
A Scaling-Invariant Algorithm for Linear Programming Whose
Running Time Depends Only on the Constraint Matrix∗

Daniel Dadush

Centrum Wiskunde & Informatica

The Netherlands

Sophie Huiberts

Centrum Wiskunde & Informatica

The Netherlands

Bento Natura

London School of Economics and Political Science

United Kingdom

László A. Végh

London School of Economics and Political Science

United Kingdom

ABSTRACT
Following the breakthrough work of Tardos (Oper. Res. ’86) in the

bit-complexity model, Vavasis and Ye (Math. Prog. ’96) gave the

first exact algorithm for linear programming in the real model of

computation with running time depending only on the constraint

matrix. For solving a linear program (LP) max c⊤x , Ax = b, x ≥
0, A ∈ Rm×n , Vavasis and Ye developed a primal-dual interior point

method using a ‘layered least squares’ (LLS) step, and showed that

O(n3.5
log(χ̄A + n)) iterations suffice to solve (LP) exactly, where

χ̄A is a condition measure controlling the size of solutions to linear

systems related to A.
Monteiro and Tsuchiya (SIAM J. Optim. ’03), noting that the

central path is invariant under rescalings of the columns of A and

c , asked whether there exists an LP algorithm depending instead

on the measure χ̄∗A, defined as the minimum χ̄AD value achievable

by a column rescaling AD of A, and gave strong evidence that this

should be the case. We resolve this open question affirmatively.

Our first main contribution is an O(m2n2 + n3) time algorithm

which works on the linear matroid ofA to compute a nearly optimal

diagonal rescaling D satisfying χ̄AD ≤ n(χ̄∗)3. This algorithm also

allows us to approximate the value of χ̄A up to a factor n(χ̄∗)2.
This result is in (surprising) contrast to that of Tunçel (Math. Prog.

’99), who showed NP-hardness for approximating χ̄A to within

2
poly(rank(A))

. The key insight for our algorithm is to work with

ratios дi/дj of circuits of A—i.e., minimal linear dependencies Aд =
0—which allow us to approximate the value of χ̄∗A by a maximum

geometric mean cycle computation in what we call the ‘circuit ratio

digraph’ of A.
While this resolves Monteiro and Tsuchiya’s question by appro-

priate preprocessing, it falls short of providing either a truly scaling

invariant algorithm or an improvement upon the base LLS analysis.

In this vein, as our second main contribution we develop a scaling

invariant LLS algorithm, which uses and dynamically maintains

∗
Supported by the ERC Starting Grants ScaleOpt–757481 and QIP–805241.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’20, June 22–26, 2020, Chicago, IL, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00

https://doi.org/10.1145/3357713.3384326

improving estimates of the circuit ratio digraph, together with a re-

fined potential function based analysis for LLS algorithms in general.

With this analysis, we derive an improvedO(n2.5
logn log(χ̄∗A +n))

iteration bound for optimally solving (LP) using our algorithm. The

same argument also yields a factor n/logn improvement on the

iteration complexity bound of the original Vavasis-Ye algorithm.

CCS CONCEPTS
• Theory of computation→ Linear programming.

KEYWORDS
Linear programming, interior point methods, condition number,

chi bar, circuits, linear matroids

ACM Reference Format:
Daniel Dadush, Sophie Huiberts, Bento Natura, and László A. Végh. 2020.

A Scaling-Invariant Algorithm for Linear Programming Whose Running

Time Depends Only on the Constraint Matrix. In Proceedings of the 52nd

Annual ACM SIGACT Symposium on Theory of Computing (STOC ’20), June

22–26, 2020, Chicago, IL, USA. ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3357713.3384326

1 INTRODUCTION
The linear programming (LP) problem in primal-dual form is to

solve

min c⊤x

Ax = b

x ≥ 0,

max y⊤b

A⊤y + s = c

s ≥ 0,

(LP)

where A ∈ Rm×n , rank(A) = m ≤ n, b ∈ Rm , c ∈ Rn are given in

the input, and x , s ∈ Rn , y ∈ Rm are the variables. We consider the

program in x to be the primal problem and the program in y, s to
be the dual problem.

Khachiyan [18] used the ellipsoid method to give the first polyno-

mial time LP algorithm in the bit-complexity model, that is, polyno-

mial in the bit description length of A,b, c . Following Khachiyan’s

work, the now forty year old open question is whether there exists

a strongly polynomial time algorithm for LP. The task is to solve

LP using poly(n,m) basic arithmetic operations. Furthermore, the

algorithm must be in PSPACE, that is, the numbers occurring in

the computations must remain polynomially bounded in the input

size. Known strongly polynomially solvable LP problems classes

include: feasibility for two variable per inequality systems [26],

761

https://doi.org/10.1145/3357713.3384326
https://doi.org/10.1145/3357713.3384326
https://doi.org/10.1145/3357713.3384326

STOC ’20, June 22–26, 2020, Chicago, IL, USA Daniel Dadush, Sophie Huiberts, Bento Natura, and László A. Végh

the minimum-cost circulation problem [41], the maximum gen-

eralized flow problem [33, 50], and discounted Markov decision

problems [52, 53].

For more general LP classes, for which strongly polynomial

algorithms are not known, the principal line of attack has been to

reduce the numerical complexity of LP algorithms. More precisely,

the goal has been to develop algorithmswhose number of arithmetic

operations depend on natural condition measures of the base LP; at a

high level, these condition measures attempt to finely measure the

“intrinsic complexity” of the LP. An important line of work in this

area has been to parametrize LPs by the “niceness” of their solutions

(e.g. the depth of the most interior point), where relevant examples

include the Goffin measure [11] for conic systems and Renegar’s

distance to ill-posedness for general LPs [35, 36], and bounded ratios

between the nonzero entries in basic feasible solutions [4, 19].

Parametrizing by the Constraint Matrix. A second line of research,

and the main focus of this work, makes no assumptions on the

“niceness" of solutions and instead focuses on the complexity of

the constraint matrix A. The first breakthrough in this area was

given by Tardos [42], who showed that if A has integer entries

and all square submatrices of A have determinant at most ∆ in

absolute value, then (LP) can be solved in time poly(n,m, log∆).
This is achieved by finding the exact solutions to n2

rounded LPs

derived from the original LP, with the right hand side vector and

cost function being integers of absolute value bounded in terms

of n and ∆. From n such rounded problem instances, one can infer,

via proximity results, that a constraint xi = 0 must be valid for

every optimal solution. The process continues by induction until

the optimal primal face is identified.

Path-Following Methods and the Vavasis-Ye Algorithm. In a sem-

inal work, Vavasis and Ye [49] introduced a new type of interior-

point method that optimally solves (LP) withinO(n3.5
log(χ̄A +n))

iterations, where the condition number χ̄A controls the size of

solutions to certain linear systems related to the kernel of A (see

Section 2 for the formal definition).

Before detailing the Vavasis-Ye (henceforth VY) algorithm, we

recall the basics of path following interior-point methods. If both

the primal and dual problems in (LP) are strictly feasible, the central

path for (LP) is the curve ((x(µ),y(µ), s(µ)) : µ > 0) defined by

x(µ)is(µ)i = µ, ∀i ∈ [n]
Ax(µ) = b, x(µ) > 0,

A⊤y(µ) + s(µ) = c, s(µ) > 0,

(CP)

which converges to complementary optimal primal and dual solu-

tions (x∗,y∗, s∗) as µ → 0, recalling that the optimality gap at time

µ is exactly x(µ)⊤s(µ) = nµ. We thus refer to µ as the normalized

dualized gap. Methods that “follow the path” generate iterates that

stay in a certain neighborhood around it while trying to achieve

rapid multiplicative progress w.r.t. to µ, where given (x ,y, s) close
to the path, we define the effective µ as µ(x ,y, s) =

∑n
i=1

xisi/n.
In general, the direction of movement at each iteration is com-

puted by solving a carefully chosen linear system. Given a target

parameter µ ′ and starting point close to the path at parameter µ,
standard path following methods [12] can compute a point at pa-

rameter below µ ′ in at most O(
√
n log(µ/µ ′)) iterations, and hence

the quantity log(µ/µ ′) can be usefully interpreted as the length of

the corresponding segment of the central path.

Crossover Events and Layered Least Squares Steps. At a very high

level, Vavasis and Ye show that the central path can be decom-

posed into at most

(n
2

)
short but curved segments, possibly joined

by long (apriori unbounded) but very straight segments. At the

end of each curved segment, they show that a new ordering rela-

tion xi (µ) > x j (µ)—called a ‘crossover event’—is implicitly learned,

where this relation did not hold at the start of the segment, but will

hold at every point from the end of the segment onwards. These(n
2

)
relations give a combinatorial way to measure progress along

the central path. In contrast to Tardos’s algorithm, where the main

progress is setting variables to zero explicitly, the variables partici-

pating in crossover events cannot be identified, only their existence

is shown.

At a technical level, the VY algorithm is a variant of the Mizuno-

Todd-Ye [29] predictor-corrector method (MTY P-C). In predictor-

corrector methods, corrector steps bring an iterate closer to the

path, i.e., improve centrality, and predictor steps “shoot down” the

path, i.e., reduce µ without losing too much centrality. VY’s main

algorithmic innovation was the introduction of a new predictor step,

called the ‘layered least squares’ (LLS) step, which crucially allowed

them to cross each aforementioned “straight” segment of the central

path in a single step, recalling that these straight segments may be

arbitrarily long. To traverse the short and curved segments of the

path, the standard predictor step, known as affine scaling (AS), in

fact suffices.

To compute the LLS direction, the variables are decomposed into

‘layers’ J1 ∪ J2 ∪ . . . ∪ Jp = [n]. The goal of such a decomposition

is to eventually learn a refinement of the optimal partition of the

variables B∗ ∪ N ∗ = [n], where B∗ := {i ∈ [n] : x∗i > 0} and

N ∗ := {i ∈ [n] : s∗i > 0} for the limit optimal solution (x∗,y∗, s∗).
The primal affine scaling direction can be equivalently described

by solving a weighted least squares problem in Ker(A), with re-

spect to a weighting defined according to the current iterate. The

primal LLS direction is obtained by solving a series of weighted

least squares problems, starting with focusing only on the final

layer Jp . This solution is gradually extended to the higher layers

(which refers to layers with lower indices). The dual directions

have analogous interpretations, with the solutions on the layers

obtained in the opposite direction, starting with J1. If we use the
two-level layering J1 = B∗, J2 = N ∗, and are sufficiently close to

the limit (x∗,y∗, s∗) of the central path, then the LLS step reaches

an exact optimal solution in a single step. We note that standard

AS steps generically never find an exact optimal solution, and thus

some form of “LLS rounding” is always necessary to achieve finite

termination.

Of course, guessing B∗ and N ∗ correctly is just as hard as solving
(LP). Still, if we work with a “good” layering, these will reveal new

information about the “optimal order” of the variables, where B∗ is
placed on higher layers thanN ∗. The crossover events correspond to
swapping two wrongly ordered variables into the correct ordering.

Namely, a variable i ∈ B∗ and j ∈ N ∗ are currently ordered on the

same layer, or j is in a higher layer than i . After the crossover event,
i will always be placed on a higher layer than j.

762

A Scaling-Invariant Algorithm for Linear Programming Whose Running Time Depends Only on the Constraint Matrix STOC ’20, June 22–26, 2020, Chicago, IL, USA

Computing Good Layerings and the χ̄A Condition Measure. Given

the above discussion, the obvious question is how to come up with

“good” layerings? The philosophy behind LLS can be stated as saying

that if modifying a set of variables xI barely affects the variables

in x[n]\I (recalling that movement is constrained to ∆x ∈ Ker(A)),
then one should optimize over xI without regard to the effect on

x[n]\I ; hence xI should be placed on lower layers.

