
98

Counterexample Guided Abstraction Refinement for

Polyhedral Probabilistic Hybrid Systems

RATAN LAL and PAVITHRA PRABHAKAR, Kansas State University, USA

We consider the problem of safety analysis of probabilistic hybrid systems, which capture discrete, continu-
ous and probabilistic behaviors. We present a novel counterexample guided abstraction refinement (CEGAR)
algorithm for a subclass of probabilistic hybrid systems, called polyhedral probabilistic hybrid systems (PHS),
where the continuous dynamics is specified using a polyhedral set within which the derivatives of the con-
tinuous executions lie. Developing a CEGAR algorithm for PHS is complex owing to the branching behavior
due to the probabilistic transitions, and the infinite state space due to the real-valued variables. We present a
practical algorithm by choosing a succinct representation for counterexamples, an efficient validation algo-
rithm and a constructive method for refinement that ensures progress towards the elimination of a spurious
abstract counterexample. The technical details for refinement are non-trivial since there are no clear disjoint
sets for separation. We have implemented our algorithm in a Python toolbox called Procegar; our experimen-
tal analysis demonstrates the benefits of our method in terms of successful verification results, as well as bug
finding.

CCS Concepts: • General and reference → Verification; • Theory of computation → Abstraction;

Additional Key Words and Phrases: Probabilistic hybrid systems, safety, counterexample guided abstraction
refinement

ACM Reference format:

Ratan Lal and Pavithra Prabhakar. 2019. Counterexample Guided Abstraction Refinement for Polyhedral
Probabilistic Hybrid Systems. ACM Trans. Embed. Comput. Syst. 18, 5s, Article 98 (October 2019), 23 pages.
https://doi.org/10.1145/3358217

1 INTRODUCTION

Embedded control systems consist of physical systems controlled by digital software and often
operate in uncertain environments, as in autonomous vehicles that need to navigate in complex
scenarios involving other vehicles as well as pedestrians. Formal modeling and safety analysis of
such systems has gained momentum in recent years owing to the safety criticality of the environ-
ments in which they are deployed. A formal model should capture the continuous behaviors of
the physical system, the discrete behaviors of the digital controller, and the probabilistic aspects
of the uncertain environment. Probabilistic/Stochastic Hybrid Systems [30, 37] provide one such
formalism which extends a finite state automaton with probabilistic transitions and continuous

This article appears as part of the ESWEEK-TECS special issue and was presented at the International Conference on
Embedded Software (EMSOFT) 2019.
Authors’ addresses: R. Lal and P. Prabhakar, Kansas State University, USA; emails: {ratan, pprabhakar}@ksu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1539-9087/2019/10-ART98 $15.00
https://doi.org/10.1145/3358217

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

https://doi.org/10.1145/3358217
mailto:permissions@acm.org
https://doi.org/10.1145/3358217
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3358217&domain=pdf&date_stamp=2019-10-08

98:2 R. Lal and P. Prabhakar

(stochastic) differential equations. In this paper, we focus on a subclass called the polyhedral prob-
abilistic hybrid systems, where the continuous dynamics is captured using polyhedral differential
inclusions of the form ẋ ∈ P , where ẋ denotes the derivate of the state variable x with respect to
time and P specifies a polyhedral set of rate vectors. We focus on this class of dynamics, since,
they are reasonably amenable to analysis and can arbitrarily over-approximate more complex dy-
namics [34].

Finite state probabilistic systems such as discrete-time Markov chains (DTMCs) and Markov de-
cision processes (MDPs) admit efficient verification algorithms [37]. Verification of hybrid systems
(that capture discrete and continuous behaviors) is more challenging due to the infinite state-space,
and is known to be undecidable for a relatively simple class of systems [23]. Efficient techniques
based on finite state abstractions as well as symbolic exploration based on flowpipes have been
explored [6, 11, 17, 18, 42]. Abstraction techniques have been extended to the setting of probabilis-
tic hybrid systems [1, 45], however, finding right abstractions that result in successful verification
remains a challenge. Techniques such as counterexample guided abstraction refinement (CEGAR)
have proven to be useful in the context of finite state probabilistic systems as well as hybrid sys-
tems towards finding small abstractions that can prove safety of systems [7, 12, 26, 35, 36]. In this
paper, we present a CEGAR algorithm for safety verification of polyhedral probabilistic hybrid
systems. The broad approach consists of starting with abstraction and iteratively refining the ab-
straction based on a counterexample in the the abstract system that points to a potential violation
of the property. To the best of our knowledge, this is the first CEGAR algorithm for probabilistic
hybrid systems.

Developing a CEGAR algorithm for PHSs is challenging because it needs to address the branch-
ing behavior due to probabilities and the infinite state space due to continuous variables simulta-
neously. We view a given concrete PHS H as an infinite state MDP and start by constructing an
abstract finite state MDP Ĥ that simulatesH . We use the model-checker PRISM to obtain a coun-
terexample of the abstract MDP, which is a DTMC in the form of a layered directed acyclic graph
(LDAG), that is obtained by a finite unrolling of the DTMC returned by PRISM. Unlike DTMC, the
LDAG has bounded paths and is more succinct than a tree unrolling. While the validation problem
is a bounded model-checking problem, an SMT based approach for validation typically requires an
exponential number of variables in the length of the counterexample [31]. We present an efficient
validation procedure that performs a bottom-up backward reachability analysis and either finds
a concrete counterexample or points to a node in the LDAG that needs to be refined. The refine-
ment procedure is more involved as compared to the non-probabilistic setting due to the absence
of clear disjoint sets that can be separated in the refinement step. Let us say that the validation
fails at the layer k from the top at a node v , which corresponds to a set of concrete states Sv . Let
R1,R2, . . . ,Rn be the nodes reached using the backward reachable set computation at layer k + 1.
We know that the set of predecessors of the states R1,R2, . . . ,Rn which are in Sv is empty (because
the validation failed). This implies that the successors of the states Sv which correspond to a set
of n tuples, say Pv , is disjoint from R1 × R2 × · · · × Rn . However, this does not immediately imply
that the projection of Pv to the i-th component, namely, P i

v is disjoint from Ri . Refinement in the
purely hybrid setting is based on finding two disjoint sets, and splitting the corresponding node
in the abstract system to separate a post set and a reach set. We observe that in general, we do not
find two disjoint sets P i

v and Ri for every i , nevertheless, we can split in a manner that ensures
progress, that is, guarantees the elimination of the abstract counterexample in a finite number of
refinements.

We implemented our algorithm in a Python toolbox called Procegar, and we compare our method
with the tool ProHVer [45]. Our method concludes safety in many more instances than ProHVer.
The method can return concrete counterexamples and it scales to higher dimensions than ProHVer.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

CEGAR for Polyhedral Probabilistic Hybrid Systems 98:3

The main contribution of the paper are

• We present the first CEGAR algorithm for the safety verification of probabilistic hybrid
systems, to the best of our knowledge. This is achieved by defining a succinct notion of
counterexample, an efficient validation algorithm and a non-trivial refinement algorithm
that ensure progress.

• The experimental results suggest that the CEGAR method has benefits in comparison to
existing abstraction based techniques such as the one implemented in ProHVer [45], due to
the automatic refinement of abstractions.

2 RELATED WORKS

Stochastic hybrid systems [9, 25, 33] exhibit a combination of continuous and discrete behav-
iors where randomness is involved in both the behaviors. The probabilistic safety problem is un-
decidable in general, but it is decidable for certain subclasses with rectangular and o-minimal
dynamics [40].

The problem has been studied for different subclasses such as Discrete-Time Markov Chain
(DTMC) [20, 27], Continuous-Time Markov Chain (CTMC) [3, 21], and Markov Decision Process
(MDP) [10, 29]. Our focus is on the probabilistic safety problem for stochastic hybrid systems. Dif-
ferent methods have been investigated for stochastic hybrid systems such as those based on finite
abstraction [1, 15, 32, 45], approximate bisimulation [2, 44], bounded model checking [16, 43] based
on dReach [28], statistical model checking [39] based on dReal [19], and stochastic satisfiability
modulo theory based method [41].

While CEGAR techniques have been proposed in the context of finite state probabilistic sys-
tems [4, 10] and non-probabilistic hybrid systems [5, 35, 36], to the best of our knowledge, ours is
the first CEGAR algorithm for models that have both probabilities and continuous dynamics, that
is, probabilistic hybrid systems.

3 PRELIMINARIES

Numbers, Tuples, Sets, Functions. We use Proj (t , j) to express the jth projection of a tuple t =
(x1,x2, . . . ,xn), that is, Proj (t , j) = x j . Also, given an element q and a set S, we use (q,S) for
{q} × S and (S,q) for S × {q}. Given a set S, we use SN to denote the set S ×N . Furthermore,
relation Id ⊆ Rn ×Rn expresses the identity relation. �(f) denotes the set of restricted reverse
onto functions of f as�(f) = { f1 : B → A | B ⊆ S2, A ⊆ S1, f1 is an onto function and f o f1 = Id}.

Polyhedra, Probability Distributions. We use Poly (n) to denote the set of all polyhedra which
are subsets of Rn . Given a polyhedral set S, we use Cons (S) to denote a set of linear constraints
expressing S. We use [[c]] to denote the set of all points expressed by the linear constraint c . In
addition, Dist (S) denotes the set of all probability distributions over the set S, that is, Dist (S) =
{π : S → [0, 1] | ∑s ∈S π (s) = 1}. We use support (π) to denote the set of elements s ∈ S for which
π (s) � 0.

4 MARKOV DECISION PROCESS

In this section, we recall Markov Decision Processes and its subclass Discrete-Time Markov Chains.

