
This is a repository copy of A dual-mode strategy for performance-maximisation and 
resource-efficient CPS design.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/154184/

Version: Accepted Version

Article:

Dai, Xiaotian orcid.org/0000-0002-6669-5234, Chang, Wanli orcid.org/0000-0002-4053-
8898, Zhao, Shuai et al. (1 more author) (2019) A dual-mode strategy for performance-
maximisation and resource-efficient CPS design. ACM Transactions on Embedded 
Computing Systems (TECS). 85. 85:1-85:20. 

https://doi.org/10.1145/3358213

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



85

A Dual-Mode Strategy for Performance-Maximisation and

Resource-Efficient CPS Design

XIAOTIAN DAI, WANLI CHANG, SHUAI ZHAO, and ALAN BURNS, University of York, UK

The emerging scenarios of cyber-physical systems (CPS), such as autonomous vehicles, require implementing
complex functionality with limited resources, as well as high performances. This paper considers a common
setup in which multiple control and non-control tasks share one processor, and proposes a dual-mode strategy.
The control task switches between two sampling periods when rejecting (coping with) a disturbance. We
create an optimisation framework looking for the switching sampling periods and time instants that maximise
the control performance (indexed by settling time) and resource efficiency (indexed by the number of tasks that
are schedulable on the processor). The latter objective is enabled with schedulability analysis tailored for the
dual-mode model. Experimental results show that (i) given a set of tasks, the proposed strategy improves the
control performances whilst retaining schedulability; and (ii) given requirements on the control performances,
the proposed strategy is able to schedule more tasks.

CCS Concepts: ·Computer systems organization→ Embedded and cyber-physical systems; Real-time

systems.

Additional Key Words and Phrases: cyber-physical systems, dual-mode scheduling, resource dimensioning,
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1 INTRODUCTION

Cyber-physical systems (CPS) often involve a mixture of control tasks, which interact with the
physical dynamics in closed loops, and non-control tasks, which perform operations mainly on the
cyber side. The emerging application scenarios of CPS, such as autonomous vehicles and intelligent
robots, are implementing ever more complex functionality. On one hand, the requirements on
performances are high. In addition, the conventionally used indirect metrics like quadratic cost,
which usually enable closed-form analysis, do not satisfy the practical needs; instead, timing-related
metrics such as settling time are demanded. On the other hand, the resources on the implementation
platform are limited. This is a particularly important aspect when mass production and deployment
are targeted.
This work considers a common setup that multiple control and non-control tasks share one

processor. The non-control tasks are modelled as periodic tasks. The perturbations to the control
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Fig. 1. An illustration of the dual-mode model

plant arrive sporadically. All tasks are under fixed-priority preemptive scheduling. The general idea
of this paper is that, we exploit a dual-mode model, where the control task switches between two
sampling periods when rejecting (coping with) a disturbance, as illustrated in Figure 1, for better
control performance and resource utilisation.
Main contributions: The novelty of this work largely lies on developing a switching strategy

considering both control systems performance and scheduling resources utilisation simultaneously.
The existing works on switching systems in the control theory literature have mainly focused on
guaranteeing stability of arbitrary switching, using theoretical tools such as common quadratic
Lyapunov functions (CQLF) and switched Lyapunov functions (SLF) [20]. They generally do not
consider the implementation resources. In this work, while guaranteeing control stability, we
optimise the two switching sampling periods and the switching time instant in the dual-mode
model, towards minimising the settling time, which is a direct time-domain measurement of the
control performance, and maximising the number of tasks that are schedulable on the processor,
which reflects the resource efficiency. We also develop schedulability analysis for the dual-mode
model, to be used in the above optimisation framework. The entire strategy is analysable and
determined during the design phase.
This is the first work that targets both timing-related control performance and resource di-

mensioning within a switching system. We make a significant step from the control-scheduling
co-design literature. Generally, first, they can only treat simple indirect control performance met-
rics like quadratic cost, which facilitate optimisation but counter-intuitive; second, they consider
schedulability as a utilisation constraint to satisfy, but do not optimise the number of tasks that
are schedulable on a given platform, i.e., resource dimensioning. More detailed discussion will be
provided in the next section.
Organisation of the paper: Section 2 discusses the related work. The technical background

is described in Section 3, including the dual-mode task model. Two motivational examples are
given in Section 4, showing that by exploiting the dual-mode model, control performance and
resource efficiency can both be improved. Section 5 and 6 report the schedulability analysis and
the optimisation framework, respectively. Experimental results are presented in Section 7, and
Section 8 contains concluding remarks.
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2 RELATED WORK

Traditionally, control systems are designed independently from task scheduling, assuming that the
underlying operating platform will provide the necessary sampling periods. The idea of coopera-
tively designing a control system with real-time scheduling is introduced in [25], to overcome the
limitation of such independent assumption and improve task utilisation. It is later shown in [2] that
designing a control system separately without considering the underlying real-time facilities could
result in an unexpected control performance. The methods discussed for better scheduling control
tasks include flexible task models, timing compensation and feedback scheduling. In [3], the authors
introduce further scheduling issues that reduce control performance to motivate control-scheduling
co-design, e.g., sampling jitter, input-output delay, interferences from higher-priority tasks and
non-determinism from general-purpose hardware and off-the-shelf operating systems. None of the
above consider a switching strategy.

