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Abstract

This paper shows several connections between data structure problems and cryptography
against preprocessing attacks. Our results span data structure upper bounds, cryptographic
applications, and data structure lower bounds, as summarized next.

First, we apply Fiat–Naor inversion, a technique with cryptographic origins, to obtain a data
structure upper bound. In particular, our technique yields a suite of algorithms with space S and
(online) time T for a preprocessing version of the N -input 3SUM problem where S3 ·T = Õ(N6).
This disproves a strong conjecture (Goldstein et al., WADS 2017) that there is no data structure
that solves this problem for S = N2−δ and T = N1−δ for any constant δ > 0.

Secondly, we show equivalence between lower bounds for a broad class of (static) data struc-
ture problems and one-way functions in the random oracle model that resist a very strong form
of preprocessing attack. Concretely, given a random function F : [N ] → [N ] (accessed as an
oracle) we show how to compile it into a function GF : [N2] → [N2] which resists S-bit prepro-
cessing attacks that run in query time T where ST = O(N2−ε) (assuming a corresponding data
structure lower bound on 3SUM). In contrast, a classical result of Hellman tells us that F itself
can be more easily inverted, say with N2/3-bit preprocessing in N2/3 time. We also show that
much stronger lower bounds follow from the hardness of kSUM. Our results can be equivalently
interpreted as security against adversaries that are very non-uniform, or have large auxiliary
input, or as security in the face of a powerfully backdoored random oracle.

Thirdly, we give non-adaptive lower bounds for 3SUM which match the best known lower
bounds for static data structure problems. Moreover, we show that our lower bound generalizes
to a range of geometric problems, such as three points on a line, polygon containment, and
others.
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1 Introduction

Cryptography and data structures have long enjoyed a productive relationship [Hel80, FN00, LN93,
NSW08, BHKN13, BN16, ANSS16, NY15, LN18, JLN19]: indeed, the relationship has been referred
to as a “match made in heaven” [Nao13]. In this paper, we initiate the study of a new connection
between the two fields, which allows us to construct novel cryptographic objects starting from data
structure lower bounds, and vice versa. Our results are three-fold. Our first result is a new upper
bound for a data structure version of the classical 3SUM problem (called 3SUM-Indexing) using
Fiat–Naor inversion [FN00], a technique with cryptographic origins. This result refutes a strong
conjecture due to Goldstein, Kopelowitz, Lewenstein and Porat [GKLP17]. In our second and main
result, we turn this connection around, and show a framework for constructing one-way functions
in the random oracle model whose security bypasses known time/space tradeoffs, relying on any of
a broad spectrum of (conjectured) data structure lower bounds (including for 3SUM-Indexing). As
a third result, we show new lower bounds for a variety of data structure problems (including for
3SUM-Indexing) which match the state of the art in the field of static data structure lower bounds.

Next, we describe our results, focusing on the important special case of 3SUM-Indexing; all of our
results and methods extend to the more general kSUM-Indexing problem where pairwise sums are
replaced with (k−1)-wise sums for an arbitrary constant integer k independent of the input length.
Section 1.1 gives background on 3SUM-Indexing, then Section 1.2 discusses our contributions.

1.1 3SUM and 3SUM-Indexing

One of the many equivalent formulations of the 3SUM problem is the following: given a set A of
N integers, output a1, a2, a3 ∈ A such that a1 + a2 = a3. There is an easy O(N2) time deter-
ministic algorithm for 3SUM. Conversely, the popular 3SUM conjecture states that there are no
sub-quadratic algorithms for this problem [GO95, Eri99].

Conjecture 1 (The “Modern 3SUM conjecture”). 3SUM cannot be solved in time O(N2−δ) for
any constant δ > 0.

Conjecture 1 has been helpful for understanding the precise hardness of many geometric prob-
lems [GO95, dBdGO97, BVKT98, ACH+98, Eri99, BHP01, AHI+01, SEO03, AEK05, EHPM06,
CEHP07, AHP08, AAD+12]. Furthermore, starting with the works of [VW09, Pǎt10], the 3SUM

conjecture has also been used for conditional lower bounds for many combinatorial [AV14, GKLP16,
KPP16] and string search problems [CHC09, BCC+13, AVW14, ACLL14, AKL+16, KPP16].

Our main results relate to a preprocessing variant of 3SUM known as 3SUM-Indexing, which
was first defined by Demaine and Vadhan [DV01] in an unpublished note and then by Goldstein,
Kopelowitz, Lewenstein and Porat [GKLP17]. In 3SUM-Indexing, there is an offline phase where
a computationally unbounded algorithm receives A = {a1, . . . , aN} and produces a data structure
with S words of w bits each; and an online phase which is given the target b and needs to find a
pair (ai, aj) such that ai+aj = b by probing only T memory cells of the data structure (i.e., taking
“query time” T ). The online phase does not receive the set A directly, and there is no bound on
the computational complexity of the online phase, only the number of queries it makes.

There are two simple algorithms that solve 3SUM-Indexing. The first stores a sorted version of A
as the data structure (so S = N) and in the online phase, solves 3SUM-Indexing in T = O(N) time
using the standard two-finger algorithm for 3SUM. The second stores all pairwise sums of A, sorted,
as the data structure (so S = O(N2)) and in the online phase, looks up the target b in T = Õ(1)
time.1 There were no other algorithms known prior to this work. This led [DV01, GKLP17] to

1The notation Õ(f(N)) suppresses poly-logarithmic factors in f(N).
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formulate the following three conjectures.

Conjecture 2 ([GKLP17]). If there exists an algorithm which solves 3SUM-Indexing with prepro-
cessing space S and T = Õ(1) probes then S = Ω̃(N2).

Conjecture 3 ([DV01]). If there exists an algorithm which solves 3SUM-Indexing with preprocessing
space S and T probes, then ST = Ω̃(N2).

Conjecture 4 ([GKLP17]). If there exists an algorithm which solves 3SUM-Indexing with T =
Õ(N1−δ) probes for some δ > 0 then S = Ω̃(N2).

These conjectures are in ascending order of strength:

Conjecture 4 ⇒ Conjecture 3 ⇒ Conjecture 2.

In terms of lower bounds, Demaine and Vadhan [DV01] showed that any 1-probe data structure
for 3SUM-Indexing requires space S = Ω̃(N2). They leave the case of T > 1 open. Goldstein
et al. [GKLP17] established connections between Conjectures 2 and 4 and the hardness of Set
Disjointness, Set Intersection, Histogram Indexing and Forbidden Pattern Document Retrieval.

1.2 Our Results

Our contributions are three-fold. First, we show better algorithms for 3SUM-Indexing, refuting
Conjecture 4. Our construction relies on combining the classical Fiat–Naor inversion algorithm,
originally designed for cryptographic applications, with hashing. Secondly, we improve the lower
bound of [DV01] to arbitrary T . Moreover, we generalize this lower bound to a range of geometric
problems, such as 3 points on a line, polygon containment, and others. As we argue later, any
asymptotic improvement to our lower bound will result in a major breakthrough in static data
structure lower bounds.

Finally, we show how to use the conjectured hardness of 3SUM-Indexing for a new cryptographic
application: namely, designing cryptographic functions that remain secure with massive amounts of
preprocessing. We show how to construct one-way functions in this model assuming the hardness
of a natural average-case variant of 3SUM-Indexing. Furthermore, we prove that this construc-
tion generalizes to an explicit equivalence between certain types of hard data structure problems
and OWFs in this preprocessing model. This setting can also be interpreted as security against
backdoored random oracles, a problem of grave concern in the modern world.

We describe these results in more detail below.

1.2.1 Upper bound for 3SUM-Indexing

Theorem 1. For every 0 ≤ δ ≤ 1, there is an adaptive data structure for 3SUM-Indexing with
space S = Õ(N2−δ) and query time T = Õ(N3δ).

In particular, Theorem 1 implies that by setting δ = 0.1, we get a data structure that solves
3SUM-Indexing in space S = Õ(N1.9) and T = Õ(N0.3) probes, and thus refutes Conjecture 4.

In a nutshell, the upper bound starts by considering the function f(i, j) = ai+aj. This function
has a domain of size N2 but a potentially much larger range. In a preprocessing step, we design
a hashing procedure to convert f into a function g with a range of size O(N2) as well, such that
inverting g lets us invert f . Once we have such a function, we use Fiat and Naor [FN00]’s general
space-time tradeoff for inverting functions, which gives non-trivial data structures for function
inversion as long as function evaluation can be done efficiently. Due to our definitions of the
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functions f and g, we can efficiently compute them at every input, which leads to efficient inversion
of f , and, therefore, an efficient solution to 3SUM-Indexing. For more details, see Section 3. We
note that prior to this work, the result of Fiat and Naor [FN00] was recently used by Corrigan-
Gibbs and Kogan [CK19] for other algorithmic and complexity applications. In a concurrent work,
Kopelowitz and Porat [KP19] obtain a similar upper bound for 3SUM-Indexing.

1.2.2 Lower bound for 3SUM-Indexing and beyond

We show that any algorithm for 3SUM-Indexing that uses a small number of probes requires large
space, as expressed formally in Theorem 2.

Theorem 2. For every non-adaptive algorithm that uses space S and query time T and solves
3SUM-Indexing, it holds that S = Ω̃(N1+1/T ).

The lower bound gives us meaningful (super-linear) space bounds for nearly logarithmic T .
Showing super-linear space bounds for static data structures for T = ω(logN) probes is a major
open question with significant implications [Sie04, Pǎt11, PTW10, Lar12, DGW19].

The standard way to prove super-linear space lower bounds for T = O(logN) is the so-called cell-
sampling technique. Applying this technique amounts to showing that one can recover a fraction of
the input by storing a subset of data structure cells and then using an incompressibility argument.
This technique applies to data structure problems which have the property that one can recover
some fraction of the input given the answers to any sufficiently large subset of queries.

Unfortunately, the 3SUM-Indexing problem does not have this property and the cell-sampling
technique does not readily apply. Instead we use a different incompressibility argument, closer to
the one introduced by Gennaro and Trevisan in [GT00] and later developed in [DTT10, DGK17].
We argue that given a sufficiently large random subset of cells, with high probability over a random
choice of input, it is possible to recover a constant fraction of the input. It is crucial for our proof
that the input is chosen at random after the subset of data structure cells, yielding a lower bound
only for non-adaptive algorithms.

