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Many important properties of cyber-physical systems (CPS) are defined upon the relationship between mul-
tiple executions simultaneously in continuous time. Examples include probabilistic fairness and sensitivity to
modeling errors (i.e., parameters changes) for real-valued signals. These requirements can only be specified
by hyperproperties. In this article, we focus on verifying probabilistic hyperproperties for CPS. To cover a wide
range of modeling formalisms, we first propose a general model of probabilistic uncertain systems (PUSs) that
unify commonly studied CPS models such as continuous-time Markov chains (CTMCs) and probabilistically

parametrized Hybrid I/O Automata (P2HIOA). To formally specify hyperproperties, we propose a new tempo-
ral logic, hyper probabilistic signal temporal logic (HyperPSTL) that serves as a hyper and probabilistic version
of the conventional signal temporal logic (STL). Considering the complexity of real-world systems that can
be captured as PUSs, we adopt a statistical model checking (SMC) approach for their verification. We develop
a new SMC technique based on the direct computation of significance levels of statistical assertions for Hy-
perPSTL specifications, which requires no a priori knowledge on the indifference margin. Then, we introduce
SMC algorithms for HyperPSTL specifications on the joint probabilistic distribution of multiple paths, as well
as specifications with nested probabilistic operators quantifying different paths, which cannot be handled by
existing SMC algorithms. Finally, we show the effectiveness of our SMC algorithms on CPS benchmarks with
varying levels of complexity, including the Toyota Powertrain Control System.
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1 INTRODUCTION

Ensuring safety of controllers in embedded and cyber-physical systems (CPS) using closed-loop
system verification is a challenging problem, due to the inherent uncertainties in system dynam-
ics and the environment. In systems where the uncertainties can be captured in a probabilistic
manner, two prominent verification approaches are exhaustive [3] and statistical [21]. The exhaus-
tive approach, with full knowledge of a system model, computes the satisfying probability of the
desired properties arithmetically; on the other hand, the statistical approach estimates the prob-
abilities from sampling, and makes assertions with a certain significance level (an upper bound
of the probability of returning a wrong answer). Accordingly, statistical model checking (SMC) is
more capable of handling “black-box”, high-dimension or large-scale system models.

Properties of interest for such systems, from ‘simple’ probabilistic safety or reachability, to the
ones that capture dynamical responses under complex conditions, are usually formally defined by
probabilistic temporal logic specifications. Conventional probabilistic temporal logics, such as the
probabilistic computational tree logic (PCTL) [15], as well as its extension PCTL∗ [3], can only spec-
ify probabilistic properties without explicitly quantifying over different paths of the system; that is,
they cannot simultaneously and explicitly quantify over multiple distinctive paths to fully express
their inter-relations. This prevents them from capturing important safety/performance hyperprop-
erties [2, 7] that involve multiple execution paths, such as sensitivity to model errors, detectability

of system anomalies, and fairness when more than once process/client are controlled/serviced.
For example, consider embedded controllers such as the Toyota Powertrain control system

benchmark [19], for which both exhaustive (e.g., [11]) and statistical (e.g., [24]) verification tech-
niques have been introduced. However, all these techniques are restricted to the use on a dynamical
system model obtained for fixed system parameters. In general, such parameters are experimen-
tally derived and thus, should be considered as random variables with unknown probability distri-
butions, instead of the fixed values. In addition, some of the system parameters might change to a
degree, due to system ‘wear-and-tear’. Hence, it is critical to enable analysis of system sensitivity
to model errors, by providing a formal logic to capture such properties, as well as methods to verify
how system evolution (execution) changes for different parameters of the system model.

Specifying these properties, such as sensitivity to change of parameters, involves probabilistic
quantification over multiple paths (a path and its deviation), and thus can only be captured as
hyperproperties [7]. For example, as illustrated in Figure 1, for sensitivity analysis we can check
whether the deviation π2 of a path π1 under probabilistic uncertainty stays close probabilistically,
such that there is limited variation in the hitting time τ to a desired working region. Although
the sensitivity may be expressed as a non-hyperproperty if ‘expected’ hitting times are known
in advance (as a reference) for any entry into the desired operating region, such information is
usually unavailable for complex systems.

Consequently, in this work, we first introduce a probabilistic temporal logic for hyperprop-
erties expressed on real-valued continuous-time signals, referred to as Hyper Probabilistic Signal

Temporal Logic (HyperPSTL). HyperPSTL can be viewed as a hyper extension and generalization
of the probabilistic signal/metric-interval temporal logic [25, 32], a probabilistic version of Hyper-
STL [23], and a continuous-time extension and generalization of HyperPCTL [2]. HyperPSTL ex-
tends those logics by enabling (1) reasoning about the probability of paths by adding a probability
operator, and (2) reasoning about multiple paths simultaneously, i.e., hyperproperties specifying
the relationship between different paths by associating path variables to the atomic propositions.

To allow us to cover a range of modeling formalisms, we introduce a very general system model–
probabilistic uncertain systems (PUS)–and define the semantics of HyperPSTL on it. Generally, they
are ‘black-box’ probabilistic dynamical systems with unknown dynamics on a given state space.
A PUS incorporates nondeterminism as its input and probabilism as its parameters, both of which
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Fig. 1. Sensitivity of paths π1 and π2, drawn in solid and dashed lines respectively.

are time functions of values of general types, including real, integer or categorical/Boolean. Given
the values of the input and the parameters, we can draw a time-dependent sample path from the
PUS, which can also be of general types. We note that this general model captures commonly
studied models such as CTMCs and hybrid I/O automata with probabilistic parameters–referred
to as probabilistically parameterized hybrid I/O automata (P2HIOA).

We define the semantics of HyperPSTL on a set of paths of the PUS through pre-defined labels
or predicates on the state spaces. We show by concrete examples that this allows for the capturing
of properties such as (i) anomaly detectability, or (ii) sensitivity to model errors due to probabilistic
uncertainty of parameters of hybrid I/O automata, and (iii) workload fairness in queueing networks
modeled as continuous-time Markov chains (CTMC). To verify HyperPSTL specifications on a PUS
for a given input, we introduce new SMC algorithms using Clopper-Pearson (CP) bounds [8].

Unlike most previous SMC methods based on the sequential probability ratio test (SPRT) [20,
21], this approach requires no a priori knowledge on the indifference margin. Our SMC algorithm
can verify a HyperPSTL specification to arbitrarily small (non-zero) significance levels, which is
also different from [4] on using CP bounds to estimate satisfying probability for given samples. The
conservativeness of the CP significance level ensures that the desired significance level is strictly
achieved even in the worst case. Specifically, we iteratively draw samples from the objective model
and compute the significance level derived from the CP confidence interval. The algorithm stops
if the CP significance level is smaller than the desired significance levels. Further improvement
in sample efficiency is also possible using the upper bounds derived from Wilson scores, Jeffreys
interval or Agresti-Coull interval, at the cost of yielding only asymptotic correctness (see [6] for
a review of these confidence intervals).

To the best of our knowledge, this work is the first to enable SMC on probabilistic temporal logic
for hyperproperties in continuous time. Compared to common non-hyper temporal logics, Hyper-
PSTL allows uniquely for (1) probability quantification over multiple paths, (2) defining specifica-
tions on their joint probabilistic distribution, such as comparison of probabilities, and (3) nesting
of probabilistic operators that quantify over different sets of paths. We address these challenges
by deriving SMC methods capable of handling these cases, while providing provable significance
levels. We also show that HyperPSTL subsumes several existing signal temporal logics for proba-
bilistic properties [24, 32] (see Section 3), and thus, the SMC algorithms for HyperPSTL introduced
in this work, also apply to them.

Finally, we show the effectiveness of our SMC methods on embedded case studies with different
complexity and modeling formalism. Specifically, we statistically verified sensitivity of a thermo-
stat and the Toyota Powertrain System with uncertain parameters, as well as fairness in queueing
networks of different sizes; we generated probabilistic guarantees with high significance levels. For
example, for the Toyota Powertrain and the large queueing networks, where exhaustive verifica-
tion is not possible, we construct upper bounds on the 0.95 and 0.99 percentiles of their sensitivity
and fairness, respectively, with a confidence level of 0.99 using only a few hundred samples. This
achieves, for the first time, statistical verification of probabilistic hyperproperties on continuous
signals, which can be used even for real-world sized CPS.
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Fig. 2. Probabilistic Uncertain System S.