VY’s strategy for computing such layerings was to directly use

the size of the coordinates of the current iterate x (where (x ,y, s) is
a point near the central path). In particular, assuming x1 ≥ x2 ≥

. . . ≥ xn , the layering J1 ∪ J2 ∪ . . . ∪ Jp = [n] corresponds to
consecutive intervals constructed in decreasing order of xi values.
The break between Ji and Ji+1 occurs if the gap xr /xr+1 > д, where
r is the rightmost element of Ji and д > 0 is a threshold parameter.

Thus, the expectation is that if xi > дx j , then a small multiplicative

change to x j , subject to moving in Ker(A), should induce a small

multiplicative change to xi . By proximity to the central path, the

dual ordering is reversed as mentioned above.

The threshold д for which this was justified in VY was a func-

tion of the χ̄A condition measure. We now provide a convenient

definition, which immediately yields this justification (see Propo-

sition 2.3). LettingW = Ker(A) and πI (W) = {xI : x ∈ W }, we
define χ̄A := χ̄W as the minimum numberM ≥ 1 such that for any

∅ , I ⊆ [n] and z ∈ πI (W), there exists y ∈ W with yI = z and

∥y∥ ≤ M ∥z∥. Thus, a change of ε in variables in I can be lifted to a

change of at most χ̄Aε in variables in [n] \ I . Crucially, χ̄ is a “self-

dual” quantity. That is, χ̄W = χ̄W ⊥ , whereW ⊥ = range(A⊤) is the
movement subspace for the dual problem, justifying the reversed

layering for the dual (see Sections 2 for more details).

The Question of Scale Invariance and χ̄∗A. While the VY layering

procedure is powerful, its properties are somewhat mismatched

with those of the central path. In particular, variable ordering infor-

mation has no intrinsic meaning on the central path, as the path itself

is scaling invariant. Namely the central path point (x(µ),y(µ), s(µ))
w.r.t. the problem instance (A,b, c) is in bijective correspondence

with the central path point (D−1x(µ),Dy(µ),Ds(µ))) w.r.t. the prob-
lem instance (AD,Dc,b) for any positive diagonal matrix D. The
standard path following algorithms are also scaling invariant in

this sense.

This lead Monteiro and Tsuchiya [31] to ask whether a scaling

invariant LLS algorithm exists. They noted that any such algorithm

would then depend on the potentially much smaller parameter

χ̄∗A := inf

D
χ̄AD , (1)

where the infimum is taken over the set of n × n diagonal matrices.

Thus, Monteiro and Tsuchiya’s question can be rephrased as to

whether there exists an exact LP algorithm with running time

poly(n,m, log χ̄∗A).
Substantial progress on this question was made in the followup

works [21, 32]. The paper [32] showed that the number of iterations

of the MTY predictor-corrector algorithm [29] can get from µ0 > 0

to η > 0 on the central path inO(n3.5
log χ̄∗+min{n2

log log(µ0/η),
log(µ0/η)}) iterations. This is attained by showing that the stan-

dard AS steps are reasonably close to the LLS steps. This prox-

imity can be used to show that the AS steps can traverse the

curved parts of the central path in the same iteration complex-

ity bound as the VY algorithm. Moreover, on the “straight” parts of

the path, the rate of progress amplifies geometrically, thus attaining

a log log convergence on these parts. Subsequently, [21] developed

an affine invariant trust region step, which traverses the full path

inO(n3.5
log(χ̄∗A +n)) iterations. However, each iteration is weakly

polynomial in b and c . The question of developing an LP algorithm

with complexity bound poly(n,m, log χ̄∗A) thus remained open.

A related open problem to the above is whether it is possible to

compute a near-optimal rescaling D for program (1)? This would

give an alternate pathway to the desired LP algorithm by simply

preprocessing the matrix A. The related question of approximating

χ̄A was already studied by Tunçel [45], who showed NP-hardness

for approximating χ̄A to within a 2
poly(rank(A))

factor. Taken at face

value, this may seem to suggest that approximating the rescaling

D should be hard.

A further open question is whether Vavasis and Ye’s base cross-

over analysis can be improved. Ye in [?] showed that the iteration

complexity can be reduced to O(n2.5
log(χ̄A + n)) for feasibility

problems and further to O(n1.5
log(χ̄A + n)) for homogeneous sys-

tems, though the O(n3.5
log(χ̄A + n)) bound for optimization has

remained unimproved since [49].

Our Contributions. In this work, we resolve all of the above ques-

tions in the affirmative. We detail our contributions below.

1. Finding an Approximately Optimal Rescaling. As our first contri-

bution, we give an O(m2n2 + n3) time algorithm which works on

the linear matroid of A to compute a diagonal rescaling matrix D
which achieves χ̄AD ≤ n(χ̄∗A)

3
, given anym × n matrix A. Further-

more, this same algorithm allows us to approximate χ̄A to within a

factor n(χ̄∗A)
2
. The algorithm bypasses Tunçel’s hardness result by

allowing the approximation factor to depend on A itself, namely

on χ̄∗A. This gives a simple first answer to Monteiro and Tsuchiya’s

question: by applying the Vavasis-Ye algorithm directly on the pre-

processed A matrix, we may solve any LP with constraint matrix A
using O(n3.5(log χ̄∗A + n)) iterations. Note that the approximation

factor n(χ̄∗A)
2
increases the runtime only by a constant factor.

To achieve this result, we work directly with the circuits of A,
where a circuit C ⊆ [n] is C = supp(д) for a minimal linear de-

pendency Aд = 0. With each circuit, we can associate a vector

дC ∈ Ker(A) with supp(дC) = C that is unique up to scaling. By

the ‘circuit ratio’ of (i, j), we mean the largest ratio |дCj /д
C
i | taken

over every circuitC of A such that i, j ∈ C . As our first observation,
we show that the maximum of all circuit ratios, which we call the

‘circuit imbalance measure’, in fact characterizes χ̄A up to a factor n.
This measure was first studied by Vavasis [48], who showed that it

lower bounds χ̄A, though, as far as we are aware, our upper bound
is new. The circuit ratios of each pair (i, j) induces a weighted di-

rected graph we call the circuit ratio digraph of A. From here, our

main result is that χ̄∗A is up to a factor n equal to the maximum geo-

metric mean cycle in the circuit ratio digraph. Our approximation

algorithm populates the circuit ratio digraph with ratios for each

i, j using basic matroid techniques, and then computes a rescaling

by solving the dual of the maximum geometric mean ratio cycle on

the ‘approximate circuit ratio digraph’.

763

STOC ’20, June 22–26, 2020, Chicago, IL, USA Daniel Dadush, Sophie Huiberts, Bento Natura, and László A. Végh

2. Scaling Invariant LLS Algorithm. While the above yields an LP

algorithm with poly(n,m, log χ̄∗A) running time, it does not satis-

factorily address Monteiro and Tsuchiya’s question for a scaling

invariant algorithm. As our second contribution, we use the circuit

ratio digraph directly to give a natural scaling invariant LLS layer-

ing algorithm together with a scaling invariant crossover analysis.

At a conceptual level, we show that the circuit ratios give a scale

invariant way to measure whether ‘xi > x j ’ and enable a natural

layering algorithm. Let κi j be the circuit imbalance between i and
j, i.e., the maximum value |дj/дi | for a minimal kernel solution

д containing i and j in the support. Given the circuit ratio graph

induced by κ and a primal point x near the path, our layering

algorithm can be described as follows. We first rescale the variables

so that x becomes the all ones vector, which rescales κi j to κi jxi/x j .
We then restrict the graph its edges of length ≥ 1/poly(n)—the
long edges of the (rescaled) circuit ratio graph—and let the layering

J1 ∪ J2 ∪ . . .∪ Jp be a topological ordering of its strongly connected

components (SCC) with edges going from left to right. Intuitively,

variables that “affect each other” should be in the same layer, which

motivates the SCC definition.

We note that our layering algorithm does not in fact have access

to the true circuit ratios κi j , as these are NP-hard to compute. Get-

ting a good enough initial estimate for our purposes however is

easy: we let κ̂i j be the ratio corresponding to an arbitrary circuit

containing i and j . This already turns out to be within a factor (χ̄∗A)
2

from the true value κi j , which we recall is the maximum over all

such circuits. Our layering algorithm in fact learns better circuit

ratio estimates if the “lifting costs” of our SCC layering, i.e., how

much it costs to lift changes from lower layer variables to higher

layers (as in the definition of χ̄A), are larger than we expected them

to be.

For our analysis, we define cross-overs in a scaling invariant way

as follows. Before the crossover event, poly(n)(χ̄∗A)
n > κi jxi/x j ,

and after the crossover event, poly(n)(χ̄∗A)
n < κi jxi/x j for all fur-

ther central path points. Our analysis relies on χ̄∗A in only a min-

imalistic way, and does not require an estimate on the value of

χ̄∗A. Namely, it is only used to show that if i, j ∈ Jq , for a layer

q ∈ [p], then the rescaled circuit ratio κi jxi/x j is in the range

(poly(n)χ̄∗A)
O (±| Jq |)

. The argument to show this crucially utilizes

the maximum geometric mean cycle characterization. Furthermore,

unlike prior analyses [31, 49], our definition of a “good” layering

(i.e., ‘balanced’ layerings, see Section 3.4), is completely indepen-

dent of χ̄∗A.

3. Improved Potential Analysis. As our third contribution, we im-

prove the Vavasis-Ye crossover analysis using a new and simple

potential function based approach. When applied to our new LLS al-

gorithm, we derive anO(n2.5
logn log(χ̄∗A + n)) iteration bound for

path following, improving the polynomial term by an Ω(n/logn)
factor compared to the VY analysis.

Our potential function can be seen as a fine-grained version of

the crossover events as described above. In case of such a crossover

event, it is guaranteed that in every subsequent iteration, i is in a

layer before j. Instead, we analyze less radical changes: an “event”

parametrized by τ means that i and j are currently together on a

layer of size ≤ τ , and after the event, i is on a layer before j, or
if they are together on the same layer, then this layer must have

size ≥ 2τ . For every LLS step, we can find a parameter τ such that

an event of this type happens concurrently for at least τ − 1 pairs

within the next O(
√
nτ log(χ̄∗A + n)) iterations,

Our improved analysis is also applicable to the original VY algo-

rithm. Let us now comment on the relation between the VY algo-

rithm and our new algorithm. The VY algorithm starts a new layer

once xπ (i) > дxπ (i+1) between two consecutive variables where the

permutation π is a non-increasing order of the xi variables. Here,
д = poly(n)χ̄ . Setting the initial ‘estimates’ κ̂i j = д/poly(n) for a
suitable polynomial, our algorithm runs the same way as the VY

algorithm. Using these estimates, the layering procedure becomes

much simpler: there is no need to verify ‘balancedness’ as in our

general algorithm.

However, setting д = κ̂i j has drawbacks. Most importantly, it

does not give a lower bound on the true circuit ratio κi j—to the

contrary, д will be an upper bound! In effect, this causes VY’s layers

to be “much larger” than ours, and for this reason, the connection

to χ̄∗ is lost. Nevertheless, our potential function analysis can still

be adapted to the VY algorithm to obtain the same Ω(n/logn) im-

provement on the iteration complexity bound; see Section 4.1 for

more details.

1.1 Related Work
Since the seminal works of Karmarkar [17] and Renegar [34], there

has been a tremendous amount of work on speeding up and im-

proving interior-point methods. In contrast to the present work,

the focus of these works has mostly been to improve complexity of

approximately solving LPs. Progress has taken many forms, such as

the development of novel barrier methods, such Vaidya’s volumetric

barrier [46] and the recent entropic barrier of Bubeck and Eldan [3]

and the weighted log-barrier of Lee and Sidford [22, 24], together

with new path following techniques, such as the predictor-corrector

framework [28, 29], as well as advances in fast linear system solv-

ing [23, 39]. For this last line, there has been substantial progress

in improving IPM by amortizing the cost of the iterative updates,

and working with approximate computations, see e.g. [5, 34, 46, 47].