Next, we show how to extend our lower bound to other data structure problems. For this, we
define 3SUM-Indexing-hardness, the data structure analogue of 3SUM-hardness. In a nutshell, a
data structure problem is 3SUM-Indexing-hard if there exists an efficient data structure reduction
from 3SUM-Indexing to it. We then show how to adapt known reductions from 3SUM to many
problems in computational geometry and obtain efficient reductions from 3SUM-Indexing to their
data structure counterparts. This in turns implies that the lower bound in Theorem 2 carries over
to these problems as well.

1.2.3 Cryptography against massive preprocessing attacks

In a seminal 1980 paper, Hellman [Hel80] initiated the study of algorithms for inverting (cryp-
tographic) functions with preprocessing. In particular, given a function F : [N ] → [N ] (ac-
cessed as an oracle), an adversary can run in unbounded time and produce a data structure of
S bits.2 Later, given access to this data structure and (a possibly uniformly random) y ∈ [N ]
as input, the goal of the adversary is to spend T units of time and invert y, namely output
an x ∈ [N ] such that F (x) = y. It is easy to see that bijective functions F can be inverted
at all points y with space S and time T where ST = O(N). Hellman showed that a random
function F can be inverted in space S and time T where S2T = O(N2), giving in particular a

2The unbounded preprocessing time is amortized over a large number of function inversions. Furthermore, typically
the preprocessing time is Õ(N).

3



solution with S = T = O(N2/3). Fiat and Naor [FN00] provided a rigorous analysis of Hell-
man’s tradeoff and additionally showed that a worst-case function can be inverted on a worst-
case input in space S and time T where S3T = O(N3), giving in particular a solution with
S = T = O(N3/4). A series of follow-up works [BBS06, DTT10, AAC+17] studied time-space
tradeoffs for inverting one-way permutations, one-way functions and pseudorandom generators.
In terms of lower bounds, Yao [Yao90] showed that for random functions (and permutations)
ST = Ω(N). Sharper lower bounds, which also quantify over the success probability and work
for other primitives such as pseudorandom generators and hash functions, are known from recent
work [GGKT05, Unr07, DGK17, CDGS18, CDG18, AAC+17].

Hellman’s method and followups have been extensively used in practical cryptanalysis, for
example in the form of so-called “rainbow tables” [Oec03]. With the increase in storage and
available computing power (especially to large organizations and nation states), even functions that
have no inherent weakness could succumb to preprocessing attacks. In particular, when massive
amounts of (possibly distributed) storage is at the adversary’s disposal, S could be Ω(N), and the
preprocessed string could simply be the function table of the inverse function F−1 which allows the
adversary to invert F by making a single access to the S bits of preprocessed string.

One way out of this scenario is to re-design a new function F with a larger domain. This is
a time-consuming and complex process [NIS01, NIS15], taking several years, and is fraught with
the danger that the new function, if it does not undergo sufficient cryptanalysis, has inherent
weaknesses, taking us out of the frying pan and into the fire.

We consider an alternative method that immunizes the function F against large amounts of
preprocessing. In particular, we consider an adversary that can utilize S ≫ N bits of preprocessed
advice, but can only access this advice by making a limited number of queries, in particular T ≪ N .
This restriction is reasonable when accessing the adversary’s storage is expensive, for example
when the storage consists of slow but massive memory, or when the storage is distributed across
the internet, or when the adversary fields a stream of inversion requests. (We note that while we
restrict the number of queries, we do not place any restrictions on the runtime.)

In particular, we seek to design an immunizing compiler that uses oracle access to F to compute
a function G(x) = GF (x). We want G to remain secure (for example, hard to invert) even against an
adversary that can make T queries to a preprocessed string of length S bits. Both the preprocessing
and the queries can depend on the design of the compiler G. Let G : [N ′] → [N ′]. To prevent the
inverse table attack (mentioned above), we require that N ′ > S.

From Data Structure Lower Bounds to Immunizing Compilers. We show how to use
data structure lower bounds to construct immunizing compilers. We illustrate such a compiler here
assuming the hardness of the 3SUM-Indexing problem. The compiler proceeds in two steps.

1. First, given oracle access to a random function F : [2N ] → [2N ], construct a new (random)
function F ′ : [N ] → [N2] by letting F ′(x) = F (0, x)‖F (1, x).

2. Second, let GF (x, y) = F ′(x)+F ′(y) (where the addition is interpreted, e.g., over the integers).

Assuming the hardness of 3SUM-Indexing for space S and T queries, we show that this con-
struction is one-way against adversaries with S bits of preprocessed advice and T online queries.
(As stated before, our result is actually stronger: the function remains uninvertible even if the ad-
versary could run for unbounded time in the online phase, as long as it can make only T queries.)
Conjecture 3 of Demaine and Vadhan, for example, tells us that this function is uninvertible as
long as ST = N2−ǫ for any constant ǫ > 0. In other words, assuming (the average-case version of)
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the 3SUM-Indexing conjecture of [DV01], this function is as uninvertible as a random function with
the same domain and range.

This highlights another advantage of the immunization approach: assume that we have several
functions (modeled as independent random oracles) F1, F2, . . . , Fℓ all of which are about to be ob-
solete because of the increase in the adversary’s space resources. Instead of designing ℓ independent
new functions F ′1, . . . , F

′
ℓ, one could use our immunizer G to obtain, in one shot, F ′i = GFi that are

as uninvertible as ℓ new random functions.

A General Connection. In fact, we show a much more general connection between (average-
case) data structure lower bounds and immunizing compilers. In more detail, we formalize a data
structure problem by a function g that takes as input the data d and a “target” y and outputs
a “solution” q. In the case of 3SUM-Indexing, d is the array of n numbers a1, . . . , an, and q is a
pair of indices i and j such that ai + aj = y. We identify a key property of the data structure
problem, namely efficient query generation. The data structure problem has an efficient query
generator if there is a function that, given i and j, makes a few queries to d and outputs y such
that g(d, y) = (i, j). In the case of 3SUM-Indexing, this is just the function that looks up ai and aj
and outputs their sum.

We then show that any (appropriately hard) data structure problem with an efficient query
generator gives us a one-way function in the preprocessing model. In fact, in Section 5.3, we show
an equivalence between the two problems.

The Necessity of Unproven Assumptions. The one-wayness of our compiled functions rely
on an unproven assumption, namely the hardness of the 3SUM-Indexing problem with relatively
large space and time (or more generally, the hardness of a data structure problem with an efficient
query generator). We show that unconditional constructions are likely hard to come by in that
they would result in significant implications in circuit complexity.

In particular, a long-standing open problem in computational complexity is to find a function
f : {0, 1}n → {0, 1}n which cannot be computed by binary circuits of linear size O(n) and depth
O(log n) [Val77, AB09, Frontier 3]. We show that even a weak one-way function in the random
oracle model with preprocessing (for specific settings of parameters) implies a super-linear circuit
lower bound. Our proof in Section 5.3.1 employs the approach used in several recent works [DGW19,
Vio19, CK19, RR20].

Relation to Immunizing Against Cryptographic Backdoors. Backdoors in cryptographic
algorithms pose a grave concern [CMG+16, CNE+14, Gre13], and a natural question is whether
one can modify an entropic but imperfect (unkeyed) function, which a powerful adversary may
have tampered with, into a function which is provably hard to invert even to such an adversary. In
other words, can we use a “backdoored” random oracle to build secure cryptography? One possible
formalization of a backdoor is one where an unbounded offline adversary may arbitrarily preprocess
the random oracle into an exponentially large lookup table to which the (polynomial-time) online
adversary has oracle access. It is easy to see that this formalization is simply an alternative
interpretation of (massive) preprocessing attacks. Thus, our result shows how to construct one-way
functions in this model assuming the hardness of a natural average-case variant of 3SUM-Indexing.

On immunizing against backdoors, a series of recent works [DGG+15, BFM18, RTYZ18, FJM18]
studied backdoored primitives including pseudorandom generators and hash functions. In this
setting, the attacker might be given some space-bounded backdoor related to a primitive, which
could allow him to break the system more easily. In particular, backdoored hash functions and
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random oracles are studied in [BFM18, FJM18]. Both of them observe that immunizing against
a backdoor for a single unkeyed hash function might be hard. For this reason, [BFM18] considers
the problem of combining two random oracles (with two independent backdoors). Instead, we look
at the case of a single random oracle but add a restriction on the size of the advice. [FJM18]
considers the setting of keyed functions such as (weak) pseudorandom functions, which are easier
to immunize than unkeyed functions of the type we consider in this work.

The BRO model and an alternative immunization strategy. As mentioned just above,
the recent work of [BFM18] circumvents the problem of massive preprocessing in a different way,
by assuming the existence of at least two independent (backdoored) random oracles. This allows
them to use techniques from two-source extraction and communication complexity to come up with
an (unconditionally secure) immunization strategy. A feature of their approach is that they can
tolerate unbounded preprocessing that is separately performed on the two (independent) random
oracles.

Domain extension and indifferentiability. Our immunization algorithm is effectively a do-
main extender for the function (random oracle) F . While it is too much to hope that GF is
indifferentiable from a random oracle [DGHM13], we show that it could still have interesting cryp-
tographic properties such as one-wayness. We leave it as an interesting open question to show that
our compiler preserves other cryptographic properties such as pseudorandomness, or alternatively,
to come up with other compilers that preserve such properties.

1.3 Other related work

Non-uniform security, leakage, and immunizing backdoors. A range of work on non-
uniform security, preprocessing attacks, leakage, and immunizing backdoors can all be seen as
addressing the common goal of achieving security against powerful adversaries that attack a cryp-
tographic primitive given access to some “advice” (or “leakage” or “backdoor information”) that
was computed in advance during an unbounded preprocessing phase.

On non-uniform security of hash functions, recent works [Unr07, DGK17, CDGS18] studied the
auxiliary-input random-oracle model in which an attacker can compute arbitrary S bits of leakage
before attacking the system and make T additional queries to the random oracle. Although our
model is similar in that it allows preprocessed leakage of a random oracle, we differ significantly in
two ways: the size of the leakage is larger, and the attacker only has oracle access to the leakage.
Specifically, their results and technical tools only apply to the setting where the leakage is smaller
than the random oracle truth table, whereas our model deals with larger leakage. Furthermore, the
random oracle model with auxiliary input allows the online adversary to access and depend on the
leakage arbitrarily while our model only allows a bounded number of oracle queries to the leakage;
our model is more realistic for online adversaries with bounded time and which cannot read the
entire leakage at query time.