Organization. We introduce probabilistic uncertain systems in Section 2, followed by the syntax
and semantics of HyperPSTL in Section 3. In Section 4, we show how HyperPSTL can be used to
capture desired properties of CPS. Our SMC algorithms are presented in Section 5 with an emphasis
on the use of CP significance levels and the handling of probabilities involving multiple paths. We
apply the SMC techniques to three embedded case studies (e.g., Toyota Powertrain System) in
Section 6, before concluding in Section 7.

Notation. We denote the sets of integers, rational, real, and non-negative real numbers by N , Q,
R, and R≥0, respectively. The domain and image of a function is denoted by Dom(·) and Image(·),
respectively. Let N∞ = N ∪ {∞} and Q∞ = Q ∪ {∞}. For n ∈ N , let [n] = {1, . . . ,n}. The indica-
tor function is denoted by I. We denote the (Borel) measure of a measurable set by μBorel (·). The
cardinality and the power set of a set are denoted by | · | and 2·. For any set I ⊆ Rn , we denote its
boundary, interior, and closure by ∂I , I ◦, and Ī , respectively. The empty set is denoted by ∅. With
a slight abuse of notation, given a map V : A→ B and A′ ⊆ A, let V (A′) =

⋃
a∈A′V (a).

We refer to a function of time σ : R≥0 → Rn as a signal, and denote by σ (t1 ) its t1-time shift
defined as σ (t1 ) (t2) = σ (t1 + t2) for t1 ∈ R≥0. We denote the binomial distribution by Binom(n,p),
the exponential distribution parametrized by rate by Exp(λ), and the beta distributions with shape
parameters by Beta(α , β ). A random variable X drawn from probability distribution μ is denoted
by X ∼ μ.

2 PROBABILISTIC UNCERTAIN SYSTEMS

To allow for defining HyperPSTL for a large class of commonly used modeling formalisms in a
way that facilitates design of SMC techniques, we introduce a very general system model, which
we refer to as probabilistic uncertain systems (PUS) (Figure 2). Such model can be viewed as a
“black-box” probabilistic dynamical system with an explicit state space, where the randomness
only comes from the time-dependent parameters drawn from random processes. The PUS gen-
eralizes models such as CTMCs and P2HIOA, and provides a unified framework for the SMC of
probabilistic hyperproperties.

A PUS is a ‘black-box’ probabilistic dynamical system on a given state space, which we de-
note by X. Its probabilistic uncertainty comes from a set of n time-dependent parameters D (t ) =
(d1 (t ), . . . ,dn (t )) where t ∈ R≥0, drawn from some probability distribution μ (D) on its domainD.
That is, the parameters of the system are drawn from an n-dimensional random process. The input

to the system I (t ) = (i1 (t ), . . . , im (t )) ∈ I is anm-dimensional function of time t . Given the input
I (t ), the values of the parameters D (t ), and an initial state X init = (x init

1 , . . . ,x
init
l

) ∈ X, the system
deterministically generates a time-dependent path X : R≥0 → X with X (t ) = (x1 (t ), . . . ,xl (t )).
That is, the randomness in system evolution only comes from system parameters.

The values of the system inputs, parameters, and states can be of mixed types: real, discrete or
categorical, depending on the system formulation. Here, we make no assumption on the system
dynamics (Markovian, causal, etc); rather, the system should be viewed just as a general determin-
istic map from the functions I (t ) and D (t ) to the function X (t ). Without knowing the value of the
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system parameters and given the initial state, the map from the input I (t ) to the path X (t ) is only
probabilistic, i.e., the probability distribution for all uncertain variables are given.

Given the finite set of atomic propositions AP, the labeling function on the state space L : X →
2AP defines for each state, a set of atomic propositions that hold. Alternatively, the labeling of each
atomic proposition in AP can be represented by a predicate/Boolean function that indicates the
subset of states X that are labeled by that atomic proposition. Then, a path of the system induces
a signal σ (t ) = L(X (t )) : R≥0 → 2AP. This signal indicates the set of properties that is satisfied by
the system S at each time t ∈ R≥0 during system evolution. In Section 3, we will define hyper
temporal properties on sets of such signals.

A PUSS is both probabilistic in the value of its parameters and nondeterministic in its input. We
note that the distinction between the parameters and the input of the system is only mathematical,
not physical. In practice, we can model the probabilistic input of a real system as a parameter of its
PUS model, and a nondeterministic parameter of the system as an input of the PUS. In this work,
we focus on SMC related to the probabilistic nature of a PUS; i.e., we consider the cases, where the
input of the PUS is given such as when it is determined by the actions of the controller used to con-
trol the system (PUS). Before we introduce HyperPSTL and SMC methods for PUS, in the rest of
this section, we show how our abstract notion of PUS captures two prominent computing models:
continuous-time Markov chains (CTMCs) that mathematically model queuing networks and prob-
abilistic hybrid I/O automata that model the Toyota Powertrain system mentioned in Section 1.

2.1 Probabilistically Parameterized Hybrid I/O Automata

Probabilistically Parameterized Hybrid I/O Automata (P2HIOA) are extensions of Hybrid I/O Au-
tomata (HIOA) [16, 19, 22] with probabilistic system parameters. Given the variety of mathematical
models for HIOA, we build the one used in [19] to describe the dynamics of hybrid systems with
fully observable states. Specifically, an HIOA is a tuple A = (MA , XA , IA , UA , InvA , TA , Q) where

• MA is a finite set of modes;
• XA is a set of n state variables of real values, i.e., XA ⊆ Rn ;
• UA is a set ofm input variables; their valuations can be of different types, such as N , R, and

Boolean;
• FA : MA × XA × UA → Rn defines a deterministic flow capturing system evolution in each

mode, i.e., a differential equation:

dxA
dt
= FA (mA , xA , uA );

• For any mode mA ∈ MA , InvA (mA ) = Dom(FA (mA , ·, ·)) defines the invariant of the mode;
• TA : MA × XA × UA → MA × XA defines deterministic jumps triggered by XA ∈ ∂InvA

(mA ), i.e., when the flow hits the boundary of the invariant.
• IA ∈ MA × XA is the initial condition;
• Q ⊆ UA × XA → {0, 1} is a finite set of predicates.

The P2HIOA extend Hybrid I/O Automata by allowing system parameters, used to capture
FA , TA , InvA , to be probabilistic instead of fixed. This differs from the Probabilistic Hybrid Au-
tomata introduced in [28, 34], where the randomness comes only from the probabilistic jumps.
In standard hybrid models, the deterministic and nonlinear flow, invariant, and jump functions
FA , TA , InvA , which define its dynamics, are parameterized by quantities that are estimated from
physical experiments. For example, in the Toyota Powertrain model, the mass flow rate of intake
air is determined by the RPM of the engine and the pressure of the intake manifold through a poly-
nomial, whose five parameters are fit from experimental data. Due to experimental errors, these
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parameters are better represented as random variables with unknown probability distributions
(e.g., Gaussian or uniform with means and variances inferred from experimental data) than real
numbers as in [19]. Thus, we denote the parameters for FA , TA , and InvA byD = (dFA ,dTA ,dInvA ).
To simplify our presentation, in this work, we assume that these parameters for P2HIOA are time-
invariant.

Consequently, a P2HIOA can be represented by a PUS by treating (i) I = UA as the input,
(ii)X = MA × XA as the state (the input variables UA are encoded as part of the state), (iii)X init = IA
as the initial state, (iv) D = (dFA ,dTA ,dInvA ) as the parameters, and (v) the predicate Q as the label-
ing function. The probabilistic hyperproperties related to P2HIOA, as the one discussed in Section 1
and 4, will be statistically verified on this PUS.

2.2 Continuous-Time Markov Chains

Another example of PUS are CTMCs, which are commonly used to model queuing and task
scheduling in embedded computing and communication systems with uncertainties. Consider a
CTMC with

• the states [n],
• the initial state X0 ∈ [n],
• the labeling function on the states L : [n]→ 2AP for a given set of labels AP,
• the probability transition rate matrix M ∈ Rn×n , such that

∑
j ∈[n] Mi j = 0, where Mi j is the

transition rate from a state i to a state j.