Very recently, Cohen, Lee and Song [5] developed a new inverse

maintenance scheme to get a randomized Õ(n2.37
log(1/ε))-time

algorithm for ε-approximate LP, which was derandomized by van

den Brand [47]. For special classes of LP such as network flow prob-

lems, fast algorithms have been obtained by using fast Laplacian

solvers, see e.g. [6, 25]. Given the progress above, we believe it to

be an interesting problem to understand to what extent these new

numerical techniques can be applied to speed up LLS computations,

though we expect that such computations will require very high

precision. We note that no attempt has been made in the present

work to optimize the complexity of the linear algebra.

Ho and Tunçel [14] showed how to extend Tardos’ framework to

the real model of computation (i.e., to non-integral A), providing a

blackbox alternative to the VY algorithm. The numerical complexity

of the LPs arising in their reduction is controlled by the minimum

and maximum subdeterminant of A restricted to non-singular sub-

matrices and the minimum non-zero slack of any basic primal or

dual solution over a certain grid of right hand sides and objectives.

764

A Scaling-Invariant Algorithm for Linear Programming Whose Running Time Depends Only on the Constraint Matrix STOC ’20, June 22–26, 2020, Chicago, IL, USA

With regard to LLS algorithms, the original VY algorithm re-

quired explicit knowledge of χ̄A to implement their layering algo-

rithm. [27] showed that this could be avoided by computing all LLS

steps associatedwithn candidate partitions and picking the best one.
In particular, they showed that all such LLS steps can be computed

in O(m2n) time. [31] gave an alternate approach which computes

a LLS partition directly from the coefficients of the AS step. We

note that these methods crucially rely on the variable ordering, and

hence are not scaling invariant. Kitahara and Tsuchiya [20], gave a

2-layer LLS step which achieves a running time depending only on

χ̄∗A and right-hand side b, but with no dependence on the objective,

assuming the primal feasible region is bounded.

A series of papers have studied the central path from a differential

geometry perspective. Monteiro and Tsuchiya [30] showed that a

curvature integral of the central path, first introduced by Sonnevend,

Stoer, and Zhao [38], is in fact upper bounded byO(n3.5
log(χ̄∗A+n)).

This has been extended to SDP and symmetric cone programming

[16], and also studied in the context of information geometry [15].

Circuits have appeared in several papers on linear and integer

optimization (see [8] and its references). The idea of using circuits

within the context of LP algorithms also appears in [7]. They de-

velop an augmentation framework for LP (as well ILP) and show

that a simplex-like algorithm which takes steps according to the

“best circuit” direction achieves linear convergence, though these

steps are hard to compute.

Our algorithm makes progress towards strongly polynomial

solvability of LP, by improving the dependence poly(n,m, log χ̄) to
poly(n,m, log χ̄∗). However, in a remarkable recent paper, Allami-

geon et al. [2] have shown, using tools from tropical geometry, that

path-following methods for the standard logarithmic barrier can-

not be strongly polynomial. In particular, they give a parametrized

family of instances, where, for sufficiently large parameter values,

any sequence of iterations following the central path must be of

exponential length—thus, χ̄∗ will be doubly exponential. We note

that it is unclear whether their instance is robust to changing the

barrier method itself; e.g., the weighted log-barrier [22].

1.2 Organization
Section 2 begins with the necessary background on the condition

measures χ̄A and χ̄∗A. It culminates in the approximate χ̄∗A rescaling

and χ̄A approximation algorithm. This algorithm relies upon the

circuit imbalance measure in Section 2.1, the min-max characteri-

zation in Section 2.2, and a circuit finding algorithm in Section 2.3.

In Section 3, we develop our scaling invariant interior-point

method. Interior-point preliminaries are given in Section 3.1, the

layered least squares step is explained in Section 3.3, our scaling

invariant layering algorithm is given in Section 3.4, and lastly, our

overall algorithm is given in Section 3.5.

In Section 4, we describe the potential function proof for the

improved iteration bound. Section 4.1 shows that our argument also

leads to a factorΩ(n/logn) improvement in the iteration complexity

bound of the VY algorithm. Finally, in Section 5, we discuss the

initialization of our interior-point method.

Proofs can be found in the full version of this paper, accessible

at https://arxiv.org/abs/1912.06252.

2 FINDING AN APPROXIMATELY OPTIMAL
RESCALING

Notation. Our notation will largely follow [31, 32]. We let R++
denote the set of positive reals, and R+ the set of nonnegative reals.
For n ∈ N, we let [n] = {1, 2, . . . ,n}. Let ei ∈ Rn denote the ith
unit vector, and e ∈ Rn the all 1s vector. For a vector x ∈ Rn ,
we let Diag(x) ∈ Rn×n denote the diagonal matrix with x on the

diagonal. We let D denote the set of all positive n × n diagonal

matrices. For x ,y ∈ Rn , we use the notation xy ∈ Rn to denote

xy = Diag(x)y = (xiyi)i ∈[n]. The scalar product of the two vectors

is denoted as x⊤y. For p ∈ Q, we also use the notation xp to denote

the vector (x
p
i)i ∈[n]. Similarly, for x ,y ∈ Rn , we let x/y denote the

vector (xi/yi)i ∈[n]. We denote the support of a vector x ∈ Rn by

supp(x) = {i ∈ [n] : xi , 0}.

For an index subset I ⊆ [n], we use πI : Rn → RI for the

coordinate projection. That is, πI (x) = xI , and for a subset S ⊆ Rn ,
πI (S) = {xI : x ∈ S}. We let RnI = {x ∈ R

n
: x[n]\I = 0}.

For a matrix B ∈ Rn×k , I ⊂ [n] and J ⊂ [k] we let BI, J denote
the submatrix of B restricted to the set of rows in I and columns in J .
We also use BI, • = BI,[k] and B J = B•, J = B[n], J . We let B† ∈ Rk×n

denote the pseudo-inverse of B.
We let Ker(A) denote the kernel of thematrixA ⊆ Rm×n . Through-

out, we assume that the matrixA in (LP) has full row rank, and that

n ≥ 3.

Subspace Formulation. Throughout the paper, we letW = Ker(A) ⊆
Rn denote the kernel of the matrix A. Using this notation, (LP) can

be written in the form

min c⊤x

x ∈W + d

x ≥ 0,

max d⊤(c − s)

s ∈W ⊥ + c

s ≥ 0,

(2)

where d ∈ Rn satisfies Ad = b.

The condition number χ̄ . The condition number χ̄A is defined as

χ̄A = sup

{
∥A⊤

(
ADA⊤

)−1

AD∥ : D ∈ D
}

= sup

{

A⊤y

∥p∥

: y minimizes

D1/2(A⊤y − p)

for some 0 , p ∈ Rn and D ∈ D
}
.

(3)

This condition number was first studied by Dikin [9], Stewart [40],

and Todd [43], among others, and plays a key role in the analysis

of the Vavasis-Ye interior point method [49]. There is an extensive

literature on the properties and applications of χ̄A, as well as its
relations to other condition numbers. We refer the reader to the

papers [14, 31, 49] for further results and references.

It is important to note that χ̄A only depends on the subspace

W = Ker(A). Hence, we can also write χ̄W for a subspaceW ⊆ Rn ,

defined to be equal to χ̄A for some matrix A ∈ Rk×n withW =

Ker(A). We will use the notations χ̄A and χ̄W interchangeably.

The next lemma summarizes some important known properties

of χ̄A.

Proposition 2.1. Let A ∈ Rm×n with full row rank and W =

Ker(A).

765

https://arxiv.org/abs/1912.06252

STOC ’20, June 22–26, 2020, Chicago, IL, USA Daniel Dadush, Sophie Huiberts, Bento Natura, and László A. Végh

(i) If the entries ofA are all integers, then χ̄A is bounded by 2
O (LA)

,

where LA is the input bit length of A.
(ii) χ̄A = max{∥B−1A∥ : B non-singularm ×m-submatrix of A}.
(iii) χ̄W = χ̄W ⊥ .

Proof. Part (i) was proved in [49, Lemma 24]. For part (ii), see

[44, Theorem 1] and [49, Lemma 3]. The duality statement (iii) was

shown in [13]. □

In Proposition 3.8, we will also give another proof of (iii). We now

define the lifting map, a key operation in this paper, and explain its

connection to χ̄A.

Definition 2.2. Let us define the lifting map LWI : πI (W) →W by

LWI (p) = arg min {∥z∥ : zI = p, z ∈W } .

Note that LWI is the unique linear map from πI (W) toW such

that LWI (p)I = p and LWI (p) is orthogonal toW ∩ R
n
[n]\I .

We have following characterization. This will be the most suit-

able characterization of χ̄W for our purposes.

Proposition 2.3. For a linear subspaceW ⊆ Rn ,

χ̄W = max

{
∥LWI ∥ : I ⊆ [n], I , ∅

}
.

The following notation will be convenient for our algorithm. For

a subspaceW ⊆ Rn and an index set I ⊆ [n], if πI (W) , {0}, we
define the lifting score

ℓW (I) :=

√
∥LWI ∥

2 − 1 . (4)

Otherwise, we define ℓW (I) = 0. This means that for any z ∈ πI (W)
and x = LWI (z), ∥x[n]\I ∥ ≤ ℓ

W (I)∥z∥.

The Condition Number χ̄∗A. For every D ∈ D, we can consider

the condition number χ̄WD = χ̄AD−1 . We let

χ̄∗W = χ̄∗A = inf{ χ̄WD : D ∈ D}

denote the best possible value of χ̄ that can be attained by rescaling

the coordinates ofW . The main result of this section is the following

theorem.

Theorem 2.4. There is an O(n2m2 + n3) time algorithm that for

any matrix A ∈ Rm×n computes a t such that

t ≤ χ̄W ≤ tn(χ̄∗W)
2

and a D ∈ D such that

χ̄∗W ≤ χ̄WD ≤ n(χ̄∗W)
3 .

2.1 The Circuit Imbalance Measure
We next introduce the circuit imbalance measure, a more combina-

torial condition number, and show that it gives a good proxy to χ̄A.

Definition 2.5. For a linear subspaceW ⊆ Rn and a matrix A such

thatW = Ker(A), a circuit is an inclusion-wise minimal dependent

set of columns of A. Equivalently, a circuit is a set C ⊆ [n] such
thatW ∩ RnC is one-dimensional and that no strict subset of C has

this property. Any circuit is associated with a vector д ∈ W with

inclusion-wise minimal support. The set of circuits ofW is denoted

CW .

Note that these are also known as the circuits in the linear ma-

troid associated with A.

Definition 2.6. For a circuit C ∈ CW , let дC ∈ W be such that

supp(дC) = C . For i, j ∈ C , we let

κWij (C) =

���дCj �����дCi �� . (5)

For any i, j ∈ [n], we define the circuit ratio as the maximum of

κWij (C) over all choices of the circuit C :

κWij = max

{
κWij (C) : C ∈ CW , i, j ∈ C

}
. (6)

By convention we set κWij = 0 if there is no circuit supporting i and j.

Further, we define the circuit imbalance measure as

κW = max

{
κWij : i, j ∈ [n]

}
.

Minimizing over all coordinate rescalings, we define

κ∗W = min {κWD : D ∈ D} .

We omit the indexW whenever it is clear from context. In such cases,

for D = Diag(d) ∈ D, we write κdi j = κ
WD
ij and κd = κdW = κWD .

We want to remark that a priori it is not clear that κ∗W is well-

defined. Theorem 2.11 will show that the minimum of {κWD : D ∈
D} is indeed attained. Observe that κWij (C) does not depend on

the choice of д, since there is only a single choice up to scalar

multiplication.

The circuit ratio, as well as the circuit imbalance measure, are

self-dual.

Lemma 2.7. For any subspaceW ⊆ Rn and i, j ∈ [n], κWij = κ
W ⊥

ji .

The next theorem relates the circuit imbalance κW and the con-

dition number χ̄W . The lower bound was already proven in [48],

and the upper bound is new, as far as we know.

Theorem 2.8. For a linear subspaceW ⊆ Rn ,√
1 + (κW)2 ≤ χ̄W ≤

√
1 + (nκW)2.

The next lemmas are key in the proof of Theorem 2.8, and will

also be used later in the algorithm.