Approaches to dynamically adjust the sampling periods have been reported [11, 12, 18], resulting
in switching systems. However, these works have three main issues. First, the analysis on the
stability of arbitrary switching is insufficient, if there is any. Second, quadratic cost is used as the
objective, and the proposed approaches are not able to handle complicated and practically relevant
control performance metrics. Third, they satisfy schedulability as a constraint, and do not address
the problem of resource dimensioning, i.e., how many tasks can be scheduled on the given hardware
platform, or almost equivalently, how many implementation resources are required to schedule
all given tasks. On the contrary, our work guarantees stability, minimises the settling time, and
maximises the number of schedulable tasks.

There are other works leading to switching systems, but also with different issues. For instance,
an event-based controller is implemented in [1] as an alternative to the traditional time-triggered
control paradigm. As a consequence, the corresponding task of the controller will be released
aperiodically. The authors claim that this method could lead to large reduction in the CPU utilisation,
while making minor control performance degradation. However, while stability of an event-based
controller may be guaranteed, it is hard to verify the control performance against the requirement
as well as predict the scheduling performance.

Another relevant direction of work is the (m,k)-firm scheduling [19]. Instead of executing every
job instance of the task, the scheduler only needs to schedule at leastm job instances out of any k
consecutive releases. This is feasible as occasional misses of the output update can be tolerated by
most control applications. In [24], the (m,k)-firm model is used as a less stringent guarantee than
the hard deadline requirement. It is shown how to achieve graceful degradation when a system is
overloaded. The fundamental difference from our work is that, the (m,k)-firm scheduling is a passive
methodology reacting to unforeseen but bounded circumstances and keeping the degradation of
performances to an acceptable level, while we are implementing an active methodology pursuing
high performances and schedulability.

Our work also connects to the optimal sampling period assignment [8, 13]. The optimal sampling
problem is tackled in [8], where the sampling instants and control inputs are selected to minimise
a given function of the system state and control input. In particular, a necessary condition for the
optimality of a set of sampling instants is derived and a quantization-based sampling strategy is
proposed to be computationally tractable. However, the proposed method is only applied in the
LQR (linear quadratic regulation) problem, which is relatively simple to analyse due to its quadratic
cost function. The implementation resources are not considered.
Online optimal sampling period assignment is investigated in [13] to maximise the control

performance. A feedback scheduler is developed to periodically assign new sampling periods based
on the current plant states. It is shown that most computation can be done online and stored in a
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Fig. 2. An illustration of the switched control model

look-up table. Again, only the quadratic cost function is considered. Besides, since the switching is
not fixed, yet occurs depending on the plant states in real time, stability cannot be guaranteed.

3 BACKGROUND

This section gives the technical background on the control systems under investigation and the
dual-mode task model, including its implementation. Further details on real-time task scheduling
and digital control systems can be found in [10, 14, 15].

3.1 Modelling of the control system

A discrete-time dynamic system can be mathematically modelled using a difference equation. In
this work, we use a transfer function in the z-domain,G(z), to describe the input-output dynamics
of a discrete-time linear time-invariant (LTI) single-input-single-output (SISO) control system [22]:

G(z) =
Y (z)

X (z)
=

b0 + b1z
−1
+ · · · + bmz

−m

a0 + a1z−1 + · · · + anz−n
(1)

where X (z) represents the system input, Y (z) represents the system output response, both in the z-
domain, n is the system order (the order ofG(z)), {ai | i ∈ {0, 1, . . . ,n}} and {bi | i ∈ {0, 1, . . . ,m}}

are constant coefficients. There is often a constraint on X (z) that has to be satisfied, known as
control input saturation.
Assuming the transfer function of the controller to be H (z), and the feedback path to be F (z),

the closed-loop transfer function can be written as:

Gc (z) =
G(z)H (z)

1 +G(z)H (z)F (z)
(2)

The controller H (z) is first designed in continuous time and then discretized. Depending on the
control task mode, i.e., the fast or the slow mode, two versions of controllers, HF (z) and HS (z) are
used mutually exclusively. Both controllers are designed using the same control law and ensured
to be stable, but with different time constants and parameters according to the sampling period
associated with the mode. A diagrammatic representation that demonstrates the overall feedback
loop is shown in Figure 2. The switching between modes is controlled by the switching logic, and
only one of the controllers is activated at any instant of time.
To specify the performance of a controller, the settling time [14, 15] is used. It is defined as the

time taken for a controlled plant to get within a certain range, normally 2% or 5%, of the new
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equilibrium, i,e, the steady-state, without subsequently deviating from it. In this work, the unit
step response is evaluated and the settling time is obtained by simulating the control system. In the
dual-mode task model that will be elaborated in the following subsection, the settling time varies
depending on the switching sampling periods and the switching time instant.

3.2 The dual-mode task model

Consider a task set Γ with n control tasks Γc = {τc(1),τc(2), · · · ,τc(n)} andm non-control tasks Γnc =
{τnc(1),τnc(2), · · · ,τnc(m)}. The task set is hosted on a fixed-priority preemptive scheduler using
deadlinemonotonic priority assignment. A non-control task in Γnc is defined as:τi ≡ (Ci ,Ti ,Di = Ti ),
where Ci is the worst-case execution time, Ti is the task period for periodic tasks, or the minimal
inter-arrival time for sporadic tasks, Di is the deadline which is set equal toTi . For a control task τi
in Γc under the dual-mode model:

τi ≡ (Mi ,Ci ,T
H
i ,T

L
i ,αi ,Di ,T

Γ

i ) (3)

where Mi = {MS , MF } is the task mode, in which MS stands for the slow mode, and MF for the
fast mode; Ci is the worst-case execution time; TH

i and T L
i are the fast-mode sampling period and

slow-mode sampling period, respectively; αi is a ratio that determines the time instant after which
a mode switch is performed, where αi is defined in the region of (0,1); Di is the deadline, and can
be set equal to TH

i . This ensures that, as long as the task is schedulable, no sampling period will be
missed. T Γ

i is the minimum inter-arrival time of disturbances from sporadic physical events. We
assume that the new disturbance will not arrive until the current one is fully rejected.
In this dual-mode model, the switching is performed bidirectionally. A control task initially

executes with the sampling period TH
i . A switching from TH

i to T L
i is then made at the relative

time t = αiT
Γ

i . As the change of task mode will not take effect until the next job release, the exact
switching point tS occurs at:

tS =

⌈
αiT

Γ

i

TH
i

⌉

·TH
i (4)

and

Ti =

{
TH
i , if t ≤ tS

T L
i , if t > tS

(5)

The task will switch back to TH
i when a new disturbance is experienced at t ≥ T Γ

i , and t will be
reset to 0. The task will stay in the slow mode if no disturbance occurs.
Generally speaking, a longer sampling period produces worse control performance and even

causes instability, but it can also lead to an improved system schedulability. We define an upper
bound T +i , beyond which the control system output response becomes unacceptable, and a lower
boundT −

i , which should keep the utilisation of the task τi not exceeding themaximum allowed value.
A simple and extreme value can be obtained fromCi/T

−
i ≤ 1. Overall we haveT −

i ≤ TH
i < T

L
i ≤ T +i .

SinceT −
i is a fixed value for a given control task, its priority is independent of the chosen switching

sampling periods and remains unchanged at run-time. Note that the choices of T +i and T −
i will not

be able to guarantee stability, which will be explained later in this section.
The task utilisation in this dual-mode model can be computed as

Ui = αi
Ci

TH
i

+ (1 − αi )
Ci

T L
i

, ∀τi ∈ ΓC (6)
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or to be more exact

Ui =
tSCi

T Γ

i T
H
i

+ (1 −
tS

T Γ

i

)
Ci

T L
i

, ∀τi ∈ ΓC (7)

Note that this is the worst-case utilisation. The task might not switch back to MF immediately
after T Γ

i , in which case the actual utilisation is smaller thanUi .
Implementing such a dual-mode task requires a run-time monitor and a software timer. When

a disturbance in the control system output is observed by the monitor (a threshold is crossed),
tHi is set and the timer starts. After the switching point tS , tLi is set. The routine described above
can be either executed in the kernel mode or integrated into the scheduler and invoked from the
scheduler handler. The run-time overhead is negligible in terms of both memory and computational
resources.
At the end of this section, we would like to make a note on the switching stability of this

dual-mode model. As discussed earlier in the paper, there have been theoretical tools developed to
ensure stability of arbitrary switching. In this model, the task only switches once with the switching
sampling periods and switching time instant fixed during the design phase. Therefore, as long as
both controllers corresponding to the two sampling periods are stable, there is no issue of switching
instability, given that there is enough separation between the two consecutive disturbances, which
follows the assumption on the minimum inter-arrival time.

4 MOTIVATIONAL EXAMPLES

In this section, we show the potential of the dual-mode strategy with two motivational examples.
First, for a given set of tasks, the control performance can be improved while the schedulability
is maintained. A control task that cannot meet the performance requirement with a uniform
sampling period is able to meet it when taking the dual-mode model. Second, while satisfying the
requirements on the control performance, more tasks can be scheduled on the processor.

4.1 Example One: Improving control performance

The control performance depends on how often a controller responds to the plant dynamics, i.e.,
sampling periods. For a control task with a uniform sampling period, in order to achieve high
performance, generally the period needs to be short. However, there is a bound on the sampling
period coming from the utilisation, which has been discussed in Section 3. In this example, we
consider a non-control task with the period Tj = 0.6s , the worst-case execution time Cj = 0.3s , and
its deadline equals to the period. Therefore, the utilisation of the control task cannot exceed 0.5
due to the existence of this non-control task.
We study a second-order plant, whose continuous-time dynamics is given in the s-domain by:

G(s) =
15

s2 − 0.2s + 25.01
(8)

To control this plant, a Proportional-Integral-Derivative (PID) controller is designed using the
following parameters1: Kp = 26.35, Ki = 66.09, Kd = 2.06. The transfer function of the PID controller
is:

H (s) =
2.06s2 + 26.35s + 66.09

s
(9)

To run this PID controller on a computer system, it needs to be discretized according to a sampling
period. We assume the worst-case execution time of the task Ci = 10ms and as mentioned above,

1This is done with the commonly used MATLAB PIDTuner. A description is available at: https://uk.mathworks.com/help/
control/ref/pidtuner.html.
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Fig. 3. Control system output response and input for (i) a uniform sampling period; (ii) the dual-mode strategy

the utilisationUi ≤ 0.5. Therefore, the minimum allowed sampling period isTi = 20ms . This results
in a discrete-time PID controller with the following transfer function in the z-domain[5]:

H (z) =
10.3z2 + 5.8z − 2.88

z − 1
(10)

The plant dynamics is then also discretized, leading to a discrete-time closed-loop transfer function
in the z-domain, as shown in Section 3.