Definition 4.1 (Markov Decision Process (MDP)). An MDP is a structureM = (S,−→), where

� S is a finite (infinite) set of states;
� −→⊆ S × Dist (S) is a transition relation.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

98:4 R. Lal and P. Prabhakar

An MDP M consists of a set of states and zero or more transition probability distributions
associated with each state. A probability distribution ρ associated with a state s , that is, (s, ρ) ∈−→,
specifies the probability with which the system transitions from state s to each of the states s ′, that
is, ρ (s ′). A probabilistic edge (s, ρ) ∈−→ will also be denoted as s −→ ρ. It is possible that a state
has multiple probabilistic edges, that is, (s, ρ1), (s, ρ2) ∈−→, where ρ1 � ρ2. Thus, it captures non-
determinism. We will use subscripts to refer to the components of a system, for instance, SM will
refer to the states ofM and −→M the transition relation ofM.

We define a finite (infinite) path of MDP M = (S,−→) as a sequence of states σ = s0s1s2 . . .
such that there exist finite (infinite) sequence of probability distributions ρ0ρ1ρ1 . . . which satisfy
si −→ ρi and ρi (si+1) > 0 for all i ≥ 0. For a finite path σ = s0s1s2 . . . sn , σ [i] denotes the ith state of
the path σ , namely si , and len(σ) represents the length of the path σ , that is, len(σ) = n. Paths(M)
denotes the set of all paths inM. We say a state t is reachable from a state s if there exists a path
σ ∈ Paths(M) such thatσ [0] = s ,σ [len(σ)] = t . Given a set of states F , Paths(M, s,F) represents
the set of all pathsσ ∈ Paths(M) such thatσ [0] = s ,σ [len(σ)] ∈ F and there is no i , 0 ≤ i < len(σ)
satisfying σ [i] ∈ F . Next, we define discrete time Markov chains, which are MDPs, with at most
one probabilistic edge associated with each state.

Definition 4.2 (Discrete-Time Markov Chain (DTMC)). A DTMC is an MDP T = (S,−→) such
that for each state s ∈ S, if there exist s −→ ρ1 and s −→ ρ2, then ρ1 = ρ2.

An execution of an MDP can be interpreted as a DTMC that is obtained by resolving the non-
determinism in each step with a particular state distribution. While a standard unrolling gives rise
to a tree, here, we choose a compact representation of it in terms of a layered directed acyclic graph,
wherein we do not track multiple copies of a state of the MDP at a particular level separately.

Definition 4.3 (Layered Directed Acyclic Graph (LDAG)). An LDAG D = (S′,−→′) is a special
case of DTMC where S′ ⊆ S ×N for some set S such that

� There is a unique state s ∈ S such that (s, 0) ∈ S′;
� If ((s, i), ρ) ∈−→′, then for all t ∈ S, ρ (t , j) = 0 for j � i + 1;
� If (s, i) ∈ S′, then there exists (s ′, i − 1) −→′ ρ for some (s ′, i − 1) ∈ S′ such that ρ (s, i) � 0.

The LDAG begins with a unique root state at layer 0. All state transitions with positive prob-
ability correspond to jumps to states in the next layer. The last condition ensures that each state
in the LDAG can be reached from the root. The depth d of a finite LDAG D = (S′,−→′) is the
maximum length of any path in D, that is, d = max{i | (s, i) ∈ S′}. Next, we define a sub-LDAG
as a substructure of an LDAG rooted at a certain state/node.

Definition 4.4 (Sub-LDAG). Given an LDAG D = (S,−→), a sub-LDAG D′ = (S′,−→′) rooted
at (s, j) ∈ S is defined as

� S′ = {(s ′, i − j) | (s ′, i) is reachable from (s, j) in D};
� −→′= {((s ′, i), ρ ′) | (s ′, i) ∈ S ′,∃((s ′, i + j), ρ) ∈−→,∀(s ′′, i + 1) ∈ S′, ρ ′((s ′′, i + 1)) = ρ (s ′′,

i + j + 1)}

We define executions ofM as LDAGs that arise due to unrolling ofM.

Definition 4.5. Given an MDP (S,−→), Exec(M) is the set of all LDAGs D = (S′,−→′) where
S′ ⊆ S ×N; and for every ((s, i), ρ ′) ∈−→′, then there is ρ such that (s, ρ) ∈−→ and for every
(t , i + 1) ∈ S′, ρ ′(t , i + 1) = ρ (t).

Next, we associate probabilities with paths, the probability associated with a path σ is denoted
by Prob(σ).

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

CEGAR for Polyhedral Probabilistic Hybrid Systems 98:5

• For DTMC T = (S,−→), for path σ , if len(σ) = 0, then Prob(σ) = 1. If len(σ) > 0, then

Prob(σ) =

len(σ)−1∏

i=0

ρi (σ [i + 1]), where (σ [i], ρi) ∈−→ .

The probability of reaching a set of states F from a state s is defined as,

Prob(T , s,F) =
∑

σ ∈Paths(T ,s,F)

Prob(σ).

• For MDPM = (S,−→), we define the minimum and maximum probability of reaching a set
of states F from a state s , denoted as Probmin (M, s,F) and Probmax (M, s,F), respectively.
Let � ∈ {min,max}.

Prob� (M, s,F) = �
D∈Exec(M)

Prob(D, (s, 0),F ×N).

5 PROBABILISTIC SIMULATION

Probabilistic simulation captures a relation between states of two MDPs wherein if two states are
related then any probabilistic transition from the simulated state can be mimicked by the simulat-
ing state. In this section, we consider a restricted version of the probabilistic simulation relation
between two probabilistic systems as defined in [38], which is sufficient to capture the relation
between the concrete system and its abstraction defined in this paper. In particular, we enforce
a bijection between the probability distribution associated with the two states. We consider this
restricted version because it simplifies our technical discussion and suffices for our purposes.

Definition 5.1. Let M1 = (S1,−→1) and M2 = (S2,−→2) be two MDPs. An onto function α :
S1 → S2 is a probabilistic simulation from S1 to S2 if for all s1 ∈ S1, s2 ∈ S2 such that α (s1) = s2

and s1 −→ π , ∃ ρ ∈ Dist (S2) such that s2 −→ ρ, and

� π (s) = ρ (α (s)), for all s ∈ support (π);
� For s, s ′ ∈ support (π) if s � s ′, then α (s) � α (s ′).

We say that α is a probabilistic simulation fromM1 toM2, denoted byM1 ≤α M2. In addition,
given F ⊆ S1, we say that α respects F if for s ∈ F and t ∈ S1 \F , α (s) � α (t).

Next, the following theorem states the fact that if two MDPsM1 andM2 are related by a prob-
abilistic simulation α , that is, M1 ≤α M2, then MDP M2 is an over-approximation of M1, that
is,M2 has a larger number of executions thanM1; thus the minimum and maximum probability
of reaching a set of states inM1 is lower bounded by the minimum and upper bounded by the
maximum probability of reaching the related set of states inM2. The following theorem is similar
to the theorem given in the paper [14].

Theorem 5.2. Let M1 = (S1,−→1) and M2 = (S2,−→2) be two MDPs and F1 ⊆ S1. If α is a

probabilistic simulation fromM1 toM2 which respects F1 then for any s1 ∈ S1, we have

(a) Probmax (M1, s1,F1) ≤ Probmax (M2,α (s1),α (F1));
(b) Probmin (M2,α (s1),α (F1)) ≤ Probmin (M1, s1,F1).

Next, we define a function αN that extends probabilistic simulation relation between states of
MDPs to states of corresponding executions.

Definition 5.3. Given a probabilistic simulation α : S1 → S2 between two MDPs M1 = (S1,
−→1) and M2 = (S2,−→2), we define αN : S1 ×N → S2 ×N such that αN (s, i) = (α (s), i) for
each s ∈ S1, i ∈ N .

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

98:6 R. Lal and P. Prabhakar

Furthermore, we define the set of all executionsD1 of an MDPM1 which simulate an execution
D2 of an MDPM2 with respect to the probabilistic simulation α betweenM1 andM2.

Definition 5.4. Given a probabilistic simulation α : S1 → S2 between two MDPs M1 = (S1,
−→1) andM2 = (S2,−→2), an LDAG D2 ∈ Exec(M2), we define α−1 (D2) as follow:

α−1 (D2) = {D1 ∈ Exec(M1) | D2 ≤γ D1 for some γ ∈ �(αN)}.

Additionally, we define an abstraction of an MDPM = (S,−→) denoted α (M) with respect to
an abstraction function α : S → S′ for some S′. The abstraction function is formally defined as
follows.

Definition 5.5. Given an MDPM = (S,−→), an abstraction function α : S → S′ for some setS′
is a function such that for any (s, ρ) ∈−→, if s1, s2 ∈ support (ρ), then α (s1) � α (s2), where s1 � s2.

The above definition appears to be a restricted notion of abstraction on the MDPs, however, the
particular abstractions we consider on probabilistic hybrid systems in the sequel will correspond
to abstraction functions of this kind on the underlying MDPs. Furthermore, the formal definition
of α (M) is given as below.

Definition 5.6. Given an MDPM = (S,−→) and an abstraction function α : S → S′, α (M) =
(S′,−→′), where −→′= {(s ′, ρ ′) | ∃(s, ρ) ∈−→,α (s) = s ′,∀t , ρ (t) = ρ ′(α (t))}.

The theorem below states that α (M) is an over-approximation ofM.

Theorem 5.7. Given an MDPM = (S,−→), an abstraction function α : S → S′ for some set S′,
we haveM ≤α α (M).

6 PROBABILISTIC HYBRID SYSTEMS

In this paper, we study polyhedral probabilistic hybrid systems that capture the discrete, continu-
ous and probabilistic behaviors. The continuous behaviors are captured by specifying a polyhedral
inclusion dynamics, and guards, resets and probabilistic edges capture the discrete and probabilis-
tic behaviors. Next, we introduce the formal definition of polyhedral probabilistic hybrid systems.