The CTMC can be represented by a PUS with (i) the states X = [n], (ii) the initial state X0,
(iii) the empty inputs (i.e., the PUS has no input), (iv) the labels AP, and (v) the labeling function L :
[n]→ 2AP. For i ∈ N , we drawd1i andd2i from [0, 1] uniformly and independently. Using Gillespie
algorithm [14], with the convention

∑0
k=1 · = 0, the state X of the PUS representing the CTMC

evolves by:
X (t ) = Xi if t ∈ [Ti ,Ti+1),

where the state jumps are determined by d1i as

Xi+1 = j when Xi = l if
j−1∑
k=1

Mlk ≤ d1i <

j∑
k=1

Mlk ,

and the time lapses are determined by d2i using

Ti+1 = Ti + F
−1
Exp(

∑
k∈[n],k�l Mlk ) (d2i ), T0 = 0,

with Exp(·) denoting the exponential distribution parameterized by rate and F
−1
· the inverse func-

tion of the cumulative distribution function. Treating the two sequences {d1i }i ∈N and {d2i }i ∈N
as the two parameters of the PUS, provides a PUS presentation of the CTMC. Although they are
discrete sequences, we can easily represent them as continuous functions of time to fit into the
definition of the parameters of the PUS. Then, the probabilistic hyperproperties (e.g., fairness) for
the initial CTMC, should be statistically verified on the aforementioned PUS.

3 HYPER PROBABILISTIC SIGNAL-TEMPORAL LOGIC

To formally express and reason about probabilistic hyperproperties on real-valued signals, we
introduce the logic HyperPSTL, which can be viewed as a probabilistic extension of the signal

temporal logic (STL) for hyperproperties. We introduce the syntax and semantics of HyperPSTL
for PUS in Section 3.1 and 3.2, before presenting its use to capture relevant properties of embedded
systems in Section 4.
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3.1 Syntax

We define HyperPSTL formulas inductively as:

φ � aπ | φπ |¬φ | φ ∧ φ | φ U[t1,t2] φ | p � p (1)

p � PΠφ | PΠ p | f (p, . . . ,p) (2)

where

• a ∈ AP, and AP is the finite set of atomic propositions,
• t1 < t2 with t1, t2 ∈ Q∞,
• π is a path variable, and Π is a set of path variables,
• P is the probability operator,
• � ∈ {<, >,=, ≤, ≥},
• f : Rn → R is a n-ary measurable function, constants are viewed as 0-ary functions,
• fv(·) denotes the set of free path variables in φ, i.e., the path variables not quantified by

a probability operator through (2), and fv(φ) = ∅ in the 2nd rule of (1). This is recursively
defined by:

fv(aπ ) = {π }, fv(φπ ) = {π }, fv(¬φ) = fv(φ),

fv(φ1 ∧ φ2) = fv(φ1) ∪ fv(φ2), fv(φ1 U[t1,t2] φ2) = fv(φ1) ∪ fv(φ2),

fv(p1 � p2) = fv(p1) ∪ fv(p2), fv( f (p1, . . . ,pn )) =
⋃

i ∈[n]fv(pi ),

fv(PΠ (φ)) = fv(φ)\Π, fv(PΠ (p)) = fv(p)\Π.

Other common logic operators can be derived as follows:φ ∨ φ ′ ≡ ¬(¬φ ∧ ¬φ ′), True ≡ φ ∨ ¬φ,
φ ⇒ φ ′ ≡ ¬φ ∨ φ ′, �[t1,t2]φ ≡ True U[t1,t2] φ, and �[t1,t2]φ ≡ ¬�[t1,t2]¬φ. In addition, we denote
U[0,∞) , �[0,∞) , and �[0,∞) byU , �, �, respectively.

A formula with fv(φ) = ∅ is called a state formula and requires no instantiation of free path
variables, thus can be evaluated on a state of the PUS. Therefore, we can associate another path
variable π to it. All other formulas are referred to as path formulas, as their correctness depends on
the instantiation of their free path variables. It specifies on which path a state formula should be
satisfied, so that a HyperPSTL formula can reason simultaneously on multiple paths. Finally, for
the first two rules of (2), we assume that Π is contained in fv(φ) or fv(p) for the probability quan-
tification to be non-trivial. Observe that HyperPSTL can be viewed as the probabilistic version of
HyperSTL [23] by replacing the existential and universal quantifiers over signals with probabilistic
quantifiers over paths in (2).

HyperPSTL has the following unique features. It allows for the simultaneous probability quan-
tification over several paths (as we show for the sensitivity analysis of powertrain controllers in
Section 4). It also allows for the arithmetics and comparison of probabilities, and the nesting of
probability operators quantifying different paths (as shown in the queueing fairness analysis de-
scribed in Section 4).

HyperPSTL reduces to a non-hyper probabilistic signal temporal logic (PSTL) if it only has one
path variable in it. PSTL can still define probability satisfaction of single atomic propositions, so
it subsumes the MITL for probability distributions from [32]. But, PSTL (and thus HyperPSTL)
does not subsume PrSTL in [25], since it does not allow a time-varying probability threshold, as is
allowed in PrSTL. Still, augmenting HyperPSTL syntax to allow time-varying functions is straight-
forward.

Finally, note that to simplify our presentation of HyperPSTL syntax and semantics, while al-
lowing for verification of complex systems such as P2HIOA, we only include simultaneous or con-
secutive probabilistic quantification (e.g., P {π1,π2 } or P π1P π2 ) over the paths from a single initial
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Fig. 3. CTMC Model of A Queue HyperPSTL.

state. HyperPSTL can be augmented by allowing nested existential and universal quantification
over multiple states in the same way as [2, 31]. Specifically, in addition to the probabilistic quantifi-
cation over the paths, one can add extra state quantification of these paths to specify from which
state the path starts, like ∃X π1

1 .∀X
π2
2 .P

{π1,π2 } . However, verifying such formulas generally requires
exhaustive iteration over all the states, which is challenging, if not impossible, on systems with
infinite state spaces like P2HIOA. Therefore, in this paper, we do not include state quantification
which in our logic can be done as presented in [2, 31].

3.2 Semantics

We define the satisfaction relation for HyperPSTL state formulas on a PUS S by

(S,X ) |= φ ⇔ S |= �φ�VX
, (3)

whereVX is an assignment of path variables to the paths of the PUS S starting from a state X , and
�φ�VX

is the instantiation of the assignment VX on φ. Here, the instantiation specifies the initial
state for the formula φ.

The satisfaction relation for the HyperPSTL path formulas is defined with respect to the assign-
ment VX by:

S |= �p � p�VX
⇔ S |= �p�VX

� �p�VX

S |= � f (p, . . . ,p)�VX
⇔ S |= f (�p�VX

, . . . , �p�VX
)

S |= �PΠ (φ)�VX
⇔ S |= Prσσσ∼Path|Π | (X ) ((S,VX [Π → σσσ ]) |= φ)

(S,VX ) |= aπ ⇔ a ∈ L(VX (π ) (0))
(S,VX ) |= Φπ ⇔ (S,VX (π )) |= Φ
(S,VX ) |= ¬φ ⇔ (S,VX ) � |= φ
(S,VX ) |= φ1 ∧ φ2 ⇔ (S,VX ) |= φ1 and (S,VX ) |= φ2

(S,VX ) |= φ1 U[t1,t2] φ2 ⇔ ∃t ∈ [t1, t2].
(
∀t ′ < t .

(
S,V (t ′)

X

)
|= φ1

)
∧

(
S,V (t )

X

)
|= φ2

(4)

where

• L(X ) is the set of labels of the PUS state X ,
• Path |Π | (X ) is the collection of all |Π |-tuples of paths starting from state X ,
• VX [Π → σσσ ] is a revision of the assignment VX by assigning the set σσσ of paths to the set Π

of path variables, respectively,

• V (t )
X

is the t-shift of the assignment VX , defined by (V (t )
X

(π )) = (VX (π )) (t ) for all path vari-
ables π in assignment V .

Finally, we note the equivalence a ∈ L(VX (π ) (0)) ⇔ a ∈ L(X ) and (S,VX (π )) |= Φ ⇔ (S,X ) |= Φ
for the 4th and 5th rules in (4). The following example illustrates the semantics of HyperPSTL.

Example 1. As shown in Figure 3, consider a CTMCS that models a queue that is initially empty
and is of buffer size 2. The transition rate matrix of S is the following:

⎡⎢⎢⎢⎢⎢⎣
−1 1 0
2 −3 1
0 2 −2

⎤⎥⎥⎥⎥⎥⎦
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Fig. 4. HyperPSTL on CTMC.

The CTMC satisfies the following HyperPSTL formula:

φ = P π1
((
¬sπ1

1

)
U

(
sπ1

1 U[0,1] s
π1
0

))
− P π2

((
¬sπ2

2

)
U

(
sπ2

2 U[0,1] s
π2
1

))
> 0.05,

The formula asserts that the probability difference between (i) finishing a task within 1 time delay
after first having 1 in queue and (ii) finishing a task within 1 time delay after first having 2 in
queue, is greater than 0.05. The is because the probability for (i) is 2

3 (1 − e−3) ≈ 0.633 and that for
(ii) is 1 − e−2 ≈ 0.865. �

3.3 Expressivity of HyperPSTL

Theorem 3.1. HyperPSTL subsumes PSTL on CTMCs.

