteness of the input Y is in fact required for the
dual objective to be finite, which is in stark contrast with the Pk
case where any Hermitian matrix is allowed. These points suggest a
conceptual divide between the Lebesgue measure case and the rank-k
projections case. We do not expect such a formula for Y⋆ in the case
of P1 and, indeed, the lack of one has been one of the obstacles for
efficient algorithms for quantum barycentric entropy and computing
the normalizing constant of the matrix Bingham distribution.

Remark 4.8. In this paper we primarily consider the best possible
setting where the running time of the counting oracle depends log-
arithmically on the accuracy. We refer to such counting oracles as
exact. We note that our framework does allow for counting oracles
where the dependence is polynomially in 1/δ .

Remark 4.9. Güler in [16] studies the characteristic function of a
convex cone. In our language, the characteristic function of a cone is
the exponential integral EK (y) with respect to the Lebesgue measure
on the dual cone K :

EK (y) = log

∫
K
e−⟨y,x ⟩dx .

For the case of homogeneous convex cones, Güler gives a nice way
to construct explicit formulas for the characteristic function. (A ho-
mogeneous cone is a cone K such that for all u,v ∈ K theres is a
linear isomorphism of K which maps u to v .) Given a fixed vector e
in the interior of K , any other vector y in the interior of K , and an
automorphism Ay of K mapping e to y, the dual objective for K can
be written up to additive constant as:

Fθ (y) = ⟨y,θ⟩ − log

∫
K
e−⟨y,x ⟩dx = ⟨y,θ⟩ −

1

2

log(det(AyA
⊤
y )).

Such an explicit formula gives a route to efficiently computing the dual
objective function in the homogeneous case. Orthants, Lorentz cones,
and semidefinite cones are all homogeneous, and in those specific cases
the above formula for Fθ (y) becomes completely explicit. See Sections
3 and 7 of [16] for more details.

The bounding box and counting oracle for µk and Pk then imply

that the ellipsoid method-based algorithm from Theorem 4.4 gives

a polynomial time algorithm for approximately computing Y⋆
, the

optimum of the program Dualk (A).

Corollary 4.10 (Ellipsoid method-based efficient algo-

rithm for Pk ). There exists an algorithm that, given n ∈ N, k ∈ [n],
a trace-k PD matrix A in the η-interior of the convex hull of the set of
n × n rank-k PSD projection matrices (i.e., hull(Pk )), and an ε > 0,
returns a Hermitian matrix Y ◦ such that

FA(Y
◦) ≤ FA(Y

⋆) + ε,

where FA is the dual objective function and Y⋆ is an optimal solution
to the dual program Dualk (A). The running time of the algorithm is
polynomial in n, 1

η , log( 1

ε ), and the number of bits needed to represent
A.

Remark 4.11. Notice that the dependence on 1

η means that we do
not achieve a polynomial time algorithm for A near the boundary
of hull(Pk ). This dependence comes from the fact that the bounding
box (Theorem 4.2) is dependent on 1

η . One may then naturally ask
whether this bounding box dependence can be improved, but it turns
out that it cannot in this case. Note that this differs from the discrete
case, where in [36] the authors are able to remove this 1

η dependence
under certain assumptions on the polytope.

Finally, the closeness of the distributions associated to Y ◦
and Y⋆

is then given in the following.

Proposition 4.12. Let Y⋆ be the optimal to the dual objective
function FA(Y ), and let Y ◦ be such that FA(Y ◦) ≤ FA(Y

⋆) + ε . If
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µ⋆(X ) ∝ e−⟨Y
⋆,X ⟩ and µ◦(X ) ∝ e−⟨Y

◦,X ⟩ are the probability distri-
butions associated to Y⋆ and Y ◦ respectively, then

∥µ⋆ − µ◦∥TV ≤
√

2ε .

4.2 Applications
Barycentric quantum entropy. In [35], Slater discusses the notion

of barycentric quantum entropy of a density matrix, and compares

it to that of von Neumann entropy. His investigation of this notion

was prompted by the work of Band and Park [3, 30], who critiqued

the use of von Neumann entropy as a good indicator of the uncer-

tainty of the given density matrix. In particular, they argue that a

better notion of entropy would relate to distributions on all possible

pure states, whereas the von Neumann entropy is derived from the

discrete distribution on the pure states corresponding to eigenvec-

tors of the matrix. In response to this, Slater defines a notion of

quantum entropy in terms of a max-entropy program on the set of

all pure states. He then goes on to show how one might determine

the quantum entropy in a few specific cases.

Definition 4.2 (Barycentric qantum entropy). Let ρ be an
n × n Hermitian density matrix (trace-1, positive semidefinite). Then
the barycentric quantum entropy of ρ is defined (in our notation) as

Hb (ρ) := inf

ν

∫
P1

ν (X ) log(ν (X ))dµ1(X )

subject to:

ν (X ) ≥ 0 ∀X ∈ P1∫
P1

Xν (X )dµ1(X ) = ρ∫
P1

ν (X )dµ1(X ) = 1

where P1 denotes the set of pure states and µ1 denotes the unitarily
invariant measure on P1.

Our results for computing max-entropy measures on P1 imme-

diately imply efficient computability of the barycentric quantum

entropy for density matrices that are polynomially in the interior.

Corollary 4.13 (Computability of barycentric qantum

entropy). There exists an algorithm that, given a Hermitian density
matrix ρ in the η-interior of the set of Hermitian density matrices
and an ε > 0, returns a number H̄ such that |H̄ − Hb (ρ)| < ε . The
running time of the algorithm is polynomial in n, 1

η , log( 1

ε ), and the
number of bits needed to represent ρ.

Goemans-Williamson SDP rounding. In their seminal paper,

Goemans-Williamson [14] gave a rounding scheme that gives a

way to round a given PD matrix A to a vector. Their method goes

by drawing a vector v from a particular distribution on Rn based

on the matrix A.