However, this controller produces unsatisfactory output response, as illustrated in Figure 3. The
settling timeTS is 0.35s and does not satisfy the requirement T̂ S ≤ 0.3s . A shorter sampling period
may improve the control performance and meet its requirement, but will violate the constraint on
the utilisation, making the system unschedulable.
When a dual-mode model is applied, the control task can initially run at TH

i = 15ms , and then
switch to T L

i = 35ms after tS = 30ms . The schedulability is maintained and the timing of task
execution is illustrated in Figure 4. The control task has a higher priority. A formal and exact
schedulability analysis for a task set with dual-mode tasks will be given later in Section 5. The
controller in (9) needs to be discretized into two versions with sampling periods 15ms and 35ms ,
respectively: HF (z) and HS (z). Under this dual-mode model, the settling time is reduced to 0.18s ,
satisfying the control performance requirement. The system output response is plotted in Figure 3.
In both cases, the uniform sampling period and the dual-mode model, the constraint on the control
input is respected. Intuitively, the initial phase with a larger disturbance is more critical than
the later phase when the system has more or less settled down. Therefore, the dual-mode model
responding to the plant dynamics according to its needs is preferred.
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FinishTask i Task j Release

...

...

...

...

Deadline

Fig. 4. An illustration of the scheduling when the control task τi is under (i) the uniform sampling period,

Ti = 20ms (the top diagram); (ii) the dual-mode model, TH
i = 15ms and T L

i = 35ms (the bottom diagram).

Some repetitive task instances are omitted due to space limit. The control task τi has a higher priority.

4.2 Example Two: Improving system schedulability

This example demonstrates that the system schedulability can be improved when a dual-mode
model is applied. We assume four tasks with details described in Table 1. τ1 is a control task and the
other three are non-control tasks. This task set is ordered by the priority pi with 0 as the highest.
All tasks are released at the same time.

As shown in Figure 5 (the top half), this task set is initially unschedulable as the task τ4 (with the
lowest priority) finishes after its deadline. In fact, the total task utilisation is

∑
U = 1.1, exceeding

the maximum utilisation of a single processor. Further examining the data set identifies that the
control task has an utilisation of 0.4 and contributes most of the interference to τ4. In order to make
the task set schedulable, τ4 has to meet its deadline, by fitting the additional ∆Ci = 6ms (the block
in red) into the schedule.

Table 1. Parameters of the example task set. τ1 is a control task. τ2,τ3,τ4 are non-control tasks. pi is task

priority

Task pi Ci (ms) Ti (ms) Di (ms) Schedulable?
τ1 0 4 10 10 ✓

τ2 1 2 12 12 ✓

τ3 2 2 14 14 ✓

τ4 3 20 50 50 ×

We apply the dual-mode model and switch the sampling period of the control task τ1 (with the
highest priority), from 10ms to 20ms after t = 14ms . It can be seen in the bottom half of Figure 5,
the available time slots for τ4 increase due to the longer sampling period of τ1 after the switch.
This additional capacity makes the task set schedulable. Again, the schedulability analysis will be

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 85. Publication date: October 2019.
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Fig. 5. Converting τ1 into a dual-mode task makes an unschedulable task set (the top diagram, note the red

block) schedulable (the bottom diagram). All tasks are released at the same time.

provided later. Since the control system in this example settles to the steady state before t = 14ms ,
this dual-mode model does not introduce any penalty to the control performance.

5 SCHEDULABILITY ANALYSIS FOR THE DUAL-MODE MODEL

For the fixed-priority scheduling, the schedulability of a task can be checked through response-time
analysis. We assume that the tasks are independent without blocking due to sharing of other
resources. The worst-case response time Ri is calculated by adding the task worst-case execution
time Ci and the interference time due to preemptions from higher-priority tasks Ij :

Ri = Ci +

∑
Ij

= Ci +

∑

j ∈hp(i)

⌈
Ri

Tj

⌉
Cj

(11)

in which ⌈·⌉ is the ceiling function and hp(i) specifies the indices of all tasks that have higher
priorities than the task i . This equation indicates that the response time analysis of the dual-mode
task with two switching periods is no different from a single-period task, as the response time of
a task with a constrained (or implicit) deadline is independent of its own period. The worst-case
response time is compared against the deadline (i.e., the shorter period as explained in Section 3) to
check the schedulability. If the dual-mode task is schedulable with its shorter period, it will remain
schedulable with the longer period and during switching [7]. For the tasks with higher priorities
than the dual-mode task, the response time analysis remains unchanged, as the dual-mode task is a
lower-priority task for them and causes no interference, thus playing no role in the response time
analysis.
However, for the tasks with lower priorities than the dual-mode task, their response time is

influenced as the interference pattern in the dual-mode needs to be modelled Ð the response time
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analysis in (11) needs to be extended. Following the models introduced in Section 3, we consider
a lower-priority task τi and a dual-mode task τj , with j ∈ hp(i). The critical instant (maximum
interference) is when τj arrives at the same time as τi , runs with the shorter period first, switches
to the longer period at tS , but then switches back to the shorter period as early as possible (this
pattern being repeated). This follows from the fact that the worst-case execution time, Cj , remains
the same in both modes, and hence the maximum interference occurs when the task executes as
frequently as allowed by the model. Depending on the finishing time of the task τi , there are three
cases to consider for calculating the response time of τi :

(1) If Ri < tS , the task τj always executes withTH
j , and the resultant worst-case response time of

τi is no different from the case if τj is a normal periodic task with the period TH
j :