Proof. It suffices to show that there exist formulas in HyperPSTL that cannot be expressed
in PSTL. The general idea is to show that PSTL cannot express conditional probabilities, while
HyperPSTL can. Consider the CTMC S given in Figure 4, and the HyperPSTL state formula

φ =

(
P π (Initπ ⇒ �(aπ

1 ∧ aπ
2 ))

P π (Initπ ⇒ �aπ
2 )

=
1

2

)
,

expressing a conditional probability for a path π of S. Clearly, it is satisfied for the state Init.
We claim that φ cannot be expressed in PSTL. By the syntax and semantics of PSTL [25], it suf-

fices to show thatφ cannot be expressed by a formulaP (ψ ), whereψ is a PSTL path formula derived
by concatenating a set of PSTL state formulas φ1, . . . ,φn with ∧,¬, or temporal operators. These
state formulas are either True or False on the states X0, X1, X2, and X3. Thus, whether a path sat-
isfiesψ , defines a subset of the paths from the stateX0 in the CTMC, Since the probability of a path
ended up in any Xi is 1/3 for i = 1, 2, 3, the formula P (ψ ) can only take values in {0, 1/3, 2/3, 1}.
However, by the semantics of HyperPSTL, the fractional probability on the right side of the equa-
tion has value 1/2, thus φ evaluates to true and cannot be expressed by P (ψ ) in PSTL. �

4 HYPERPSTL IN ACTION

In this section, we demonstrate how HyperPSTL can be used to capture relevant properties of CPS.

4.1 Sensitivity to Modeling Errors in P2HIOA

A typical example of a CPS that can be modeled as a P2HIOA is the automotive powertrain, where
the response to the change in driving behaviors is of key interest. Note that the dynamical system
parameters, even for the same type of powertrains, vary across different systems. Thus, it is critical
to analyze if in most cases, the change in dynamical response of the controlled system stays within
permitted amount δ when the system parameters change; i.e., if the dynamical response deviation
is within δ with probability of at least 1 − ε .

Consider as an example, the sensitivity of the Toyota Powertrain Controller [19] under proba-
bilistic uncertainty in its dynamical parameters (i.e., the system model). As shown in Figure 1, we
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consider statistically verifying the probabilistic boundedness of the sensitivity of the (first) hitting
time τ to a desired working region (where the error to the desired AF ratio is less than 5%) under
the probabilistic uncertainty in RPM. Mathematically, this can be represented by

Prπ1,π2 ( |τ π1 − τ π2 | ≤ δ ) > 1 − ε,
for some given values δ , ε > 0, where π1 and π2 are two statistically independent sample paths of
the system. To express this formally using HyperPSTL, we introduce a predicate Q for the desired
working region of the system (i.e., under the dashed line in Figure 1). If 0 ≤ τ π2 − τ π1 ≤ δ , the
switch from¬Qπ2 to Qπ2 for the path π2 happens within time δ after¬Qπ1 changes to Qπ1 for the path
π1.1 This can be equivalently expressed as (¬Qπ1 ∧ ¬Qπ2 )U (Qπ1 ∧ �[0,δ ]Q

π2 ), and accordingly, the
probabilistic boundedness of sensitivity is expressed as

P {π1,π2 }
(
(¬Qπ1 ∧ ¬Qπ2 ) U

((
Qπ1∧�[0,δ ]Q

π2
)
∨

(
Qπ2∧�[0,δ ]Q

π1
)))
≥ 1 − ε . (5)

Note that (5) involves probability quantification over a set of paths, which cannot be expressed in
non-hyper temporal logics.

4.2 Probabilistic Anomaly Detectability

An important feature of CPS is detectability of system anomalies, independently of the type of
used sound detector; this can be captured as probabilistic overshoot observability on system out-
puts, where the input overshoot captures that an anomaly has occurred. Specifically, we require
that with probability of at least 1 − ε it holds that: if (i) in one execution, a signal π steps (i.e.,
anomaly starts) and then stays bounded (e.g., within the modeled noise bound) for some time in-
terval I ; and (ii) in another execution, signal π ′ steps and then overshoots (i.e., beyond the noise
bound); then (iii) the distance between the two signals is greater than a predefined threshold (i.e.,
the anomaly overshoot can be observed by a detector on system output). This is captured as the
following HyperPSTL formula

P {π ,π
′ }
((
�
(
stepπ ⇒ �I (xπ < c )

)
∧ �

(
stepπ ′ ∧ �I (xπ ′ > c )

))
⇒

(
�Id (yπ ,yπ ′ ) > c ′

))
> 1 − ε,

(6)
where x is the input and y is the output. As (5), the formula in (6) also involves probability quan-
tification over a set of paths.

4.3 Workload Fairness in Queueing Networks

As shown in Figure 5, consider an embedded processing system with n front servers and m back
servers (as in e.g., [29]). The requests (e.g., task, packets) arrive at each front-end queue, probabilis-
tically over time, into buffers of different sizes. For each queue, the requests are preprocessed with
probabilistic execution times, and delivered to back servers with different buffer sizes, following
some scheduling policy. We can probabilistically model the arrival and processing of requests by
Markov Modulated Poisson Processes (MMPP) of different parameters across all the servers [5]. In
the general case, this setup yields no easy exhaustive solution.

Our goal is to check if a request-delivering policy between the front and back servers is fair [12,
13]; i.e., if a back server i is more likely to be overloaded than another back server j. Let τi and τj

be the overload times of the back server i and j, respectively. We define a fairness property that
with probability of at least 1 − ε , given the overload time for the back server i , the back server j is
overloaded much earlier or later (more than some t > 0 than that time), with approximately equal

1Meanwhile, Qπ2 may switch back to ¬Qπ2 for π2, but the first hitting time τ π2 will not change.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 92. Publication date: October 2019.



Statistical Verification of Hyperproperties for Cyber-Physical Systems 92:11

Fig. 5. Queueing network.

probability (i.e., difference less than some δ )

Prπ1

(���Prπ2

(
τ π1

i − τ
π2
j > t

)
− Prπ2

(
τ π2

j − τ
π1
i > t

) ��� < δ
)
> 1 − ε .

To express this property in HyperPSTL, for i ∈ [1,m], let Qi be the predicate of the overload of
the buffer of the ith back server. The event that the back server i is overloaded earlier than the back
server j more than time τ > 0, can be expressed as (¬Qπ1

i ∧ ¬Q
π2
j )U (Qπ1

i ∧ �[τ ,∞)Q
π2
j ). Hence, a

fairness policy requirement is captured by a HyperPSTL formula

P π1
(��� P π2

((
¬Qπ1

i ∧ ¬Q
π2
j

)
U

(
Qπ1

i ∧ �[τ ,∞)Q
π2
j

))
− P π2

((
¬Qπ1

i ∧ ¬Q
π2
j

)
U

(
Qπ2

j ∧ �[τ ,∞)Q
π1
i

)) ��� ≤ δ
)
≥ 1−ε .

(7)

Note that (7) involves both comparison of probabilities and nesting of probability operators quan-
tifying different paths, which are not allowable in common non-hyper temporal logics.

5 STATISTICAL VERIFICATION OF HYPERPSTL PROPERTIES

In this section, we study the SMC of HyperPSTL on a PUS with given inputs. As with previous
works, we focus on handling the probability operators in HyperPSTL by sampling, which is the
main issue for the SMC of probabilistic temporal logic. Through Sections 5.1–5.3, we propose
SMC algorithms based on Clopper-Pearson (CP) significance level calculation for all the ways the
probability operators can be used or nested in HyperPSTL. Accordingly, any nested HyperPSTL
can be verified recursively by applying these SMC algorithms. The handling of temporal operators
is similar to that of hyperSTL [23] and is thus not fully discussed due to the space limitations. For a
PUS, verifying bounded-time properties is straightforward; verifying unbounded-time properties
is more involving, and will be part of the future work.

5.1 SMC via CP Significance Level

A new feature of HyperPSTL compared to common temporal logics is the simultaneous probability
quantification over multiple path variables. We now illustrate the idea of SMC for such formulas.
Consider HyperPSTL formula Φ = (PΠφ < p), where (i) Π = {π1, . . . ,πK } = fv(φ) is the set of free
path variables of φ, (ii) p ∈ [0, 1] is a probability threshold, and (iii) φ contains no probability
operator. The semantics of Φ is

pφ = Prσσσ∼Path|Π | (X ) ((S,VX [Π → σσσ ]) |= φ) < p.