Definition 6.1 (Polyhedral Probabilistic Hybrid Systems (PHS)). A polyhedral probabilistic hybrid
system is a tupleH = (Q,X, Inv, Flow, Edges,Guard, Reset) where

� Q is a finite set of locations;
� X ⊆ Rn is a continuous statespace;
� Inv: Q → Poly (n) is an invariant function;
� Flow: Q → Poly (n) is a flow function;
� Edges ⊆ Q × Dist (Q) is a finite set of probabilistic edges;
� Guard: Edges → Poly (n) is a guard function;
� Reset: Edges × Q → Poly (2n) is a reset function.

The instantaneous description of the system is captured using a state (q,x), where q is a discrete
location, and x is a continuous state. The system evolves continuously from a state (q,x) for a time
t by following a vector in Flow (q) at all times and staying within Inv (q), and eventually reaching a
state (q,y) at time t . If the state reached satisfies the guard associated with an edge (q, ρ), that is, if
y ∈ Guard (q, ρ), then the system can take transition to a state (q′,x ′) with probability ρ (q′), and
the new continuous state x ′ is specified by the reset function, and satisfies (y,x ′) ∈ Reset ((q, ρ),q′).
The system does not necessarily have to take a transition if a guard is enabled, but for the system
to take a transition, the corresponding guard needs to be enabled.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

CEGAR for Polyhedral Probabilistic Hybrid Systems 98:7

Fig. 1. Polyhedral probabilistic hybrid system.

Example 6.2. Figure 1 illustrates a polyhedral PHS, where the locations q1,q2,q3 and q4 are rep-
resented using circle nodes. The variable x represents the continuous variable which takes real val-
ues, that is, the continuous statespace is R. Each location is annotated with a polyhedral inclusion
dynamics and an invariant which are written within the corresponding circle. A polyhedral inclu-
sion dynamics is represented using a constraint over the rates of the continuous state variables,
and the invariant is a constraint over the continuous state variables which constrains the system
evolution at a particular location. For example, in location q1, the polyhedral inclusion dynamics
is 1 ≤ ẋ ≤ 2, where ẋ is the rate of continuous state evolution, and the invariant is x ∈ [0, 4]. Next,
the switching from one location to another location is expressed by a probabilistic edge which has
mainly three components, namely, the guard, the probability distribution and the reset. The guard
is a constraint over the continuous state variables that represents the condition that enables the
system to switch between locations, the probability distribution provides the probability of switch-
ing to a target location, and the reset expressed as a constraint over the continuous state variables
and its primed versions, provides the values of the continuous state before and after a transition,
respectively. For example, in location q1, the system has a probabilistic edge with guard 0 ≤ x ≤ 2,
probability distribution ρ1 (q2) = ρ1 (q3) = 0.5 and reset for locations q2 and q3 as x ′ = x . Hence,
when the system is in location q1 and the continuous state x satisfies the guard 0 ≤ x ≤ 2, the
system switches to locations q2 and q3 with probability 0.5 each, and the continuous state remains
unchanged (xp = x).

The semantics of the PHS is captured as an infinite state MDP as follows. We use primed ver-
sion of location and continuous state variables to denote the location and continuous state after a
continuous or discrete transition.

Definition 6.3. Given PHSH = (Q,X, Inv, Flow, Edges,Guard, Reset), the semantics ofH is de-
fined as an Markov Decision Process [[H]] = (S[[H]],−→[[H]]), where

� S[[H]] = Q × X;
� ((q,x),π) ∈−→[[H]] if ∃ (q, ρ) ∈ Edges, Φ : [0,T]→ X such that
� Φ(0) = x , Φ(T) ∈ Guard (q, ρ);
� for 0 ≤ t ≤ T , Φ(t) ∈ Inv (q) and dΦ

dt
(t) ∈ Flow (q);

� for every q′ ∈ Q, π (q′,x ′) = ρ (q′) for some x ′ such that (Φ(T),x ′) ∈ Reset ((q, ρ),q′).

The MDP [[H]] has an infinite number of states because each state is a pair of discrete location
and continuous state, where the number of values of continuous states is infinite. Next, we formally
define the probabilistic safety problem.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

98:8 R. Lal and P. Prabhakar

Problem 1 (The Maximum Probabilistic Safety Problem). Given a polyhedral PHS H , an

initial location q0, a set of final locations F and probability bound θ ∈ [0, 1], check whether the

maximum probability of reaching F × X from {q0} × Inv (q0) is less than or equal to θ , that is,

maxs ∈{q0 }×Inv (q0) Probmax ([[H]], s,F × X) ≤ θ .

Similarly, the minimum probabilistic reachability problem can be defined. Here, we focus on the
maximum probabilistic safety problem. However, our results extend in a straightforward manner
to verify lower bound on the minimum probability of reachability. In Figure 1, the initial location
is indicated with an incoming arrow and the final location is indicated with double circles.

7 COUNTER EXAMPLE GUIDED ABSTRACTION REFINEMENT

In this section, we provide the details of our Counter-Example Guided Abstraction Refinement
(CEGAR) [13] algorithm for the probabilistic safety analysis of polyhedral PHS. The maximum
probabilistic safety problem for polyhedral PHS is challenging due to the infinite statespace. An
abstraction based analysis consists of abstracting a given (concrete) system to a simpler abstract
system, such that the satisfaction of a certain property, such as, the maximum probability of reach-
ing an unsafe state being less than θ , on the abstract system, implies the satisfaction of the prop-
erty on the concrete system. In our case, the concrete system is a polyhedral PHS and the ab-
stract system is a finite state MDP, on which the maximum probabilistic safety analysis can be
carried out efficiently. One of the challenges towards abstraction based analysis is the choice of
the abstraction, on which the success of the verification crucially relies. In other words, the ab-
stract system is often an “over-approximation” and hence, the violation of the property by the
abstract system does not imply a violation in the concrete system. However, a violation in the ab-
stract system provides a potential reason for the violation of the property in the concrete system,
in the form of an abstract counterexample (ACE). Analysis of the abstract counterexample using
a validation algorithm, results in either a concrete counterexample corresponding to it (a bug)
or in concluding that the abstract counterexample is spurious, that is, does not correspond to a
real counterexample. In the latter case, the spurious counterexample analysis can be used to re-

fine the abstract system so as to eliminate the same. This process is continued until either some
abstraction of the concrete system satisfies the property or the validation algorithm determines
that the system violates the property. This iterative refinement of the abstract system based on
counterexamples is referred to as the counterexample guided abstraction refinement. While CE-
GAR algorithms have been proposed for (non-probabilistic) hybrid systems [35] and finite state
probabilistic systems [24], there are several challenges due to the combination of infinite states-
pace and the branching behavior in a probabilistic hybrid system. In particular, we need a succinct
representation of the abstract counterexample, efficient validation and refinement algorithms. We
provide the details of each of the steps of the CEGAR loop in the sequel.

7.1 Abstraction

In this section, we describe an abstraction procedure to abstract a polyhedral PHS into an MDP.
The broad idea is to divide the statespace of each mode into a finite number of regions, and con-
struct an MDP which consists of these regions as abstract nodes. Let us fix a polyhedral PHS
H = (Q,X, Inv, Flow, Edges,Guard,Reset) and a finite partition R of Q × X such that for any par-
tition element P ∈ R if (q,x), (q′,x ′) ∈ P then q = q′. So, R consists of a partitioning of the states-
pace where states from different modes are kept separate. Consider a function αR : Q × X → R
such that αR (q,x) = (q,R), where x ∈ R. That is, αR maps a concrete state to the corresponding
region in the partition it belongs to. Note that αR is an abstraction function, because, for any
((q,x), ρ) ∈−→[[H]], if (q1,x1), (q2,x2) ∈ support (ρ) and (q1,x1) � (q2,x2), then q1 � q2 (from the

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

CEGAR for Polyhedral Probabilistic Hybrid Systems 98:9

Fig. 2. Markov decision process Abs(H ,R).

semantics, there is a unique successor state corresponding to every target location), and hence,
αR (q1,x1) � αR (q2,x2).

The abstraction ofH with respect to the finite partition R denoted as Abs(H ,R) is αR ([[H]]).
From Theorem 5.7, Abs(H ,R) is an over-approximation of polyhedral PHSH . From Theorem 5.2,
if the abstract system Abs(H ,R) is probabilistically safe, that is, Probmax (Abs(H ,R), (q0,R),
αR (F × X)) ≤ θ for every (q0,R) ∈ αR ({q0} × Inv (q0)), then the concrete systemH is also proba-
bilistically safe, that is, Probmax ([[H]], (q0,x),F × X) ≤ θ for every (q0,x) ∈ {q0} × Inv (q0).

If R is a polyhedral partition, then Abs(H ,R) can be constructed. Note that from Definition 5.6,
to check whether a probabilistic edge exists in the abstract system, we need to check if a corre-
sponding concrete edge exists. This can be encoded as a satisfiability problem of a conjunction of
linear constraints. Alternately, one could use polyhedral manipulations to compute the predeces-
sor states corresponding to the abstract probabilistic edge in the concrete system, and check for
its emptiness. The next example illustrates the computation of the abstract MDP.