Ri = Ci +

⌈
Ri

TH
j

⌉

Cj

(2) If tS ≤ Ri ≤ T Γ

j , after the switching, the task τj will use T L
j which reduces the number of

interferences:

Ri = Ci +

(
tS

TH
j

+

⌈
Ri − tS

T L
j

⌉)

Cj (12)

(3) If Ri > T Γ

j , the worst-case behaviour is that the dual-mode task immediately switches back to

the fast mode after T Γ

j . We let the total interference time on the task τi during T Γ

j be denoted by IΓ ,

which can be derived from (12), and n indicate the number of T Γ

j that τi experiences:

Ri = Ci +





nIΓ +

⌈
Ri−nIΓ
TH
j

⌉
Cj , if (Ri mod T Γ

j ) < tS

nIΓ +

(
tS
TH
j

+

⌈
Ri−nIΓ−tS

T L
j

⌉)
Cj , if (Ri mod T Γ

j ) ≥ tS

(13)

in which n = ⌊Ri/T
Γ

j ⌋.
To generalise for all cases, we introduce the max() and min() functions which output the larger

or lower value of two parameters, respectively. Overall, we have:

Ri = Ci + nIΓ +

(⌈
min(tS ,Ri − nIΓ)

TH
j

⌉

+

⌈
max(0,Ri − nIΓ − tS )

T L
j

⌉)

Cj (14)

This models the interference from a single dual-mode task. For each additional such task, a similar
interference item Ij is added. The resulting response time equation can be solved in the usual way
(using fixed-point interaction on a recurrence relation). If all tasks are computed to have response
times no greater than their deadlines, then the set of control and non-control tasks is schedulable.

At the end of this section, we would like to point [6] to interested readers, where schedulability
analysis of mixed-criticality tasks with different periods is discussed. Contrary to our work that
all deadlines are expected to be met, deadline misses of low-criticality tasks can be tolerated
in [6]. In addition, earliest-deadline-first scheduling is assumed in [6], while we take fixed-priority
scheduling.

6 OPTIMISATION FRAMEWORK

As illustrated by the motivational examples in Section 4, the proposed dual-mode task model can
provide better control performance indexed by settling time and resource efficiency reflected by
the number of tasks that are schedulable. However, the success of this dual-mode model depends
on sensible parameters, which are challenging to select. These model parameters include the two

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 85. Publication date: October 2019.



A Dual-Mode Strategy for Performance-Maximisation and Resource-Efficient CPS Design 85:11

switching periods and the switching time instant for each control task, and will be referred to as
decision variables.
First, there is no analytical method to compute the settling time from the decision variables

mentioned above. Second, the relationship between the decision variables and the objectives
to optimise (settling time and utilisation) as well as the constraints (control input saturation
and schedulability) is complex and non-convex. Third, the decision space has a large number of
dimensions Ð for a given system with n control tasks, the dimension of the decision space to search
is 3n. Fourth, these decision variables are not independent. For instance, the decision variables
of the same task jointly contribute to the settling time. The decision variables of different tasks
collectively influence the system schedulability. In addition, as intuitively discussed earlier, there
exists a trade-off between the control performance and the resource efficiency, where in general
longer sampling periods can lead to reduced processor utilisation and thus better schedulability,
but may have negative impact on the settling time.

From the above analysis, we have to deploy heuristics to search the decision space for solutions
that respect all the constraints and optimise the objectives. Heuristic search has been adopted in
embedded real-time systems for searching feasible task parameter settings [4, 16, 17]. In particular,
genetic algorithms have been successfully applied for searching feasible task allocation, priority
ordering and resource sharing solutions of real-time systems in the presence of either network
communications or blocking [21, 23, 27].

In this section, we report an optimisation framework looking for the parameters in the dual-mode
model based on genetic algorithms. There are two scenarios coming from the practical demands:
(i) given a set of tasks, we would like to maximise the control performances while maintaining
schedulability; (ii) wewould like tomaximise the number of tasks that are schedulable on a processor
while satisfying control performance requirements. Before presenting the problem formulation
and explaining the solution approach, we will first discuss the parameter encoding.

6.1 Parameter encoding

Following the models in Section 3, the optimisation framework considers a set Γ with n plants to be
controlled (forming Γc ) andm non-control tasks (forming Γnc ). This problem of parameter tuning
(i.e., searching for the decision variables) under study can be effectively mapped to a typical mixed-
integer programming optimisation problem [26] with nonlinear inequality constraints, where a
correlation exists between the tuning parameters. For n control tasks in the dual-mode, the tuning
parameters are encoded as one sequence

ΨΓ = {TH
1 ,T

L
1 ,α1,T

H
2 ,T

L
2 ,α2, ...,T

H
n ,T

L
n ,αn}

where ΨΓ denotes the chromosome encoding of the task set Γ. For each control task τi in Γ, its tuning
decision variables should comply with the following value bounds and constraints, as previously
discussed in Section 3.2:

value bounds:





T −
i > 0

T +i < T
Γ

i

0 ≤ αi ≤ 1

constraint: T −
i ≤ TH

i < T
L
i ≤ T +i

where T −
i and T +i are predefined constants as mentioned earlier, providing value bounds for the

tuning parameters T L
i and TH

i . This encoding method is simple but effective, as there is often a
limited number of control tasks in the system, and hence the encoding sequence will not be long.
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6.2 Problem formulation

The control performance of τi , where τi ∈ Γc , is denoted as Pc (i), and

Pc (i) =
T̂ S i −TSi

T̂ S i
(15)

where TSi is the settling time and T̂ S i is the requirement. The overall control performance of a
system λC is computed by summing up the control performances of individual control tasks and
then taking the average:

λC =
1

n

n∑

i=1

Pc (i) (16)

With the above fitness function on λC , we can formulate the optimisation problem for the first
scenario that aims to maximise the control performance:

Given: a fixed task set

Maximise λC

On {αi ,T
H
i ,T

L
i | τi ∈ Γc }

s.t. ∀i ∈ Γc :

0 < αi ≤ 1

T −
i ≤ TH

i < T
L
i ≤ T +i

Pc (i) ≥ 0

∀τj ∈ Γ :

R j ≤ D j

(17)

In addition to the value bounds and constraint on the decision variables, there are two other
constraints to be respected: (i) the task set is schedulable; (ii) the control performance requirement
is satisfied. The schedulability test can be conducted using the schedulability analysis discussed in
Section 5. A solution point (a set of decision variables) resulting in a schedulable system (i.e., all the
tasks are able to meet their deadlines) is considered as feasible and assigned with a positive fitness
value based on the fitness function. For the solution points resulting in unschedulable systems, the
fitness value is 0, i.e., the globally minimum fitness value.
For each control task τi ∈ Γc , there exists a control performance requirement on the settling

time, denoted by T̂ S i as discussed above. The settling time TSi must be shorter than or equal to
this value, which is equivalent to Pc (i) ≥ 0. In addition, the constraint on the control input needs
to be respected, which can be checked together with the settling time when simulating the control
system. Solution points that fail to meet this requirement are also assigned with the minimum
fitness value (i.e., 0). By assigning 0 to the infeasible solution points, the genetic algorithm solver is
given a clear searching direction towards feasible space.

The problem formulation for the second scenario aiming to maximise the number of tasks that are
schedulable on the processor is similar to the one above, except for a different fitness function. We
use λU measuring the idle utilisation of the whole system, including both control and non-control
tasks, as the fitness function

λU = 1 −
∑

τi ∈Γ

Ui (18)

Once the optimisation is completed, we will deploy a simple exhaustive algorithm to allocate as
many more (non-control) tasks to the processor as possible. During this process, schedulability of
the entire system is always ensured. We cannot directly use the number of tasks that are schedulable
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as the fitness function, as its differentiability is poor. Many solution points will then have the same
fitness value, making it difficult for the genetic algorithm solver to conduct an effective search.

Based on the above discussion on the constraints and fitness functions, in the genetic algorithm
solver, the assignment of the fitness value (denoted as λ with a range of [0, 1]) for any solution
point under both scenarios with different fitness functions is summarised as follows

λ =





0, if (∃τi ∈ Γc , TSi ≥ T̂ S i ) ∨ (∃τj ∈ Γ, R j > D j )

λC , if optimising control performance

λU , otherwise

(19)

6.3 Execution of the genetic algorithm solver

With the parameter encoding, fitness functions and constraints constructed, the optimisation
problem under study can be fed to a general-purpose genetic algorithm solver. This solver starts
with a population of randomly generated but feasible (i.e., complying with all the constraints)
solution points (sets of decision variables) of a given system, based on the encoding approach
discussed earlier in Section 6.1. For each generation, the genetic algorithm evaluates every individual
point via one of the fitness functions given in Section 6.2, depending on the optimising scenario. A
limited number of individuals that have the best fitness values will be passed directly into the next
generation (i.e., elitism). Then, with tournament selection, the genetic algorithm produces the next
generation via generic crossover and mutation. With the above procedure, the genetic algorithm
continuously produces new generations, and intuitively, new solution points with better quality.
The genetic algorithm solver is terminated when either the ideal point (i.e., the upper bound for
the given fitness function) is achieved or the maximum number of generations is reached.
We would like to make a note that, in this work, we compute the precise control performance

(settling time) with simulation, since we aim to provide hard guarantees as demanded in CPS.
Approximations are possible to improve the computational efficiency, especially for certain classes
of control systems. In addition, those individuals that have been computed will not be evaluated
again in the next iterations, if no mutations/crossovers have been performed.

7 EXPERIMENTAL RESULTS

In this section, experiments are conducted to evaluate the proposed dual-mode strategy. First, we
examine its properties as compared with the uniform sampling period case. Then we demonstrate
both scenarios that maximise the control performance and the resource efficiency, respectively. We
also show the effectiveness of our optimisation solver, which is conducted and can be reproduced
via the genetic algorithm interface ga() provided by Matlab R2017b Global Optimization Toolbox
v3.4.32.

MATLAB/Simulink is adopted in the optimisation framework for simulating the control system. A
customised fixed-priority scheduler, namely the FPS-DUALmodule, is integrated into the simulation
model, as shown in Figure 6. The FPS-DUAL simulates the timing and scheduling sequences of
all tasks. It should be noted that the behaviour of the control systems depends on the timing and
scheduling that can be provided by the FPS-DUAL module. This implementation of co-simulation is
made publicly available for reproducibility3.