Definition 4.3 (Goemans-Williamson measure). Given n ∈ N
and a real positive definite n ×n matrix A, the Goemans-Williamson

measure µGW can be defined via a sampling process on Rn as follows.
(1) Sample д ∈ Rn from the standard multivariate Gaussian dis-

tribution.
(2) Computev := Vд whereV is a square root ofA, i.e.,A = VV⊤.
(3) v is a sample from µGW.

It is then straightforward to compute the marginals matrix asso-

ciated to this distribution as follows:

E[vv⊤] =

∫
Rn

(vv⊤)dµGW(v) = V

[∫
Rn

дд⊤dд

]
V⊤ = VV⊤ = A.

Thus, if we map Rn to V1 via v 7→ vv⊤ and also pushforward

the Lebesgue measure through this map, the above is precisely the

marginal constraint in our max-entropy framework. This observa-

tion implies that the pushforward of the measure µGW is a (strictly)

feasible solution to the max-entropy primal program on the domain

V1 with the pushforward of the Lebesgue measure. We show that

it is also the optimal solution to the max-entropy program.

Corollary 4.14 (Goemans-Williamson measure maximizes

entropy). For any positive definite matrixA, let µGW be the measure
corresponding to the Goemans-Williamson rounding scheme for A.
Then the pushforward of µGW to V1 is the max-entropy measure
with marginals A on V1 with respect to the pushforward of Lebesgue
measure.

Entropic barrier function. Bubeck and Eldan in [7] prove that

the entropic barrier of a convex body K ⊆ Rd is a (1 + o(1))n-self-
concordant barrier onK , improving a seminal result of Nesterov and

Nemirovski [29]. In fact this gives the first explicit construction of a

universal barrier for convex bodies with optimal self-concordance

parameter.

Definition 4.4 (Entropic barrier). Given a convex body K ⊆

Rd , define the entropic barrier for K as the real-valued function on
the interior of K defined as:

BK (v) := sup

y∈Rd

[
⟨y,v⟩ − log

∫
K
e ⟨y,x ⟩dx

]
.

Note that −BK (v) is precisely the maxium entropy dual program, up
to negation of y in the expression.

Open questions still remain about the efficient computability of

the entropic barrier. This is in particular true in the case where

K is a polytope, given as a membership oracle. Towards this, the

following is essentially a corollary to Theorem 4.2 (see Section 7.3

for a full proof), and can be used to efficiently compute the entropic

barrier at points which are in the η-interior of K .

Corollary 4.15 (Bounding box for convex bodies). Let µ be
the uniform distribution on a d-dimensional convex body Ω contained
in a ball of radius R. Given v in the η-interior of the convex hull of
Ω, there is an optimal solution y⋆ to the dual program such that
∥y⋆∥ ≤ poly(η−1,d, log(R)).

Details of how this implies computability of the entropic barrier

are omitted from this paper.

5 ORGANIZATION OF THE PAPER
Section 6 contains a detailed technical overview of the proofs of

the main results. Section 7 contains a complete proof of Theorem

4.2 (bounding box). Section 8 contains the proof of Corollary 4.10

(main ellipsoid-based algorithm). Section 9 contains the proof of

Corollary 4.14 (Goemans-Williamson measure maximizes entropy).

Section 10 disucusses the generalization of the maximum entropy

framework to Lie groups. The rest of the proofs are omitted here
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due to space restrcitions and can be found in the full version of the

paper.

6 TECHNICAL OVERVIEW
In this section, we give overviews of the proofs of themain results of

this paper and compare our techniques with those of previous work.

We start by describing the approach of [34] in the case of discrete

uniform measures µ with finite support Ω ⊆ {0, 1}d . In this case,

the marginals vector A of a measure ν on Ω is defined by setting

Ak to be the expected value of the kth entry of x when x is chosen

according to ν . Note that the marginals vector A is always an ele-

ment of hull(Ω). The problem the authors of [34] solve is described

as follows: given a finite subset Ω and a desired marginals vector A
in the η-interior of hull(Ω), compute the probability measure on Ω
with marginals A which maximizes entropy.

They consider the dual formulation

inf

y∈Rd
FA(y) := ⟨y,A⟩ + log

∑
x ∈Ω

e−⟨x,y ⟩ ,

which gives rise to measures on Ω of the following succinct form

for some real vector y⋆:

ν (x) ∝ e−⟨x,y
⋆ ⟩ .

By strong duality ν = ν⋆ is the entropy maximizing measure, and

they then use the ellipsoid method to approximate y⋆.
We generalize their approach to continuous measures µ on con-

tinuous domains Ω. For the most part, the ellipsoid algorithm can

be applied in the same way as in the discrete case once we have

the three main pieces in hand: (1) strong duality, (2) a bound on

Y⋆
, and (3) the strong counting oracle. Even in the continuous case,

one can show that strong duality holds via a certain Slater-type

condition. What makes the passage from the discrete case to the

continuous case much more interesting and nontrivial is proving

the remaining two main pieces.

6.1 Proof Overview: Bounding Box
The goal of this section is to explain the proofs of themain bounding

box result and its corollaries. We first describe the approach of the

discrete µ case discussed above. Note that for B ∈ hull(Ω), there
exists some X0 ∈ Ω such that

⟨−Y⋆,X0 − B⟩ ≥ 0,

since every closed half-space containing B contains an extreme

point X0 ∈ hull(Ω). If A is in the η-interior of hull(Ω), we can

choose B = A − η Y⋆

∥Y⋆ ∥
to get:

⟨−Y⋆,X0 −A⟩ ≥ η∥Y⋆∥.

Because µ is a discrete uniform measure, we have µ({X0}) = |Ω |−1
.