Lemma 2.9. For i ∈ I ⊂ [n] with ei ∈ πI (W), let z = LWI (e
i). Then

for any j ∈ supp(z) we have κWij ≥ |zj |.

For the next lemma, recall the definition of the lifting score ℓW (I)
from (4).

Lemma 2.10. There exists an algorithm Verify-Lift that, for a

linear subspaceW ⊆ Rn and an index set I ⊆ [n], can efficiently

identify i ∈ I , j ∈ [n] \ I and t ≤ κWij such that ℓW (I) ≤ nt .

Our LLS algorithm in Section 3 will use the subroutine described

in Lemma 2.10. For a subspace W ⊆ Rn , an index set I ⊆ [n],
and a threshold θ > 0, the algorithm Verify-Lift(W , I ,θ) outputs
either of the answers ‘pass’ or ’fail’. If the answer is ‘pass’, then

it is guaranteed that ℓW (I) ≤ θ . If the answer is ‘fail’, then a pair

of indices i ∈ I , j ∈ [n] \ I , and a bound t are returned, such that

θ/n ≤ t ≤ κWi, j .

766

A Scaling-Invariant Algorithm for Linear Programming Whose Running Time Depends Only on the Constraint Matrix STOC ’20, June 22–26, 2020, Chicago, IL, USA

To implement Verify-Lift, we first need to select a minimal

I ′ ⊂ I such that dim(πI ′(W)) = dim(πI (W)). This can be found by

computing a matrixM ∈ R(n−m)×n such that range(M) =W , and

selecting a maximal number of linearly independent columns ofMI .

Then, we compute the matrix B ∈ R([n]\I)×I
′

that implements the

transformation [LWI ′][n]\I : πI ′(W) → π[n]\I (W). The algorithm
returns the pair (i, j) corresponding to the entry maximizing |Bji |.

2.2 A Min-Max Theorem on κ∗W
We next provide a combinatorial min-max characterization on κ∗W .

Consider the circuit ratio digraph G = ([n],E) on the node set [n]
where (i, j) ∈ E if κ(i, j) > 0, that is, there exists a circuit C ∈ C
with i, j ∈ C . An edge (i, j) ∈ E is said to have weight κi j = κWij .

(Note that (i, j) ∈ E if and only if (j, i) ∈ E, but the weight of these
two edges can be different.)

LetH be a cycle inG , that is, a sequence of points i1, i2, . . . , ik , ik+1
=

i1. We use |H | = k to denote the length of the cycle. (In our termi-

nology, ‘cycles’ always refer to objects inG , whereas ‘circuits’ refer
to the minimum supports in Ker(A).)

We use the notation κ(H) = κW (H) =
∏k

j=1
κWi j i j+1

. For a vector

d ∈ Rn++, we let κ
d (H) = κdW (H) = κWD (H) for D = Diag(d). A

simple but important observation is that such a rescaling does not

change the value associated with the cycle, that is,

κdW (H) = κW (H) ∀d ∈ Rn++ for any cycle H in G . (7)

We are ready to formulate our theorem.

Theorem 2.11. For a subspaceW ⊂ Rn , we have

κ∗W = min

d>0

κdW = max

{
κW (H)

1/ |H |
: H is a cycle in G

}
.

The following example shows that κ∗ ≤ χ̄∗ can be arbitrarily

big.

Example 2.12. TakeW = span((0, 1, 1,M), (1, 0,M, 1)), whereM >
0. Then {2, 3, 4} and {1, 3, 4} are circuits with κW

34
({2, 3, 4}) = M and

κW
43
({1, 3, 4}) = M . Hence, by Theorem 2.11, we see that κ∗ ≥ M .

The following corollary of Theorem 2.11 particularly useful. It

asserts that any arbitrary circuit containing i and j yields a (κ∗)2

approximation to κi j .

Corollary 2.13. We are given a linear subspaceW ⊆ Rn and i, j ∈
[n], i , j, and a circuit C ∈ CW with i, j ∈ C . Let д ∈ W be the

corresponding vector with supp(д) = C . Then,

κWij(
κ∗W

)
2
≤
|дj |

|дi |
≤ κWij .

2.3 Finding Circuits: A Detour in Matroid
Theory

We now show how to efficiently obtain a family Ĉ ⊆ CW such

that for any i, j ∈ [n], Ĉ includes a circuit containing both i and j,
provided there exists such a circuit.

We need some simple concepts and results from matroid theory.

We refer the reader to [37, Chapter 39] or [10, Chapter 5] for defini-

tions and background. LetM = ([n],I) be a matroid on ground set

[n] with independent sets I ⊆ 2
V
. The rank rk(S) of a set S ⊆ 2

[n]

is the maximum size of an independent set contained in S . The
maximal independent sets are called bases. All bases have the same

cardinality rk([n]).
For the matrix A ∈ Rm×n , we will work with the linear matroid

M(A) = ([n],I(A)), where a subset I ⊆ [n] is independent if the
columns {Ai : i ∈ I } are linearly independent. Note that rk([n]) =
m under the assumption that A has full row rank.

The circuits of the matroid are the inclusion-wise minimal non-

independent sets. Let I ∈ I be an independent set, and i ∈ [n] \ I
such that I ∪ {i} < I. Then, there exists a unique circuit C(I , i) ⊆
I ∪ {i} that is called the fundamental circuit of i with respect to I .
Note that i ∈ C(I , i).

The matroidM is separable, if the ground set [n] can be par-

titioned to two nonempty subsets [n] = S ∪ T such that I ∈ I if

and only if I ∩ S, I ∩T ∈ I. In this case, the matroid is the direct

sum of its restrictions to S andT . In particular, every circuit is fully

contained in S or in T .
For the linear matroidM(A), separability means that Ker(A) =

Ker(AS) ⊕ Ker(AT). In this case, solving (LP) can be decomposed

into two subproblems, restricted to the columns in AS and in AT ,
and χ̄A = max{ χ̄AS , χ̄AT }.

Hence, we can focus on non-separable matroids. The following

characterization is well-known, see e.g. [10, Theorems 5.2.5, 5.2.7–

5.2.9]. For a hypergraph H = ([n], E), we define the underlying

graph HG = ([n],E) such that (i, j) ∈ E if there is a hyperedge

S ∈ E with i, j ∈ S . That is, we add a clique corresponding to each

hyperedge. The hypergraph is called connected if the underlying

graph G = ([n],E) is connected.

Proposition 2.14. For a matroidM = ([n],I), the following are

equivalent:

(i) M is non-separable.

(ii) The hypergraph of the circuits is connected.

(iii) For any base B ofM, the hypergraph formed by the funda-

mental circuits CB = {C(B, i) : i ∈ [n] \ B} is connected.
(iv) For any i, j ∈ [n], there exists a circuit containing i and j.

We are ready to describe the algorithm that will be used to obtain

lower bounds on all κi j values. For a matrixA ∈ Rm×n , we let Find-
Circuits(A) denote the subroutine described in the lemma for the

linear matroidM(A).

Theorem 2.15. Given A ∈ Rm×n , there exists an O(n2m2) time

algorithm Find-Circuits(A) that obtains a decomposition ofM(A) to

a direct sum of non-separable linear matroids, and returns a family
ˆC

of circuits such that if i and j are in the same non-separable component,

then there exists a circuit in
ˆC containing both i and j. Further, for

each i , j in the same component, the algorithm returns a value κ̂i j as
the the maximum of |дj/дi | such that д ∈W , supp(д) = C for some

C ∈ ˆC containing i and j. For these values, κ̂i j ≤ κi j ≤ (κ
∗)2κ̂i j .

The rescaling algorithm described in Theorem 2.4 functions by

first running Find-Circuits(A) to approximate the circuit ratio

graph. Taking t =
√

1 +max(i, j)∈E κ̂
2

i j approximates χ̄A per Theo-

rem 2.8. A maximum-mean cycle computation allows us to compute

the a suitable rescaling to approximately minimize κdW in O(n3)

time (see e.g. [1, Theorem 5.8]).

767

STOC ’20, June 22–26, 2020, Chicago, IL, USA Daniel Dadush, Sophie Huiberts, Bento Natura, and László A. Végh

3 A SCALING-INVARIANT LAYERED LEAST
SQUARES INTERIOR-POINT ALGORITHM

3.1 Preliminaries on Interior-Point Methods
In this section, we introduce the standard definitions, concepts and

results from the interior-point literature that will be required for

our algorithm. We consider an LP problem in the form (LP), or

equivalently, in the subspace form (2) forW = Ker(A). We let

P++ = {x ∈ Rn : Ax = b,x > 0}

D++ = {(y, s) ∈ Rm+n : A⊤y + s = c, s > 0} .

Recall the central path defined in (CP), withw(µ) = (x(µ),y(µ), s(µ))
denoting the central path point corresponding to µ > 0. We let

w∗ = (x∗,y∗, s∗) denote the primal and dual optimal solutions to

(LP) that correspond to the limit of the central path for µ → 0.

For a point w = (x ,y, s) ∈ P++ × D++, the normalized duality

gap is µ(w) = x⊤s/n.
The ℓ2-neighborhood of the central path with opening β > 0 is the

set

N(β) =

{
w ∈ P++ × D++ :

 xs

µ(w)
− e

 ≤ β

}
Throughout the paper, we will assume β is chosen from (0, 1/4]; in

Algorithm 2 we use the value β = 1/8. The following proposition

gives a bound on the distance between w and w(µ) if w ∈ N(β).
See e.g. [12, Lemma 5.4].

Proposition 3.1. Letw = (x ,y, s) ∈ N(β) for β ∈ (0, 1/4] and µ =
µ(w), and consider the central path point w(µ) = (x(µ),y(µ), s(µ)).
For each i ∈ [n],

xi
1 + 2β

≤
1 − 2β

1 − β
· xi ≤ xi (µ) ≤

xi
1 − β

, and

si
1 + 2β

≤
1 − 2β

1 − β
· si ≤ si (µ) ≤

si
1 − β

.

We will often use the following immediate corollary.

Corollary 3.2. Let w = (x ,y, s) ∈ N(β) for β ∈ (0, 1/4], and
µ = µ(w). Then for each i ∈ [n]

(1 − β)
√
µ ≤
√
sixi ≤ (1 + 2β)

√
µ .

A key property of the central path is “near monotonicity”, formu-

lated in the following lemma, see [49, Lemma 16].

Lemma 3.3. Letw = (x ,y, s) be a central path point for µ andw ′ =
(x ′,y′, s ′) be a central path point for µ ′ ≤ µ. Then ∥x ′/x+s ′/s∥∞ ≤ n.
Further, for the optimal solution w∗ = (x∗,y∗, s∗) corresponding to
the central path limit µ → 0, we have ∥x∗/x ∥1 + ∥s

∗/s∥1 = n.

3.2 Predictor and Corrector Steps
Given w = (x ,y, s) ∈ P++ × D++, the search directions com-

monly used in interior-point methods are obtained as the solution

(∆x ,∆y,∆s) to the following linear system for some σ ∈ [0, 1].

A∆x = 0 (8)

A⊤∆y + ∆s = 0 (9)

s∆x + x∆s = σµe − xs (10)

Predictor-corrector methods, such as theMizuno-Todd-Ye Predictor-

Corrector (MTY P-C) algorithm [29], alternate between two types

of steps. In predictor steps, we use σ = 0. This direction is also

called the affine scaling direction, and will be denoted as ∆wa =

(∆xa,∆ya,∆sa) throughout. In corrector steps, we use σ = 1. This

gives the centrality direction, denoted as ∆wc = (∆xc,∆yc,∆sc).

In the predictor steps, we make progress along the central path.

Given the search direction on the current iterate w = (x ,y, s) ∈
N(β), the step-length is chosen maximal such that we remain in

N(2β), i.e.

αa
:= sup{α ∈ [0, 1] : ∀α ′ ∈ [0,α] : w + α ′∆wa ∈ N(2β)}.