Kleptography. The study of backdoored primitives is also related to — and sometimes falls
within the field of — kleptography, originally introduced by Young and Yung [YY97, YY96b,
YY96a]. A kleptographic attack “uses cryptography against cryptography” [YY97], by changing
the behavior of a cryptographic system in a fashion undetectable to an honest user with black-box
access to the cryptosystem, such that the use of the modified system leaks some secret information
(e.g., plaintexts or key material) to the attacker who performed the modification. An example of
such an attack might be to modify the key generation algorithm of an encryption scheme such that
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an adversary in possession of a “backdoor” can derive the private key from the public key, yet an
honest user finds the generated key pairs to be indistinguishable from correctly produced ones.

Data-structure versions of problems in fine-grained complexity. While the standard con-
jectures about the hardness of CNF-SAT, 3SUM, OV and APSP concern algorithms, the OMV con-
jecture claims a data structure lower bound for the Matrix-Vector Multiplication problem. While
algorithmic conjectures help to understand time complexity of the problems, it is also natural to
consider data structure analogues of the fine-grained conjectures in order to understand space com-
plexity of the corresponding problems. Recently, Goldstein et al. [GKLP17, GLP17] proposed data
structure variants of many classical hardness assumptions (including 3SUM and OV). Other data
structure variants of the 3SUM problem have also been studied in [DV01, BW09, CL15, CCI+19].
In particular, Chan and Lewenstein [CL15] use techniques from additive combinatorics to give
efficient data structures for solving 3SUM on subsets of the preprocessed sets.

2 Preliminaries

2.1 Notation

When an uppercase letter represents an integer, we use the convention that the associated lowercase
letter represents its base-2 logarithm: N = 2n, S = 2s, etc. [N ] denotes the set {1, . . . , N} that
we identify with {0, 1}n. x‖y denotes the concatenation of bit strings x and y. PPT stands for
probabilistic polynomial time.

We do not consistently distinguish between random variables and their realizations, but when
the distinction is necessary or useful for clarity, we denote random variables in boldface.

2.2 kSUM-Indexing

This paper focuses on the variant of 3SUM known as 3SUM-Indexing, formally defined in [GKLP17],
which can be thought of as a preprocessing or data structure variant of 3SUM. In fact, all our results
extend to the more general kSUM and kSUM-Indexing problems which consider (k − 1)-wise sums
instead of pairwise sums. We also generalize the definition of [GKLP17] by allowing the input to
be elements of an arbitrary abelian3 group. We use + to denote the group operation.

Definition 3. The problem kSUM-Indexing(G,N), parametrized by an integer N ≥ k − 1 and an
abelian group G, is defined to be solved by a two-part algorithm A = (A1,A2) as follows.

• Preprocessing phase. A1 receives as input a tuple A = (a1, . . . , aN ) of N elements from G
and outputs a data structure DA of size4 at most S. A1 is computationally unbounded.

• Query phase. Denote by Z the set of (k− 1)-wise sums of elements from A: Z = {∑i∈I ai :
I ⊆ [N ] ∧ |I| = k − 1}. Given an arbitrary query b ∈ Z, A2 makes at most T oracle queries
to DA and must output I ⊆ [N ] with |I| = k − 1 such that

∑
i∈I ai = b.5

3This is for convenience and because our applications only involve abelian groups; our results and techniques easily
generalize to the non-abelian case.

4The model of computation in this paper is the word RAM model where we assume that the word length is
Θ(logN). Furthermore we assume that words are large enough to contain description of elements of G, i.e., |G| ≤ Nc

for some c > 0. The size of a data structure is the number of words (or cells) it contains.
5Without loss of generality, we can assume that DA contains a copy of A and in this case A2 could return the

tuple (ai)i∈I at the cost of (k − 1) additional queries.
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We say that A is an (S, T ) algorithm for kSUM-Indexing(G,N). Furthermore, we say that A is
non-adaptive if the T queries made by A2 are non-adaptive (i.e., the indices of the queried cells
are only a function of b).

Remark 1. An alternative definition would have the query b be an arbitrary element of G (instead
of being restricted to Z) and A2 return the special symbol ⊥ when b ∈ G \ Z. Any algorithm
conforming to Definition 3 — with undefined behavior for b ∈ G \ Z — can be turned into an
algorithm for this seemingly more general problem at the cost of (k−1) extra queries: given output
I ⊆ [N ] on query b, return I if

∑
i∈I ai = b and return ⊥ otherwise.

Remark 2. The fact that kSUM-Indexing is defined in terms of (k−1)-wise sums of distinct elements
from G is without loss of generality for integers, but prevents the occurrence of degenerate cases in
some groups. For example, consider the case of 3SUM-Indexing for a group G such that all elements
are of order 2 (e.g., (Z/2Z)cn) then finding (i1, i2) such that ai1 + ai2 = 0 has the trivial solution
(i, i) for any i ∈ [N ].

Remark 3. In order to preprocess the elements of some group G, we assume an efficient way to
enumerate its elements. More specifically, we assume a time- and space-efficient algorithm for
evaluating an injective function Index : G → [N c] for a constant c. For simplicity, we also assume
that the word length is at least c logN so that we can store Index(g) for every g ∈ G in a memory
cell. For example, for the standard 3SUM-Indexing problem over the integers from 0 to N c, one can
consider the group G = (Z/mZ,+) for m = 2N c+1, and the trivial function Index(a+mZ) = a for
0 ≤ a < m. For ease of exposition, we abuse notation and write g instead of Index(g) for an element
of the group g ∈ G. For example, g mod p for an integer p will always mean Index(g) mod p.

The standard 3SUM-Indexing problem (formally introduced in [GKLP17]) corresponds to the
case where G = (Z,+) and k = 3. In fact, it is usually assumed that the integers are upper-bounded
by some polynomial in N , which is easily shown to be equivalent to the case where G = (Z/N c

Z,+)
for some c > 0, and is sometimes referred to as modular 3SUM when there is no preprocessing.

Another important special case is when G =
(
(Z/2Z)cn,+

)
for some c > 0 and k = 3. In this

case, G can be thought of as the group of binary strings of length cn where the group operation
is the bitwise XOR (exclusive or). This problem is usually referred to as 3XOR when there is no
preprocessing, and we refer to its preprocessing variant as 3XOR-Indexing. In [JV16], the authors
provide some evidence that the hardnesses of 3XOR and 3SUM are related and conjecture that
Conjecture 1 generalizes to 3XOR. We similarly conjecture that in the presence of preprocessing,
Conjecture 3 generalizes to 3XOR-Indexing.

Following Definition 3, the results and techniques in this paper hold for arbitrary abelian groups
and thus provide a unified treatment of the 3SUM-Indexing and 3XOR-Indexing problems. It is an
interesting open question for future research to better understand the influence of the group G on
the hardness of the problem.

Open Question 1. For which groups is kSUM-Indexing significantly easier to solve, and for which
groups does Conjecture 3 not hold?

2.2.1 Average-case hardness

This paper moreover introduces a new average-case variant of kSUM-Indexing (Definition 4 below)
that, to the authors’ knowledge, has not been stated in prior literature. Definition 4 includes an
error parameter ε, as for the cryptographic applications it is useful to consider solvers for average-
case kSUM-Indexing that only output correct answers with probability ε < 1.
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Definition 4. The average-case kSUM-Indexing(G,N) problem, parametrized by an abelian group
G and integer N ≥ k − 1, is defined to be solved by a two-part algorithm A = (A1,A2) as follows.

• Preprocessing phase. Let A be a tuple of N elements from G drawn uniformly at random
and with replacement6. A1(A) outputs a data structure DA of size at most S. A1 has
unbounded computational power.

• Query phase. Given a query b drawn uniformly at random in Z = {∑i∈I ai : I ⊆ [N ]∧|I| =
k − 1}, and given up to T oracle queries to DA, A2(b) outputs I ⊆ [N ] with |I| = k − 1 such
that

∑
i∈I ai = b.

We say that A = (A1,A2) is an (S, T, ε) solver for kSUM-Indexing if it answers the query
correctly with probability ε over the randomness of A, A, and the random query b. When ε = 1,
we leave it implicit and write simply (S, T ).

Remark 4. In the query phase of Definition 4, the query b is chosen uniformly at random in Z and
not in G. As observed in Remark 1, this is without loss of generality for ε = 1. When ε < 1, the
meaningful way to measure A’s success probability is as in Definition 4, since otherwise, if Z had
negligible density in G, A could succeed with overwhelming probability by always outputting ⊥.

3 Upper bound

We will use the following data structure first suggested by Hellman [Hel80] and then rigorously
studied by Fiat and Naor [FN00].

Theorem 5 ([FN00]). For any function F : X → X , and for any choice of values S and T such
that S3T ≥ |X |3, there is a deterministic data structure with space Õ(S) which allows inverting F
at every point making Õ(T ) queries to the memory cells and evaluations of F . 7

We demonstrate the idea of our upper bound for the case of 3SUM. Since we are only interested
in the pairwise sums of the N input elements a1, . . . , aN ∈ G, we can hash down their sums to a
set of size O(N2). Now we define the function f(i, j) = ai + aj for i, j ∈ [N ], and note that its
domain and range are both of size O(N2). We apply the generic inversion algorithm of Fiat and
Naor to f with |X | = O(N2), and obtain a data structure for 3SUM-Indexing.

First, in Lemma 6 we give an efficient data structure for the “modular” version of
kSUM-Indexing(G,N) where the input is an integer p = Õ(Nk−1) and N group elements
a1, . . . , aN ∈ G. Given query b ∈ G the goal is to find (i1, . . . , ik−1) ∈ [N ]k−1 such that
ai1+· · ·+aik−1

≡ b mod p.8 Then, in Theorem 7 we reduce the general case of kSUM-Indexing(G,N)
to the modular case.

Lemma 6. For every integer k ≥ 3, real 0 ≤ δ ≤ k − 2, and every integer p = Õ(Nk−1), there
is an adaptive data structure which uses space S = Õ(Nk−1−δ) and query time T = Õ(N3δ) and
solves modular kSUM-Indexing(G,N): for input a1, . . . , aN ∈ G and a query b ∈ G, it outputs
(i1, . . . , ik−1) ∈ [N ]k−1 such that ai1 + · · ·+ aik−1

≡ b mod p, if such a tuple exists.

6We remark that for the classical version of kSUM, the uniform random distribution of the inputs is believed to
be the hardest (see, e.g., [Pet15]).

7While the result in Theorem 1.1 in [FN00] is stated for a randomized preprocessing procedure, we remark that
a less efficient deterministic procedure which brute forces the probability space can be used instead.