The truth value of φ can be evaluated on a set of concrete sample paths σσσ = {σ1, . . . ,σK } by as-
signing the concrete sample path σi to the free path variable σi for i ∈ [K]. Hence, with a slight
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abuse of notation, we denote

φ (σσσ ) =

{
1, if φ is true on σσσ ,
0, otherwise.

(8)

Previous SMC approaches have used the sequential probability ratio test (SPRT) to evaluate Φ
with the specification of an indifference margin [21]. Specifically, assuming that

|pφ − p | > δ (9)

for some δ > 0, to evaluate Φ, it suffices to test the two most indistinguishable cases, i.e., a Simple
Hypothesis Testing (SHT) problem with two hypothesis,

H0 : pφ = p − δ , H1 : pφ = p + δ , (10)

which can then be solved by SPRT [17].
Since the choice of indifference margin is somewhat arbitrary, we propose an indifferent margin-

free SMC approach via significance level calculation. For i ∈ [N ] and K = |Π |, let (σ (i )
1 , . . . ,σ

(i )
K

)
be a tuple of i.i.d. sample paths drawn from the PUS S starting from the state X . Checking the
correctness of φ by (8) on each tuple gives the sum statistic

T =
∑

i ∈[N ]

φ
(
σ (i )

1 , . . . ,σ
(i )
K

)

that obeys the binomial distribution Binom(n,pφ ). The average statistics T /N is a unbiased esti-
mator for pφ . Intuitively, when T /N < p, it is more likely that pφ < p; and the same for the other
case. Hence, we define the following statistical asserting function based on the samples

A ((S,X ) |= Φ) =

{
1, if T /N < p
0, otherwise.

(11)

To ensure the asymptomatic correctness of the SMC algorithm, we assume that

pφ � p, (12)

which is a weaker assumption than (9). When (12) holds, as the number of samples increases, the
samples will be increasingly concentrated on one side of p by the central limit theorem. Therefore,
a statistical analysis based on the majority of the samples has an increasing accuracy. When (12)
is violated, the samples would be evenly distributed on the two sides of p, regardless of the sample
size. Thus, no matter how the sample size increases, the accuracy of any statistical test would not
increase. This will be illustrated later in the proof of Theorem 5.1.

In general, the significance level for claiming pφ ∈ [a,b] ⊆ [0, 1] (i.e., an upper bound of the
probability of making a wrong claim), when T /N ∈ [a,b], can be computed using a method from
Clopper and Pearson [8] by

αCP (a,b |T ,N ) = 1 −
⎧⎪⎪⎨⎪⎪⎩

(1 − a)N − (1 − b)N if T = 0
bN − aN if T = N
FBeta (b |T + 1,N −T ) − FBeta (a |T ,N −T + 1) otherwise.

(13)

where FBeta (· |T1,T2) is the cumulative probability function (CDF) of the beta distribution
Beta(T1,T2) with the shape parameters (T1,T2). For computing the significance level of the as-
sertion A ((S,X ) |= Φ), we utilize

[a,b] =

{
[0,p], if T /N < p,
[p, 1], if T /N > p.

(14)
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ALGORITHM 1: SMC of (S,X ) |= PΠφ < p.

Require: PUS S, desired significance level αd , batch size B.
1: N ← 0, T ← 0, K ← |Π |, initial significance level αCP ← 1
2: while αCP > αd do

3: for i ∈ [n] do

4: Draw σN+1, . . . σN+B from X in S.
5: T ← T +

∑N+B
i=N+1 φ (σ (i )

1 , . . . ,σ
(i )
K

); N ← N + B.
6: end for

7: Update A by (11) and αCP by (13) and (14).
8: end while

9: return A and αCP.

Remark 1. The CP significance levels (13) have the following properties. First, αCP (a,b |T ,N )
increases as the interval [a,b] shrinks. That is, for any [a′,b ′] ⊆ [a,b] ⊆ [0, 1], we have
αCP (a′,b ′ |T ,N ) ≤ αCP (a,b |T ,N ). In addition, for T � {0,N } and N � 1, we have that

αCP (a,b |T ,N ) ≈ 1 − FBeta (b |T ,N −T ) + FBeta (a |T ,N −T ). (15)

Since the beta distribution Beta(T ,N −T ) has the mean T /N and the variance T (N −T )/N 2 (N +
1), for fixed T /N , as the number of samples N → ∞, the beta distribution becomes increasingly
concentrated atT /N , and thus αCP (a,b |T ,N ) → 0. This implies that the probability of making the
wrong claim decreases as more samples are available.

Given a desired significance level α , we can design a new SMC algorithm by, at each iteration,
collecting B new samples, computing the CP significance interval and stopping when the result is
less than α , as summarized in Algorithm 1. Correctness of Algorithm 1 follows directly from the
definition of significance level.

Theorem 5.1. Algorithm 1 terminates with probability 1 and gives the correct statistical assertion

with probability at least 1 − αd .

Proof. Termination: For pφ ∈ {0, 1}, the proof is trivial. For pφ ∈ (0, 1), from assumption (12)
and without loss of generality, let pφ < p and δ = p − pφ . Recalling the second half of Remark 1,
for any T /N ∈ [pφ − δ/2,pφ + δ/2] ⊆ (0,p), the variance of Beta(T ,N −T ) is lower bounded by
minx ∈[pφ−δ /2,pφ+δ /2] x (1 − x )/(N + 1). Therefore, as N → ∞, it uniformly converges to 0. This
implies that αCP (0,p |T ,N ) uniformly converges to 0–i.e., for any given αd > 0, there exists
N0 (pφ ,δ ) ∈ N , such that αCP (0,p |T ,N ) < αd for any N ≥ N0 (pφ ,δ ) and T /N ∈ [pφ − δ/2,pφ +

δ/2] ⊆ (0,p).
With N ≥ N0 (pφ ,δ ), by the law of large numbers (or central limit theorem), we have Pr(T /N ∈

[pφ − δ/2,pφ + δ/2]) → 1, as the number of samples N → ∞. Therefore, Algorithm 1 terminates
with probability 1.

Correctness: Let τ be the step Algorithm 1 terminates and A be “the assertion A in (11) is
correct”, then Pr(A) =

∑
i ∈N Pr(A| τ = i )Pr(τ = i ). By construction of the significance intervals,

for any i ∈ N , we have Pr(A | τ = i ) > 1 − αd . In addition by Termination, we have
∑

i ∈N Pr(τ =
i ) = 1, Thus, Pr(A) ≥ 1 − αd . �

5.2 SMC of Joint Probabilities

Another new feature of HyperPSTL is the arithmetics and comparisons of the probabilities of
multiple sub-properties. For example, we can compare the satisfaction probability of φ1 and φ2 by
the HyperPSTL formula p1 < p2, where p1 = PΠ1φ1 and p2 = PΠ2φ2, according to the syntax (1),
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(2). For simplicity, let Π1 = fv(φ1) and Π2 = fv(φ2). Mathematically, this is equivalent to reasoning
over the joint probabilities of these properties. Specifically, p1 < p2 can be equivalently expressed
as a specification on the joint probability (p1,p2) ∈ D, where D = {(x1,x2) ∈ [0, 1]2 | x1 < x2}.

To formally capture this, we introduce an additional syntactic rule (p1, . . . ,pn ) ∈ D in (1), whose
semantics is given by

(S,X ) |= (p1, . . . ,pn ) ∈ D ⇔ S |= (�p1�VX
, . . . , �pn�VX

) ∈ D, (16)

where D ⊆ [0, 1]n is measurable.
While the expressiveness of HyperPSTL is unchanged with the new rule (16), the conjunction

and disjunction of several HyperPSTL formula can be simplified. For example, the HyperPSTL
formula Φ1 ∧ Φ2 with

Φ1 =
(
f1 (PΠ1φ1, f2 (PΠ2φ2,P

Π3φ3)) > c1

)
Φ2 =

(
f3 (PΠ2φ2)) < c2

) (17)

can be equivalently written as (PΠ1φ1,PΠ2φ2,PΠ3φ3) ∈ D, where

D =
{
(x1,x2,x3) ∈ [0, 1]3 | f1 (x1, f2 (x2,x3)) > c1, f3 (x2) < c2

}
.

In addition, the new rule simplifies the SMC of the specification. Previously, it requires checking
both Φ1 and Φ2 separately, and then a probabilistic composition of the two results. With the new
rule, a single procedure of checking whether the joint probability (PΠ1φ1,PΠ2φ2,PΠ3φ3) is in D
is sufficient.