Example 7.1. Consider the polyhedral PHS H with its state space Q × X = {q1,q2,q3,q4} ×
[0, 4]. Let R = {(q1,R), (q2,R), (q3,R), (q4,R)} be a finite partition of the state space Q × X, where
R = [0, 4]. The abstraction ofH with respect to the partition R is Abs(H ,R) which we construct
according to Definition 5.6. Each partition element of R is an abstract state, for instance, (q1,R) is
a state of the abstract system as shown in Figure 2. Next, we construct a probabilistic edge from
one abstract state to a tuple of abstract states with certain probabilities if there is a corresponding
concrete edge inH . For example, we construct an abstract edge from (q1,R) to (q2,R) and (q3,R)
with probabilities 0.5 and 0.5, respectively, because a corresponding concrete edge exists in H ,
as given next. The system starts from x = 0.5 ∈ R at location q1 and evolves for time t = 2 with
flow ẋ = 0.5 and reaches the state x1 = x + ẋt = 0.5 + 0.5 ∗ 2 = 1.5 which satisfies the guard con-
straints, that is, 1.5 ∈ [0, 2]. Then, the system switches to q2 and q3 by resetting the continuous
states to x2 = x1 = 1.5 and x3 = x1 = 1.5, respectively. Since x2,x3 ∈ R, we have a concretization
of the edge from (q1,R) to (q2,R) and (q3,R) with probability 0.5 each.

7.2 Model Checking and Counter Example

In this section, we verify the maximum probabilistic safety problem for the abstract system
Abs(H ,R). Since the abstract system is a finite MDP, we adopt probabilistic model checker tool
PRISM [30] for the purpose of verification. PRISM [30] takes as input a finite MDP, a set of initial
states and a PCTL formula [22], and returns either true to indicate that the MDP satisfies the for-
mula, or returns a counterexample T̂ in the form of a DTMC. Maximum probabilistic safety spec-

ification can be encoded as a PCTL-formula. While T̂ is a counterexample, it contains cycles and

hence, analyzing it for spuriousness is complex. Hence, we unroll T̂ and construct a finite LDAG
D̂ as a succinct counterexample. Next, we provide the formal definition of a counterexample.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

98:10 R. Lal and P. Prabhakar

Definition 7.2. Given an MDPM, an initial stateq0, a set of final states F and θ ∈ [0, 1], an LDAG
D̂ ∈ Exec(M) is a counterexample ofM with respect toq0, F and θ , if Prob(D̂, (q0, 0),F ×N) > θ .

Algorithm 1 provides the details of extracting a succinct LDAG counterexample D̂ from a given

DTMC counterexample T̂ that is returned by PRISM which indicates that the probability of reach-

ing F in T̂ from q0 is greater than θ . The crux of the algorithm consist of unrolling the DTMC and
collecting enough paths reaching F from q0 whose sum total exceeds θ . The algorithm iteratively
computes pi

q , which is the probability of reaching a final state in F from q within i steps. It can

be observed that there is always a d for which pd
q0

exceeds θ . To see this, note that in the DTMC

T̂ , the probability of reaching F from q is > θ , which is the sum of probabilities of paths reaching
F . Since, the DTMC is finite, we can enumerate the paths, and the corresponding probabilities.
Let p1,p2, . . . be the probabilities of the paths reaching F , where

∑
i pi > θ . Our objective is to

show that there is finite number of these probabilities (correspond to finitely many paths) who
sum exceeds θ . Note that if the sequence is finite, we can take all the paths that reach F . Other-
wise,

∑
i pi > θ implies that limi→∞

∑i
j=1 pi > θ by definition of infinite sum. From the definition

of limit, there is a k such that
∑i

j=1 pi > θ for all i ≥ k . In particular,
∑k

j=1 pi > θ . Hence, in at most

k iterations, pd
q will exceed θ and exit the loop. Once the length d for the sufficient unrolling is

computed, the function ForwardReach performs a forward reachability analysis to only keep those
nodes in the unrolling ofM up to length d that can be reached from q0 using transitions in the
support (that is, edges with non-zero probability).

ALGORITHM 1: Get_LDAG: Extract a succinct LDAG counterexample from a given DTMC counterex-
ample

Input: T̂ - a DTMC, F - a set of final states, θ - a probability bound, q0 - a state of T̂

Output: a finite LDAG D̂

begin1

for each state q of T̂ do2

if q ∈ F then p0
q = 1 else p0

q = 03

d = 04

while pd
q0
≤ θ do5

d = d+16

for each edge (q, ρ) of T̂ do7

if q ∈ F then pd
q = 1 else pd

q =
∑

state s ′ of T̂
ρ (s ′) ∗ pd−1

s ′
8

D̂ = ForwardReach(M, q0, d) return D̂9

end10

Example 7.3. Consider the MDP Abs(H ,R) shown in Figure 2, an initial state (q1,R), a set
of final states {(q4,R)} and θ = 0.5. The LDAG D̂ ∈ Exec(Abs(H ,R)) shown in Figure 3 is
a counterexample, because Prob(D̂, ((q1,R), 0), {(q4,R)} ×N) = Prob(σ1) + Prob(σ2) + Prob(σ3) =
0.25 + 0.25 + 0.125 = 0.625, which is greater than 0.50, where σ1, σ2 and σ3 are paths given
by σ1 = ((q1,R), 0) → ((q2,R), 1) → ((q4,R), 2), σ2 = ((q1,R), 0) → ((q3,R), 1) → ((q4,R), 2) and
σ3 = ((q1,R), 0) → ((q2,R), 1) → ((q3,R), 2) → ((q4,R), 3) in D̂.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

CEGAR for Polyhedral Probabilistic Hybrid Systems 98:11

Fig. 3. LDAG D̂ ∈ Exec(Abs(H ,R)) violating Probmax.

If Abs(H ,R) is not probabilistically safe, then an abstract counterexample D̂ of Abs(H ,R) can
be computed. The abstract counterexample indicates only a potential violation of safety in the
concrete system. Hence, we need to validate the counterexample D̂ to check if it is realizable in
the concrete systemH . Next, we provide the details about the validation of a counterexample.

7.3 Validation

In this section, we provide a method to validate whether a counterexample expressed as an LDAG
for the abstract system Abs(H ,R) is realizable in the concrete systemH . Let us fix a finite LDAG
D̂ = (SD̂ ,−→D̂) as a counter example of Abs(H ,R) whose depth is d . Our validation problem is

to check whether D̂ is realizable in the concrete systemH . This is formally defined as below.

Problem 2 (Validation Problem). Verify whether there exists D ∈ Exec([[H]]) such that D ∈
α−1
R (D̂).

Our broad approach for the validation of D̂ is to compute all those concrete set of states associ-
ated with the abstract states from which sub-LDAG of D̂ rooted at the abstract state is realizable
in H . We compute such sets from bottom to top layer, which is based on backward reachability
analysis for which we define a function Pre.

Definition 7.4. Given a set S , a finite set of sets {Si }i ∈A and {pi }i ∈A for some index set A, we
define a function Pre[[H]] (S, {Si }i ∈A, {pi }i ∈A) as

{s ∈ S | ∃ ρ, s −→[[H]] ρ, ∀ i ∈ A, ∃ si ∈ Si such that ρ (si) = pi }.

We are going to compute a set of concrete states Rk
(q,R)

for each abstract state ((q,R),k) of D̂,

whereRk
(q,R)

denotes the set of all concrete states (q,x) ∈ {q} × R from which there exists an LDAG

D ∈ Exec([[H]]) such that the sub-LDAG D′ of D̂ rooted at ((q,R),k) is realizable by D in the
concrete systemH . This is formally defined as follows.

Definition 7.5. Given an abstract state ((q,R),k) ∈ SD̂ , we have Rk
(q,R)

as {(q,x) ∈
{q} × R | ∃ D ∈ Exec([[H]]) rooted at ((q,x), 0) for which there exists a sub-LDAG
D′ of D̂ rooted at ((q,R),k) such that D ∈ α−1

R (D′)}.

Alternatively, Rk
(q,R)

can be inductively defined as follows. Let Sk
(q,R)

be the set of all concrete

states associated with the abstract state ((q,R),k), that is, Sk
(q,R)
= α−1

R (q,R), and Qk be the set of

all those abstract states (q,R) at layer k in D̂, that is, ((q,R),k) ∈ SD̂ .

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

98:12 R. Lal and P. Prabhakar

Fig. 4. Point of refinement and spurious edge in D̂ shown in Figure 3.

� If k = d or there is no abstract edge ((q,R),k) −→D̂ ρ, then Rk
(q,R)

is Sk
(q,R)

;

� If there is an abstract edge ((q,R),k) −→D̂ ρ, then Rk
(q,R)

is

Pre[[H]]

(
Sk

(q,R),
{
Rk+1

(q′,R′)

}
(q′,R′)∈Qk+1

, {ρ ((q′,R′),k + 1)}(q′,R′)∈Qk+1

)
.