2https://uk.mathworks.com/products/global-optimization.html
3https://github.com/automaticdai/research-dual-period
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disturbances

references

reference

reference

+
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+
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FPS-DUAL

(task scheduler)

Control Task 1

Control Task 2

Control Task 3

Non-control Tasks

Fig. 6. The conceptual Simulink model with the FPS-DUAL module adopted for co-simulation of control

systems and scheduling under the dual-mode model

7.1 Effectiveness of the dual-mode strategy

In this experiment, we demonstrate the effectiveness of the proposed dual-modemodel by examining
its properties in comparison with uniform sampling periods. Specifically, we compare the control
performance of a plant that is controlled by a task with a uniform sampling period (SINGLE)
to a dual-mode task (DUAL) with equivalent utilisation referring to equation (6). The control
performance is expressed in the form of fitness for consistence (higher is better). Due to the
properties of DUAL, for each utilisation, there exists a number of possible solutions for the task
parameters. For the illustration purpose, we fix α to a median value, i.e., 0.5 and show all the
feasible combinations of periods using a simple linear programming method. The produced results
are shown in a box-plot of Figure 7.
From the figure, it can be seen that in most of the cases the control performance of dual-mode

tasks (box plots) outperforms the uniform sampling period (solid line with diamond markers).
DUAL and SINGLE have similar performances when the sampling period is small (< 18ms in this
case). For larger periods, however, DUAL starts to outperform SINGLE for most of the parameters.
The overlapped fitness happens whenTH

i = T
L
i , and in this case the dual-mode task behaves exactly

the same as a uniform sampling period task. Another observation is that the variation of all possible
parameters for DUAL can be significant, which indicates the importance of searching for the right
set of parameters.

7.2 Optimising control performance

This experiment considers a control system with three identical internally unstable plants. Each
plant is controlled by a periodic control task (with one or more sampling periods). Other non-control
functionalities in the system are also modelled as periodic tasks, and we assume five non-control
task. To validate the optimisation solution method (i.e., the searching method), we compare the
best results of the genetic algorithm with random search. To validate the efficiency of the solution
candidates using DUAL, we also compare the results with SINGLE, i.e., the uniform sampling period
without switching. In comparison, we use the best period for single-period tasks, which is found
by exhaustively exploring the whole period parameters space of all tasks. Task sets are generated
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Fig. 7. Demonstrating the control performance of tasks with uniform sampling periods (solid line with

diamond markers) and dual-mode tasks (box plots)

by the UUnifast algorithm [9]. The total utilisation for control tasks is bounded to [0.60, 0.99],
and the dual-mode limits are T −

i = 15ms and T +i = 25ms for each control task. The experiment is
conducted via sweeping the total utilisation of non-control tasks, simulating an increased pressure
on schedulability.
Figure 8 presents the overall control performance of this system (measured by fitness function

λC ) obtained by (i) the dual-mode strategy with the proposed optimisation framework, (ii) the
dual-mode strategy with random search and (iii) the traditional uniform sampling period model.
As shown in the figure, the uniform sampling period model yields the best control performance
when the utilisation of non-control tasks Unc ≤ 0.13. With such utilisation settings, the pressure
on schedulability is low and the benefit of a dual-mode model is not shown. However, by further
increasing the utilisation Unc and thus the scheduling pressure, the proposed dual-mode strategy
outperforms the uniform sampling period model in most cases with obvious control performance
improvement. This observation again confirms the effectiveness of the proposed dual-mode strategy.
We would like to make a note that such improvement is significant especially considering that
many CPS domains are cost-sensitive, such as the automotive.
As for the optimisation problem solving methods (genetic algorithm against random search),

they return similar results when Unc ≤ 0.16 (i.e., low schedulability pressure). However, results
obtained by the genetic algorithm demonstrate clearly better overall control performance when
Unc is larger than 0.16. In these cases, it becomes more difficult to schedule the system so that the
performance of random search is decreased significantly due to the reduced range of feasible (i.e.,
schedulable) solutions. Finally, withUnc ≥ 0.37, no feasible solution can be found by any strategies
due to system overload.
Based on the above observations, the proposed optimisation framework yields the best control

performance in most cases. This indicates that the studied parameter searching problem has been
successfully mapped to an effective genetic algorithm optimisation problem. This is also confirmed
by Figure 9, which demonstrates the searching process of both the genetic algorithm and random
search in each iteration with Unc = 0.19 and Unc = 0.31. In both cases, although random search
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Fig. 8. Control performance comparison between the dual-mode genetic algorithm, dual-mode random search

and uniform sampling period

Table 2. Utilisation fitness λU of single- and dual-mode tasks with variedUnc

Unc 0.10 0.13 0.16 0.19 0.22 0.25

Single 0.129 0.099 0.069 0.039 0 0
Dual 0.229 0.204 0.204 0.151 0.117 0
∆ 0.100 0.105 0.136 0.112 0.117 0

obtains better results in early iterations, it gets barely improved during the rest of iterations. In
contrast, the genetic algorithm advances the control performance continuously towards the ideal
point during the entire optimisation process. We can thus conclude that while the solution approach
based on genetic algorithms is a heuristic and does not guarantee global optimality, it is effective in
searching for the optimal decision variables.