This implies a bound on Y⋆
as follows, via the dual objective func-

tion FA(Y ):

0 = FA(0) ≥ FA(Y
⋆)

= log

∫
e ⟨−Y

⋆,X−A⟩dµ(X )

≥ log

(
eη ∥Y

⋆ ∥ · |Ω |−1

)

=⇒ ∥Y⋆∥ ≤
log |Ω |

η
.

The lower bound on FA(Y
⋆) above follows from restricting the

integral (which is a sum in the discrete case) to the single point X0.

This demonstrates exactlywhy this argument fails in the continuous

case, because in that case we have µ({X }) = 0 for all X ∈ Ω.
This is the first difficulty we must overcome. We need a way

to restrict the dual objective integral to a region of Ω which has

positive mass, emulating the role of atoms in the discrete case.

We introduce a two-parameter interior for the measure µ. We say

that A is in the (η,δ )-interior of µ if every half-space intersecting

the η-ball about A contains at least δ mass of µ (Definition 7.2).

Instead of restricting the dual integral to a single point of Ω, we
restrict it to the appropriate δ -mass to obtain a bound on ∥Y⋆∥:

0 ≥ log

∫
e ⟨−Y

⋆,X−A⟩dµ(X ) ≥ log

(
eη ∥Y

⋆ ∥ · δ
)

=⇒ ∥Y⋆∥ ≤
1

η
log

1

δ
.

We explain this formally in Lemma 7.1.

This leads to the second difficulty. Our bounding box theorem

only refers to the η parameter, and so we need a way to handle or

control δ in terms of η and d .
Here is where the key balance property comes into play. We say

that a measure µ is balanced if for all ε > 0 and X ∈ Ω, the ε-ball
about X contains exp(−poly(ε−1,d)) of the mass of µ (Definition

4.1). This links the two interiority parameters: from any point of

the ε-interior of hull(Ω), there will be at least exp(−poly(ε−1,d))
mass in the direction of any X ∈ Ω on the boundary.

The crucial feature of the balance property is then how this

linking of the parameters allows one to transfer between them.

Specifically for a balanced measure, the η-interior of hull(Ω) is
contained in the (

η
2
, exp(−poly(

η
2
,d)))-interior of µ. To see this,

let A be in the η-interior of hull(Ω). Hence, any half space which

intersects the
η
2
-ball about A contains another

η
2
-ball in hull(Ω).

By translating this ball toward a point of Ω, we can assume that

the half-space contains an
η
2
-ball about a point of Ω. Since µ is

balanced, this implies A is in the (
η
2
, exp(−poly(

η
2
,d)))-interior of

µ.
At this point, the rest of the proof of Theorem 4.2 is straightfor-

ward. For balanced µ and A in the η-interior of hull(Ω), we actually
have that A is in the (

η
2
, exp(−poly(

η
2
,d)))-interior of µ. The two

parameter bound described above then implies ∥Y⋆∥ ≤ poly( 1

η ,d).

To obtain bounding boxes for µk on Pk , n×n rank k projections,

(Corollary 7.4) and to uniformmeasures on convex bodies (Corollary

4.15), we then demonstrate balance properties. In the case of µk ,
Pk ⊂ B√k (0) can be covered by at most exp(poly(logδ−1,n)) balls

of radius δ for any δ > 0, morally because:

vol(B√k )

vol(Bδ )
=

(π
√
k)n/n!

(πδ )n/n!

=

(√
k

δ

)n
= exp(poly(logδ−1,n)).

Therefore a δ -ball about some point of Pk must contain at least

exp(−poly(logδ−1,n)) of the mass of µk , and unitary invariance

then implies that this is actually true for all points of Pk .
For uniform measures µ on convex bodies K contained in a ball

of radius R, we prove the bounding box using similar arguments
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as follows. By the volume ratio computation above, every δ -ball

contained in K contains at least ( δR )
d
of the mass of µ. Therefore

everyA in the η-interior of hull(Ω) is also in the (
η
2
, (

η
2R )

d )-interior

of µ, since every half-space intersecting the
η
2
-ball aboutA contains

another
η
2
-ball in K . The bounding box then follows from the two-

parameter bound discussed above (Lemma 7.1).

6.2 Proof Overview: Counting Oracle for P1

andV1

The goal of this section is to explain why we can efficiently evaluate

and compute the gradient of

Eµ (Y ) = log

∫
Ω
e−⟨Y ,X ⟩dµ(X )

in the case of Ω = P1 and Ω = V1.

First consider the case of Ω = V1, where µ is the pushforward

of the Lebesgue measure through x 7→ xx⊤. In this case we have a

very explicit formula whenever Y is positive definite:

Eµ (Y ) = log

∫
e−⟨Y ,X ⟩dµ(X ) =

n

2

log(π ) −
1

2

log det(Y ).

Since µ is the pushforward of the Lebesgue measure through x 7→

xx⊤, this expression follows from the following classical Gaussian

integral formula:∫
V1

e−⟨Y ,X ⟩dµ(X ) =

∫
Rn

e−x
⊤Yxdx =

√
det(πY ). (1)

We show how leads to our optimality characterization of the

Goemans-Williamson measure at the end of this section.

The above Gaussian formula forV1 suggests a natural approach

for computing E1 on P1. Allowing complex Hermitian matrices,

note that P1 is the set of norm-1 elements ofV1. Hence, we “inte-

grate out” the norm of the elements ofV1, in an attempt to obtain a

similar formula forP1. We do this via a standard change of variables

(equalities are up to scalar):∫
V1

e−⟨Y ,X ⟩dµ(X ) =

∫
P1

∫ ∞

0

e−⟨Y ,r
2X ⟩r2n−1drdµ1(X )

=

∫
P1

⟨Y ,X ⟩−ndµ1(X ) , E1(Y ).

This shows that this approach fails: that is, integrating out the norm

does not provide us a formula for E1(Y ).
This demonstrates the first difficulty for constructing a counting

oracle for P1. Normalizing the max-entropy measure on V1 as

above yields a measure on P1 which is not a max-entropy measure.