Example 7.6. Consider the LDAG D̂ shown in Figure 3. We compute the concrete set of states
Sk

(q,R)
and backward reach sets Rk

(q,R)
for each abstract state (q,R) at layer k , from the bottom to

the top layer. The continuous part of Sk
(q,R)

and Rk
(q,R)

for each abstract state of D̂ are expressed

in the lower and upper part of the circle, respectively, in Figure 4. The concrete sets of states are
computed asSk

(q,R)
= α−1

R (q,R) = (q,R) fromαR given in Example 7.1. For example, for the abstract

state (q3,R) at layer 1,S1
(q3,R)

= (q3, [0, 4]) and its continuous part is [0, 4] which is written in lower

part of its circle. Backward reach sets are computed according to its inductive definition. There are
three cases. (a) The abstract state is located at the last layer of D̂. For example, abstract state (q1,R)

is located at layer 3 which is the depth of D̂. Hence R3
(q1,R)

= S3
(q1,R)

= (q1, [0, 4]). (b) There is no

probabilistic edge from the abstract state and it is not located at the last layer. For example, there
is no probabilistic edge from (q4,R) at layer 2. Hence, R2

(q4,R)
= S2

(q4,R)
= (q4, [0, 4]). (c) All those

abstract states from which there is a probablistic edge. For example, abstract state (q3,R) at layer 2
has a probabilistic edge to (q1,R) and (q4,R) at layer 3 with probabilities 0.5 and 0.5, respectively.
The backward reach set R2

(q3,R)
is Pre[[H]] (S2

(q3,R)
, {S3

(q1,R)
,S3

(q4,R)
}, {0.5, 0.5}). From Definition 6.3,

Pre[[H]] (S2
(q3,R)
, {S3

(q1,R)
,S3

(q4,R)
}, {0.5, 0.5}) is computed as follows. First, for the edge from q3 to q1,

we compute the setG1 of continuous states which satisfy the guard and transition to (q1,R). Since
the guard constraint is x ∈ [3, 4],R = [0, 4] and the reset is identity, we obtainG1 = [3, 4]. Similarly,
the continuous states which can transition to q4 is given by G2 = [3, 4]. Hence, the continuous
states from which the probabilistic edge can be taken is given by the setG = G1 ∩G2 = [3, 4]. The
set of all continuous states in [0, 4] which can reach G with rate −1 ≤ ẋ ≤ 0 is [3, 4], since, all
states in [3, 4] can reachG by following the rate 0, and no states in [0, 3) can reachG because there
are no positive rates. Hence, Pre[[H]] (S2

(q3,R)
, {S3

(q1,R)
,S3

(q4,R)
}, {0.5, 0.5}) is (q3, [3, 4]) which is the

set of states in S2
(q3,R)

from which there is a concrete probabilistic edge to S3
(q1,R)

and S3
(q4,R)

with

probabilities 0.5 each.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

CEGAR for Polyhedral Probabilistic Hybrid Systems 98:13

The next proposition states that if any of the backward reach sets becomes empty there there is
no concrete counterexample corresponding to the abstract counterexample.

Proposition 7.7. α−1
R (D̂) is an empty set if and only if there exists k such thatRk

(q,R)
= ∅ for some

((q,R),k) ∈ SD̂ .

Proof. If α−1
R (D̂) is an empty set, then Rk

(q,R)
is empty for k = 0. Suppose there exists k such

that Rk
(q,R)
= ∅ for some ((q,R),k) ∈ SD̂ . This implies that Rk ′

(q′,R′)
is also an empty set for all

those states ((q′,R′),k ′) which are on the path from the root state of D̂ to the state ((q,R),k). In
particular, we have R0

(q0,R0)
= ∅, which by definition implies that α−1

R (D̂) is an empty set. �

If α−1
R (D̂) is not empty, then there is a valid counterexample D ∈ Exec([[H]]) for the concrete

systemH , that is,H is not probabilistically safe. However, ifα−1
R (D̂) is empty, then D̂ is a spurious

counterexample. Hence, we use the information from the analysis of the counterexample D̂ to
refine the concrete system. We define the following which will be useful in defining the refinement.

Definition 7.8. A point of refinement denoted as porAbs(H ,R) (D̂), is defined as the largest layer

l of D̂ such that there is a state ((q,R), l) ∈ SD̂ where Rl
(q,R)

is an empty set. A probabilistic edge

(((q,R), l ′), ρ) ∈−→D̂ is spurious if Rl ′

(q,R)
= ∅ and l ′ = l .

In Figure 4, the largest layer at which the backward reach set is empty in l = 0. Hence, the point
of refinement is 0 and the spurious edge is (((q1,R), 0), ρ), where ρ ((q2,R), 1) = ρ ((q3,R), 1) = 0.5.

7.4 Refinement

In this section, we provide a method to refine the abstract system Abs(H ,R) to eliminate the spu-
rious counterexample D̂. Let us fix a point of refinement l for D̂ and a refinement of partition R
denoted as R1. Consider a function mapping the refinement to the current abstraction, given by
β (R1,R) : R1 → R where for all (q,R) ∈ R1, (q,R) ⊆ β (R1,R) (q,R). We need to eliminate the spuri-
ous counterexample from the abstract system Abs(H ,R1). Hence, we define a progressive refine-
ment which ensures that the refinement makes progress towards eliminating the counterexample
D̂. It essentially captures the intuition that every abstract counterexample in the refinement that
corresponds to D̂ has a point of refinement which is lower in the LDAG.

Definition 7.9 (Progressive Refinement). A refinement R1 of R is a progressive refinement if we
have

porAbs(H ,R1) (D) > porAbs(H ,R) (D̂), for all D ∈ β−1
(R1,R) (D̂).

Our objective is to find a progressive refinement R1 of R. Since the main reason for a prob-
abilistic edge ((q,R), l), ρ) to be spurious is the emptiness of the backward reach set Rl

(q,R)
, our

broad approach is to find a splitting of the nodes in the l + 1 layer that eliminate the spuriousness
at layer l + 1. This is achieved by splitting the nodes in layer l to separate the post of Sl

(q,R)
from

the backward reach sets of layer l + 1. Hence, we define a function Post, which is along the lines
of Pre.

Definition 7.10. Given a set S , a tuple (p1, p2, . . . , pn), we define a function
Post[[H]] (S, (p1, . . . ,pn)) as {(s1, s2, . . . , sn) | ∃ s ∈ S, (s, ρ) ∈−→[[H]] such that ρ (si) = pi for all i ∈
[n]}.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

98:14 R. Lal and P. Prabhakar

Fig. 5. Potential edges.

For any spurious edge (((q,R), l), ρ), backward reach set Rl
(q,R)
= ∅, that is, Pre[[H]] (Sl

(q,R)
,

{Rl+1
(q′,R′)

}(q′,R′)∈Ql+1
, (p1, . . . ,pn)) = ∅, where (p1, . . . ,pn) ∈ ×(q′,R′)∈Ql+1

{ρ ((q′,R′), l + 1)} for some

n ∈ N . From the definition of Post function as given in Definition 7.10, Post[[H]] (Sl
(q,R)
, (p1, . . . ,pn))

intersected with the tuple of concrete states corresponding to the abstract states in layer l + 1 is
not empty, because there exists an abstract probabilistic edge corresponding to the spurious edge.
Also, we obtain that no common element in the post of the concrete set of states of the abstract
state (q,R) at layer l with respect to the spurious edge and Cartesian product of backward reach
sets of all target abstract states (q′,R′) at layer l + 1 of the spurious edge. This is formally stated
in the following proposition.

Proposition 7.11. Given a probabilistic edge (((q,R), l), ρ) ∈−→D̂ (spurious) and (p1, . . . ,pn) ∈
×(q′,R′)∈Ql+1

{ρ ((q′,R′), l + 1)} for some n ∈ N , we have

Post[[H]] (Sl
(q,R), (p1, . . . ,pn)) ∩ ×

(q′,R′)∈Ql+1

Rl+1
(q′,R′) = ∅. (1)

It might be possible that intersection between the projection of the post for an abstract state and
backward reach set for the same abstract state is not empty. This is formally written as a remark.

Remark 1. Given a probabilistic edge (((q,R), l), ρ) ∈−→D̂ (spurious), it is not necessary that
the following statement is true. Let (p1, . . . ,pn) ∈ ×(q′,R′)∈Ql+1

{ρ ((q′,R′), l + 1)} for some n ∈ N .

Proj (Post[[H]] (Sl
(q,R), (p1, . . . ,pn)), ((q′′,R′′), l + 1)) ∩ Rl+1

(q′′,R′′)

need not be empty for all (q′′,R′′) ∈ Ql+1.

Example 7.12. We illustrate Remark 1 using a counterexample. Consider the spurious edge E
shown in Figure 4. The post of the abstract state (q1, [0, 4]) is B = (q2, [0, 2]) × (q3, [0, 2]). From
Figure 4, we have R1

(q2,R)
= (q2, [1, 4]) and R1

(q3,R)
= (q3, [3, 4]). This implies that B ∩ (R1

(q2,R)
×

R1
(q3,R)

) = ∅. Next, the projection of B for the abstract state (q2,R) and (q3,R) at layer 1 are

Proj (B, ((q2, R), 1)) = (q2, [0, 2]) and Proj (B, ((q3,R), 1)) = (q3, [0, 2]), respectively. Note that al-
though Proj (B, ((q3,R), 1)) ∩ R1

(q3,R)
= ∅, Proj (B, ((q2,R), 1)) ∩ R1

(q2,R)
� ∅.

Next, we provide the details about the separation. Let us consider a spurious edge E with the
point of refinement l shown in Figure 5(a) where the probability of transitions to abstract states
(q1, J) and (q2,K) are p1 and p2, respectively. Let Sl

(q, I)
, Sl+1

(q1, J)
and Sl+1

(q2,K)
be concrete set of states

for the abstract states (q, I), (q1, J) and (q2,K), respectively, and Rl
(q, I)

, Rl+1
(q1, J)

and Rl+1
(q2,K)

be the

backward reach set for the abstract states (q, I), (q1, J) and (q2,K), respectively. Let X be the post
of Sl

(q, I)
, and Y = Rl+1

(q1, J)
× Rl+1

(q2,K)
. Let X1 and X2 be the projection of X for the abstract states

(q1, J) and (q2,K), respectively, and Y1 and Y2 be the projection of Y for the abstract states (q1, J)
and (q2,K) at layer l + 1, respectively, that is, Y1 = R

l+1
(q1, J)

and Y2 = R
l+1
(q2,K)

.

Case (a). When Xi ∩ Yi = ∅ for i = 1, 2, X1, Y1 and X2, Y2 need to be separated by the parti-
tion of Sl+1

(q1, J)
and Sl+1

(q2, J)
, respectively. Next, we show that such partition eliminates the spurious

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

CEGAR for Polyhedral Probabilistic Hybrid Systems 98:15

edge. Let Sl+1
(q1, J)

and Sl+1
(q2,K)

be partitioned into Sl+1
(q1, J1)

, Sl+1
(q1, J2)

and Sl+1
(q2,K1)

, Sl+1
(q2,K2)

, respectively,

such that X1 ⊆ Sl+1
(q1, J1)

, Y1 ⊆ Sl+1
(q1, J2)

and X2 ⊆ Sl+1
(q2,K1)

and Y2 ⊆ Sl+1
(q2,K2)

. There are four potential

probabilistic edges corresponds to the spurious edge shown in Figures 5(b), 5(c), 5(d) and 5(e).