Thus, we obtain a pointw+ = w + αa∆wa ∈ N(2β). The corrector
step finds a next iteratewc = wa+∆wc

, where ∆wc
is the centrality

direction computed atwa
. The next proposition summarizes well-

known properties, see e.g. [51, Section 4.5.1].

Proposition 3.4. Letw = (x ,y, s) ∈ N(β) for β ∈ (0, 1/4].

(i) For the affine scaling step, we have µ(w+) = (1 − α)µ(w).
(ii) The affine scaling step-length is

αa ≥ max

{
β
√
n
, 1 −

∥∆xa∆sa∥

βµ(w)

}
.

(iii) For w+ ∈ N(2β), and wc = w+ + ∆wc
, we have µ(wc) =

µ(w+) andwc ∈ N(β).
(iv) After a sequence of O(

√
nt) predictor and corrector steps, we

obtain an iterate w ′ = (x ′,y′, s ′) ∈ N(β) such that µ(w ′) ≤
µ(w)/2t .

Minimum norm viewpoint and residuals. For any point w =
(x ,y, s) ∈ P++ × D++ we define

δ = δ (w) = s1/2x−1/2 ∈ Rn . (11)

With this notation, we can write (10) in the form

δ∆x + δ−1∆s = −s1/2x1/2 . (12)

From Proposition 3.1, we see that if w ∈ N(β), and µ = µ(w),
then for each i ∈ [n],√

1 − 2β · δi (w) ≤ δi (w(µ)) ≤
1√

1 − 2β
· δi (w) . (13)

The matrix Diag(δ (w)) will be often used for rescaling in the algo-

rithm. That is, for the current iterate w = (x ,y, s) in the interior-

pointmethod, wewill perform projections in the spaceW Diag(δ (w)).

To simplify notation, for δ = δ (w), we use LδI and κδi j as shorthands

for L
W Diag(δ)
I and κ

W Diag(δ)
i j . The subspaceW = Ker(A) will be

fixed throughout.

It is easy to see from the optimality conditions that the compo-

nents of the affine scaling direction (∆xa,∆ya,∆sa) are the optimal

solutions of the following minimum-norm problems.

∆xa = arg min

∆x ∈Rn
{∥δ (x + ∆x)∥2 : A∆x = 0}

(∆ya,∆sa) = arg min

(∆y,∆s)∈Rm×Rn
{∥δ−1(s + ∆s)∥2 : A⊤∆y + ∆s = 0}

(14)

Following [32], for a search direction ∆w = (∆x ,∆y,∆s), we define
the residuals as

Rx :=
δ (x + ∆x)
√
µ

, Rs :=
δ−1(s + ∆s)
√
µ

. (15)

768

A Scaling-Invariant Algorithm for Linear Programming Whose Running Time Depends Only on the Constraint Matrix STOC ’20, June 22–26, 2020, Chicago, IL, USA

Hence, the primal affine scaling direction ∆xa
is the one that mini-

mizes the ℓ2-norm of the primal residual Rx , and the dual affine scal-

ing direction (∆ya,∆sa) minimizes the ℓ2-norm of the dual residual

Rs . The next lemma summarizes simple properties of the residuals,

see [32].

Lemma 3.5. For β ∈ (0, 1/4] such that w = (x ,y, s) ∈ N(β) and
the affine scaling direction ∆w = (∆xa,∆ya,∆sa), we have

(i)

RxaRsa =
∆xa∆sa

µ
, Rxa + Rsa =

x1/2s1/2

√
µ
, (16)

(ii)

∥Rxa∥2 + ∥Rsa∥2 = n ,

(iii) We have ∥Rxa∥, ∥Rsa∥ ≤
√
n, and for each i ∈ [n], we have

max{|Rxa

i |, |Rs
a

i |} ≥
1

2
(1 − β).

(iv)

Rxa = −
1

√
µ
δ−1∆sa, Rsa = −

1

√
µ
δ∆xa .

For a subset I ⊂ [n], we define

εa

I (w) := max

i ∈I
min{|Rxa

i |, |Rs
a

i |} , and εa(w) := εa

[n](w) . (17)

The next claim shows that for the affine scaling direction, a small

ε(w) yields a long step; see [32, Lemma 2.5].

Lemma 3.6. Letw = (x ,y, s) ∈ N(β) for β ∈ (0, 1/4]. Then for the

affine scaling step, we have

µ(w + αa∆wa)

µ(w)
≤ min

{
1 −

β
√
n
,

√
nεa(w)

β

}
.

3.3 Layered Least Squares Direction
Let J = (J1, J2, . . . , Jp) be an ordered partition of [n].1 For k ∈ [p],
we use the notations J<k := J1∪. . .∪Jk−1

and J>k := Jk+1
∪. . .∪Jp ,

and similarly J≤k and J≥k . We will also refer to the sets Jk as layers,

and J as a layering. Layers with lower indices will be referred to

as ’higher’ layers.

Given w = (x ,y, s) ∈ P++ × D++, and the layering J , the

layered-least-squares (LLS) direction is defined as follows. For the

primal direction, we proceed backwards, with k = p,p − 1, . . . , 1.

Assume the components on the lower layers ∆x ll

J>k
have already

been determined. We define the components in Jk as the coordinate

projection ∆x ll

Jk
= π Jk (Xk), where the affine subspaceXk is defined

as the set of minimizers

Xk := arg min

∆x ∈Rn
{∥δ Jk (x Jk + ∆x Jk)∥

2
: A∆x = 0,∆x J>k = ∆x ll

J>k } .

(18)

The dual direction ∆s ll
is determined in the forward order of the

layers k = 1, 2, . . . ,p. Assume we already fixed the components

∆s ll

J<k
on the higher layers. Then, ∆s ll

Jk
= π Jk (Sk) for

Sk = arg min

∆s ∈Rn
{∥δ−1

Jk (s Jk + ∆s Jk)∥
2

:

∃y ∈ Rm ,A⊤∆y + ∆s = 0,∆s J<k = ∆s ll

J<k } .
(19)

1
In contrast to how ordered partitions were defined in [32], we use the term ordered

only to the p-tuple (J1, . . . , Jp), which is to be viewed independently of δ .

The component ∆yll
is obtained as the optimal ∆y for the final layer

k = p. We use the notation Rx ll
and ε ll(w) analogously to the affine

scaling direction. This search direction was first introduced in [49].

The affine scaling direction is a special case for the single element

partition. In this case, the definitions (18) and (19) coincide with

those in (14).

3.3.1 A Linear System Viewpoint. We now present an equivalent

definition of the LLS step, generalizing the linear system (9)-(10).

We use the subspace notation. With this notation, (9)-(10) for the

affine scaling direction can be written as

s∆xa + x∆sa = −xs , ∆xa ∈W , and ∆sa ∈W ⊥ . (20)

Recall that (20) is equivalent to δ∆xa + δ−1∆sa = −x1/2s1/2
.

Given the layering J and w = (x ,y, s), for each k ∈ [p] we
define the subspaces

WJ,k := {x Jk : x ∈W ,x J>k = 0}

W ⊥
J,k := {x Jk : x ∈W ⊥,x J<k = 0} .

It is easy to see that these two subspaces are orthogonal comple-

ments. Analogously to (20), the primal LLS step ∆x ll
is obtained as

the unique solution to the linear system

δ∆x ll + δ−1∆s = −x1/2s1/2 ,

∆x ll ∈W , and ∆s ∈W ⊥
J,1 ⊕ · · · ⊕W

⊥
J,p ,

(21)

and the dual LLS step ∆s ll
is the unique solution to

δ∆x + δ−1∆s ll = −x1/2s1/2 ,

∆x ∈WJ,1 ⊕ · · · ⊕WJ,p , and ∆s ll ∈W ⊥ .
(22)

It is important to note that ∆s in (21) may be different from ∆s ll
,

and ∆x in (22) may be different from ∆x ll
. In fact, ∆s ll = ∆s and

∆x ll = ∆x can only be the case for the affine scaling step.

The following lemma proves that the above linear systems are

indeed uniquely solved by the LLS step.

Lemma3.7. For t ∈ Rn ,W ⊆ Rn ,δ ∈ Rn++, andJ = (J1, J2, . . . , Jp),
letw = LLS

W ,δ
J
(t) be defined by

δw + δ−1v = δt , w ∈W , v ∈W ⊥
J,1 ⊕ · · · ⊕W

⊥
J,p .

Then LLS
W ,δ
J
(t) is well-defined and

δ Jk (t Jk −w Jk)

 = min

{

δ Jk (t Jk − z Jk)

 : z ∈W , z J>k = w J>k
}

for every k ∈ [p].

In the notation of the above lemma we have, for ordered par-

titions J = (J1, J2, . . . , Jp), ¯J = (Jp , Jp−1, . . . , J1), and (x ,y, s) ∈

P++ × D++ with δ = s1/2x−1/2
, that ∆x ll = LLS

W ,δ
J
(−x) and

∆s ll = LLS
W ⊥,δ−1

¯J
(−s).

With these tools, we can prove that the lifting costs are self-dual.

This explains the reverse order in the dual vs primal LLS step and

justifies our attention on the lifting cost in a self-dual algorithm.

The next proposition generalizes the result of [13]. Note that it

gives a proof of Proposition 2.1(iii).

769

STOC ’20, June 22–26, 2020, Chicago, IL, USA Daniel Dadush, Sophie Huiberts, Bento Natura, and László A. Végh

Proposition 3.8. For a linear subspace W ⊆ Rn and index set

I ⊆ [n] with J = [n] \ I ,

∥LWI ∥ ≤ max{1, ∥LW
⊥

J ∥}.

In particular, ℓW (I) = ℓW
⊥

(J).

3.3.2 Partition Lifting Scores. A key insight is that if the layering

J is “well-separated”, then we indeed have x∆s ll + s∆x ll ≈ −xs ,
that is, the LLS direction is close to the affine scaling direction. This

will be shown in Lemma 3.10. The notion of “well-separatedness”

can be formalized as follows. Recall the definition of the lifting

score (4). The lifting score of the layering J = (J1, J2, . . . , Jp) of
[n] with respect toW is defined as

ℓW (J) := max

2≤k≤p
ℓW (J≥k) .

For δ ∈ Rn++, we use ℓW ,δ (I) := ℓW Diag(δ)(I) and ℓW ,δ (J) :=

ℓW Diag(δ)(J). When the context is clear, we omitW and write

ℓδ (I) := ℓW ,δ (I) and ℓδ (J) := ℓW ,δ (J).

The following important duality claim asserts that the lifting

score of a layering equals the lifting score of the reverse layer-

ing in the orthogonal complement subspace. It is an immediate

consequence of Proposition 3.8.

Lemma 3.9. LetW ⊆ Rn be a linear subspace, δ ∈ Rn++. For an
ordered partition J = (J1, J2, . . . , Jp), let ¯J = (Jp , Jp−1, . . . , J1)
denote the reverse ordered partition. Then, we have

ℓW ,δ (J) = ℓW
⊥,δ−1

(¯J).

The next lemma summarizes key properties of the LLS steps and

their relation to affine scaling steps, assuming the partition has a

small lifting score.

Lemma 3.10. Letw = (x ,y, s) ∈ N(β) for β ∈ (0, 1/4], let µ = µ(w)

and δ = δ (w). Let J = (J1, . . . , Jp) be a layering with ℓδ (J) ≤

β/(32n2), and let ∆w ll = (∆x ll,∆yll,∆s ll) denote the LLS direction

for the layering J . Then the following properties hold.

(i) We have for every k ∈ [p]

∥δ Jk∆x
ll

Jk + δ
−1

Jk ∆s
ll

Jk + x
1/2

Jk
s

1/2

Jk
∥ ≤ 6nℓδ (J)

√
µ , (23)

and

∥δ∆x ll + δ−1∆s ll + x1/2s1/2∥ ≤ 6n3/2ℓδ (J)
√
µ . (24)

(ii) For the affine scaling direction ∆wa = (∆xa,∆ya,∆sa),

∥Rx ll − Rxa∥, ∥Rs ll − Rsa∥ ≤ 6n3/2ℓδ (J) .