Max-entropy measures on P1 anV1 are therefore fundamentally

different objects, and thus constructing the associated counting

oracles requires different techniques. In particular the well-known

Gaussian integral formulas cannot help us in the case of P1.

The remarkable fact is then that max-entropy measures on P1

can be translated into max-entropy measures on a very simple poly-

tope: the standard simplex inRn . We have the following equality for

real Y = diag(y), wherem is the Lebesgue measure on the simplex

∆1 := {p ∈ Rn+ :

∑n
i=1

pi = 1}:∫
P1

e−⟨Y ,X ⟩dµ1(X ) =

∫
∆1

e−⟨y,x ⟩dm(x).

Put another way, max-entropy measures on P1, a nonconvex mani-

fold, correspond tomax-entropymeasures on∆1, a convex polytope.

To see this, first note the following for anym1, . . . ,mn . The first

equality is the Bombieri inner product formula (see e.g. Lemma

3.2 of [31]), and the second inequality is a basic induction after a

change of variables:∫
P1

Xm1

11
· · ·Xmn

nn dµ1(X ) =
m1! · · ·mn !(n − 1)!

(m1 + · · · +mn + n − 1)!

=

∫
∆1

xm1

1
· · · xmn

n dm(x).

The exponential equality then follows from limiting, since P1 and

∆1 are compact and since e−⟨Y ,X ⟩
and e−⟨y,x ⟩ are limits of poly-

nomials.

This argument also implies the more general fact: thatm is the

pushforward of µ1 through the map ϕ : X 7→ diag(X ):∫
P1

f (ϕ(X ))dµ1(X ) =

∫
∆1

f (x)dm(x).

This transfer to the simplex now leads to an explicit computation

for E1(Y ) when Y = diag(y). (Considering diagonal Y is actually

without loss of generality.) By making a change of variables, the

simplex integral is an iterated convolution:

1

(n − 1)!

∫
P1

e−⟨Y ,X ⟩dµ1(X )

=

∫
1

0

∫
1−x1

0

· · ·

∫
1−x1−···−xn−2

0

e−⟨y,x ⟩dx

= (e−y1t ∗ · · · ∗ e−yn t )
��
t=1
.

Applying the Laplace transform L converts this convolution into a

partial fraction decomposition problem for distinct values of yi :

(e−y1t ∗ · · · ∗ e−yn t )
��
t=1
= L−1

[
1∏

i (s + yi )

]
(1)

= L−1

[∑
i

ci
s + yi

]
(1)

=
∑
i
cie

−yi .

Computing the values of ci via a standard partial fractions formula

gives:

1

(n − 1)!

∫
P1

e−⟨Y ,X ⟩dµ1(X ) =

n∑
i=1

e−yi∏
j,i (yj − yi )

=
det(M(−y))∏
i<j (yj − yi )

.

HereM(−y) is a Vandermonde-like matrix which arises when form-

ing the common denominator of the last expression, defined as

follows.

Definition 6.1 (Matrix for dual integral, k = 1). Given
y1, . . . ,yn ∈ R, let λ1 < · · · < λk denote the distinct values of yi
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with multiplicitiesm1, . . . ,mk . We define an n × n matrixM(y) as:

1 0 · · · 0 1 0 · · ·

λ1 1 · · · 0 λ2 1 · · ·

λ2

1

(
2

1

)
λ1 · · · 0 λ2

2

(
2

1

)
λ2 · · ·

...
...

. . .
...

...
... · · ·

λn−2

1

(n−2

1

)
λn−3

1
· · ·

( n−2

m1−1

)
λn−m1−1

1
λn−2

2

(n−2

1

)
λn−3

2
· · ·

eλ1

0!

eλ1

1!
· · · eλ1

(m1−1)!
eλ2

0!

eλ2

1!
· · ·


.

This brings us to the second difficulty for constructing a counting

oracle for P1. When the values of yi are not distinct, then the de-

nominator vanishes and this formula cannot be used. Even though

E1 is continuous, this could still be a major problem: if for exam-

ple the gradient of E1(Y ) becomes large as yi approaches yj , then
computing E1(Y ) could become computationally infeasible.

To handle this difficulty, we take limits by successively applying

L’Hopital’s rule. One iteration for y1 = y2 goes as follows:

lim

y2→y1

det(M(−y))∏
i<j (yj − yi )

=
∂y2

det(M(−y))

∂y2

∏
i<j (yi − yj )

����
y2=y1

=
det(M(−y))∏

2<i (yi − y1)
2
∏

2<i<j (yi − yj )
.

The key observation here is the fact that the numerator is still

a determinant, due to the fact that only one column of M(−y)
depends on yi for all i . Applying L’Hopital’s rule as many times as

is necessary leads to the following, where λi represent the distinct
values of y with multiplicitiesmi :

exp(E1(Y )) =

∫
P1

e−⟨Y ,X ⟩dµ1(X ) = (n − 1)!
det(M(−y))∏

i<j (λi − λj )mimj
.

Note that the definition ofM(y) (Definition 6.1 above) already han-

dles the non-distinctness of the eigenvalues. A similar expression

for the gradient is achieved using the same techniques, and so we

state it here without further detail:

(∇E1(Y ))l = −
∑
i,p

mi
λp − λi

−
det(Mp (−y))

det(M(−y))
.

HereMp (y) is obtained by applying the operator

∂λp
mp

to the right-

most column ofM(y) that depends on λp .
Since the entries ofM(−y) andMp (−y) have bit complexity poly-

nomial in n and the bit complexity of e−yi , their determinants have

the same bit complexity. Therefore these formulas, for E1(Y ) and
its gradient, lead to an efficient counting oracle for P1.

Proof overview: sampling for P1. We now discuss how to sample

from max-entropy distributions on P1. Our main algorithm (Theo-

rem 4.4) gives an efficient oracle for approximating the max-entropy

density function:

ν (X ) ∝ e−⟨Y
⋆,X ⟩ .