We now demonstrate the idea of verifying the joint probability by checking a non-nested state
formula

(S,X ) |=
(
PΠ1 φ1, . . . ,P

Πnφn

)
∈ D,

where for i ∈ [n], andφi contains no probability operator and Πi = fv(φi ). As a statistical approach
is adopted, we assume that the exact probability of satisfying φ does not lie within the boundary
of the test region D, as stated in Assumption 1.

Assumption 1. To check (S,X ) |= (PΠ1φ1, . . . ,PΠnφn ) ∈ D, we assume that (i) the test region D
is a simply connected domain with μBorel (D) � 0, and (ii)(

Prσσσ 1∼Path|Π1 | (X )

((
S,VX [Π1 → σσσ 1]

)
|= φ1

)
, . . . , Prσσσ n∼Path|Πn | (X )

((
S,VX [Πn → σσσn] |= φn

))
� ∂D.

Assumption 1 can be viewed as the multidimensional generalization of (12), and is necessary
for asymptomatic correctness of the SMC algorithm, as discussed in Section 5.1.

Remark 2. Compared to previous studies on SMC using sequential probability ratio tests
(SPRT) [33, 35], Assumption 1 is weaker as it requires no a priori knowledge on the indifference
margin.

Remark 3. From Assumption 1, we have that (PΠ1φ1, . . . ,PΠnφn ) ∈ D1 and (PΠ1φ1, . . . ,

PΠnφn ) ∈ D2 are semantically equivalent if D1 = D2. In addition, PΠ ∈ D and PΠ (¬φ) ∈ Dc are
semantically equivalent when Dc = [0, 1]\D.

By the semantic rule (16), the SMC problem is converted to a composite hypothesis testing
problem {

H0 : (pφ1 , . . .pφn
) ∈ D,

H1 : (pφ1 , . . .pφn
) ∈ [0, 1]n\D,

pφi
= Prσσσ i∼Path|Πi | (X )

((
S,VX [Πi → σσσ i ]

)
|= φi

)
for i ∈ [n].

(18)
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For each i ∈ [n], let {σσσ j }j ∈[Ni ] be Ni tuples of i.i.d sample paths of the PUSS starting from the same
state X that are used to estimate pφi

. Similar to Section 5.1 approach, we consider the statistics

Ti =

Ni∑
j=1

φi

(
σσσ (j )

1 , . . .σσσ
(j )
Ki

)
, Ki = |Πi |. (19)

where Ti ∼ Binom(Ni ,pφi
). We define the assertion using the average statistics Ti/Ni for i ∈ [n]

as

A ((S,X ) |= Φ) =
⎧⎪⎨⎪⎩

1 if
(

T1
N1
, . . . , Tn

Nn

)
∈ D,

0 otherwise.
(20)

For this multi-dimensional case, to compute the exact CP significance level for a general domain
D involves multi-dimensional integrations on it, which can be computationally intensive. There-
fore, we compute an upper bound αCP on the significance level of the assertion (20) by finding a
hypercube

∏
i ∈[n][ai ,bi ] such that( T1

N1
, . . . ,

Tn

Nn

)
∈

∏
i ∈[n]

[ai ,bi ] ⊂ D. (21)

Due to the monotonicity of significance levels, the significance level of (T1/N1, . . . ,Tn/Nn ) ∈ D is
upper bounded by that of (T1/N1, . . . ,Tn/Nn ) ∈ ∏

i ∈[n][ai ,bi ], which can be computed directly by
compositing the significance level of Ti/Ni ∈ [ai ,bi ] for i ∈ [n], using the results in Section 5.1.
Thus, we compute an upper bound ᾱCP of the exact CP significance level as

ᾱCP = 1 −
n∏

i=1

αCP (ai ,bi |Ti ,Ni ), (22)

where αCP (ai ,bi |Ti ,Ni ) is defined in (13).
When implementing this verification approach, for each iteration, we look for a hypercube∏
i ∈[n][ai ,bi ] satisfying (21) with ai < bi for i ∈ [n]. Although finding such a hypercube is only

possible if (T1/N1, . . . ,Tn/Nn ) � ∂D, this is guaranteed with probability 1 for large samples when
Assumption 1 holds.

To minimize the upper bound of the significance level ᾱCP in (22), the hypercube should be
preferably as large as possible. For a simple domain D, the analytic solutions of such a largest
hypercube can be derived directly as a function of Ti ,Ni for i ∈ [n] and the functions defining
∂D More generally, especially if D is convex, the largest hypercube can be derived by solving the
optimization problem of maximizing its volume while keeping it inside D. Admittedly, solving the
optimization problem at every iteration can still be inefficient for some cases. To remedy for this,
we can (1) reduce the frequency of computing the significance level by drawing samples in batches;
and (2) search only for approximate maxima in optimization.

Finally, we note that the upper bound ᾱCP is asymptotically tight if a largest hypercube is used
to compute it. This holds because, by the law of large numbers, as the number of samples in-
creases, (T1/N1, . . . ,Tn/Nn ) concentrates near (pφ1 , . . . ,pφn

) and the largest hypercube converges
to a constant one strictly containing (pφ1 , . . . ,pφn

). Thus, the probability of (T1/N1, . . . ,Tn/Nn ) ∈∏
i ∈[n][ai ,bi ] converges to that of that of (T1/N1, . . . ,Tn/Nn ) ∈ D.
Based on the previous discussions, we derive Algorithm 2. Correctness of Algorithm 2 is given

by Theorem 5.2 that can be proved in the same way as Theorem 5.1.

Theorem 5.2. Algorithm 2 terminates with probability 1 and gives the correct statistical assertion

with probability at least 1 − α .
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ALGORITHM 2: SMC of (S,X ) |= (PΠ1φ1, . . . ,PΠnφn ) ∈ D.

Require: PUS S, desired significance level αd , batch size B.
1: N1, . . . ,Nn ← 0, ᾱCP ← 1
2: for i ∈ [n] do

3: Ki ← |Πi |, Ti ← 0
4: end for

5: while ᾱCP < 1 − αd do

6: for i ∈ [n] do

7: Draw σNi+1, . . . σNi+B from X in S.

8: Ti ← Ti +
∑Ni+B

j=Ni+1 φi (σ (j )
1 , . . . σ

(j )
Ki

); Ni ← Ni + B.
9: end for

10: Update A by (20) and ᾱCP by (22).
11: end while

12: return A and ᾱCP.

5.3 SMC of Nested Probability Operators

Finally, we consider SMC of nested HyperPSTL formulas on the PUS S. By the syntax of Hyper-
PSTL in Section 3.1, a nested HyperPSTL formula is constructed iteratively in two ways: (i) replac-
ing an atomic proposition with a general state formula, and (ii) consecutively nested quantification
of free path variables in a non-nested formula. The former also appears in common temporal logics
and the latter is unique to HyperPSTL.

For (i), we show the idea of SMC by checking the satisfaction on a state X of the nested formula
Ψ = PΠψ [ρ] ∈ D1 derived by replacing an atomic proposition ofψ with a non-nested state formula
ρ = (PΠ1φ1, . . . ,PΠnφn ) ∈ D2. In Ψ, we have D1 ⊆ [0, 1], D2 ⊆ [0, 1]n . If ρ is treated as an atomic
proposition, Ψ becomes a non-nested state HyperPSTL formula as discussed in Section 5.1. The
HyperPSTL state formulas nesting more probability operators in this fashion can be statistically
verified in the same way.

To verify Ψ, we follow a compositional analysis similar to [26, 27]. If the state spaceX of the PUS
is finite (e.g., a CTMC from Section 2.2), we can statistically verify the sub-formula ρ on each state
X of the PUS S with significance level αX , using Theorem 5.2 and Algorithm 2, and label the state
with ρ if the assertion given by Algorithm 2 is A (V |= ρ) = 1. Then, we can statistically verify
the full formula Ψ on the relabeled PUS as a non-nested formula with significance level α0 using
Theorem 5.2. The overall significance level is α =

∑
X ∈X αX + α0, which is only bounded when X

is finite. The SMC for Ψ on infinite-state PUS provides an avenue for future work. For this work,
it brings no limitation as we only verify such nested formulas on finite-state PUS (e.g., queueing
in Section 6), while for P2HIOA such formulas are not used to capture properties of interest.