(iii) For the residuals of the LLS steps we have ∥Rx ll∥, ∥Rs ll∥ ≤
√

2n.

For each i ∈ [n], max{|Rx ll

i |, |Rs
ll

i |} ≥
1

2
− 3

4
β .

(iv) Let ε ll(w) = maxi ∈[n]min{|Rx ll

i |, |Rs
ll

i |}, and define the step

length as

α := sup{α ′ ∈ [0, 1] : ∀ᾱ ∈ [0,α ′] : w + ᾱ∆w ll ∈ N(2β)} .

We obtain the following bounds on the progress in the LLS step:

µ(w + α∆w ll) = (1 − α)µ , and

α ≥ 1 −
3

√
nε ll(w)

β
.

(v) We have ε ll(w) = 0 if and only if α = 1. These are further

equivalent to w + ∆w ll = (x + ∆x ll,y + ∆yll, s + ∆s ll) being

an optimal solution to (LP).

3.4 The Layering Procedure
Our algorithm performs LLS steps on a layering with a low lifting

score. A further requirement is that within each layer, the circuit

imbalances κδi j defined in (6) are suitably bounded. The rescaling

here is with respect to δ = δ (w) for the current iteratew = (x ,y, s).
To define the precise requirement on the layering, we first introduce

an auxiliary graph. Throughout we use the parameter

γ :=
β

2
10n5

. (25)

The Auxiliary Graph. For a vector δ ∈ Rn++ and σ > 0, we define

the directed graph Gδ,σ = ([n],Eδ,σ) such that (i, j) ∈ Eδ,σ if

κδi j ≥ σ . This is a subgraph of the circuit ratio digraph studied in

Section 2, including only the edges where the circuit ratio is at

least the threshold σ . Note that we do not have direct access to this
graph, as we cannot efficiently compute the values κδi j .

At the beginning of the entire algorithm, we run the subrou-

tine Find-Circuits(A) as in Theorem 2.15, whereW = Ker(A). We

assume the matroidM(A) is non-separable. For a separable ma-

troid, we can solve the subproblems of our LP on the components

separately. Thus, for each i , j, i, j ∈ [n], we obtain an estimate

κ̂i j ≤ κi j . These estimates will be gradually improved throughout

the algorithm.

Note that κδi j = κi jδj/δi and κ̂
δ
i j = κ̂i jδj/δi . If κ̂

δ
i j ≥ σ , then we

are guaranteed (i, j) ∈ Eδ,σ .

Definition 3.11. Define Ĝδ,σ = ([n], Êδ,σ) to be the directed graph

with edges (i, j) such that κ̂δi j ≥ σ ; clearly, Ĝδ,σ is a subgraph of

Gδ,σ .

Lemma 3.12. Let δ ∈ Rn++. For every i , j, i, j ∈ [n], κ̂δi j · κ̂
δ
ji ≥ 1.

Consequently, for any 0 < σ ≤ 1, at least one of (i, j) ∈ Êδ,σ or

(j, i) ∈ Êδ,σ .

Balanced layerings. We are ready to define the requirements

on the layering in the algorithm. In the algorithm, δ = δ (w) will
correspond to the scaling of the current iteratew = (x ,y, s).

Definition 3.13. Let δ ∈ Rn++. The layering J = (J1, J2, . . . , Jp) of
[n] is δ -balanced if

(i) ℓδ (J) ≤ γ , and
(ii) Jk is strongly connected in Gδ,γ /n for all k ∈ [p].

The following lemma shows that within each layer, theκδi j values

are within a bounded range. This will play an important role in our

potential analysis.

Lemma 3.14. Let 0 < σ < 1 and t > 0, and i, j ∈ [n], i , j. If the
graphGδ,σ contains a directed path of at most t − 1 edges from j to i ,
then

κδi j <

(
χ̄∗

σ

)t
and κδji >

(
σ

χ̄∗

)t
.

770

A Scaling-Invariant Algorithm for Linear Programming Whose Running Time Depends Only on the Constraint Matrix STOC ’20, June 22–26, 2020, Chicago, IL, USA

Description of the Layering Subroutine. Consider an iteratew =
(x ,y, s) ∈ N(β) of the algorithm with δ = δ (w). The subroutine
Layering(δ , κ̂), described in Algorithm 1, constructs a δ -balanced
layering. We recall that the approximated auxilliary graph Ĝδ,γ /n
with respect to κ̂ is as in Definition 3.11

Algorithm 1: Layering(δ , κ̂)

Input :δ ∈ Rn++ and κ̂ ∈ R
E
++.

Output :δ -balanced layering J = (J1, . . . , Jp) and updated

values κ̂ ∈ RE++.
1 Compute the strongly connected components C1,C2, . . . ,Cℓ

of Ĝδ,γ /n , listed in the ordering imposed by Ĝδ,γ /n ;

2 Ē ← Êδ,γ /n ;

3 for k = 2, . . . , ℓ do
4 Call Verify-Lift(W Diag(δ),C≥k ,γ) that answers ‘pass’

or ‘fail’;

5 if the answer is ‘fail’ then
6 Let i ∈ C≥k , j ∈ C<k , and t be the output of

Verify-Lift such that γ/n ≤ t ≤ κδi j ;

7 κ̂i j ← tδi/δj ;

8 Ē ← Ē ∪ {(i, j)};

9 Compute strongly connected components J1, J2, . . . , Jp of

([n], Ē), listed in the ordering imposed by Ĝδ,γ /n ;

10 return J = (J1, J2, . . . , Jp), κ̂.

We now give an overview of the subroutine Layering(δ , κ̂). We

start by computing the strongly connected components (SCCs) of

the directed graph Ĝδ,γ /n . The edges of this graph are obtained

using the current estimates κ̂δi j . According to Lemma 3.12, we have

(i, j) ∈ Êδ,γ /n or (j, i) ∈ Êδ,γ /n for every i, j ∈ [n], i , j. Hence,
there is a linear ordering of the components C1,C2, . . . ,Cℓ such

that (u,v) ∈ Êδ,γ /n whenever u ∈ Ci , v ∈ Cj , and i < j. We call

this the ordering imposed by Ĝδ,γ /n .

Next, for each k = 2, . . . , ℓ, we use the subroutine Verify-

Lift(W Diag(δ),C≥k ,γ) described after Lemma 2.10. If the sub-

routine returns ‘pass’, then we conclude ℓδ (C≥k) ≤ γ , and proceed

to the next layer. If the answer is ‘fail’, then the subroutine returns

as certificates i ∈ C≥k , j ∈ C<k , and t such that γ/n ≤ t ≤ κδi j . In

this case, we update κ̂δi j to the higher value t . We add (i, j) to an edge

set Ē; this edge set was initialized to contain Êδ,γ /n . After adding
(i, j), all components Cℓ between those containing i and j will be
merged into a single strongly connected component. To see this,

recall that if i ′ ∈ Cℓ and j ′ ∈ Cℓ′ for ℓ < ℓ
′
, then (i ′, j ′) ∈ Êδ,γ /n

according to Lemma 3.12.

Finally, we compute the strongly connected components of ([n], Ē).
We let J1, J2, . . . , Jp denote their unique acyclic order, and return

these layers.

Lemma 3.15. The subroutine Layering(δ , κ̂) returns a δ -balanced
layering in O(nm2 + n2) time.

The difficult part of the proof of the above lemma is showing the

running time bound. We note that the weaker bound O(n2m2) can

be obtained by a simpler argument.

3.5 The Overall Algorithm

Algorithm 2: LP-Solve(A,b, c,w0
)

Input :A ∈ Rm×n , b ∈ Rm , c ∈ Rn , and an initial feasible

solutionw0 = (x0,y0, s0) ∈ N(1/8) to (LP).

Output :Optimal solutionw∗ = (x∗,y∗, s∗) to (LP).

1 Call Find-Circuits(A) to obtain the lower bounds κ̂i j for

each i, j ∈ [n], i , j;

2 k ← 0,α ← 0;

3 repeat
4 /* Predictor step */

5 Compute affine scaling direction ∆wa = (∆xa,∆ya,∆sa)

forw ;

6 if εa(w) < 10n3/2γ then // Recall εa(w) defined

in (17)

7 δ ← (sk)1/2(xk)−1/2
;

8 (J , κ̂) ←Layering(δ , κ̂);

9 Compute Layered Least Squares direction

∆w ll = (∆x ll,∆yll,∆s ll) for the layering J andw ;

10 ∆w ← ∆w ll
;

11 else
12 ∆w ← ∆wa

;

13 α ← sup{α ′ ∈ [0, 1] : ∀ᾱ ∈ [0,α ′] : w + ᾱ∆w ∈

N(1/4)};

14 w ′ ← wk + α∆w ;

15 /* Corrector step */

16 Compute centrality direction ∆wc = (∆xc,∆yc,∆sc) for

w ′;

17 wk+1 ← w ′ + ∆wc
;

18 k ← k + 1;

19 until µ(wk) = 0;

20 returnwk = (xk ,yk , sk).

Algorithm 2 presents the overall algorithm LP-Solve(A,b, c,w0).

We assume that an initial feasible solutionw0 = (x0,y0, s0) ∈ N(β)
is given. We address this in Section 5, by adapting the extended

system used in [49]. We note that this subroutine requires an upper

bound on χ̄∗. Since computing χ̄∗ is hard, we can implement it by

a doubling search on log χ̄∗, as explained in Section 5. Other than

for initialization, the algorithm does not require an estimate on χ̄∗.
The algorithm starts with the subroutine Find-Circuits(A) as

in Theorem 2.15. The iterations are similar to the MTY Predictor-

Corrector algorithm [29]. The main difference is that certain affine

scaling steps are replaced by LLS steps. In every predictor step,

we compute the affine scaling direction, and consider the quantity

εa(w) = maxi ∈[n]min{|Rxa

i |, |Rs
a

i |}. If this is above the threshold

10n3/2γ , then we perform the affine scaling step. However, in case

εa(w) < 10n3/2γ , we use the LLS direction instead. In each such

iteration, we call the subroutine Layering(δ , κ̂) (Algorithm 1) to

compute the layers, and we compute the LLS step for this layering.

Another important difference is that the algorithm does not

require a final rounding step. It terminates with the exact optimal

771

STOC ’20, June 22–26, 2020, Chicago, IL, USA Daniel Dadush, Sophie Huiberts, Bento Natura, and László A. Végh

solutionw∗ once a predictor step is able to perform a full step with

α = 1.

Theorem 3.16. For given A ∈ Rm×n , b ∈ Rm , c ∈ Rn , and an

initial feasible solutionw0 = (x0,y0, s0) ∈ N(1/8), Algorithm 2 finds

an optimal solution to (LP) in O(n2.5
logn log(χ̄∗A + n)) iterations.

4 THE POTENTIAL FUNCTION AND THE
OVERALL ANALYSIS

Let µ > 0 and δ (µ) = s(µ)1/2x(µ)−1/2
correspond to the point on

the central path. For i, j ∈ [n], i , j, we define

ϱµ (i, j) :=
logκ

δ (µ)
i j

log

(
3nχ̄∗A/γ

) ,
and the main potentials in the algorithm as

Ψµ (i, j) := max

{
1,min

{
2n, inf

0<µ′<µ
ϱµ
′

(i, j)

}}
Ψ(µ) :=

∑
i, j ∈[n],i,j

log
2
Ψµ (i, j) .

The quantity Ψµ (i, j) is motivated by the bounds in Lemma 3.14.

The next statement is an immediate consequence of this lemma and

(13).

Lemma 4.1. Letw = (x ,y, s) ∈ N(β) for β ∈ (0, 1/4], let µ = µ(w),
and δ = δ (w). Let i, j ∈ [n], i , j. If the graph Gδ,γ /(3n) contains a

path from j to i of at most t − 1 edges, then ϱµ (i, j) < t . If there is a
path of at most t − 1 edges from i to j, then −t < ϱµ (i, j).