8Recall from Remark 3 that this notation actually means Index(ai1 + · · ·+ aik−1
) ≡ Index(b) mod p.
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Proof. Let the N input elements be a1, . . . , aN ∈ G. The data structure stores all ai (this takes only
N memory cells) along with the information needed to efficiently invert the function f : [N ]k−1 → G
defined below. For (i1, . . . , ik−1) ∈ [N ]k−1, let

f(i1, . . . , ik−1) = ai1 + · · ·+ aik−1
mod p .

Note that:

1. f is easy to compute. Indeed, given the input, one can compute f by looking at only k − 1
input elements.

2. The domain of f is of size Nk−1, and the range of f is of size p = Õ(Nk−1).

3. Inverting f at a point b ∈ G finds a tuple (i1, . . . , ik−1) ∈ [N ]k−1 such that ai1 + · · ·+ aik−1
≡

b mod p, which essentially solves the modular kSUM-Indexing(G,N) problem.

Now we use the data structure from Theorem 5 with |X | = Õ(Nk−1) to invert f . This gives us a data
structure with space Õ(S +N) = Õ(S) and query time Õ(T ) for every S3T ≥ |X |3 = Õ(N3(k−1)),
which finishes the proof.

It remains to show that the input of kSUM-Indexing can always be hashed to a set of integers
[p] for some p = Õ(Nk−1). While many standard hashing functions will work here, we remark that
it is important for our application that the hash function of choice has a time- and space-efficient
implementation (for example, the data structure in [FN00] requires non-trivial implementations of
hash functions). Below, we present a simple hashing procedure which suffices for kSUM-Indexing; a
more general reduction can be found in Lemma 17 in [CK19].

Theorem 7. For every integer k ≥ 3 and real 0 ≤ δ ≤ k − 2, there is an adaptive data structure
for kSUM-Indexing(G,N) with space S = Õ(Nk−1−δ) and query time T = Õ(N3δ).

In particular, by taking k = 3 and δ = 0.1, we get a data structure which solves 3SUM-Indexing

in space S = Õ(N1.9) and query time T = Õ(N0.3), and, thus, refutes Conjecture 4.

Proof. Let the N inputs be a1, . . . , aN ∈ G. Let Z ⊆ [N c], |Z| <
( N
k−1

)
be the set of (k − 1)-wise

sums of the inputs: Z = {ai1 + · · ·+ aik−1
: 1 ≤ i1 < . . . < ik−1 ≤ N}.

Let I = {Nk−1, . . . , 3kcNk−1 logN} be an interval of integers. By the prime number theorem,
for large enough N , I contains at least 2cNk−1 primes. Let us pick n = logN random primes
p1, . . . , pn from I. For two distinct numbers z1, z2 ∈ Z, we say that they have a collision modulo p
if z1 ≡ z2 mod p.

Let g ∈ G be a positive query of kSUM-Indexing(G,N), that is, b = Index(g) ∈ Z. First, we
show that with high probability (over the choices of n random primes) there exists an i ∈ [n] such
that for every z ∈ Z \ {b}, z 6≡ b mod pi. Indeed, for every z ∈ Z \ {b}, we have that (z − b) has
at most logNk−1(N c) = c/(k − 1) prime factors from I. Since |Z| <

( N
k−1

)
, at most c

( N
k−1

)
/(k − 1)

primes from I divide (z − b) for some z ∈ Z. Therefore, a random prime from I gives a collision
between b and some z ∈ Z \ {b} with probability at most

c
(

N
k−1

)

k − 1
· 1

2cNk−1
≤ cNk−1

(k − 1)(k − 1)!
· 1

2cNk−1
=

1

2(k − 1)(k − 1)!
≤ 1

2k
.

Now we have that for every b ∈ Z, the probability that there exists an i ∈ [n] such that b does
not collide with any z ∈ Z \ {b} modulo pi, is at least 1 − (2−k)n = 1 − N−k. Therefore, with
probability at least 1− 1/N , a random set of n primes has the following property: for every b ∈ Z
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there exists an i ∈ [n] such that b does not collide with any z ∈ Z \ {b} modulo pi. Since such a
set of n primes exists, the preprocessing stage of the data structure can find it deterministically.

Now we construct n = logN modular kSUM-Indexing(G,N) data structures (one for each pi),
and separately solve the problem for each of the n primes. This results in a data structure as
guaranteed by Lemma 6 with a logN overhead in space and time. The data structure also stores
the inputs a1, . . . , aN . Once it sees a solution modulo pi, it checks whether it corresponds to a
solution to the original problem. Now correctness follows from two observations. Since the data
structure checks whether a solution modulo pi gives a solution to the original problem, the data
structure never reports false positives. Second, the above observation that for every b ∈ Z there is
a prime pi such that b does not collide with other z ∈ Z, a solution modulo pi will correspond to a
solution of the original problem (thus, no false negatives can be reported either).

Remark 5. A few extensions of Theorem 7 are in order.

1. The result of Fiat and Naor [FN00] also gives an efficient randomized data structure. Namely,
there is a randomized data structure with preprocessing running time Õ(|X |), which allows
inverting F at every point with probability at least 1 − 1/|X | over the randomness of the
preprocessing stage. Thus, the preprocessing phase of the randomized version of Theorem 5
runs in quasilinear time Õ(|X |) = Õ(Nk−1) (since sampling n = logN random primes from
a given interval can also be done in randomized time Õ(1)). This, in particular, implies that
the preprocessing time of the presented data structure for 3SUM-Indexing is optimal under the
3SUM Conjecture (Conjecture 1). Indeed, if for k = 3, the preprocessing time was improved
to N2−ε, then one could solve 3SUM by querying the N input numbers in (randomized or
expected) time N2−ε.

2. For the case of random inputs (for example, for inputs sampled as in Definition 4), one can
achieve a better time-space trade-off. Namely, if the inputs a1, . . . , aN are uniformly random
numbers from a range of size at least Ω(Nk−1), then for every 0 ≤ δ ≤ k − 2 there is a data
structure with space S = Õ(Nk−1−δ) and query time T = Õ(N2δ) (with high probability over
the randomness of the input instances). This is an immediate generalization of Theorem 7
equipped with the analogue of Theorem 5 for a function [FN00] with low collision probability,
which achieves the trade-off of S2T = |X |2.

3. For polynomially small ε = 1/|X |α (for constant α), the trade-off between S and T can
be further improved for the ε-approximate solution of kSUM-Indexing, using approximate
function inversion by De et al. [DTT10].

We have shown how to refute the strong 3SUM-Indexing conjecture of [GKLP17] using techniques
from space-time tradeoffs for function inversion [Hel80, FN00], specifically the general function
inversion algorithm of Fiat and Naor [FN00]. A natural open question is whether a more specific
function inversion algorithm could be designed.

Open Question 2. Can the space-time trade-off achieved in Theorem 7 be improved by exploiting
the specific structure of the 3SUM-Indexing problem?

4 Lower bound

We now present our lower bound: we prove a space-time trade-off of S = Ω̃(N1+1/T ) for any non-
adaptive (S, T ) algorithm. While it is weaker than Conjecture 3, any improvement on this result
would break a long-standing barrier in static data structure lower bounds: no bounds better than

11



T ≥ Ω( logN
log(S/N)) are known, even for the non-adaptive cell-probe and linear models [Sie04, Pǎt11,

PTW10, Lar12, DGW19].
Our main lower bound (Theorem 9) is proven with respect to a slight variant on Definition 3

to which our proof techniques more readily lend themselves, defined next.

Definition 8. The element version of the kSUM-Indexing(G,N) problem is exactly like the
kSUM-Indexing(G,N) problem (Definition 8), except that a solution is a set {ai}i∈I of group ele-
ments summing to a given input instead of simply a set I of indices.

Remark 6. It follows from the observation in Footnote 5 that a lower bound for (S, T ) algorithms
for the element version of the kSUM-Indexing(G,N) problem implies a lower bound for (S, T −k+1)
algorithms for the kSUM-Indexing(G,N) problem as defined in Definition 8.

Theorem 9. Let k ≥ 3 and N be integers, and let G be an abelian group with |G| ≥ Nk−1.
Then any non-adaptive (S, T ) algorithm for the element version of kSUM-Indexing(G,N) satisfies
S = Ω̃(N1+1/T ).

Our proof relies on a compressibility argument similar to [GT00, DTT10], also known as cell-
sampling in the data structure literature [PTW10]. Roughly speaking, we show that given an
(S, T ) algorithm (A1,A2), we can recover a subset of the input A by storing a randomly sampled
subset V of the preprocessed data structure DA and simulating A2 on all possible queries: the
simulation succeeds whenever the queries made by A2 fall inside V . Thus, by storing V along with
the remaining part of the input, we obtain an encoding of the entire input. This implies that the
length of the encoding must be at least the entropy of a randomly chosen input.

Proof. Consider an (S, T ) algorithm A = (A1,A2) for the element version of kSUM-Indexing(G,N).
For conciseness, in the rest of this proof, we write simply kSUM-Indexing(G,N) to denote the
element version of kSUM-Indexing(G,N).

We use A to design encoding and decoding procedures for inputs of kSUM-Indexing(G,N): we
first sample a subset V of the data structure cells which allows us to answer many queries, then
we argue that we can recover a constant fraction of the input from this set, which yields a succinct
encoding of the input.

Sampling a subset V of cells. For a query b ∈ G, Query(b) ⊆ [S] denotes the set of probes made
by A2 on input b (with |Query(b)| ≤ T , since A2 makes at most T probes to the data structure).
Given a subset V ⊆ [S] of cells, we denote by GV the set of queries in G which can be answered by
A2 by only making probes within V : GV = {b ∈ G : Query(b) ⊆ V }. Observe that for a uniformly
random set V of size v:

E
[
|GV |

]
=
∑

b∈G

Pr[Query(b) ⊆ V ] ≥ |G|
(
S−T
v−T

)
(S
v

) = |G|
T−1∏

i=0

v − i

S − i
≥ |G|

(
v − T

S − T

)T

,

where the last inequality uses that a/b ≥ (a− 1)/(b − 1) for a ≤ b. Hence, there exists a subset V
of size v, such that:

|GV | ≥ |G|
(
v − T

S − T

)T

,

and we will henceforth consider such a set V . The size v of V will be set later so that |GV | ≥ |G|/N .
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Using V to recover the input. Consider some inputA = (a1, . . . , aN ) for kSUM-Indexing(G,N).
We say that i ∈ [N ] is good if ai is output by A2 given some query in GV . Since queries in GV can
be answered by only storing the subset of cells of the data structure indexed by V , our decoding
procedure will retrieve from these cells all the good elements from A.