To implement the SMC algorithm for Ψ on finite-state PUS, given the overall significance level
α , we can split it into the summation

∑
X ∈X αX + α0. The simplest way is αX = α0 = α/( |X| + 1)

for X ∈ X, where X is the number of states of the PUS S. Then, we can employ Algorithm 2 to
verify ρ on each state X with significance level αX and then assert Ψ with significance level α0

using Algorithm 2 again. This is summarized by Algorithm 3.
For (ii), we show the idea of SMC by checking the satisfaction on a state X of a HyperPSTL

formula Ψ = PΠ1 (PΠ2φ < p2) < p1, where the sub-formula φ contains no probability operator and
all its path variables are probabilistically quantified by PΠ1PΠ2 , i.e., p1,p2 ∈ [0, 1], Π1 ∩ Π2 = ∅,
and fv(φ) = Π1 ∪ Π2.
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ALGORITHM 3: SMC of (S,X ) |= PΠψ [ρ] ∈ D1 with ρ = (PΠ1φ1, . . . ,PΠnφn ) ∈ D2.

Require: PUS S, desired significance level αd .
1: Split αd into

∑
X ∈X αX + α0

2: for X ∈ X do

3: Verify (S,X ) |= ρ on S by Algorithm 2 with significance level αX and label X with ρ if
the assertion is positive.

4: end for

5: Verify (S,X ) |= PΠψ [ρ] ∈ D1 on the relabeled S by Algorithm 2 with significance level α0.

The SMC can be similarly done for HyperPSTL state formulas that nest more probability op-
erators in this fashion. The formula Ψ says that with probability at most p1, we can find a set of
paths Π1 such that the probability to find another set of paths Π2 to satisfy φ is at most p2. This
formula can be equivalently expressed by Ψ = PΠ1 (PΠ2 ∈ [0,p2]) ∈ [0,p1] using the rule (16). We
note that for (ii), unlike (i), the state space X of the PUS can be infinite.

The main idea is as follows. For i ∈ [N ], letσσσ i be a |Π1 |-tuple of i.i.d. sample paths starting from
X in the PUS; define the indicator

Ti = I

(
(S,X ) |= �PΠ2φ < p2�V [Π1→σσσ i ]

)
(23)

of whether the partly instantiated formula (S,X ) |= �PΠ2φ < p2�V [Π1→σσσ i ] is true under this in-
stantiating. AlthoughTi is not directly accessible, we can estimate it statistically using the assertion
Ai of Algorithm 2 for any given significance level α1 > 0.

To verify the full formula Ψ, we only need to estimate the total number of positive instantiation
T =

∑
i ∈[N ]Ti . We estimate it using A =

∑
i ∈[N ] Ai . Since Ai � Ti with probability at most α1 for

all i ∈ [N ], we have |T −A| < Δ with the significance level

α2 = 1 − FBinom (Δ | N ,α1), (24)

where FBinom is the Binomial cumulative distribution function. Since

T ∈ [T1,T2] = [min{0,A − Δ},max{A + Δ,N }], (25)

we can check the full formula Ψ using these minimal and maximal estimations of T . Intuitively,
if T2/N < p (hence T1/N < p), it is more likely that Ψ is true; if T1/N > p (hence T2/N > p), it is
more likely that Ψ is false; otherwise, further sampling is needed. Thus, we define the following
statistical asserting function by

A ((S,X ) |= Ψ) =
⎧⎪⎪⎨⎪⎪⎩

1 if T2/N < p1

0 if T1/N > p1

undecided, otherwise.
(26)

When a final assertion is possible, its significance level is the larger one between plugging T1 and
T2 into (13) and (14). Accordingly, the overall significance level α is

α = α2 +

{
αCP (0,p1 |T2,N ) if T2/N < p1

αCP (p1, 1 |T1,N ) if T1/N > p1
(27)

where αCP is given by (13).
To implement the SMC algorithm, given the overall significance level α , we need to simultane-

ously decrease both the significance level α1 for making assertions on the partly instantiation of
ψ for given values of Π1, and the significance level α2 for estimating the sum of those assertions.
We start from Δ = cα1N with c = 1 and α1 = αd . When α2 is the main source of statistical error,
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ALGORITHM 4: SMC of PΠ1 (PΠ2φ < p2) < p1.

Require: PUS S, desired significance level αd .
1: Set initial significance levels α1 for i ∈ [N ].
2: T ← 0, N ← 0, Ti ← 0 for i ∈ [N ].
3: c ← 1, α ← 1, α1 ← αd .
4: while α > αd do

5: N ← N + 1. Draw σσσN+1 staring from X in S.
6: for i ∈ [N ] do

7: Update Ai with significance level α1 by Algorithm 2.
8: end for

9: A← ∑
i ∈N Ai , Δ← cα1N .

10: Update α2 by (24), T1,T2 by (25) and α by (27).
11: if α2 > α/2 thenc ← c + 1,
12: else α1 ← α1/2.
13: end if

14: end while

15: return Assertion given by (26).

i.e., α2 > α/2, we decrease α2 by increasing the parameter c by 1; otherwise, we decrease α1 by
reducing it by half. This is summarized in Algorithm 4.

6 EVALUATION

We numerically evaluate our SMC algorithms on several benchmarks with different complexity
levels. Other probabilistic hyperproperties on different systems are handled in a similar manner,
but due to space constraints here we focus on the discussed properties/systems. All benchmarks
are implemented in Matlab/Simulink and are available in [9]. Specifically, the Toyota powertrain
model is derived from [18]; and the queueing networks are implemented in Simulink using the
SimEvents Toolbox [30]. Evaluations are performed on a laptop with 16 GB RAM and Intel Xeon
E-2176 CPU.

For each benchmark, we evaluate the proposed SMC algorithms in different setups by changing
the desired significance level α , as well as the parameters (e.g., δ , ε , and t ) in the objective Hy-
perPSTL specifications. The proposed SMC algorithms are executed repeately on each setup for
100 times. This is to check whether the probability for the proposed SMC algorithms to return the
correct assertion is at least 1 − α : i.e., we repeat the SMC algorithm for each setup for 100 times,
and check if it makes the correct assertion for at least 100(1 − αd ) times.

For each setup, to compare it with the assertions of the proposed SMC algorithms, the truth
value of the HyperPSTL specification of interest is derived by estimating the probabilities involved
in it using an analytic solution or numerous sampling. Specifically, for the thermostat, we derive
an analytic solution for the left hand side of (5) from its dynamics; this can be done due to its
simplicity. For the powertrain, we estimate the left hand side of (5) by sampling 105 pairs of (π1,π2),
for which the standard error is less than 0.01. For the queueing networks, we estimate the left hand
side of (7) by drawing 500 samples for π1. For each sample of π1, we draw 500 samples for π2 to
evaluate the truth value of |Prπ2 (τ π1

i − τ
π2
j > t ) − Prπ2 (τ π2

j − τ
π1
i > t ) | < δ . The total standard error

for estimating the left hand side of (7) is less than 0.05.
Results for all considered setups are shown in Tables 1 to 4; as can be seen, the estimated accu-

racy of our SMC algorithms are very close to 1, showing the conservativeness of the CP significance
level. We also report the average number of sample paths and the execution times for each setup
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Table 1. Accuracy (Acc.), Average Number of Samples

(Sam.), Average Execution Time (Time), and SMC Results

(Ans.) for Sensitivity (5) with Parameters δ and ε of

Thermostat Under Significance Level α (Note the 1 − α
Accuracy Guarantee by Our SMC Method)

δ ε α Acc. Sam. Time (s) Ans.
0.9 0.05 0.05 1.00 1.8e+02 2.1e+02 False
0.9 0.05 0.01 1.00 5.0e+02 6.0e+02 False
0.9 0.01 0.05 1.00 2.8e+01 3.4e+01 False
0.9 0.01 0.01 1.00 4.6e+01 5.5e+01 False
1.1 0.05 0.05 0.99 3.0e+02 3.5e+02 True
1.1 0.05 0.01 0.99 6.1e+02 7.3e+02 True
1.1 0.01 0.05 1.00 1.3e+02 1.6e+02 False
1.1 0.01 0.01 1.00 2.2e+02 2.6e+02 False

Table 2. Accuracy (Acc.), Average Number of Samples (Sam.),

Average Execution Time (Time), and SMC Results (Ans.) for

Sensitivity (5) with Parameters δ and ε of Toyota Powertrain

Under Significance Level α (Note the 1 − α Accuracy

Guarantee by Our SMC Method)

δ ε α Acc. Sam. Time (s) Ans.
0.15 0.95 0.05 1.00 5.9e+01 8.1e+00 True
0.15 0.95 0.01 1.00 9.0e+01 1.3e+01 True
0.15 0.99 0.05 0.99 6.6e+01 9.1e+00 False
0.15 0.99 0.01 1.00 9.7e+01 1.4e+01 False
0.20 0.95 0.05 0.98 5.9e+01 8.1e+00 True
0.20 0.95 0.01 1.00 9.0e+01 1.2e+01 True
0.20 0.99 0.05 1.00 3.0e+02 4.2e+01 True
0.20 0.99 0.01 0.99 4.6e+02 1.8e+02 True

based on the 100 repetitions, rounded up to their standard errors. In all simulations, the number
increases when the desired significance level decreases, showing the trade-off between accuracy
and the sampling cost. In addition, the execution time is mainly consumed by drawing samples
from the Simulink models, and is approximately propositional to the number of samples.