If Ψµ (i, j) ≥ t , then i and j cannot be together on a layer of size

≤ t , and j cannot be on a layer preceding the layer containing i in
any δ (w ′)-balanced layering, where w ′ = (x ′,y′, s ′) ∈ N(β) with
µ(w ′) < µ.

Our potentials Ψµ (i, j) can be seen as fine-grained analogues of

the crossover events analyzed in [31, 32, 49]. Roughly speaking, a

crossover event corresponds to Ψµ (i, j) increasing above n, mean-

ing that i and j cannot be contained in the same layer after the

normalized duality gap decreases below µ.

In what follows, we formulate the key ideas for proving Theo-

rem 3.16. Proofs can be found in the full version.

For a solutionw ∈ N(β), ∆w ll
refers to the LLS direction found

in the algorithm, and Rx ll
and Rs ll

denote the residuals as in (15).

For a subset I ⊂ [n] recall the definition

ε ll

I (w) := max

i ∈I
min{|Rx ll

i |, |Rs
ll

i |} .

Another important quantity in the analysis is

ξ ll

I (w) := min{∥Rx ll

I ∥, ∥Rs
ll

I ∥}

for a subset I ⊂ [n]. For a layering J = (J1, J2, . . . , Jp), we let

ξ ll

J
(w) = max

k ∈[p]
ξ ll

Jk (w) .

The key idea of the analysis is to extract information about the

optimal solutionw∗ = (x∗,y∗, s∗) from the LLS direction. The first

main lemma shows that if ∥Rx ll

Jq
∥ is large on some layer Jq , then

for at least one index i ∈ Jq , x
∗
i /xi ≥ 1/poly(n); the analogous

statement holds for ∥Rs ll

Jq
∥.

Lemma 4.2. Letw = (x ,y, s) ∈ N(β) for β ∈ (0, 1/8], and let J =

(J1, . . . , Jp) be aδ (w)-balanced layering, and let∆w
ll = (∆x ll,∆yll,∆s ll)

be the corresponding LLS direction. Then the following statement holds

for every q ∈ [p]:

(i) There exists i ∈ Jq such that

x∗i ≥
2xi

3

√
n
· (∥Rx ll

Jq ∥ − 2γn) . (26)

(ii) There exists j ∈ Jq such that

s∗j ≥
2sj

3

√
n
· (∥Rs ll

Jq ∥ − 2γn) . (27)

We emphasize that the lemma only shows the existence of such

indices i and j, but does not provide an efficient algorithm for

identifying them. It is also useful to note that for any i ∈ [n],

max{|Rx ll

i |, |Rs
ll

i |} ≥
1

2
− 5

4
β according to Lemma 3.10(iii). Thus, for

each q ∈ [p], we obtain a positive lower bound either in case (i) or

in case (ii).

The next lemma shows how we can argue for increase in the

potential function value for multiple pairs of variables, if we have

lower bounds on both x∗i and s∗j for some i, j ∈ [n], along with a

lower bound on ϱµ (i, j).

Lemma 4.3. Letw = (x ,y, s) ∈ N(2β) for β ∈ (0, 1/8], let µ = µ(w)
and δ = δ (w). Let i, j ∈ [n] and 2 ≤ τ ≤ n such that for the optimal

solution w∗ = (x∗,y∗, s∗), we have x∗i ≥ βxi/(2
10n5.5) and s∗j ≥

βsj/(2
10n5.5), and assume ϱµ (i, j) ≥ −τ . Let µ ′ be the normalized

duality gap after Ω(
√
nτ log(χ̄∗ + n)) iterations subsequent to the

iterate w . Then Ψµ′(i, j) ≥ 2τ , and for every ℓ ∈ [n] \ {i, j}, either

Ψµ′(i, ℓ) ≥ 2τ , or Ψµ′(ℓ, j) ≥ 2τ .

We note that i and j as in the lemma are necessarily different,

since i = j would imply 0 = x∗i s
∗
i ≥ β2µ/(220n11).

The overall potential argument in the proof of Theorem 3.16

uses Lemma 4.3 in three cases: ξ ll

J
(w) ≥ 4γn (Lemma 4.2 applies);

ξ ll

J
(w) < 4γn and ℓδ

+
(J) ≤ 3γn ; and ξ ll

J
(w) < 4γn and ℓδ

+
(J) >

3γn . Here, δ+ refers to the value of δ after the LLS step. Note that

δ+ > 0 is well-defined, unless the algorithm terminated with an

optimal solution. In the full version we show how Lemma 4.3 can

be applied in each of the three cases.

4.1 The Iteration Complexity Bound for the
Vavasis-Ye Algorithm

We now show that the potential analysis described above also gives

an improved bound O(n2.5
logn log(χ̄A + n)) for the original VY

algorithm [49].

We recall the VY layering step. Order the variables via π such

that δπ (1) ≤ δπ (2) ≤ . . . ≤ δπ (n). The layers will be consecutive
sets in the ordering; a new layer starts with π (i + 1) each time

δπ (i+1) > дδπ (i), for a parameter д = poly(n)χ̄ .
As outlined in the Introduction, the VY algorithm can be seen as

a special implementation of our algorithm by setting κ̂i j = дγ/n.

With these edge weights, we have that κ̂δi j ≥ γ/n precisely if дδj ≥

δi .
2

2
For simplicity, in the Introduction we used дxi ≥ x j instead, which is almost the

same in the proximity in the central path.

772

A Scaling-Invariant Algorithm for Linear Programming Whose Running Time Depends Only on the Constraint Matrix STOC ’20, June 22–26, 2020, Chicago, IL, USA

With these edge weights, it is easy to see that our Layering(δ , κ̂)
subroutine finds the exact same components as VY. Moreover, the

layers will be the initial strongly connected components Ci of

Gδ,γ /n : due to the choice of д, this partition is automatically δ -
balanced. There is no need to call Verify-Lift.

The essential difference compared to our algorithm is that the

values κ̂i j = дγ/n are not lower bounds on κi j as we require, but
upper bounds instead. This is convenient to simplify the construc-

tion of the layering. On the negative side, the strongly connected

components of Ĝδ,γ /n may not anymore be strongly connected

in Gδ,γ /n . Hence, we cannot use Lemma 4.1, and consequently,

Lemma 4.3 does not hold.

Still, the κ̂i j bounds are overestimating κi j by at most a factor

poly(n)χ̄ . Therefore, the strongly connected components of Ĝδ,n/γ
are strongly connected in Gδ,σ for some σ = 1/(poly(n)χ̄).

Hence, the entire argument described in this section is applicable

to the VY algorithm, with a different potential function defined

with χ̄ instead of χ̄∗. This is the reason why the iteration bound

in Lemma 4.3, and therefore in Theorem 3.16, also changes to χ̄
dependency.

It is worth noting that due to the overestimation of the κi j values,
the VY algorithm uses a coarser layering than our algorithm. Our

algorithm splits up the VY layers into smaller parts so that ℓδ (J)

remains small, but within each part, the gaps between the variables

are bounded as a function of χ̄∗A instead of χ̄A.

5 INITIALIZATION
Our main algorithm (Algorithm 2 in Section 3.5), requires an initial

solution w0 = (x0,y0, s0) ∈ N(β). In this section, we remove this

assumption by adapting the initialization method of [49] to our

setting.

We use the “big-M method”, a standard initialization approach for

path-following interior point methods that introduces an auxiliary

system whose optimal solutions map back to the optimal solutions

of the original system. The primal-dual system we consider is

min c⊤x+Me⊤
¯

x max y⊤b + 2Me⊤z

Ax −A
¯

x = b A⊤y + z + s = c

x + x̄ = 2Me z + s̄ = 0

x , x̄ ,
¯

x ≥ 0 −A⊤y +
¯

s = Me

s, s̄,
¯

s ≥ 0.

(Init-LP)

The constraint matrix used in this system is

Â =
©­«
A 0 −A

I I 0

ª®¬
The next lemma, asserts that the χ̄ condition number of Â is not

much bigger than that of A of the original system (LP).

Lemma 5.1 ([49, Lemma 23]). χ̄Â ≤ 3

√
2(χ̄A + 1).

We extend this bound for χ̄∗.

Lemma 5.2. χ̄∗
Â
≤ 3

√
2(χ̄∗A + 1).

Also, for sufficiently largeM , the optimal solutions of the original

system are preserved. We let d be the min-norm solution to Ax = b,
i.e., d = A⊤(AA⊤)−1b.

Proposition 5.3. Assume both primal and dual of (LP) are feasible,

andM > max{(χ̄A + 1)∥c ∥, χ̄A∥d ∥}. Every optimal solution (x ,y, s)
to (LP), can be extended to an optimal solution (x ,

¯

x , x̄ ,y, s,
¯

s, s̄) to
(Init-LP); and conversely, from every optimal solution (x ,

¯

x , x̄ ,y, z, s,
¯

s, s̄)
to (Init-LP), we obtain an optimal solution (x ,y, s) by deleting the

auxiliary variables.

The next lemma is from [31, Lemma 4.4]. Recall thatw = (x ,y, s) ∈
N(β) if ∥xs/µ(w) − e ∥ ≤ β .

Lemma 5.4. Letw = (x ,y, s) ∈ P++ ×D++, and let ν > 0. Assume

that ∥xs/ν − e∥ ≤ τ . Then (1 − τ/
√
n)ν ≤ µ(w) ≤ (1 + τ/

√
n)ν and

w ∈ N(τ/(1 − τ)).

The new system has the advantage that we can easily initialize

the system with a feasible solution in close proximity to central

path:

Proposition 5.5. We can initialize system (Init-LP) close to the

central path with initial solution w0 = (x0,y0, s0) ∈ N(1/8) and

parameter µ(w0) ≈ M2
ifM > 15 max{(χ̄A + 1)∥c ∥, χ̄A∥d ∥}.

Detecting Infeasibility. For using the extended system (Init-LP),

we still need to assume that both the primal and dual programs in

(LP) are feasible. For arbitrary instances, we first need to check if

this is the case, or conclude that the primal or the dual (or both) are

infeasible.

This can be done by employing a two-phase method. The first

phase decides feasibility by running (Init-LP) with data (A,b, 0)
and M > χ̄A∥d ∥. The objective value of the optimal primal-dual

pair is 0 if and only if (LP) has a feasible solution. If the optimal

primal/dual solution (x∗,
¯

x∗, x̄∗,y∗, s∗,
¯

s∗, s̄∗) has positive objective
value, we can extract an infeasibility certificate.

Feasibility of the dual of (LP) can be decided by running (Init-LP)

on data (A, 0, c) andM > (χ̄A+1)∥c ∥ with the same argumentation:

Either the objective of the dual is 0 and therefore the dual optimal

solution (y∗,
¯

s∗, s∗, s̄∗) corresponds to a feasible dual solution of (LP)
or the objective value is negative and we extract a dual infeasibility

certificate.

Finding the Right Value of M . Whereas Algorithm 2 does not

require any estimate on χ̄∗ or χ̄ , for the initialization we need to

setM ≥ max{(χ̄A + 1)∥c ∥, χ̄A∥d ∥} as in Proposition 5.3.

A straightforward guessing approach (attributed to J. Renegar

in [49]) starts with a constant guess, say χ̄A = 100, constructs

the extended system, and runs the algorithm. In case the optimal

solution to the extended system does not map to an optimal solution

of (LP), we restart with χ̄A = 100
2
and try again; we continue

squaring the guess until an optimal solution is found.

This would still require a series of log log χ̄A guesses, and thus,

result in a dependence on χ̄A in the running time. However, if

we initially rescale our system using the near-optimal rescaling

Theorem 2.4, the we can turn the dependence from χ̄A to χ̄∗A. The

overall iteration complexity remainsO(n2.5
logn log(χ̄∗A+n)), since

the running time for the final guess on χ̄∗A dominates the total

running time of all previous computations due to the repeated

squaring.