For a set of indices I ⊆ [N ], let aI =
∑

i∈I ai be the sum of input elements with indices in I.
Also, for a fixed set GV and i ∈ [N ], let g(i) ∈ GV by some element from GV which can be written
as a (k − 1)-sum of the inputs including ai. If there is no such element in GV , then let g(i) = ⊥.
Formally,

g(i) = min{g ∈ GV : ∃I ⊆ [N ] \ {i}, |I| = k − 2: ai + aI = g}
with the convention that if the minimum is taken over an empty set, then g(i) = ⊥.

Note that i ∈ [N ] is good if:

(
g(i) 6= ⊥

)
∧
(
∀J ⊆ [N ] \ {i}, |J | = k − 1, aJ 6= g(i)

)
. (1)

Indeed, observe that:

1. The first part of the conjunction guarantees that there exists b ∈ GV which can be decomposed
as b = ai + aI for I ⊆ [N ] \ {i}.

2. The second part of the conjunction guarantees that every decomposition b = aJ , |J | = k − 1
contains the elements ai.

By correctness of A, A2 outputs a decomposition of its input as a sum of (k − 1) elements in A
if one exists. For i as in (1), every decomposition b = aI contains the input ai, and, therefore,
A2(aI) = (ai1 , . . . , aik−1

), where i ∈ {i1, . . . , ik−1}.
We denote by NV ⊆ [N ] the set of good indices, and compute its expected size when A is

chosen at random according to the distribution in Definition 4, i.e., for each i ∈ [N ], ai is chosen
independently and uniformly in G.

E
[
|NV |

]
≥

N∑

i=1

Pr[g(i) 6= ⊥] Pr[∀J ⊆ [N ] \ {i}, |J | = k − 1, aJ 6= g(i) | g(i) 6= ⊥] (2)

Let L ⊆ [N ] \ {i} be a fixed set of indices of size |L| = k − 3. Then:

Pr[g(i) 6= ⊥] = Pr[∃I ⊆ [N ] \ {i}, |I| = k − 2: ai + aI ∈ GV ]

= 1− Pr[∀I ⊆ [N ] \ {i}, |I| = k − 2: ai + aI /∈ GV ]

= 1− Pr[∀I ′ ⊆ [N ] \ {i}, |I ′| = k − 3,∀i′ ∈ [N ] \ (I ′ ∪ {i}) : ai + aI′ + ai′ /∈ GV ]

≥ 1− Pr[∀i′ ∈ [N ] \ (L ∪ {i}) : ai + aL + ai′ /∈ GV ]

≥ 1−
(
1− |GV |

|G|

)N−(k−2)

,

where the first inequality follows from setting I ′ = L, the second inequality holds because for every
i′ ∈ [N ] \ (L ∪ {i}), ai′ needs to be distinct from the |GV | elements −ai − aL + g for g ∈ GV .
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Furthermore:

Pr[∀J ⊆ [N ] \ {i}, |J | = k − 1, aJ 6= g(i) | g(i) 6= ⊥]

= 1− Pr[∃J ⊆ [N ] \ {i}, |J | = k − 1, aJ = g(i) | g(i) 6= ⊥]

≥ 1−
∑

J⊆[N ]\{i}
|J |=k−1

Pr[aJ = g(i) | g(i) 6= ⊥]

≥ 1−
(
N − 1

k − 1

)
· 1

|G| ≥
1

2
,

where the first inequality uses the union bound and the last inequality uses that |G| ≥ Nk−1. Using
the previous two derivations in (2), we get:

E
[
|NV |

]
≥ N

2

(
1−

(
1− |GV |

|G|

)N−(k−2)
)

≥ N

4
, (3)

where the last inequality uses that |GV | ≥ |G|/N and (1− 1/N)N−(k−2) ≤ 1/2 for large enough N .

Encoding and decoding. It follows from (3) and a simple averaging argument that with prob-
ability at least 1/16 over the random choice of A, NV is of size at least N/5. We will henceforth
focus on providing encoding and decoding procedures for such inputs A. Specifically, consider the
following pair of encoding/decoding algorithms for A:

• Enc(A): given input A = (a1, . . . , aN ).

1. use A2 to compute the set NV ⊆ [N ] of good indices.

2. store
(
A1(A)j)j∈V and (ai)i/∈NV

.

• Dec
(
Enc(A)

)
: for each b ∈ G, simulate A2 on input b:

1. If Query(b) ⊆ V , use
(
A1(A)i

)
i∈V

(which was stored in Enc(A)) to simulate A2 and get
A2(b). By definition of NV , when b ranges over the queries such that Query(b) ⊆ V , this
step recovers (ai)i∈NV

.

2. Then recover (ai)i/∈Nv
directly from Enc(A).

Note that the bit length of the encoding is:

|Enc(A)| ≤ v · w + (N − |NV |) log |G| ≤ v · w +
4N

5
log |G|

where w is the word length and where the second inequality holds because we restrict ourselves to
inputs A such that |NV | ≥ N/5. By a standard incompressibility argument (see for example Fact
8.1 in [DTT10]), since our encoding and decoding succeeds with probability at least 1/16 over the
random choice of A, we need to be able to encode at least |G|N/16 distinct values, hence:

v · w +
4N

5
log |G| ≥ N log |G|+O(1) (4)

Finally, as discussed before, we set v such that |GV |/|G| ≥ 1/N . For this, by the computation
performed at the beginning of this proof, it is sufficient to have:

(
v − T

S − T

)T

≥ 1

N
.

14



Hence, we set v = T + (S − T )/N1/T and since T ≤ N ≤ S (otherwise the result is trivial), (4)
implies:

S = Ω̃(N1+1/T )

Remark 7. kSUM-Indexing(Z/N c
Z, N) reduces to kSUM-Indexing over the integers, so our lower

bound extends to kSUM-Indexing(Z, N), too. Specifically, the reduction works as follows: we
choose {0̄, . . . , N c − 1} as the set of representatives of Z/N c

Z. Given some input A ⊆ Z/N c
Z for

kSUM-Indexing(Z/N c
Z, N), we treat it as a list of integers and build a data structure using our algo-

rithm for kSUM-Indexing(Z, N). Now, given a query b̄ ∈ Z/N c
Z, we again treat it as an integer and

query the data structure at b, b+N c, . . . , b+(k−2)N c. The correctness of the reduction follows from
the observation that b̄ = āi1+· · ·+āik−1

if and only if ai1+· · ·+aik−1
∈ {b, b+N c, . . . , b+(k−2)N c}.

As we already mentioned, no lower bound better than T ≥ Ω( logN
log(S/N)) is known even for the

non-adaptive cell-probe and linear models, so Theorem 9 matches the best known lower bounds
for static data structures. An ambitious goal for future research would naturally be to prove
Conjecture 3. A first step in this direction would be to extend Theorem 9 to adaptive strategies
that may err with some probability.

Open Question 3. Must any (possibly adaptive) (S, T, ε) algorithm for 3SUM-Indexing(G,N)
require S = Ω̃(εN1+1/T )?

4.1 3SUM-Indexing-hardness

Gajentaan and Overmars introduced the notion of 3SUM-hardness and showed that a large class of
problems in computational geometry were 3SUM-hard [GO95]. Informally, a problem is 3SUM-hard
if 3SUM reduces to it with o(N2) computational overhead. These fine-grained reductions have the
nice corollary that the 3SUM conjecture immediately implies a Ω̃(N2) lower bound for all 3SUM-
hard problems. In this section, we consider a similar paradigm of efficient reductions between data
structure problems, leading to the following definition of 3SUM-Indexing-hardness.

Definition 10. A (static) data structure problem is defined by a function g : D × Q → Y where
D is the set of data (the input to the data structure problem), Q is the set of queries and Y is the
set of answers. (See, e.g., [Mil99].)

Definition 11 (3SUM-Indexing-hardness). A data structure problem g is 3SUM-Indexing-hard if,
given a data structure for g using space S and time T on inputs of size N , it is possible to construct
a data structure for 3SUM-Indexing using space O(S) and time T on inputs of size N .

As an immediate consequence of Definition 11, we get that all 3SUM-Indexing-hard problems
admit the lower bound of Theorem 9: i.e., the same lower bound as 3SUM-Indexing. This is stated
concretely in Corollary 12.

Corollary 12. Let g be a 3SUM-Indexing-hard data structure problem. Any non-adaptive data
structure for g using space S and time T on inputs of size N must satisfy S = Ω̃(N1+1/T ).

We now give two examples9 of how to adapt known reductions from 3SUM to 3SUM-hard prob-
lems and obtain efficient reductions between the analogous data structure problems. Corollary 12
then implies a lower bound of S = Ω̃(N1+1/T ) for these problems as well, matching the best known
lower bound for static data structure problems.

9This is far from exhaustive. All the problems from [GO95, BHP01] which inspired the two examples listed here
similarly admit efficient data structure reductions from 3SUM-Indexing.
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3 points on a line (3POL). Consider the following data-structure variant of the 3POL problem,
referred to as 3POL-Indexing. The input is a set X = {x1, . . . , xN} of N distinct points in R

2.
Given a query q ∈ R

2, the goal is to find {i, j} ⊆ [N ] such that xi, xj, and q are collinear (or report
⊥ if no such {i, j} exists).

The following observation was made in [GO95] and used to reduce 3SUM to 3POL: for distinct
reals a, b and c, it holds that a + b + c = 0 iff (a, a3), (b, b3), (c, c3) are collinear. We obtain an
efficient data-structure reduction from 3SUM-Indexing to 3POL-Indexing by leveraging the same idea,
as follows. Given input A = (a1, . . . , aN ) for 3SUM-Indexing, construct X =

{
(ai, a

3
i ) : i ∈ [N ]

}

and use it as input to a data structure for 3POL-Indexing. Then, given a query b for 3SUM-Indexing,
construct the query (−b,−b3) for 3POL-Indexing. Finally, observe that an answer {i, j} such that
(−b,−b3) is collinear with (ai, a

3
i ), (aj , a

3
j ) is also a correct answer for 3SUM-Indexing, by the

previous observation. The resulting data structure for 3SUM-Indexing uses the same space and
time as the original data structure and hence 3POL-Indexing is 3SUM-Indexing-hard.