The main problem is that it is not at all clear how to use such a

density function to sample from a manifold.

We avoid this difficulty by transferring the problem of sampling

to the simplex ∆1 for Y⋆ = diag(y⋆), using the following fact

discussed in the previous section:

1

(n − 1)!

∫
P1

e−⟨Y
⋆,X ⟩dµ1(X )

=

∫
1

0

∫
1−x1

0

· · ·

∫
1−x1−···−xn−2

0

e−⟨y
⋆,x ⟩dx .

The sampling process for P1 then occurs in two parts.

First, we sample from the max-entropy distribution on the sim-

plex, one coordinate at a time. We use the right-hand side of the

above expression to compute the cumulative density function (CDF)

for each coordinate, conditioned on the previously sampled coor-

dinates. Formulas and computations for these conditioned CDFs

are very similar to that of the counting oracle, and hence we omit

them here.

Once we have a sample x on the simplex, we need to convert

it into a sample on P1 by considering its inverse image under the

map ϕ : X 7→ diag(X ). The difficulty that now arises is the fact

that there are many elements of P1 which map to the same simplex

element under ϕ.
Fortunately, there is a principled way to select from these possi-

bilities. The fiber ϕ−1(x) is an orbit of the action of diagonal unitary

matrices on P1 by conjugation. Since Y⋆
is diagonal, this implies

themax-entropymeasure ν (X ) is uniformwhen restricted toϕ−1(x).
Given x , we then sample X from ϕ−1(x) by picking an arbitrary

X0 ∈ ϕ−1(x) and conjugating by a uniformly random diagonal

unitary matrix.

Hence, to sample X from P1 we (1) sample x from the simplex,

and then (2) sample X uniformly from ϕ−1(x). This samples X from

the correct measure due to the disintegration theorem (see [9]),

which says the following for any f :∫
P1

f (X )dµ1(X ) =

∫
∆1

∫
ϕ−1(x )

f (X )dµϕ−1(x )(X )dm(x).

That is, the measure µ1 can be split into measures on ∆1 and on the

fibers ϕ−1(x).
Therefore, the above sampling process efficiently samples the

max-entropy measure on P1 with density ν (X ).

6.3 Proof Overview: Extending the Counting
Oracle for P1 to Pk

For the case of Pk and µk , we want to generalize the formulas of the

k = 1 case. To do this, we make use of the famous Harish-Chandra-

Itzykson-Zuber formula for integrals over the Haar measure of the

unitary groupU (n).

Theorem 6.1 (HCIZ formula). For n × n Hermitian matrices Y
and B with distinct eigenvalues y1 < · · · < yn and β1 < · · · < βn
respectively, we have the following where µ is the Haar measure on
the unitary groupU (n):∫

U (n)
e ⟨Y ,U BU ∗ ⟩dµ(U ) =

©­«
n−1∏
p=1

p!

ª®¬
det([eyi βj ]1≤i, j≤n )∏
i<j (yj − yi )(βj − βi )

.

For B = diag(1, . . . , 1, 0, . . . , 0) with k 1s and n − k 0s, notice that

Pk = {UBU ∗
: U ∈ U (n)}. This leads to the following:

exp(Ek (Y )) =

∫
Pk

e−⟨Y ,X ⟩dµk (X ) =

∫
U (n)

e−⟨Y ,U BU ∗ ⟩dU .
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To handle the issue of the denominator vanishing, and to compute

the gradient, one can apply all the same techniques which were

required for the k = 1 case. These formulas end up having the right

bit complexity, and so they immediately imply an efficient strong

counting oracle for Pk .

Unlike in the case of k = 1, the problem of sampling in the

case of k > 1 is more difficult as the image of Pk under the map

ϕ : X 7→ diag(X ) is much more complicated. Thus we leave as

an open problem the question of sampling from the associated

maximum entropy distributions in the case of Pk for k > 1.

7 BOUNDING BOX
In this section, we prove the general bounding box result (Theorem

4.2). With this, we then specialize to the cases of rank-k projections

and convex bodies.

7.1 General Bounding Box
In what follows we will discuss “interiors” of a probability distribu-

tion µ given by two parameters, (η,δ ). The η parameter will control

how far we are from the boundary, and the δ parameter will control

how well-distributed µ is on its support. At the end of the day, we

will prove that for nice situations one only needs to consider the η
parameter (as in the bounding box result of [34]).

We now define the two-parameter interior. In what follows, we

will letVL be the vector subspace given byL(X ) = 0, whereL(X ) =

B is the maximal set of linearly independent equality constraints

for Ω. More informally,VL is the vector space corresponding to the

minimal affine space in which K = hull(Ω) lives (i.e., translate the
affine space so that 0 ∈ VL ). The fact that L(X ) = B is a maximal

linearly independent set means that the optimal solution to the

dual program is unique when restricted to VL .

Definition 7.1. We define the (0,δ )-interior of µ to be the set of
all A ∈ K such that for all Y ∈ VL we have:

µ({X ∈ Ω | ⟨X −A,Y ⟩ ≥ 0}) > δ .

Morally, this says that every closed half-space containingA contains

more than δ of the mass of µ. Note that this is not always an open

set (which is perhaps a bit odd for something called the “interior”,

but this will be our convention).

Definition 7.2 (Two-parameter interior). We define the
(η,δ )-interior of µ to be the set of all A ∈ K such that the ball
of radius η about A is contained in the (0,δ )-interior of µ. Note that
this is not necessarily an open set.

The next lemma is then precisely how to combine the two pa-

rameters to get a bounding box for the optimal solution to the dual

program.

Lemma 7.1 (Two-parameter bounding box). Given A ∈ K , let
Y⋆ ∈ VL be the optimal solution to the dual program. Recall the dual
objective:

inf

Y
FA(Y ) = inf

Y
log

∫
Ω
e−⟨Y ,X−A⟩dµ(X ).