6.1 Thermostat

A thermostat can be modeled as a simple P2HIOA with two modes Heat and Cool (Figure 6), and
one state variable T that varies within the temperature interval [Tl ,Th] = [15, 40] ⊆ R. The mean
heating and cooling rates are c1 = c2 = 5; they are subject to time-invariant but random Gaussian
error n1,n2 ∼ N(0, 0.52). The thermostat starts from (T = Tl ,Heat). We verify the sensitivity of the
running period of a heat and cool cycle under the noise, which is represented in HyperPSTL by (5)
with Q := (T = Tl ,Cool). We statistically verified the sensitivity specification using Algorithm 2,
with specification (5) parameters δ ∈ {0.9, 1.1} and ε ∈ {0.05, 0.01}, under the desired significance
levels α ∈ {0.01, 0.05}.

The derived results in Table 1 give accurate estimations (with significance level as low as α =
0.01) on the probability distribution of the sensitivity, with a relatively small number of samples
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Table 3. Accuracy (Acc.), Average Number of Samples (Sam.),

Average Execution Time (Time), and SMC Results (Ans.) for

Fairness (7) with Parameters t , δ and ε of a Small Queueing

Network (with 1 Front-end Server and 2 Back-end Servers)

Under Significance Level α

t δ ε α Acc. Sam. Time (s) Ans.
0.1 0.1 0.1 0.05 1.00 1.5e+02 8.0e+01 False
0.1 0.5 0.5 0.05 1.00 1.4e+02 8.2e+01 False
5.0 0.1 0.1 0.05 1.00 7.3e+02 3.9e+02 True
5.0 0.5 0.5 0.05 1.00 3.1e+01 1.9e+01 True

Table 4. Accuracy (Acc.), Average Number of Samples (Sam.),

Average Execution Time (Time), and SMC Results (Ans.) for

Fairness of a Large Queueing Network (with 25 Front-end Servers

and 20 Back-end Servers) with Parameters Defined as in Table 3

t δ ε α Acc. Sam. Time (s) Ans.
0.1 0.1 0.1 0.05 1.00 2.1e+02 3.2e+02 False
0.1 0.5 0.5 0.05 1.00 3.3e+02 4.9e+02 False
5.0 0.1 0.1 0.05 1.00 6.8e+02 1.1e+03 True
5.0 0.5 0.5 0.05 1.00 4.2e+01 6.6e+01 True

Fig. 6. Dynamical model of a thermostat.

(at most a few hundred samples for each setup). We verified that the sensitivity of the running
period of the thermostat is less than δ = 1.1 with probability 1 − ε = 0.95, but not less than δ =
0.9 with the same probability, showing that the 0.95 percentile is between [0.9, 1.1]. Also, as the
sensitivity specification is false for 1 − ε = 0.99 for both δ = 0.9 and δ = 1.1, showing that the 0.99

percentile is in [1.1,∞].

6.2 Toyota Powertrain Control System

We use the Simulink model for the Toyota Powertrain with a four-mode embedded controller
from [19]. It can be considered as a P2HIOA with four modes and 15 state variables. We consider
the sensitivity of the recovery time after start of the deviation percentage of the air/fuel (A/F)
ratio μ to the level |μ | < 0.05, under the mean RPM 2500 subjecting to Gaussian noise N(0, 252).
The sensitivity specification is formally expressed by HyperPSTL formula (5) with Q = ( |μ | < 0.05);
we statistically verified it using Algorithm 2 with parameters ε ∈ {0.05, 0.01} and δ ∈ {0.06, 0.07},
under the desired significance levels α ∈ {0.01, 0.05}.

The results shown in Table 2 give accurate estimations (with significance level as low as 0.01) on
the probability distribution of the sensitivity under the given embedded controller; this is achieved
with a relatively small number of samples (at most a few hundred samples for each setup). We
verified that the sensitivity of the recovery time of the powertrain is less than δ = 0.15s with
probability 1 − ε = 0.99, but not less than δ = 0.20s with the same probability, showing that the
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0.99 percentile is between [0.15s, 0.20s]. Also, as the sensitivity specification is true for 1 − ε =
0.95 for both δ = 0.15s and δ = 0.20s , showing that the 0.95 percentile is in [0, 0.15s].

6.3 Queueing Networks

We consider two queuing networks with different sizes m and n, as shown in Figure 5: the Small

has 1 front-end servers and 2 back-end servers, the Large has 25 front-end servers and 20 back-end
servers. For the small model, the package arrival and processing are modeled by exponential dis-
tribution, while in the second model, the package arrival and processing are modeled by Markov
Modulated Poisson Processes with different parameters over all queues. Note that the parame-
ters for different front-end servers are not identical, so deriving an exhaustive solution is virtu-
ally impossible for large sizes. We consider the fairness of workloads in queuing networks under
the policy that the front servers deliver to the back server with the shortest queue. The fairness
specification is formally defined in HyperPSTL by (7) with Qi representing the overloading of the
back server i . We set i = 1, j = 2, and statistically verify the specification with Algorithm 4 with
t ∈ {0.1, 5.0}, δ ∈ {0.1, 0.5} and ε ∈ {0.1, 0.5}, for the significance level α = 0.95.

From the first row of Table 3 and 4, for both the small and large queueing network, with prob-
ability 1 − ε = 0.9 for the back server 1, we have that |p1 − p2 | < 0.1, where p1 and p2 are the
probabilities that back server 2 overloads t = 5 earlier/later than back server 1, respectively. This
shows that for 90% cases, the shortest-queue-delivery policy is roughly fair for back-end server
1, in the sense that its overload time is not significantly sooner or later (for t = 5) than back-end
server 2. On the other hand, from the third row of Table 3 and 4, with probability 1 − ε = 0.9 for
back-end server 1, we have |p ′1 − p ′2 | > 0.5, where p ′1 and p ′2 are the probabilities that back server
2 overloads t = 0.1 earlier/later than back server 1, respectively. Thus, for 90% cases, the shortest-
queue-delivery policy is not exactly fair for back server 1, in the sense that its overload time can
be moderately sooner or later (for t = 0.1) than for back-end server 2.

7 CONCLUSION

In this work, we have studied statistical verification of hyperproperties for cyber-physical sys-
tems (CPS). We have first defined a general model of probabilistic uncertain systems (PUS) that
unify commonly studied modeling formalisms such as continuous-time Markov chains and hybrid
I/O automata with probabilistic dynamical parameters. We have then introduced hyperproper-
ties, such as fairness and sensitivity, that involve relationships between multiple paths simultane-
ously in continuous time. To formally specify such hyperproperties, we have introduced Hyper
Probabilistic Signal Temporal Logic (HyperPSTL), which is a hyper and probabilistic version of
the conventional the signal temporal logic (STL). To simplify our presentation of the HyperPSTL
syntax and semantics, while considering SMC of specific hyperproperties of complex CPS, in the
proposed HyperPSTL, we have disallowed nested existential and universal quantifies on states to
avoid exhaustive iteration on the possibly infinite state space. Still, this logic can be augmented (as
done in detail in [31]) by allowing nested existential and universal quantifications over multiple
states.

To verify HyperPSTL specifications on the PUS, we have developed statistical model checking
(SMC) algorithms with three new features: (1) the significance level of the HyperPSTL specifica-
tions are computed directly using the Clopper-Pearson significance level; (2) statistically verifying
HyperPSTL specifications on the joint probabilistic distribution of multiple paths, and (3) Hyper-
PSTL specifications with nested probabilistic operators quantifying different paths are allowed.
Finally, we have evaluated the introduced SMC algorithms on different CPS benchmarks with
varying levels of complexity.
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The work in this paper opens many new avenues for further research. Our work has direct
application in software doping [10] and in particular, identifying whether two black-box systems
are statistically identical. This problem is in particular challenging in the CPS domain, since the
physical environment may make the behavior of cyber components more unpredictable. Another
application area of our work is in conformance-based testing [1]. We also plan to expand our work
to analyzing information-flow security and in particular differential privacy.
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