Polygon containment (PC). The problem and reduction described here are adapted from
[BHP01]. Consider the following data-structure variant of the polygon containment problem, de-
noted by PC-Indexing: the input is a polygon P in R

2 with N vertices. The query is a polygon Q
with O(1) vertices and the goal is to find a translation t ∈ R

2 such that Q+ t ⊆ P .
We now give a reduction from 3SUM-Indexing to PC-Indexing. Consider input A = {a1, . . . , aN}

for 3SUM-Indexing and assume without loss of generality that it is sorted: a1 < · · · < aN . Let
0 < ε < 1. We now define the following “comb-like” polygon P : start from the base rectangle
defined by opposite corners (0, 0) and (3ā, 1), where ā is an upper bound on the elements of the
3SUM input (i.e., ∀a ∈ A, a < ā).10 For each i ∈ [N ], add two rectangle “teeth” defined by corners
(ai, 1), (ai + ε, 2) and (3ā− ai − ε, 1), (3ā− ai, 2) respectively. Note that for each i ∈ [N ] we have
one tooth with abscissa in [0, ā] and one tooth with abscissa in [2ā, 3ā], and there are no teeth in
the interval [ā, 2ā]. We then give P as input to a data structure for PC-Indexing.

Consider a query b for 3SUM-Indexing. If b ≥ 2ā we can immediately answer ⊥, since a pairwise
sum of elements in A is necessarily less than 2ā. We henceforth assume that b < 2ā. Define the
comb Q with base rectangle defined by corners (0, 0) and (3ā − b, 1) and with two rectangle teeth
defined by corners (0, 1), (ε, 2) and (3ā − b − ε, 1), (3ā − b, 2) respectively. It is easy to see that
there exists a translation t such that Q + t ⊆ P iff it is possible to align the teeth of Q with two
teeth of P . Furthermore, the two teeth of Q are at least ā apart along the x-axis, because b < 2ā
by assumption, which implies 3ā− b > ā. Hence, the leftmost tooth of Q needs to be aligned with
a tooth of P with abscissa in [0, ā], the rightmost tooth of Q needs to be aligned with a tooth of
P with abscissa in [2ā, 3ā], and the distance between the two teeth needs to be exactly 3ā − b.
In other words, there exists a translation t such that Q + t ⊆ P iff there exists {i, j} ⊆ [N ] such
that (3ā − aj) − ai = 3ā − b, i.e., ai + aj = b. The resulting data structure for 3SUM-Indexing

uses the same space and time as the data structure for PC-Indexing. This concludes the proof that
PC-Indexing is 3SUM-Indexing-hard.

10Our model assumes such a bound is known; see footnote 4. The reduction can also be adapted to work even if
the upper bound is not explicitly known.
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5 Cryptography against massive preprocessing attacks

5.1 Background on random oracles and preprocessing

A line of work initiated by Impagliazzo and Rudich [IR89] studies the hardness of a random oracle
as a one-way function. In [IR89] it was shown that a random oracle is an exponentially hard one-
way function against uniform adversaries. The case of non-uniform adversaries was later studied
in [Imp96, Zim98]. Specifically we have the following result.

Proposition 13 ([Zim98]). With probability at least 1 − 1
N over the choice of a random oracle

R : {0, 1}n → {0, 1}n, for all oracle circuits C of size at most T :

Pr
x←{0,1}n

[
CR
(
R(x)

)
∈ R−1

(
R(x)

)]
∈ Õ

(
T 2

N

)
.

In Proposition 13, the choice of the circuit occurs after the random draw of the oracle: in other
words, the description of the circuit can be seen as a non-uniform advice which depends on the
random oracle. Proposition 14 is a slight generalization where the adversary is a uniform Turing
machine independent of the random oracle, with oracle access to an advice of length at most S
depending on the random oracle. While the two formulations are equivalent in the regime S ≤ T ,
one advantage of this reformulation is that S can be larger than the running time T of the adversary.

Proposition 14 (Implicit in [DTT10]). Let A be a uniform oracle Turing machine whose number
of oracle queries is T : {0, 1}n → N. For all n ∈ N and S ∈ N, with probability at least 1− 1

N over
the choice of a random oracle R : {0, 1}n → {0, 1}n:

∀P ∈ {0, 1}S , Pr
x←{0,1}n

[
AR,P

(
R(x)

)
∈ R−1

(
R(x)

)]
∈ O

(
T (S + n)

N

)
.

In Proposition 14, the advice P can be thought of as the result of a preprocessing phase involving
the random oracle. Also, no assumption is made on the computational power of the preprocessing
adversary but it is simply assumed that the length of the advice is bounded.

Remark 8. Propositions 13 and 14 assume a deterministic adversary. For the regime of S > T
(which is the focus of this work), this assumption is without loss of generality since a standard
averaging argument shows that for a randomized adversary, there exists a choice of “good” ran-
domness for which the adversary achieves at least its expected success probability. This choice of
randomness can be hard-coded in the non-uniform advice, yielding a deterministic adversary.

Note, however, that Proposition 14 provides no guarantee when S ≥ N . In fact, in this case,
defining P to be any inverse mapping R−1 of R allows an adversary to invert R with probability
one by making a single query to P . So, R itself can no longer be used as a one-way function when
S ≥ N — but one can still hope to use R to define a new function fR that is one-way against an
adversary with advice of size S ≥ N . This idea motivates the following definition.

Definition 15. Let R : {0, 1}n → {0, 1}n be a random oracle. A one-way function in the random
oracle model with S preprocessing is an efficiently computable oracle function fR : {0, 1}n′ →
{0, 1}m′

such that for any two-part adversary A = (A1,A2) satisfying |A1(·)| ≤ S and where A2 is
PPT, the following probability is negligible in n:11

Pr
R,x←{0,1}n

[
fR
(
AR,A1(R)

2

(
fR(x)

))
= fR(x)

]
. (5)

11A negligible function is one that is in o(n−c) for all constants c.
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We say that f is an (S, T, ε)-one-way function if the probability in (5) is less than ε and A2 makes
at most T random oracle queries.

The adversary model in Definition 15 is very similar to the 1-BRO model of [BFM18], differing
only in having a restriction on the output size of A1. As was noted in [BFM18], without this
restriction (and in fact, as soon as S ≥ 2n

′

by the same argument as above), no function fR can
achieve the property given in Definition 15. [BFM18] bypasses this impossibility by considering
the restricted case of two independent oracles with two independent preprocessed advices (of unre-
stricted sizes). Our work bypasses it in a different and incomparable way, by considering the case
of a single random oracle with bounded advice.

5.2 Constructing one-way functions from kSUM-Indexing

Our main candidate construction of a OWF (Construction 17) relies on the hardness of average-case
kSUM-Indexing. First, we define what hardness means, then give the constructions and proofs.

Definition 16. Average-case kSUM-Indexing is (G,N, S, T, ε)-hard if the success probability12 of
any (S, T ) algorithm A = (A1,A2) in answering average-case kSUM-Indexing (G,N) queries is at
most ε.

Construction 17. For N ∈ N, let (G,+) be an abelian group and let R : [N ] → G be a random
oracle. Our candidate OWF construction has two components:

• the function fR : [N ]k−1 → G defined by fR(x) =
∑k−1

i=1 R(xi) for x ∈ [N ]k−1; and

• the input distribution, uniform over {x ∈ [N ]k−1 : x1 6= . . . 6= xk−1}.

Remark 9 (Approximate sampling). We depart from the standard definition of a OWF by using
a nonuniform input distribution in our candidate construction. This makes it easier to relate its
security to the hardness of kSUM-Indexing. As long as the input distribution is efficiently samplable,
a standard construction can be used to transform any OWF with nonuniform input into a OWF
which operates on uniformly random bit strings. Specifically, one simply defines a new OWF equal
to the composition of the sampling algorithm and the original OWF, (see [Gol01, Section 2.4.2]).

In our case, since N !/(N −k+1)! is not guaranteed to be a power of 2, the input distribution in
Construction 17 cannot be sampled exactly in time polynomial in logN . However, using rejection
sampling, it is easy to construct a sampler taking as input O(⌈logN⌉2) random bits and whose
output distribution is 1/N -close in statistical distance to the input distribution. It is easy to
propagate this exponentially13 small sampling error without affecting the conclusion of Theorem 18
below. A similar approximate sampling occurs when considering OWFs based on the hardness of
number theoretic problems, which require sampling integers uniformly in a range whose length is
not necessarily a power of two.

Remark 10. Similarly, the random oracle R used in the construction is not a random oracle in the
traditional sense since its domain and co-domain are not bit strings. If |G| and N are powers of
two, then R can be implemented exactly by a standard random oracle {0, 1}logN → {0, 1}log |G|.
If not, using a random oracle {0, 1}poly(⌈log |G|⌉) → {0, 1}poly(⌈log |G|⌉), and rejection sampling, it is
possible to implement an oracle R′ which is 1/N close to R in statistical distance. We can similarly
propagate this 1/N sampling error without affecting the conclusion of Theorem 18.

12Over the randomness of A, A, and the average-case kSUM-Indexing query. (Recall: A is kSUM-Indexing’s input.)
13Recall that N = 2n and that following Definition 15, n is the security parameter. Terms like “exponential” or

“negligible” are thus defined with respect to n.
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Theorem 18. Consider a sequence of abelian groups (GN )N≥1 such that |GN | ≥ Nk−1+c for some
c > 0 and all N ≥ k − 1, and a function S : N → R. Assume that for all polynomial T there exists
a negligible function ε such that average-case kSUM-Indexing is (GN , N, S(n), T (n), ε(n))-hard for
all N ≥ 1 (recall that n = logN). Then the function f defined in Construction 17 is a one-way
function in the random oracle model with S preprocessing.

The function fR in Construction 17 is designed precisely so that inverting fR on input x is
equivalent to solving kSUM-Indexing for the input A =

(
R(1), . . . , R(N)

)
and query

∑k−1
i=1 axi

.
However, observe that the success probability of a OWF inverter is defined for a random input
distributed as

∑
i∈I ai where I ⊆ [N ] is a uniformly random set of indices of size k−1. In contrast, in

average-case kSUM-Indexing, the query distribution is uniform over {∑i∈I ai : I ⊆ N, |I| = k− 1}.
These two distributions are not identical whenever there is a collision: two sets I and I ′ such that∑

i∈I ai =
∑

i∈I′ ai. The following two lemmas show that whenever |G| ≥ Nk−1+c for some c > 0,
there are few enough collisions that the two distributions are negligibly close in statistical distance,
which is sufficient to prove Theorem 18.

Lemma 19. Let N ≥ k − 1 be an integer and let G be an abelian group with |G| ≥ Nk−1+c for
some c > 0. Let A = (a1, . . . ,aN ) be a tuple of N elements drawn with replacement from G. Define
the following two random variables:

• X1 =
∑

i∈I ai where I ⊆ [N ] is a uniformly random set of size k − 1.