If A is in the (η,δ )-interior of µ, then ∥Y⋆∥ ≤ 1

η log

(
1

δ

)
.

Proof. By definition, we have that A − η · Y⋆

∥Y⋆ ∥
is in the (0,δ )-

interior of K . Therefore:

δ ≤ µ({X ∈ Ω | ⟨X − (A − η · Y⋆/∥Y⋆∥),−Y⋆⟩ ≥ 0})

= µ({X ∈ Ω | ⟨X −A,−Y⋆⟩ ≥ η · ∥Y⋆∥}).

This gives the bound:

log

∫
e ⟨−Y

⋆,X−A⟩dµ(X ) ≥ log

(
δ · eη · ∥Y

⋆ ∥
)
= log(δ ) + η · ∥Y⋆∥.

On the other hand, plugging in Y = 0 gives an upper bound on the

optimal value of the above dual program:

0 ≥ log

∫
e ⟨−Y

⋆,X−A⟩dµ(X ) ≥ log(δ ) + η · ∥Y⋆∥.

Rearranging this gives the result.

This gives us a good way of bounding solutions corresponding

to interior points ofK . In general however, trying to get a bound on

the δ parameter of the interior is much more difficult than that of

the η parameter. To deal with this we define a property of µ which

allows us to only have to consider the η parameter.

Definition 7.3 (δ -balanced measure). We say that µ is δ -
balanced if for any X ∈ Ω, we have that at least exp(−poly(δ−1,d))
of the mass of µ is contained in the δ -ball about X (where d is
the dimension of K). If f is the polynomial in the exponent (i.e.,
exp(−f (δ−1,d))), then we say that µ is δ -balanced with bound f .

We now prove the main bounding box theorem for such balanced

measures. We then use this to obtain a bounding box for rank-k
projections and for convex bodies in the following sections.

Theorem 7.2 (Bounding box for balanced measures). Sup-
pose µ is η

2
-balanced with bound f . If A is in the (η, 0)-interior of

µ and Y⋆ ∈ VL is the optimal solution to the corresponding dual
program, then ∥Y⋆∥ ≤ 2η−1 · f (2η−1,d) = poly(η−1,d).

Proof. We first show that the (
η
2
, 0)-interior of µ is contained

in the (0, exp(−f ( 2

η ,d)))-interior of µ. To see this, let A0 be some

element of the (
η
2
, 0)-interior of µ. Then any closed half-space con-

taining A0 also contains an
η
2
-ball about some X ∈ Ω. That is, for

every Y ∈ VL there exists X such that:

Bη/2
(X ) ⊆ {Z ∈ Ω | ⟨Z −A0,Y ⟩ ≥ 0}.

Since µ is
η
2
-balanced, we have that exp(−f ( 2

η ,d)) of the mass of µ

is contained in the
η
2
-ball about X . This implies:

exp(−f (2/η,d)) ≤ µ(Bη/2
(X )) ≤ µ({Z ∈ Ω | ⟨Z −A0,Y ⟩ ≥ 0}).

That is, A0 is in the (0, exp(−f ( 2

η ,d)))-interior of µ.

Now for A in the (η, 0)-interior of µ, we have that the
η
2
-ball

about A is contained in the (
η
2
, 0)-interior of µ. Therefore A is in

the (
η
2
, exp(−f ( 2

η ,d)))-interior of µ. By Lemma 7.1, this implies

∥Y⋆∥ ≤ 2η−1 · f (2η−1,d).

Remark 7.3. Note that Theorem 7.2 is immediately applicable to
uniform discrete measures on (singly) exponentially sized sets S . In
particular, such a measure is automatically balanced with constant
bound f = log |S |.
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7.2 Rank-k Projections
We now prove bounding box result for Pk , by showing that µk is

balanced and applying the previous theorem. Note that in this case

L(X ) = B reduces to Tr(X ) = k , and so VL is the set of traceless

Hermitian matrices in this case.

Corollary 7.4 (Bounding box for Pk ). Let µk be the uniform
distribution on Pk . Then given A in the (η, 0)-interior of µk , the
optimal traceless solution Y⋆ of the corresponding dual program is

such that ∥Y⋆∥ ≤ 2n2

η log

(
8n

√
k

η

)
.

Proof. We prove that µk is balanced and then apply the previous

proposition. The number of balls of size δ required to cover the unit

ball in Rn
2

(with Euclidean/Frobenius norm) is at most (2n/δ )n
2

.

Since the set of projections of rank k is contained in the sphere

of radius

√
k , we have that it requires at most (2n

√
k/δ )n

2

δ -balls
to cover all such projections. With this, there exists some δ -ball

(call it Bδ ) in this cover which contains at least (2n
√
k/δ )−n

2

of the

mass of µk . Pick some X ∈ Pk ∩ Bδ , and let B
2δ (X ) be the ball of

radius 2δ which is centered at X . Thus, in fact B
2δ (X ) contains at

least (2n
√
k/δ )−n

2

of the mass of µk . By unitary invariance of µk ,
we have that the ball of radius 2δ about any point of Pk contains

at least (2n
√
k/δ )−n

2

of the mass of µk . That is, µk is δ -balanced

with bound f (δ−1,n) = n2
log(4n

√
k · δ−1) for all δ > 0. Applying

the previous proposition then gives the result.

7.3 Convex Bodies
We now prove bounding box result for convex bodies. Instead of

applying the previous theorem directly, we make a simpler compu-

tation in the same spirit.

Proof of Corollary 4.15. Note that v in the η-interior of µ is

automatically in the

(
η
2
,
(
η

4R

)d )
-interior of µ, since:

µ(Bη/4
) ≥

vol(Bη/4
)

vol(BR )
=

( η

4R

)d
.