(1) Edge shown in Figure 5(b) exists in the refined system because X ∩ (Sl+1
(q1, J1)

× Sl+1
(q2,K1)

) � ∅.
However, the point of refinement must be l + 1 because backward reach set Rl+1

(q1, J1)
= ∅

because Rl+1
(q1, J1)

⊆ Sl+1
(q1, J1)

, Rl+1
(q1, J1)

⊆ Y1 and Sl+1
(q1, J1)

∩ Y1 = ∅.
(2) Edge shown in Figure 5(c) does not exist in the refined system because X2 ∩ Sl+1

(q2,K2)
= ∅.

(3) Edge shown in Figure 5(d) does not exist in the refined system because X1 ∩ Sl+1
(q1, J2)

= ∅.
(4) Edge shown in Figure 5(e) does not exist in the refined system becauseX1 ∩ Sl+1

(q1, J1)
= ∅ and

X2 ∩ Sl+1
(q2,K2)

= ∅.

Hence, such separation guarantees that the spurious edge gets eliminated.
Case (b). When either X1 ∩ Y1 � ∅ or X2 ∩ Y2 � ∅ is true, X1 \ Y1, Y1 and X2 \ Y2, Y2 need to be

separated by the partition ofSl+1
(q1, J)

andSl+1
(q2, J)

, respectively. Next, we show that spurious edge gets

eliminated by such partition. Assume thatX1 ∩ Y1 � ∅. Note that for a spurious edge, there must be
at least one target abstract state such that intersection between the projection of post with respect
to the target abstract state and its backward reach set is empty. This implies that X2 ∩ Y2 = ∅.

(a) Edge shown in Figure 5(b) exists in the refined system, but the point of refinement must be
l + 1 due to the same reason given in case (a)(1).

(b) Edges shown in Figures 5(c), 5(e) do not exist in the refined system due to the same reason
given for case (a)(2).

(c) Edge shown in Figure 5(d) exist in the refined system but the point of refinement must be
l + 1 due to the same reason given in case (a)(1).

From case (a) and case (b), we have identified that Xi \ Yi and Yi , i = 1, 2 needs to be separated.
Next, we provide strategies for partitioning the concrete states associated with the abstract states
such that there identified sets must be separated by the partition.

Definition 7.13. Let (((q,R), l), ρ) be a probabilistic edge (spurious) and Ql+1 be a set of all ab-
stract states which are at layer l + 1. A refinement R1 eliminates a spurious edge (((q,R), l), ρ)
if for each (q′,R′) ∈ Ql+1, there is no partition element (q′,R1) ∈ R1 such that the following two
conditions hold: let (p1, . . . ,pn) ∈ ×(q′′,R′′)∈Ql+1

{ρ ((q′′,R′′), l + 1)} for some n ∈ N .

C1: R1 ∩ (Proj (Post[[H]] (Sl
(q,R)
, (p1, . . . ,pn)), ((q′,R′), l + 1)) \ Rl+1

(q′,R′)
) � ∅;

C2: R1 ∩ Rl+1
(q′,R′)

� ∅.

The strategies in Definition 7.13 are basically restrictions on the partition of the concrete set of
states corresponding to the abstract states which make sure that the identified sets are not shared
by the same partition element. Since the spurious edge gets eliminated by such a partitioning, the
progress of the refinement is guaranteed. We formally state it in the following theorem.

Theorem 7.14. Given a refinement R1 of R, if R1 eliminates the spurious edge, then R1 is a

progressive refinement.

Any such splitting as given by Definition 7.13 will eliminate the counterexample. Note that
Definition 7.13 requires that there is no partition element which for any location q intersects with
both the projection of Post to q and the reach set R corresponding to q. Hence, for every partition

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

98:16 R. Lal and P. Prabhakar

Fig. 6. Illustration of Algorithm 2.

element which intersects with both, we need a strategy to separate the two sets, say, S1 and S2. One
possible way to have such splitting can be obtained by Algorithm 2. Algorithm 2 aims to partition
a polyhedral set S for given two polyhedral sets S1 ⊆ S and S2 ⊆ S such that S1 \ S2 and S2 does
not share the same partition element of the partition of S.

ALGORITHM 2: Refine a partition P to separateS1 \ S2 and S2

Input: P - a partition, S1 ⊆ S - a polyhedral set, S2 ⊆ S - a polyhedral set

Output: P - a partition of S that separates S1 \ S2 and S2

begin1

Let S′1 = S1 \ S22

while ∃ P ∈ P such that P ∩ S1 � ∅ and P ∩ S′1 � ∅ do3

if ∃ c ∈ Cons (S2) such that [[c]] ∩ S′1 � ∅ then4

P = P \ {P }5

P = P ∪ {P ∩ [[c]]}6

P = P ∪ {P ∩ [[c]]}7

return P8

end9

Algorithm 2 checks whether there is a partition element P in the current partition P which
overlaps with both S1 and S1 \ S2 at line 3. If so, then we check if there exists a constraint c ∈
Cons (S2) such that S1 \ S2 overlaps with the complement of the set [[c]], then we split P into two
polyhedral sets P ∩ [[c]] and P ∩ [[c]] and add them intoP at lines 5–7. We repeat 4–7 until we come
up P such that no partition element of P overlaps with both S1 and S1 \ S2. We have illustrated
Algorithm 2 in Figure 6. In the left picture of Figure 6, all the constraints of S2 are required to
separate S2 and S1 \ S2 and it results in 7 partition elements of S. However, in the right picture
of Figure 6, one constraint is enough to separate S2 and S1 \ S2, and it results in two partition
elements.

Example 7.15. We illustrate the separation based on the spurious edge E shown in Figure 4.
From Examples 7.6, 7.12, we have S1

(q2,R)
= (q2, [0, 4]), S1

(q3,R)
= (q3, [0, 4]), R1

(q2,R)
= (q2, [1, 4]),

R1
(q3,R)

= (q2, [3, 4]), and the post of the abstract state (q1, [0, 4]) is B = (q2, [0, 2]) × (q3, [0, 2]).

Let B(q2,R) , B(q3,R) be the projection of B for the abstract states (q2,R), (q3,R), respectively, at
layer 1. Then, we use Algorithm 2 to partition S(q2,R) and S(q3,R) . We obtain {(q2,R

2
1), (q2,R

2
2)}

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

CEGAR for Polyhedral Probabilistic Hybrid Systems 98:17

Fig. 7. Markov decision process after refinement.

as a partition of S(q2,R) , where R2
1 = [0, 1], R2

2 = [1, 4]. Similarly, we get {(q3,R
3
1), (q3,R

3
2)} as a

partition of S(q3,R) , where R3
1 = [0, 3), R3

2 = [3, 4]. Thus, we obtain a refinement of the partition
R, which is R1 = {(q1,R), (q2,R

2
1), (q2,R

2
2), (q3,R

3
1), (q3,R

3
2), (q4,R)}. Next, we use R1 for refining

the abstraction and we obtain a Markov Decision Process as shown in Figure 7. The probability of
reaching final state (q4,R) from initial state (q1,R) is less than 0.50. Hence, polyhedral PHS shown
in Figure 1 is probabilistically safe with respect to the initial location q0, a set of final locations
F = {q4}, and probability bound θ = 0.50.

8 COMPUTABILITY

In this section, we summarize the CEGAR algorithm and discuss computability and complexity
issues.

8.1 CEGAR Algorithm

Algorithm 3 presents the CEGAR framework to check whether a given polyhedral PHS H is the
maximum probabilistically safe with respect to an initial location q0, a set of final locations F ,
and a probability bound θ . The function Abstraction takes as input the systemH , partition R, the
initial state q0 and the set of final locations F and returns the MDP abstractionM = Abs(H ,R)
along with the set of abstract states S corresponding to the concrete states {q0} × Inv (q0) and
the set of abstract states F ′ corresponding to the concrete states F × X. The function Model-
Checking takes the abstract MDP M, abstract initial states S and final state F ′ as input and ei-
ther returns a Status = �, if the abstract system satisfies the property and ⊥ otherwise. In the

latter case, it also returns a counterexample T̂ in the form of a DTMC, which is then passed on
to the function Get_LDAG to extract the LDAG D̂. The function Validation function validates
the counterexample D̂ using the backward reachability algorithm and checking if Rk

(q,R)
= ∅ for

some ((q,R),k) ∈ SD̂ . valid = � if the above condition is satisfied in which case a concrete coun-

terexample exists, otherwise, D̂ is a spurious abstract counterexample, in which case some spu-
rious information SI is returned. It first computes the spurious edge SE = (((q,R), l), ρ) ∈−→D̂
where l is the largest number satisfying Rl

(q,R)
= ∅ for some (q,R) and ρ. Then, SI consists of

three sets S1, S2 and S3, where S1 = ×((q′,R′),l+1)∈support (ρ)Sl+1
(q′,R′)

, S2 = Post (S l
(q,R)
,p1,p2, . . . ,pn),

where pi = ρ ((qi ,Ri), l + 1), and S3 = ×((q′,R′),l+1)∈support (ρ)R
l+1
(q′,R′)

. Refinement(R, SI) runs Algo-

rithm 2 for partitioning Proj (S1, ((q,R), l + 1)) for each abstract state ((q,R), l + 1) ∈ support (ρ)

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

98:18 R. Lal and P. Prabhakar

ALGORITHM 3: CEGAR Algorithm

Input:H - polyhedral PHS, q0 - initial location, F - a set of final locations, θ - probability bound,
R - partition of the state space

Output: �/⊥ based on satisfaction/rejection of the specification with respect to q0, F , θ

begin1

Sat = None2

while Sat = None do3

M, S , F ′ = Abstraction(H , R, q0, F)4

T̂ , Status = Modelchecking(M, s , F ′, θ)5

if Status = � then6

Sat = �7

break8

else9

D̂ = Get_LDAG(T̂ , F ′,S , θ)10

SI , valid = Validation(H , D̂, R)11

if valid = � then12

Sat = ⊥13

break14

else15

R1 = Refinement(R, SI)16

R = R117

end18

with respect to Proj (S2, ((q,R), l + 1), Proj (S3, ((q,R), l + 1). Then, for each for each abstract state
((q,R), l + 1) ∈ support (ρ), the partition element Proj (S1, ((q,R), l + 1) of R is replaced by all its
partition elements obtained from Algorithm 2. The CEGAR loop is repeated until the specification
is refuted or satisfied, in general, it is not guaranteed to terminate. Hence, it is a semi-decision
procedure.