• X2: uniformly random over {
∑

i∈I ai : I ⊆ [N ], |I| = k − 1}.

Then the statistical distance is ‖(A,X1)− (A,X2)‖s = O
(
1/
√
N c
)
.

Proof. First, by conditioning on the realization of A:

‖(A,X1)− (A,X2)‖s =
∑

A∈GN

Pr[A = A]‖X1|A −X2|A‖s , (6)

where Xi|A denotes the distribution of Xi conditioned on the event A = A for i ∈ {1, 2}.
We now focus on a single summand from (6) corresponding to the realization A = A and

define Z = {∑i∈I ai : I ⊆ [N ], |I| = k − 1}, the set of (k − 1)-sums and for g ∈ G, cg =∣∣{I ⊆ [N ] : |I| = k − 1 ∧∑i∈I ai = g
}∣∣ is the number of (k−1)-sets of indices whose corresponding

sum equals g. Then we have:

‖X1|A −X2|A‖s =
1

2

∑

g∈Z

∣∣∣∣∣
1

|Z| −
cg( N
k−1

)
∣∣∣∣∣ .

Observe that cg ≥ 1 whenever g ∈ Z. We now assume that |Z| ≥ 1
2

( N
k−1

)
(we will later only use

the following derivation under this assumption). Splitting the sum on cg > 1:

‖X1|A −X2|A‖s =
1

2

∑

g : cg=1

(
1

|Z| −
1( N

k−1

)
)

+
1

2

∑

g : cg>1

(
cg( N
k−1

) − 1

|Z|

)
,

where we used the trivial upper bound |Z| ≤
(

N
k−1

)
and the assumption that |Z| ≥ 1

2

(
N
k−1

)
to
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determine the sign of the quantity inside the absolute value. We then write:

‖X1|A −X2|A‖s =
1

2

∑

g : cg=1

(
1

|Z| −
1( N

k−1

)
)

+
1

2

∑

g : cg>1

(
cg − 1( N
k−1

) +
1( N

k−1

) − 1

|Z|

)

≤ 1

2

∑

g : cg≥1

(
1

|Z| −
1( N

k−1

)
)

+
1

2

∑

g : cg>1

cg − 1( N
k−1

)

=
1

2

∑

g : cg≥1

(
1

|Z| −
1( N

k−1

)
)

+
1

2

∑

g : cg≥1

cg − 1( N
k−1

) =

(
1− |Z|( N

k−1

)
)

,

where the inequality uses again that |Z| ≤
(

N
k−1

)
, and the last equality uses that

∑
g:cg≥1

cg =
(

N
k−1

)

and that Z = {g : cg ≥ 1}.
We now consider some δ ≤ 1/2 which will be set at the end of the proof and split the sum in

(6) on |Z| ≤ (1− δ)
(

N
k−1

)
:

‖(A,X1)− (A,X2)‖s ≤ Pr

[
|Z| ≤

(
N

k − 1

)
(1− δ)

]
+ δ · Pr

[
|Z| >

(
N

k − 1

)
(1− δ)

]

≤ Pr

[
|Z| ≤

(
N

k − 1

)
(1− δ)

]
+ δ ,

where we used the trivial upper bound ‖X1|A −X2|A‖s ≤ 1 when |Z| ≤ (1− δ)
( N
k−1

)
and the upper

bound ‖X1|A −X2|A‖s < δ when |Z| > (1− δ)
(

N
k−1

)
by the previous derivation.

We now use Markov’s inequality and Lemma 20 below to upper bound the first summand:

‖(A,X1)− (A,X2)‖s ≤
1

δ
( N
k−1

)
((

N

k − 1

)
− E

[
|Z|
])

+ δ

≤ 1

δ|G|

(
N

k − 1

)
+ δ ≤ 1

δ(k − 1)!N c
+ δ .

where the last inequality uses that |G| ≥ Nk−1+c by assumption. Finally, we set δ = 1/
√
N c to get

the desired conclusion.

Lemma 20. Let N ≥ k − 1 be an integer and let G be an abelian group of size at least N . Let
A = (a1, . . . ,aN ) be a tuple of N elements drawn with replacement from G. Define Z =

{∑
i∈I ai :

I ⊆ [N ] ∧ |I| = k − 1} to be the set of (k − 1)-sums of coordinates of A, then:

(
N

k − 1

)
− E

[
|Z|
]
≤ 1

|G|

(
N

k − 1

)2

.

Proof. For each (k−1)-set of indices I ⊆ [N ], we define the random variable XI to be the indicator
that the sum

∑
i∈I ai collides with

∑
i∈I′ ai for some (k − 1)-set of indices I ′ 6= I:

XI = 1

{
∃I ′ ⊆ [N ] : |I ′| = k − 1 ∧ I ′ 6= I ∧

∑

i∈I

ai =
∑

i∈I′

ai

}
.

Then, using a union bound and since the probability of a collision is 1/|G|:

E
[
XI

]
≤
∑

I′ 6=I

Pr

[
∑

i∈I

ai =
∑

i∈I′

ai

]
≤
( N
k−1

)

|G| .
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On the other hand, there are at least as many elements in Z as (k−1)-sets of indices I ⊆ [N ] which
do not collide with any other (k − 1)-set:

|Z| ≥
∑

I⊆[N ]
|I|=k−1

(1−XI) =

(
N

k − 1

)
−

∑

I⊆[N ]
|I|=k−1

XI .

Combining the previous two inequalities concludes the proof.

We are now ready to prove Theorem 18.

Proof (Theorem 18). Throughout the proof, we fix N and write G,S, T to denote GN , S(n), T (n)
respectively, leaving the parameter n implicit. Suppose, for contradiction, that f is not a one-way
function in the random oracle model with S preprocessing. Then there exists A = (A1,A2) such
that |A1(·)| ≤ S and A2 is PPT, which inverts f with probability at least δ for some non-negligible
δ:

Pr
R,x

[
fR
(
AR,A1(R)

2

(
fR(x)

))
= fR(x)

]
≥ δ . (7)

whereR : [N ] → G is a random oracle and x ∈ [N ]k−1 is a random input to fR distributed as defined
in Construction 17. Then, we useA to build an (S, T ) solver A′ = (A′1,A′2) for kSUM-Indexing(G,N)
as follows. Given input A = (a1, . . . , aN ) for kSUM-Indexing(G,N), A′1 defines random oracle
R : [N ] → G such that R(i) = ai for i ∈ [N ] and outputs A1(R) — this amounts to interpreting
the tuple A as a function mapping indices to coordinates. A′2 is identical to A2. By construction,
whenever A2 successfully inverts fR (i.e., outputs x ∈ [N ]k−1 such that fR(x) = b for input b),
then the output of A′2 satisfies

∑k−1
i=1 axi

= b.
It follows from (7) that A′ as described thus far solves average-case kSUM-Indexing(G,N) with

success probability δ when given as input a query distributed as fR(x). By construction, the
distribution of fR(x) is identical to the distribution of

∑
i∈I ai for a uniformly random set I ⊆

[N ] of size k − 1, let X1 denote this distribution. However, average-case kSUM-Indexing(G,N)
is defined with respect to a distribution of queries which is uniform over {∑i∈I ai : I ⊆ [N ] ∧
|I| = k − 1}, let us denote this distribution by X2. By Lemma 19, we have that ‖(A,X1) −
(A,X2)‖s = O(1/

√
N c), hence A2 solves kSUM-Indexing(G,N) for the correct query distributionX2

with probability at least δ −O(1/
√
N c) which is non-negligible since δ is non-negligible. Denoting

by T the running time of A2, we just proved that A′ is an (S, T, δ − O(1/
√
N c)) adversary for

average-case kSUM-Indexing(G,N), which is a contradiction.

We conjecture that 3SUM-Indexing is (G,N, S, T, ε)-hard with ε = ST
N2 when G = (Z/N c

Z,+)
(the standard 3SUM-Indexing problem) and G = ((Z/2Z)cn,⊕) (the 3XOR-Indexing problem) for
c > 2. If this conjecture is true, the previous theorem implies the existence of (exponentially
strong) one-way functions in the random oracle model as long the preprocessing satisfies S ≤ N2−δ

for δ > 0. As per the discussion below Definition 15, Theorem 18 is vacuous in the regime where
S = Ω̃(N2).

5.3 Cryptography with preprocessing and data structures

In this section we show that the construction in Section 5.2 is a specific case of a more general
phenomenon. Specifically, Theorem 23 below states that the existence of one-way functions in the
random oracle model with preprocessing is equivalent to the existence of a certain class of hard-
on-average data structure problems. The next two definitions formalize the definitions of a data
structure problem and a solver for a data structure problem.
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Definition 21. An (S, T, ε)-solver for a data structure problem g : D × Q → Y is a two-part
algorithm B = (B1,B2) such that:

• B1 takes as input d ∈ D and computes a data structure φ(d) such that |φ(d)| ≤ S; and

• B2 takes as input query q ∈ Q, makes at most T queries to φ(d), and outputs y ∈ Y .

We say that a given execution of B succeeds if B2 outputs y = g(d, q).

Theorem 23 considers a special class of data structure problems for which a query can be
efficiently generated given its answer, as defined next.

Definition 22. Let g : D × Q → Y be a static data structure problem and let h : D × Y → Q.
Then h is an efficient query generator for g if h is computable in time poly(log |Q|, log |Y |) and

∀d ∈ D, y ∈ Y, g
(
d, h(d, y)

)
= y . (8)

For any h which is an efficient query generator for g, we say that (g, h) is (S, T, ε)-hard if for query
distribution q = h(d, y) where d ∈ D, y ∈ Y are uniformly random, no (S, T )-solver succeeds with
probability more than ε.14

Remark 11. For the 3SUM-Indexing problem, h is the function that takes d = (a1, . . . , an) and a
pair of indices y = (i, j) and outputs ai + aj. Constructing a corresponding function g for this h is
equivalent to solving the 3SUM-Indexing problem.

Remark 12. Let g, h be defined as in Definition 22. Then because g is a function and h satisfies (8),
it holds that for any given d ∈ D, the function h(d, ·) is injective. That is, for any d ∈ D, y, y′ ∈ Y ,

h(d, y) = h(d, y′) ⇒ y = y′ . (9)

Theorem 23. There exists a (S, T, ε)-hard data structure with efficient query generation iff there
exists a (S, T, ε)-hard OWF in the random oracle model with preprocessing.