By Lemma 7.1, this implies ∥y⋆∥ ≤ 2d
η log( 4R

η ).

8 COMPUTING MAXIMUM ENTROPY
MEASURES

In this section we describe the entire algorithm for computing the

optimum Y⋆
for the dual program Dualµ (A), which is essentially

an application of the ellipsoid algorithm. First though, we discuss

how the linear equality constraints L(X ) = B come into play here.

We want to restrict our search space to the vector spaceVL defined

as the set of all X such that L(X ) = 0. The main reason for this is,

since the constraints given by L(X ) = B pick out an affine space

in which K is full dimensional, restricting the search space to VL
causes the optimum Y⋆

to be unique. Further, the bounding box

results above apply specifically to this particular Y⋆
.

Since we are given L effectively and explicitly, we assume for

the ellipsoid algorithm that we can project the gradient (given by

the strong counting oracle) onto VL . That said, we will from now

on assume VL to be the domain in which we are optimizing.

8.1 The Ellipsoid Framework
Using a standard argument via Hölder’s inequality, we have that

the dual objective function is convex:

FA(Y ) := ⟨Y ,A⟩ + Eµ (Y ) = ⟨Y ,A⟩ + log

(∫
Ω
e−⟨Y ,X ⟩dµ(X )

)
.

With this, the main optimization tool we use to approximate the the

dual optimum Y⋆
is the ellipsoid algorithm. Recall the following

from [34] Theorem 2.13, which was essentially taken from [5].

Theorem 8.1 (Ellipsoid algorithm). Given any β > 0 and
R > 0, there is an algorithm which, given a strong first-order oracle
for FA, returns a Y ◦ ∈ VL such that:

FA(Y
◦) ≤ inf

Y ∈VL, ∥Y ∥∞≤R
FA(Y )

+ β

(
sup

Y ∈VL, ∥Y ∥∞≤R
FA(Y ) − inf

Y ∈VL, ∥Y ∥∞≤R
FA(Y )

)
.

The number of calls to the strong first-order oracle for FA is bounded
by a polynomial in d , logR, and log(1/β). Here, d is the dimension of
the ambient Hilbert space in which Ω lies.

We now prove the main theorem (Theorem 4.4) regarding the exis-

tence of an algorithm for approximating the optimum to the dual

objective.

Proof of Theorem 4.4. To apply the ellipsoid algorithm, we

need to choose the two parameters, β and R. Since µ is balanced

with some polynomial bound f , we choose for R the bounding box

given for balanced measures in Theorem 4.2:

R := 2η−1 · f (2η−1,d).

So, the set {Y ∈ VL : ∥Y ∥ ≤ R} ⊂ {Y ∈ VL : ∥Y ∥∞ ≤ R}
contains the optimal Y⋆

for the dual program. Next, we need to

choose β . Note that for ∥Y ∥∞ ≤ R we have:

|FA(Y )| ≤ |⟨Y ,A⟩| +

����log

∫
e−⟨Y ,X ⟩dµ(X )

����
≤ r ∥Y ∥∞ + r ∥Y ∥∞

≤ 2r
√
d ∥Y ∥ ≤ 2rR

√
d .

Therefore, choosing β := ε
4rR

√
d
implies:

β =
ε

4rR
√
d

≤
ε

supY ∈VL, ∥Y ∥∞≤R FA(Y ) − infY ∈VL, ∥Y ∥∞≤R FA(Y )
.

The ellipsoid algorithm then guarantees a Y ◦
such that:

FA(Y
◦) ≤ inf

Y ∈VL, ∥Y ∥∞≤R
FA(Y ) + ε = FA(Y

⋆) + ε .

The number of calls to the strong counting oracle is polynomial

in d , log(R) = log(2η−1 · f (2η−1)) and log(1/β) = log(4rR
√
dε−1).

Given the bounding box, each oracle call (now including computing

⟨Y ,A⟩) can be implemented in time polynomial in d , η−1
, and the

number of bits needed to representA. This completes the proof.
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8.2 Rank-k Projections
Next we apply the above result to the case of Ω = Pk and µ = µk ,
i.e., the case of rank-k projections. To do so we make a few tweaks

to the proof of the theorem for the general algorithm given in the

previous section. In particular, even though our domain Pk lies in

the space of Hermitian matrices, our strong counting oracle for Ek
only applies to real diagonal matrices Y . That said, we now prove

the result for rank-k projections (Corollary 4.10) and discuss such

issues in the proof.

Proof of Corollary 4.10. The result essentially follows from

the general case, with a few details that need to be dealt with. First,

the maximal linear equalities for Pk boils down to something very

simple within the space of Hermitian matrices. It is simply given

by Tr(X ) = k . Thus, our search space VL then becomes the set of

traceless Hermitian matrices.

Next, by unitary invariance of µk we can assumeA is diagonal by

unitary conjugation. Once we obtain an approximate optimum Y ◦

for the diagonalized A, we can obtain an approximate optimum for

the original A via conjugation by this unitary. Next, by the Schur-

Horn theorem [22, 33] we can further assume that Y⋆
is diagonal.

That is, we can assume A is real diagonal and restrict the domain

of FA(Y ) to real diagonal matrices Y .
Once we make this simplifying assumption, we have access to

a strong counting/integration oracle for Ek (Y ) by Theorem 4.5.

The proof for the general case then goes through (using this strong

counting oracle and the bounding box result for rank-k projections),

giving the desired result.

9 THE GOEMANS-WILLIAMSON MEASURE
In this section, we demonstrate how the measure associated to the

Goemans-Williamson SDP rounding scheme can be interpreted as a

max-entropy measure. We abuse notation in this section by letting

µGW refer to the pushforward measure on V1. Omitted proofs are

simple and appear in the full version of the paper.

We describe the Goemans-Williamson SDP rounding scheme

formally as follows.

Definition 9.1 (Goemans-Williamson rounding scheme).