Note that this guessing technique can handle bad guesses grace-

fully. For the first phase, if neither a feasible solution to (LP) is

returned nor a Farkas’ certificate can be extracted, we have proof

773

STOC ’20, June 22–26, 2020, Chicago, IL, USA Daniel Dadush, Sophie Huiberts, Bento Natura, and László A. Végh

that the guess was too low by the above paragraph. Similarly, in

phase two, when feasibility was decided in the affirmative for pri-

mal and dual, an optimal solution to (Init-LP) that corresponds to

an infeasible solution to (LP) serves as a certificate that another

squaring of the guess is necessary.

REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algo-

rithms, and Applications. Prentice-Hall, Inc.

[2] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig.

2018. Log-barrier interior point methods are not strongly polynomial. SIAM

Journal on Applied Algebra and Geometry 2, 1 (2018), 140–178.

[3] Sébastien Bubeck and Ronen Eldan. 2014. The entropic barrier: a simple and

optimal universal self-concordant barrier. arXiv preprint arXiv:1412.1587.

[4] Sergei Chubanov. 2014. A polynomial algorithm for linear optimization which

is strongly polynomial under certain conditions on optimal solutions. (2014).

http://www.optimization-online.org/DB_HTML/2014/12/4710.html.

[5] Michael B Cohen, Yin Tat Lee, and Zhao Song. 2019. Solving linear programs in

the current matrix multiplication time. In Proceedings of the 51st Annual ACM

SIGACT Symposium on Theory of Computing. 938–942.

[6] Samuel I Daitch and Daniel A Spielman. 2008. Faster approximate lossy general-

ized flow via interior point algorithms. In Proceedings of the 40th annual ACM

symposium on Theory of Computing. 451–460.

[7] Jesús A De Loera, Raymond Hemmecke, and Jon Lee. 2015. On Augmentation

Algorithms for Linear and Integer-Linear Programming: From Edmonds–Karp to

Bland and Beyond. SIAM Journal on Optimization 25, 4 (2015), 2494–2511.

[8] Jesús A De Loera, Sean Kafer, and Laura Sanità. 2019. Pivot Rules for Circuit-

Augmentation Algorithms in Linear Optimization. arXiv preprint arXiv:1909.12863

(2019).

[9] II Dikin. 1967. Iterative solution of problems of linear and quadratic programming.

Doklady Akademii Nauk 174, 4 (1967), 747–748.

[10] András Frank. 2011. Connections in Combinatorial Optimization. Number 38 in

Oxford Lecture Series in Mathematics and its Applications. Oxford University

Press.

[11] Jean-Louis Goffin. 1980. The relaxation method for solving systems of linear

inequalities. Mathematics of Operations Research 5, 3 (1980), 388–414.

[12] Clovis C Gonzaga. 1992. Path-following methods for linear programming. SIAM

review 34, 2 (1992), 167–224.

[13] Clovis C. Gonzaga and Hugo J. Lara. 1997. A note on properties of condition

numbers. Linear Algebra Appl. 261, 1 (1997), 269 – 273.

[14] Jackie CK Ho and Levent Tunçel. 2002. Reconciliation of Various Complexity and

Condition Measures for Linear Programming Problems and a Generalization of

Tardos’ Theorem. In Foundations of Computational Mathematics. World Scientific,

93–147.

[15] Satoshi Kakihara, Atsumi Ohara Ohara, and Takashi Tsuchiya. 2013. Information

geometry and interior-point algorithms in semidefinite programs and symmetric

cone programs. Journal of Optimization Theory and Applications 157 (2013),

749–780.

[16] Satoshi Kakihara, Atsumi Ohara Ohara, and Takashi Tsuchiya. 2014. Curva-

ture integrals and iteration complexities in SDP and symmetric cone programs.

Computational Optimization and Applications 57 (2014), 623–665.

[17] Narendra Karmarkar. 1984. A new polynomial-time algorithm for linear program-

ming. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing

(STOC). 302–311.

[18] Leonid G Khachiyan. 1979. A polynomial algorithm in linear programming. In

Doklady Academii Nauk SSSR, Vol. 244. 1093–1096.

[19] Tomonari Kitahara and Shinji Mizuno. 2013. A bound for the number of different

basic solutions generated by the simplex method. Mathematical Programming

137, 1-2 (2013), 579–586.

[20] Tomonari Kitahara and Takashi Tsuchiya. 2013. A simple variant of the Mizuno–

Todd–Ye predictor-corrector algorithm and its objective-function-free complexity.

SIAM Journal on Optimization 23, 3 (2013), 1890–1903.

[21] Guanghui Lan, Renato DC Monteiro, and Takashi Tsuchiya. 2009. A polynomial

predictor-corrector trust-region algorithm for linear programming. SIAM Journal

on Optimization 19, 4 (2009), 1918–1946.

[22] Yin Tat Lee and Aaron Sidford. 2014. Path finding methods for linear program-

ming: Solving linear programs in Õ (
√
rank) iterations and faster algorithms for

maximum flow. In Proceedings of the 55th Annual IEEE Symposium on Foundations

of Computer Science (FOCS). 424–433.

[23] Yin Tat Lee and Aaron Sidford. 2015. Efficient inverse maintenance and faster

algorithms for linear programming. In 2015 IEEE 56th Annual Symposium on

Foundations of Computer Science. 230–249.

[24] Yin Tat Lee and Aaron Sidford. 2019. Solving Linear Programs with Õ (
√

rank)

Linear System Solves. arXiv preprint 1910.08033.

[25] Aleksander Madry. 2013. Navigating central path with electrical flows: From

flows to matchings, and back. In Proceedings of the 54th IEEE Annual Symposium

on Foundations of Computer Science. IEEE, 253–262.

[26] Nimrod Megiddo. 1983. Towards a genuinely polynomial algorithm for linear

programming. SIAM J. Comput. 12, 2 (1983), 347–353.

[27] Nimrod Megiddo, Shinji Mizuno, and Takashi Tsuchiya. 1998. A modified layered-

step interior-point algorithm for linear programming.Mathematical Programming

82, 3 (1998), 339–355.

[28] Sanjay Mehrotra. 1992. On the implementation of a primal-dual interior point

method. SIAM Journal on Optimization 2, 4 (1992), 575–601.

[29] Shinji Mizuno, Michael Todd, and Yinyu Ye. 1993. On Adaptive-Step Primal-Dual

Interior-Point Algorithms for Linear Programming. Mathematics of Operations

Research - MOR 18 (11 1993), 964–981. https://doi.org/10.1287/moor.18.4.964

[30] Renato D.C. Monteiro and Takashi Tsuchiya. 2008. A strong bound on the integral

of the central path curvature and its relationship with the iteration-complexity

of primal-dual path-following LP algorithms. Mathematical Programming 115, 1

(2008), 105–149.

[31] Renato D. C. Monteiro and Takashi Tsuchiya. 2003. A Variant of the Vavasis-Ye

Layered-Step Interior-Point Algorithm for Linear Programming. SIAM Journal

on Optimization 13, 4 (2003), 1054–1079.

[32] Renato D. C. Monteiro and Takashi Tsuchiya. 2005. A New Iteration-Complexity

Bound for theMTY Predictor-Corrector Algorithm. SIAM Journal on Optimization

15, 2 (2005), 319–347.

[33] Neil Olver and László A. Végh. 2017. A simpler and faster strongly polynomial

algorithm for generalized flow maximization. In Proceedings of the Forty-Ninth

Annual ACM Symposium on Theory of Computing (STOC). 100–111.

[34] James Renegar. 1988. A polynomial-time algorithm, based on Newton’s method,

for linear programming. Mathematical Programming 40, 1-3 (1988), 59–93.

[35] James Renegar. 1994. Is it possible to know a problem instance is ill-posed?: some

foundations for a general theory of condition numbers. Journal of Complexity

10, 1 (1994), 1–56.

[36] James Renegar. 1995. Incorporating condition measures into the complexity

theory of linear programming. SIAM Journal on Optimization 5, 3 (1995), 506–

524.

[37] Alexander Schrijver. 2003. Combinatorial Optimization – Polyhedra and Efficiency.

Springer.

[38] György Sonnevend, Josef Stoer, and Gongyun Zhao. 1991. On the complex-

ity of following the central path of linear programs by linear extrapolation II.

Mathematical Programming 52, 1-3 (1991), 527–553.

[39] Daniel A Spielman and Shang-Hua Teng. 2004. Nearly-linear time algorithms for

graph partitioning, graph sparsification, and solving linear systems. In Proceedings

of the 36th Annual ACM Symposium on Theory of Computing (STOC).

[40] G.W. Stewart. 1989. On scaled projections and pseudoinverses. Linear Algebra

Appl. 112 (1989), 189 – 193. https://doi.org/10.1016/0024-3795(89)90594-6

[41] Éva Tardos. 1985. A strongly polynomial minimum cost circulation algorithm.

Combinatorica 5, 3 (01 Sep 1985), 247–255.

[42] Éva Tardos. 1986. A strongly polynomial algorithm to solve combinatorial linear

programs. Operations Research (1986), 250–256.

[43] Michael J. Todd. 1990. A Dantzig–Wolfe-Like Variant of Karmarkar’s

Interior-Point Linear Programming Algorithm. Operations Research

38, 6 (1990), 1006–1018. https://doi.org/10.1287/opre.38.6.1006

arXiv:https://doi.org/10.1287/opre.38.6.1006

[44] Michael J. Todd, Levent Tunçel, and Yinyu Ye. 2001. Characterizations, bounds,

and probabilistic analysis of two complexity measures for linear programming

problems. Mathematical Programming 90, 1 (01 Mar 2001), 59–69.

[45] Levent Tunçel. 1999. Approximating the complexity measure of Vavasis-Ye

algorithm is NP-hard. Mathematical Programming 86, 1 (01 Sep 1999), 219–223.

[46] Pravin M Vaidya. 1989. Speeding-up linear programming using fast matrix

multiplication. In Proceedings of the 30th IEEE Annual Symposium on Foundations

of Computer Science. 332–337.

[47] Jan van den Brand. 2020. ADeterministic Linear Program Solver in CurrentMatrix

Multiplication Time. In Proceedings of the Symposium on Discrete Algorithms

(SODA).

[48] Stephen A Vavasis. 1994. Stable numerical algorithms for equilibrium systems.

SIAM J. Matrix Anal. Appl. 15, 4 (1994), 1108–1131.

[49] Stephen A. Vavasis and Yinyu Ye. 1996. A primal-dual interior point method

whose running time depends only on the constraint matrix. Mathematical Pro-

gramming 74, 1 (1996), 79–120.

[50] László A. Végh. 2017. A Strongly Polynomial Algorithm for Generalized Flow

Maximization. Mathematics of Operations Research 42, 2 (2017), 179–211.

[51] Yinyu Ye. 1997. Interior-Point Algorithms: Theory and Analysis. John Wiley and

Sons, New York.

[52] Yinyu Ye. 2005. A new complexity result on solving the Markov decision problem.

Mathematics of Operations Research 30, 3 (2005), 733–749.

[53] Yinyu Ye. 2011. The simplex and policy-iterationmethods are strongly polynomial

for the Markov decision problem with a fixed discount rate. Mathematics of

Operations Research 36, 4 (2011), 593–603.

774

http://www.optimization-online.org/DB_HTML/2014/12/4710.html
https://doi.org/10.1287/moor.18.4.964
https://doi.org/10.1016/0024-3795(89)90594-6
https://doi.org/10.1287/opre.38.6.1006
https://arxiv.org/abs/https://doi.org/10.1287/opre.38.6.1006

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Organization

	2 Finding an approximately optimal rescaling
	2.1 The Circuit Imbalance Measure
	2.2 A Min-Max Theorem on kappa-star
	2.3 Finding Circuits: A Detour in Matroid Theory

	3 A scaling-invariant layered least squares interior-point algorithm
	3.1 Preliminaries on Interior-Point Methods
	3.2 Predictor and Corrector Steps
	3.3 Layered Least Squares Direction
	3.4 The Layering Procedure
	3.5 The Overall Algorithm

	4 The potential function and the overall analysis
	4.1 The Iteration Complexity Bound for the Vavasis-Ye Algorithm

	5 Initialization
	References