8.2 Complexity Analysis

In this section, we discuss the computability and complexity of the different steps in the CEGAR
algorithm. The crux of Algorithm 3 is the computation of Pre and Post functions, corresponding
to computing the one step backward and forward reach sets. When the dynamics is polyhedral
inclusion ẋ ∈ P for a polyhedral set P , the Pre and Post with respect to a polyhedral set of states S ,
results in a polyhedral set. This can be computed by writing a finite set of linear constraints that
the states before and after a transition need to satisfy, and eliminating one of them (depending on
whether we are computing Pre or Post). This corresponds to computing intersections, checking
satisfiability and variable elimination in a set of linear constraints. The first two operations can
be performed efficiently (polynomial in the size of the constraints), while variable elimination is
more expensive and can be performed using Fourier−Motzkin elimination whose complexity is
O (4(nc

4)2nv

), where nc is the number of linear constraints in a polyhedral set and nv is the number
of variables that need to be eliminated. It also leads to a exponential blow-up in the number of
constraints with respect to the number of eliminated variables. In the rest of the section, we present
the complexity analysis assuming a cost of C for each Pre and Post computation. We realize that

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

CEGAR for Polyhedral Probabilistic Hybrid Systems 98:19

C depends on the size of the representation of the intermediate reach sets which can themselves
grow exponentially as the algorithm proceeds, however, we would like to still characterize the
behavior of the rest of the algorithm.

We note that for more general dynamics, the reach set is not a polyhedral set and could require
exponential functions for representation, for instance, for linear dynamics such as ẋ = Ax or other
non-linear dynamics. Hence, though the CEGAR framework in Algorithm 3 can be applied, one
will need to resort to over-approximate computations of Pre and Post for abstraction construction
and deducing spuriousness of the counterexample.

Next, we discuss the complexity of each step presented in Algorithm 3. Let us consider an
n−dimensional polyhedral PHS H , and a partition R of its state space Q × X . Let |R | = k1 × k2

where k1 = |Q| and k2 is the number of distinct partition elements of X.
In the abstraction, each abstract edge has a source of the form (q,R) and a set of target states

of the form (q1,R1), . . . , (qk1 ,Rk1). We need to check if each such potential abstract edge corre-
sponds to a concrete edge, which can be computed by one Pre operation followed by checking
emptiness. Hence, the cost of abstraction is given by O (Ckk1+1

2), and size (representation) of the

output MDPM isO (kk1+1
2). The complexity of Model-Checking function is polynomial in the size

of the MDPM. The GET_LDAG algorithm runs until enough paths are found. There is a priori
no bound on the length of paths explored, however, it is guaranteed to terminate and the time
complexity is polynomial in d , which is the length of the unrolling. Then the complexity of valida-
tion and computation of SI is O (DC), since the validation requires one Pre computation and one
emptiness checking operation (which is cheaper than Pre computation) corresponding to every
node in D̂. The Refinement function calls the partitioning algorithm at most once for every loca-
tion. The complexity of the partitioning algorithms isO (ncnp), where nc number of constraints in
the representation of R sets, and np is the number of partition elements. However, the number of
elements of the refined partition could be exponential in nc .

9 EXPERIMENTS

In this section, we provide the details of the implementation and experimental analysis. We have
implemented the CEGAR framework for polyhedral PHS in a Python toolbox called Procegar.
We use Parma Polyhedra Library (PPL) [8] to compute the abstract MDP, and PRISM [30] model
checker to verify the probabilistic safety specification on the abstract system. PRISM generates a
counterexample in the form of a DTMC. We unroll the DTMC and convert it into an LDAG which
we validate with respect to the polyhedral PHS using PPL [8]. The refinement module generates a
new partition of the state space that eliminates the counterexample, and it is implemented using
PPL [8]. We compare our experimental evaluation of probabilistic safety analysis with tool Pro-
HVer [45], which has been performed on Ubuntu 12.04 OS, Intel R©Pentium(R) CPU B960 with
2.20GHz× 2 Processor and 2GB RAM.

We consider two examples, one corresponding to a grid world, and the other an oscillator-
filter. For the grid world example, we construct grids with n × n cells, where we have polyhe-
dral dynamics ẋ − ẏ <= 0, 2ẋ − ẏ >= 0 in each cell. A probabilistic edge is defined from a cell
to two of its adjacent cells with equal probability. here, we consider the specification, where we
choose cell (1, 1) as an initial location with continuous states [0, 0.5] × [0, 0.5], and cell (2, 2) as
a final location with continuous states [1.5, 2] × [1, 1.5]. Next, for the 2-dimensional oscillator
and m-filter benchmark, we modify the deterministic version of the oscillator-filter benchmark
[18] by introducing probabilities and additional reset constraints. Note that the deterministic
version of the benchmark is a linear PHS. So, we first convert the benchmark into polyhedral
PHS by transforming the linear dynamics into polyhedral dynamics by hybridization over the

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

98:20 R. Lal and P. Prabhakar

Table 1. Verification Results for the Grid World (n = 2, K = 2)

Procegar ProHVer

Rows Grid Size θ Size(init) Size(final) Status TA+C E+V (Sec.) Tver (Sec.) PT (Sec.) Pr Status PT (Sec.)

1
2 × 2

0.25 (4,3) (9,6) ⊥ 6.56 3.13 9.69 1 U 0.03

2 0.50 (4,3) (9,6) � 3.31 3.08 6.39 1 U 0.03

3
4 × 4

0.10 (16,15) (23,19) ⊥ 6.20 3.18 9.38 0.25 U 0.057

4 0.25 (16,15) (23,19) � 3.17 3.08 6.25 0.25 � 0.057

5
6 × 6

0.10 (36,35) (43,39) ⊥ 6.32 3.07 9.39 0.25 U 0.085

6 0.25 (36,35) (43,39) � 3.20 2.96 6.16 0.25 � 0.085

7
8 × 8

0.10 (64,63) (71,67) ⊥ 6.30 3.17 9.47 0.25 U 0.122

8 0.25 (64,63) (71,67) � 3.26 2.94 6.20 0.25 � 0.122

Table 2. Verification Results for the Oscillator-filter (K = 1)

Procegar ProHVer

m dim θ Size(init) Size(final) Status TA+C E+V (Sec.) Tver (Sec.) PT (Sec.) Pr Status PT (Sec.)

1 3
0.10 (4,3) (4,3) ⊥ 3.25 1.51 4.76 0.73 U 11.66

0.20 (4,3) (4,3) � 0.01 1.45 1.46 0.73 U 11.66

2 4
0.10 (4,3) (4,3) ⊥ 4.70 1.46 6.16 0.73 U 711.96

0.20 (4,3) (4,3) � 0.01 1.48 1.49 0.73 U 711.96

3 5
0.10 (4,3) (4,3) ⊥ 36.11 1.65 37.76 0.73 U 4385.63

0.20 (4,3) (4,3) � 0.01 1.55 1.56 0.73 U 4385.63

4 6
0.10 (4,3) (4,3) ⊥ 1273.30 1.55 1274.85 — — TO

0.20 (4,3) (4,3) � 0.01 1.88 1.89 — — TO

invariant set. In addition, we consider the state space for each variable as the interval [−3, 3].
For the specification, we consider (l1, {−0.5 ≤ x ≤ 0, 0 ≤ y ≤ 0.35}) as the initial set of states and
(l4, {0 ≤ x ≤ 0.5,−0.35 ≤ y ≤ 0}) as the final set of states. For all the experiments, we are interested
in verifying maxs ∈I Probmax ([[H]], s,F) ≤ θ for different values of probability bound θ , where I is
the set of initial states and F is the set of final states.

We perform experiments using tools Procegar and ProHVer [45] and compare the experimental
results. For the probabilistic safety analysis using tool ProHVer [45], we first compute the maxi-
mum probability of reaching a set of final states from a set of initial states and check whether the
maximum probability of reachability is less than or equal to θ .

In Table 1 and Table 2, the results of analysis of the grid world and the oscillator-filter are
summarized, respectively. In the tables, θ shows the probability bound; Size(init), Size(final) show
the size of initial and final abstract system which are expressed as a pair (|V |, |E |), where |V |, |E |
are number of vertices and edges, respectively. Status represents whether a given specification is
satisfied (�), non-satisfied (⊥) or the verification result is inconclusive (U).TA+CE+V shows the total
time (among all iterations) taken for the abstraction, counterexample simplification, and validation
steps;Tver represents the total time (among all iterations) for checking the property by PRISM and
PT represents the total time taken for the safety verification. All times are measured in seconds.
Pr represents the value of the maximum probability of reachability for a given specification in
ProHVer [45]. dim, K represent dimension of the system and number of iterations in CEGAR,
respectively.m shows the number of filters for 2-dimensional oscillator andm-filter benchmark.