More specifically, there is an efficient explicit transformation: (1) from any (S, T, ε)-hard data
structure with efficient query generation to a (S, T, ε)-hard OWF in the random oracle model with
preprocessing; and (2) from any (S, T, ε)-hard OWF in the random oracle model with preprocessing
to an explicit construction of a (S, T, ε)-hard data structure. For the second transformation, the
resulting data structure is always in QuasiP (with respect to its input size), and is in fact in P
whenever the input/output size of the underlying OWF is linear in the input/output size of the
random oracle.

Proof. We show the two implications in turn.15

• DS ⇒ OWF. Let g : {0, 1}Ñ × {0, 1}m′ → {0, 1}n′

be a data structure problem, and let

h : {0, 1}Ñ × {0, 1}n′ → {0, 1}m′

be an efficient query generator for g such that (g, h) is
(S, T, ε)-hard. Let R : {0, 1}n → {0, 1}n be a random oracle, such that Ñ = n2n. We define
an oracle function fR : {0, 1}n′ → {0, 1}m′

as follows:

fR(x) = h(R̂, x) ,

14For simplicity we consider the uniform distributions on D and Y , but all definitions and results easily generalize
to arbitrary distributions.

15Throughout this proof, we assume the domain and range of the data structure problem and OWF are bitstrings.
The proof generalizes to arbitrary domains and ranges.
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where R̂ denotes the binary representation of R.

f is a (S, T, ε)-hard OWF in the random oracle model with preprocessing, because it is
efficiently computable and hard to invert, as proven next. Since h is efficiently computable,
f runs in time poly(n′,m′).

It remains to show that f is (S, T, ε)-hard to invert. Suppose, for contradiction, that this is
not the case: namely, that there is a two-part adversary A = (A1,A2) such that

Pr
x←{0,1}n′

[
h
(
R,AA1(R)

2 (h(R,x))
)
= h(R,x)

]
> ε , (10)

and A1’s output size is at most S, A2 makes at most T queries to A1(R), and the probability
is also over the sampling of the random oracle R.

We use A to build (B1,B2), an (S, T )-solver for g, as follows. On input d ∈ {0, 1}Ñ , B1 simply

outputs φ(d) = A1(d). On input q ∈ {0, 1}m′

, B2 runs AA1(R)
2 (q); for each query ζ that A2’s

makes to A1(R), B2 simply queries φ(d) on ζ and returns the response to A2.

It follows from (9) and (10) that

Pr
d←{0,1}Ñ

y←{0,1}n
′

[
Bφ(d)
2 (h(d, y)) = y

]
≥ ε .

This contradicts the (S, T, ε)-hardness of (g, h).

• OWF ⇒ DS. Let fR : {0, 1}n′ → {0, 1}m′

be a (S, T, ε)-hard OWF in the random oracle
model with preprocessing, for a random oracle mapping n bits to n bits. We design a data
structure problem g : {0, 1}Ñ × {0, 1}m′ → {0, 1}n′

and an efficient query generator h for g
such that Ñ = n2n and (g, h) is (S, T, ε)-hard, as follows.

– h(d, y) = fd(y).

– g(d, q) = min{y ∈ Y : fd(y) = q}.16

h is computable in time poly(n′,m′), as required by Definition 22, because fd is efficiently
computable (in its input size). Furthermore, h satisfies (8) since g is, by construction, an
inverse of h.

Next, we show that (g, h) is (S, T, ε)-hard. Suppose the contrary, for contradiction. Then
there exists an (S, T )-solver B = (B1,B2) for g that succeeds with probability greater than
ε on query distribution q = h(d, y) = fd(y) where d, y are uniformly random. Then B is
quite literally an inverter for the OWF f , where d corresponds to the random oracle and q
corresponds to the challenge value to be inverted: by assumption, B satisfies

Pr
d←({0,1}n→{0,1}n)

y←{0,1}n
′

[
fd
(
BB1(d)2

(
fd(y)

))
= fd(y)

]
> ε .

This contradicts the (S, T, ε)-hardness of f .

Finally, g is computable in DTIME[2n
′ · poly(n′)], since it can be solved by exhaustively

searching all y ∈ {0, 1}n′

and outputting the first (i.e., minimum) such that fd(y) = q. Note

16For the purpose of this proof, g(d, ·) can be any inverse of fd that is computable in time O(2n
′

). We use the
concrete example of g(d, q) = min{y ∈ Y : fd(y) = q} for ease of exposition.
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that n′,m′ ∈ poly(n) since n′,m′ are the input and output sizes of a OWF with oracle access
to a random oracle mapping n bits to n bits. Hence, g is computable in time quasipolynomial
in |d| = Ñ = n2n, i.e., the size of g’s first input. In particular, g is computable in time
poly(Ñ ) whenever n′,m′ ∈ O(n).

Remark 13. As an example, a one-way function fR : {0, 1}5n → {0, 1}5n in the random oracle model
with preprocessing S = 23n would give an adaptive data structure lower bound for a function with
N inputs, N5 outputs, space S = Ω(N3/poly log(N)) and query time T = poly log(N). Finding
such a function is a big open problem in the area of static data structures [Sie04, Pǎt11, PTW10,
Lar12, DGW19].

5.3.1 Cryptography with preprocessing and circuit lower bounds

Although the existence of cryptography in the random oracle model with preprocessing does not
have such strong implications in complexity as the existence of regular cryptography, in Theorem 26
we show that it still has significant implications in circuit complexity.

A long-standing open problem in computational complexity is to find a function f : {0, 1}n →
{0, 1}n which cannot be computed by binary circuits of linear size O(n) and logarithmic depth
O(log n) [Val77, AB09, Frontier 3].17 We now show that a weak one-way function with preprocessing
would resolve this question.

First we recall the classical result of Valiant [Val77] asserting that every linear-size circuit of
logarithmic depth can also be efficiently computed in the common bits model.

Definition 24. A function f = (f1, . . . , fm) : {0, 1}n → {0, 1}m has an (s, t)-solution in the com-
mon bits model if there exist s functions h1, . . . , hs : {0, 1}n → {0, 1}, such that each fi can be
computed from t inputs and t functions hi.

Theorem 25 ([EGS75, Val77, Cal08, Vio09]). Let f : {0, 1}n → {0, 1}n. For every c, ε > 0 there
exists δ > 0 such that

1. If f can be computed by a circuit of size cn and depth c log n, then f has an (δn/ log log n, nε)-
solution in the common bits model.

2. If f can be computed by a circuit of size cn and depth c log n, then f has an (εn, 2log n
1−δ

)-
solution in the common bits model.

3. If f can be computed by a series-parallel circuit of size cn (and unbounded depth), then f has
an (εn, δ)-solution in the common bits model.

Now we show that a weak OWF in the random oracle model with preprocessing (for certain
settings of parameters) implies a super-linear circuit lower bound. This proof employs the approach
used in [DGW19, Vio19, CK19, RR20]. For ease of exposition, in the next theorem we assume that
the preprocessing is measured in bits (i.e., the word size w is a constant number of bits). For
this reason, a trivial inverter for a function fR : {0, 1}n′ → {0, 1}n′

requires space n′2n
′

. This
assumption is not crucial, and the result easily generalizes to any w, in which case the amount of
preprocessing is decreased by a factor of w.

17The same question is open even for series-parallel circuits [Val77]. A circuit is called series-parallel if there exists
a numbering ℓ of the circuit’s nodes s.t. for every wire (u, v), ℓ(u) < ℓ(v), and no pair of arcs (u, v), (u′, v′) satisfies
ℓ(u) < ℓ(u′) < ℓ(v) < ℓ(v′).
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Theorem 26. Let fR : {0, 1}n′ → {0, 1}n′

be a (S, T, ε)-hard OWF in the random oracle model
with preprocessing, for a random oracle R : {0, 1}n → {0, 1}n, where n′ = O(n). We construct a
function G ∈ P such that:

1. If S ≥ ω
(
n′2n

′

logn′

)
, T ≥ 2δn and ε = 1 for a constant δ > 0, then G cannot be computed by a

circuit of linear size and logarithmic depth.

2. If S ≥ δn′2n
′

, T ≥ 2n
1−o(1)

and ε = 1 for a constant δ > 0, then G cannot be computed by a
circuit of linear size and logarithmic depth.

3. If S ≥ δn′2n
′

, T ≥ ω(1) and ε = 1 for a constant δ > 0, then G cannot be computed by a
series-parallel circuit of linear size.

Proof. Let Ñ = n2n, and let g : {0, 1}Ñ × {0, 1}n′ → {0, 1}n′

be defined as

g(d, q) = min{y ∈ {0, 1}n′

: fd(y) = q} .

Let ℓ := n′2n
′

Ñ
, and let us define ℓ data structure problems gi : {0, 1}Ñ × [Ñ/n′] → {0, 1}n′

for i ∈ [ℓ]
as follows:

gi(d, q) = g(d, q + (i− 1) · Ñ/n′) ,

where we identify a binary string from {0, 1}n′

with an integer from [2n
′

]. Finally, we define

G : {0, 1}Ñ+log ℓ → {0, 1}Ñ as

G(d, i) = gi(d, 1)‖ . . . ‖gi(d, Ñ/n′) .

We claim that G cannot be computed by a circuit of linear size and logarithmic depth (a series-
parallel circuit of linear size, respectively). The proofs of the three statements of this theorem
follow the same pattern, so we only present the proof of the first one.

Assume, for contradiction, that there is a circuit of size O(Ñ ) and depth O(log Ñ) that computes
G. By Theorem 25, G has an (s, t)-solution in the common bits model, where s = O(Ñ/ log log Ñ) =
O(2nn/ log n) and t = Ñ δ/2 < 2δn. Since each output of g is a part of the output of G(·, i) for one
of the ℓ values of i, we have that g has an (s ·ℓ, t)-solution in the common bits model. In particular,
g can be computed with preprocessing s ·ℓ = O(n′2n

′

/ log n) and t = 2δn queries to the input. This,
in turn, implies a (n′2n

′

/ log n, 2δn)-inverter for fR.
Finally, we observe that the function G can be computed by Ñ/n′ evaluations of g, and g is

trivially computable in time 2n
′ · poly(n′). Therefore, G ∈ DTIME[Ñ · 2n′

] = DTIME[2O(n)] =
DTIME[ÑO(1)] = P.

Remark 14. We remark that ε = 1 is the strongest form of the theorem, i.e., the premise of the
theorem only requires a function fR which cannot be inverted on all inputs. Also, it suffices to have
fR which cannot be inverted by non-adaptive algorithms, i.e., algorithms where A2 is non-adaptive
(see Definition 15).
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