Given an n × n real symmetric positive definite matrix A, let V be
a real n × n matrix such that VV⊤ = A. The Goemans-Williamson
rounding scheme proceeds as follows:

(1) Sample a random standard Gaussian vector д from Rn .
(2) Return the rank-1 PSD matrix (Vд)(Vд)⊤.

The measure associated to this sampling process we refer to as the
Goemans-Williamson measure and denote it µGW. This measure is
supported on the rank-1 real symmetric PSD matrices, which is the
set of extreme points of the real symmetric PSD cone.

Now letm be the Lebesgue measure on Rn , and let µ be the measure

on the real symmetric PSD cone which is the pushforward ofm
through the map Φ : x 7→ xx⊤. With this we can also give an

explicit description of the Goemans-Williamson measure.

Proposition 9.1 (Goemans-Williamson density function).

The Goemans-Williamson measure on the set of rank-1 real symmetric
PSD matrices is given by

dµGW(X ) ∝ e−⟨
1

2
A−1,X ⟩dµ(X ),

where µ is the pushforward of Lebesgue measure through x 7→ xx⊤.

Proof. Let A = VV⊤
as in the definition of µGW. Since a stan-

dard Gaussian д is distributed according to e−
1

2
∥д ∥2

dm(д), we can
apply the change of variables formula to determine how x := Vд is

distributed. We have:

x ∼ e−
1

2
∥V −1x ∥2

·det(V −1)dm(x) = e−⟨
1

2
A−1,xx⊤ ⟩ ·

√
det(A−1)dm(x).

Considering the pushforward of this measure through x 7→ xx⊤

gives the desired result.

Note that strong duality then immediately implies µGW is a max-

entropy measure with respect to µ, since its density function is of

the correct form. To demonstrate this more concretely, we prove this

explicitly below via an explicit formula Eµ (Y ). First, the following
observation tells us that it is sufficient to restrict Eµ (Y ) to positive

definite Y .

Lemma 9.2. If Y is not PD, then
∫
V1

e−⟨Y ,X ⟩dµ(X ) = +∞.

We now give an explicit formula for Eµ (Y ) on positive definite Y .

Proposition 9.3 (Lebesgue evaluation formula). We have
the following explicit expression for Eµ (Y ) for n × n real symmetric
positive definite Y :

Eµ (Y ) := log

∫
V1

e−⟨Y ,X ⟩dµ(X ) =
n

2

log(π ) −
1

2

log det(Y ).

This then leads to the main result of this section.

Corollary 9.4 (Max-entropy, SDP rounding). Given an n × n
real symmetric positive definite marginals matrix A, the Goemans-
Williamson measure µGW is the max-entropy measure with respect
to µ, the pushforward through x 7→ xx⊤ of the Lebesgue measure on
Rn . That is, µGW is the optimal measure for Primµ (A).

Proof. Using Proposition 9.3, a standard computation gives:

∇Eµ (Y ) = −
1

2

∇ log det(Y ) = −
1

2

Y−1.

This implies the following regarding the gradient of the dual pro-

gram objective Dualµ (A) for positive definite A:

0 = ∇FA(Y ) = ∇(⟨Y ,A⟩ + Eµ (Y )) = A −
1

2

Y−1 ⇐⇒ Y =
1

2

A−1.

That is, Y⋆ = 1

2
A−1

is the optimum for the dual program. By strong

duality for µ and the density function for µGW given in Proposition

9.1 above, this implies the result.

10 GENERALIZATION OF THE MAXIMUM
ENTROPY FRAMEWORK TO LIE GROUPS

Recent work (e.g., [8, 10]) has demonstrated interesting connections

between Lie theory and TCS, and the max-entropy framework fits

into this context as well. In what follows we will briefly discuss the

case of Ω = Pk and µ = µk , as well as how this can be generalized.

However, amore detailed investigation of the computational aspects

of the max-entropy framework in this context is outside the scope

of this paper.

We first describe the case of Ω = Pk and µ = µk in a more

general way. The unitary group U (n) acts on the real vector space

of n × n Hermitian matrices by conjugation. This group action
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partitions the vector space into orbits, with X and Y being in the

same orbit if and only if they have the eigenvalues. Given any

Hermitian matrix F , we denote the orbit of F by O(F ).
Consider now the matrix Pk := diag(1, . . . , 1, 0, . . . , 0) where k

denotes the number of 1s that appear in the matrix. Then the orbit

O(Pk ) is precisely the set of rank-k projections. That is,O(Pk ) = Pk ,

and so the unitarily invariant measure µk on Pk induces such

a measure on O(Pk ). In fact such a unitarily invariant measure

µF exists for any orbit O(F ) allowing us to extend our maximum

entropy framework to such orbits ofU (n).
This can be generalized beyond the groupU (n), to the general

setting of a Lie group G and its corresponding Lie algebra g upon

which G naturally acts. The primal and dual programs for this

generalized setting are the same as in the general case, with one

exception. The element F ∈ g is now an input, and any algorithm for

approximating an optimum for DualµF (A) will necessarily depend

on the complexity of F . That said, strong duality holds in this

case whenever A is in the interior of K = hull(O(F )) ⊂ g, and

so the bounding box and the strong counting oracle are the two

main results needed to obtain the polynomial-time ellipsoid-based

algorithm described in this paper. As an aside, in this case K =

hull(O(F )) is called an orbitope (e.g., see [4, 32]).
Thus, the following optimization problem is a natural general-

ization of the (dual) maximum entropy problem considered in this

paper. TheG-invariant inner product used in the exponent here can

be derived from the so-called Killing form of g when G is compact

(e.g., see [28], Corollary 4.26).

inf

Y ∈g

[
⟨Y ,A⟩ + log

∫
O(F )

e−⟨Y ,X ⟩dµF (X )

]
Computability of this problem will be a subject of future work.
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