7.3 Optimising resource efficiency

This experiment investigates the second scenario: optimising resource efficiency as reflected by
the number of tasks that are schedulable. The utilisation is used as a direct fitness function. We
consider a control system that contains a given number of control tasks and non-control tasks.
Similar to the previous experiment, we initially have three control tasks and five non-control tasks,
and use the genetic algorithm to search for feasible parameters with maximised resource efficiency.
In the dual-mode model, the total utilisation of the control tasks is bounded to [0.6, 0.99] with
T −
i = 15ms and T +i = 25ms . The utilisation of those non-control tasksUnc is swept from 0.1 to 0.25.
The fitness function λU is adopted in this experiment with constraints on the control performance
set to 0.6.
We first demonstrate improved schedulability robustness (in terms of increased free system

utilisation). As given in Table 2, the dual-mode strategy outperforms the uniform sampling period
with better utilisation fitness value λU obtained for each tested Unc . In particular, withUnc = 0.22,
the dual-mode strategy with the proposed optimisation framework can still obtain feasible solutions
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Fig. 9. Control performance optimisation progress comparison between the genetic algorithm and the random

search

Table 3. Number of additional schedulable tasks of all non-control task candidates

Single Dual
Unc min mean max min mean max
0.10 6 8.4 11 9 10.9 13
0.13 6 7.3 10 8 10.2 13
0.16 5 6.3 9 8 10.2 13
0.19 3 4.6 7 7 8.9 11
0.22 - - - 6 7.8 10
0.25 - - - - - -

(i.e., satisfies both control and schedulability requirements), but the uniform sampling period leads

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 85. Publication date: October 2019.



85:18 Xiaotian Dai, Wanli Chang, Shuai Zhao, and Alan Burns

to an unschedulable system (i.e., with fitness value 0). This observation confirms that, under the
dual-mode model, the proposed optimisation framework yields better resource efficiency in general
than the uniform sampling period tasks.

Besides improving schedulability robustness, better resource efficiency also allows the possibility
for integrating additional functionalities by fitting more non-control tasks, without jeopardising
system schedulability. Table 3 considers the application scenariowhere there exists a set of additional
non-control tasks (i.e., additional functionalities) that could be integrated into the system. The
optimisation objective is to maximise the number of such tasks that can be fitted into the system
while maintaining both control performance requirements and system schedulability. In total, 10
task sets are generated randomly by the UUifast algorithm, where each task set contains 10 tasks
with total utilisation of 1. For each task set, a simple task allocation algorithm exhaustive in nature
is applied to fit as many tasks as possible to the systems obtained in the above experiment for each
Unc . The system schedulability and control performances are evaluated each time a new task is
added into system.

As shown in Table 3, the number of additional non-control tasks that can be integrated into the
system (without jeopardising schedulability) obtained by the dual-mode strategy outperforms the
uniform sampling period (the single mode) for all test cases. In particular, with Unc = 0.19, the
dual-mode model strictly dominates the single mode, where the minimum number of additional
schedulable tasks obtained by the dual mode equals the best performance of the single mode. With
Unc = 0.22, the single mode fails to deliver feasible solutions while the dual mode still demonstrates
strong resource efficiency with 7.8 additional tasks schedulable on average. This experiment again
demonstrates that the proposed dual-mode model and the optimisation framework are effective
and provide better resource efficiency than the traditional uniform sampling period model.

Summarising the above, in this section, we have demonstrated the effectiveness of the proposed
dual-mode strategy with the optimisation framework via a set of experiments. Compared with the
traditional uniform sampling period model, the dual-mode strategy yields better overall control
performance and resource efficiency in general. The optimisation framework behaves well in
providing feasible solutions for those dual-mode control tasks, which satisfy both schedulability
and control performance requirements. In addition, the proposed framework provides effective
optimisation towards either control performance or resource efficiency depending on the application
scenario.

At the end of this section, we would like to discuss the computation efforts and scalability of the
solution approach based on genetic algorithms. As an example, running the solver with an initial
population of 100 for 100 iterations on an Intel i7-8750H at 2.2GHz takes 1568s, which is about
25 minutes. This is sufficient for up to 10 control tasks and acceptable as an offline computation
task. Practically, it is highly unlikely to have more than 10 control tasks running on a uniprocessor
system. However, if indeed more control tasks are needed, the scalability becomes an issue, since
each additional control task adds three more dimensions to the decision space. Adding non-control
tasks makes negligible impact.

8 CONCLUDING REMARKS

In this paper, we have introduced a dual-mode strategy for resource-efficient and performance-
maximisation in CPS. This strategy consists of a dual-mode task model, which switches between
the fast and slow modes depending on the control stages; and an optimisation framework, which
uses the genetic algorithm to solve constrained non-convex optimisation problems to find feasible
task parameters.
We first gave two motivational examples to demonstrate the rational behind the dual-mode

model. We showed with equivalent utilisation, our dual-mode strategy could produce better control
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performances compared to a uniform sampling period model. In the second example, we turned an
unschedulable task set into a schedulable one, by changing the control task to follow the dual-mode
model. In Section 5, the response time analysis for a set of dual-mode tasks is given. It shows that
the proposed task model is analysable, which makes it more appropriate when compared to other
discussed methods, e.g., state-aware feedback scheduling, and event-based controllers.
To use this model for improving resource utilisation and maximising control performance,

we formulated an optimisation problem, and proposed a complete solver based on the genetic
algorithm. Finally, the effectiveness of this strategy was evaluated by a number of experiments.
These experiments show that the dual-mode strategy with the optimisation framework can improve
i) overall control performance; and ii) system schedulability by being able to accommodate more
non-control tasks whilst guaranteeing the required control performances.
Further to the proposed dual-mode strategy, some potential extensions can be explored. One

obvious extension is to adapt this model to other scheduling schemes, e.g., Earliest Deadline First
(EDF). In additional to dual modes, increasing the number of modes would also be possible to achieve
a better resource utilisation and control performance. As for the optimisation framework, the two
independent objectives can be integrated into a multi-objective problem. The control performance
of each control task can be an individual objective. The system schedulability can be a different one.
Trade-offs between control and scheduling can be explored with such a multi-objective problem
setting.
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