We observe that in both Table 1 and Table 2, Procegar concludes safety of the specification for
different values of θ for all grid sizes, however, in Table 1 ProHVer [45] is unable to conclude safety

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

CEGAR for Polyhedral Probabilistic Hybrid Systems 98:21

in Rows 1, 2, 3, 5, 7, and in Table 2, ProHVer [45] is unable to conclude safety of the specification
for m = 1, 2, 3. Also, ProHVer [45] did not terminate for m = 4 within a timeout of 75 minutes.
Procegar is able to find proofs in many more instances and with less time as compared to ProHVer
which does not use any clever refinement techniques. There is no extensive set of benchmarks for
probabilistic hybrid systems so we have modified some of the existing benchmarks in the non-
probabilistic setting.

10 CONCLUSIONS

In this paper, we have developed a CEGAR based method for probabilistic safety analysis of poly-
hedral probabilistic hybrid systems. We have implemented the method in a Python toolbox and
compared our method with the tool ProHVer [45]. Our experimental analysis demonstrates the
advantages of our technique in terms of both being able to verify many more systems as well
as being able to validate counterexamples. However, there are several strategies for splitting to
achieve progressive refinements, and we will explore some of those in the future work. Also, we
will extend our CEGAR algorithm for complex stochastic hybrid systems, where we consider sto-
chastic differential equations that capture stochasticity in the continuous behaviors.

ACKNOWLEDGMENTS

Pavithra Prabhakar was partially supported by NSF CAREER Award No. 1552668 and ONR YIP
Award No. N000141712577.

REFERENCES

[1] Alessandro Abate, Alessandro D’Innocenzo, and Maria D Di Benedetto. 2011. Approximate abstractions of stochastic
hybrid systems. IEEE Trans. Automat. Control.

[2] Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry. 2008. Probabilistic reachability and safety for
controlled discrete time stochastic hybrid systems. Automatica.

[3] Husain Aljazzar, Holger Hermanns, and Stefan Leue. 2005. Counterexamples for timed probabilistic reachability. In
International Conference on Formal Modeling and Analysis of Timed Systems.

[4] Husain Aljazzar, Matthias Kuntz, Florian Leitner-Fischer, and Stefan Leue. 2010. Directed and heuristic counterex-
ample generation for probabilistic model checking: a comparative evaluation. In ICSE Workshop on Quantitative Sto-

chastic Models in the Verification and Design of Software Systems.
[5] Rajeev Alur, Thao Dang, and Franjo Ivančić. 2003. Counter-example guided predicate abstraction of hybrid systems.

In International Conference on Tools and Algorithms for the Construction and Analysis of Systems.
[6] Rajeev Alur, Thao Dang, and Franjo Ivančić. 2003. Progress on reachability analysis of hybrid systems using predicate

abstraction. In International Workshop on Hybrid Systems: Computation and Control.
[7] Rajeev Alur, Thao Dang, and Franjo Ivančić. 2006. Counterexample-guided predicate abstraction of hybrid systems.

Theoretical Computer Science.
[8] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. 2008. The parma polyhedra library: Toward a complete set of

numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program.

[9] Christos G. Cassandras and John Lygeros. 2006. Stochastic hybrid systems. CRC.
[10] Rohit Chadha and Mahesh Viswanathan. 2010. A counterexample-guided abstraction-refinement framework for

Markov decision processes. ACM Transactions on Computational Logic (TOCL).
[11] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. 2013. Flow*: An analyzer for non-linear hybrid systems.

In International Conference on Computer Aided Verification.
[12] Edmund Clarke, Ansgar Fehnker, Zhi Han, Bruce Krogh, Joël Ouaknine, Olaf Stursberg, and Michael Theobald. 2003.

Abstraction and counterexample-guided refinement in model checking of hybrid systems. International Journal of

Foundations of Computer Science.
[13] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000. Counterexample-guided abstraction

refinement. In International Conference on Computer Aided Verification.
[14] Pedro R. D’Argenio, Bertrand Jeannet, Henrik Ejersbo Jensen, and Kim Guldstrand Larsen. 2001. Reachability analysis

of probabilistic systems by successive refinements. In Process Algebra and Probabilistic Methods, Performance Modeling

and Verification: Joint International Workshop, PAPM-PROBMIV.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

98:22 R. Lal and P. Prabhakar

[15] Martin Fränzle, Ernst Moritz Hahn, Holger Hermanns, Nicolás Wolovick, and Lijun Zhang. 2011. Measurability and
safety verification for stochastic hybrid systems. In International Conference on Hybrid Systems: Computation and

Control.
[16] Martin Fränzle, Holger Hermanns, and Tino Teige. 2008. Stochastic satisfiability modulo theory: A novel technique for

the analysis of probabilistic hybrid systems. In International Workshop on Hybrid Systems: Computation and Control.
[17] Goran Frehse. 2005. PHAVer: Algorithmic verification of hybrid systems past HyTech. In International Workshop on

Hybrid Systems: Computation and Control.
[18] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado,

Antoine Girard, Thao Dang, and Oded Maler. 2011. SpaceEx: Scalable verification of hybrid systems. In International

Conference on Computer Aided Verification.
[19] Sicun Gao, Soonho Kong, and Edmund M. Clarke. 2013. dReal: An SMT solver for nonlinear theories over the reals.

In International Conference on Automated Deduction. Springer.
[20] Tingting Han, Joost-Pieter Katoen, and Damman Berteun. 2009. Counterexample generation in probabilistic model

checking. IEEE Transactions on Software Engineering.
[21] Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre. 2008. Approximate parameter synthesis for probabilistic

time-bounded reachability. In Real-Time Systems Symposium.
[22] Hans Hansson and Bengt Jonsson. 1994. A logic for reasoning about time and reliability. Formal Aspects of Computing.
[23] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. 1998. What’s decidable about hybrid automata?

Journal of Computer and System Sciences.
[24] Holger Hermanns, Björn Wachter, and Lijun Zhang. 2008. Probabilistic cegar. In International Conference on Computer

Aided Verification.
[25] Jianghai Hu, John Lygeros, and Shankar Sastry. 2000. Towards a theory of stochastic hybrid systems. In International

Conference on Hybrid Systems: Computation and Control.
[26] Sumit K. Jha, Bruce H. Krogh, James E. Weimer, and Edmund M. Clarke. 2007. Reachability for linear hybrid au-

tomata using iterative relaxation abstraction. In International Workshop on Hybrid Systems: Computation and Control.
Springer.

[27] Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf. 2012. Three-valued abstraction for probabilistic
systems. The Journal of Logic and Algebraic Programming.

[28] Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. 2015. dReach: δ -reachability analysis for hybrid systems.
In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer.

[29] Marta Kwiatkowska. 2003. Model checking for probability and time: From theory to practice. In Logic in Computer

Science, 2003. IEEE Symposium on.
[30] Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of probabilistic real-time sys-

tems. In International Conference on Computer Aided Verification.
[31] Ratan Lal and Pavithra Prabhakar. 2018. Bounded verification of reachability of probabilistic hybrid systems. In Quan-

titative Evaluation of Systems QEST.
[32] Ratan Lal and Pavithra Prabhakar. 2018. Hierarchical abstractions for reachability analysis of probabilistic hybrid

systems. In Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[33] John Lygeros and Maria Prandini. 2010. Stochastic hybrid systems: A powerful framework for complex, large scale

applications. Eur. J. Control.
[34] Anuj Puri, Vivek S. Borkar, and Pravin Varaiya. 1995. Epsilon-approximation of differential inclusions. In Hybrid

Systems III: Verification and Control, DIMACS/SYCON Workshop on Verification and Control of Hybrid Systems.
[35] Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. 2016. Hybridization based CEGAR for hybrid automata

with affine dynamics. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems.
[36] Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. 2017. HARE: A hybrid abstraction refinement engine for

verifying non-linear hybrid automata. In International Conference on Tools and Algorithms for the Construction and

Analysis of Systems.
[37] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. 2004. Mathematical Techniques for Analyzing Concurrent and

Probabilistic Systems, P. Panangaden and F. van Breugel (eds.). American Mathematical Society.
[38] Roberto Segala and Nancy A. Lynch. 1994. Probabilistic simulations for probabilistic processes. In International Con-

ference on Concurrency Theory.
[39] Fedor Shmarov and Paolo Zuliani. 2015. Probreach: Verified probabilistic delta-reachability for stochastic hybrid sys-

tems. In International Conference on Hybrid Systems: Computation and Control.
[40] Jeremy Sproston. 2000. Decidable model checking of probabilistic hybrid automata. In International Symposium on

Formal Techniques in Real-Time and Fault-Tolerant Systems.
[41] Tino Teige and Martin Fränzle. 2009. Constraint-based analysis of probabilistic hybrid systems. IFAC Proceedings

Volumes.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

CEGAR for Polyhedral Probabilistic Hybrid Systems 98:23

[42] Ashish Tiwari. 2008. Abstractions for hybrid systems. FMSD.
[43] Qinsi Wang, Paolo Zuliani, Soonho Kong, Sicun Gao, and Edmund M. Clarke. 2015. Sreach: A probabilistic bounded

delta-reachability analyzer for stochastic hybrid systems. In Conference on Computational Methods in Systems Biology.
[44] Majid Zamani, Peyman Mohajerin Esfahani, Rupak Majumdar, Alessandro Abate, and John Lygeros. 2014. Symbolic

control of stochastic systems via approximately bisimilar finite abstractions. IEEE Trans. Automat. Control.
[45] Lijun Zhang, Zhikun She, Stefan Ratschan, Holger Hermanns, and Ernst Moritz Hahn. 2010. Safety verification for

probabilistic hybrid systems. In International Conference on Computer Aided Verification.

Received April 2019; revised June 2019; accepted July 2019

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 98. Publication date: October 2019.

