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In this paper, a reinforcement learning approach for designing feedback neural network controllers for non-
linear systems is proposed. Given a Signal Temporal Logic (STL) specification which needs to be satisfied by
the system over a set of initial conditions, the neural network parameters are tuned in order to maximize
the satisfaction of the STL formula. The framework is based on a max-min formulation of the robustness
of the STL formula. The maximization is solved through a Lagrange multipliers method, while the minimiza-
tion corresponds to a falsification problem. We present our results on a vehicle and a quadrotor model and
demonstrate that our approach reduces the training time more than 50 percent compared to the baseline
approach.
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1 INTRODUCTION

The impressive performance of Artificial Neural Networks (NN) in perception and more general
artificial intelligence applications has led researchers to revisit their application to control systems
as well. NN can play a critical role in autonomous ground and aerial vehicles, robots, and energy
systems [10–12, 41, 59]. They can be used for identification and behavior prediction of complicated
plants, or learning complex control laws in a reinforcement learning fashion. Classic nonlinear
control methods [33], typically require the dynamical systems to operate near their stability region
which reduces their maneuverability. On the other hand, Model Predictive Control (MPC) and
other optimal control methods which need to be designed online, usually do not scale to higher
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dimensional systems and computing and storing them offline is not possible either as it requires
plenty of memory. However, neural network controllers can be computed offline and used online,
and since their complexity is not directly dependent on the system dimension or the complexity
of their task, they can be used to accomplish complex tasks on embedded computers.

In all these applications, the closed-loop system (including the NN) should exhibit some desired
properties to be reliable. The growing use of NNs especially Deep Neural Networks (DNN) in
domains such as safety-critical systems, where reliability is a big concern, creates the need for
testing and verification of these data-driven controllers.

Designing provably correct NN-based systems is notoriously difficult. One of the difficulties
arises from the complexity of the underlying NN in terms of the architecture and the number of
parameters. This complexity makes characterizing all the behaviors of the NN difficult. As a result,
training complex neural networks (especially in a reinforcement learning fashion) and verifying
the closed-loop system including them is theoretically challenging. As a result, the interest in test-
ing (a semi-formal verification method) systems with machine learning components has increased
significantly lately [51, 57]. Most of the previous works that study testing and verification of sys-
tems with NNs focus on the ML components only (e.g. [20, 46] and the references therein), and
do not consider the interconnected closed-loop behavior of the system. However, usually, the ulti-
mate goal is to evaluate system-level behaviors. In contrast, in this paper, we study the system-level
behaviors of NN-based control systems in closed loop.

To evaluate the system-level behaviors, system properties should be specified in a logic formal-
ism (e.g. [34, 37, 38]). In this paper we use Signal Temporal Logic (STL) [37] which is very powerful
for specifying complicated properties on dense time, real-valued signals. These specifications can
be much more complicated than simple stability, or reachability properties.

In this paper, we propose a framework to design state/output feedback neural network con-
trollers that satisfy system specifications described in STL. The NN is trained to maximize the
worst-case robustness of the STL formula [15, 22] in 2 phases. In the first phase, it is trained using
a set of random samples. Given the large space of the NN parameters, and the non-convexity of the
objective function, in order to balance the exploration vs exploitation, we use a combination of a
global search approach to explore the search space, and a local search approach based on gradients
to further improve the parameters.

The challenges in using gradient-based approaches for NN parameter tuning were two-fold:

(1) The objective function (robustness function) is inherently non-differentiable. We managed
this issue by using the smooth approximation of the robustness function [42].

(2) Backpropagation using automatic differentiation based on the chain rule along long tem-
poral sequences causes the problem of vanishing and exploding gradients [44]. This is
due to the fact that in each temporal step, the number of the gradients of the system

flow ( ∂f

∂x
,
∂f

∂u
), which are multiplied by each-other, grows. Since these terms are usually

not equal to one, their iterative multiplication eventually grows very large or approaches
zero. To avoid this issue, we calculate the desired changes in the NN parameters using a
method based on state-dependent Lagrange multipliers [6].

In order to increase the system’s reliability, in the second phase, the closed-loop system is tested
against the STL specification using a falsification tool (S-TaLiRo [4]). Falsifying samples are added
to the sample set and the NN is retrained on the updated sample set. The overall learning frame-
work is shown in Figure 1.

Our contributions can be summarized as follows:

• We design state/output feedback NN controllers to satisfy system properties specified in
STL.
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Fig. 1. Training framework.

• To improve the performance of the NN, we test the closed-loop system (including the NN)
against the STL requirements. Any discovered adversarial examples in the testing phase are
added into the training set and used to retrain the NN. This will allow efficient retraining
using rare and important samples which may not be captured even with a dense sampling.

• We provide a formulation for gradient-based improvement of the NN parameters which is
numerically stable, i.e, it is not prone to the problem of vanishing and exploding gradients.
This can be considered as the main contribution of the paper.

The application of our approach is shown using examples of a 3 dimensional model of a vehicle
and a 6 dimensional model of a quadrotor that each need to accomplish missions specified in an
STL formula.

2 RELATED WORK

Designing controllers for satisfying system properties specified in STL has been considered before.
In [47], a method for designing open-loop controllers for STL specifications based on MPC using
Mixed Integer Linear Program (MILP) solvers is introduced. Authors design open-loop strategies
that satisfy STL specifications using randomized tree search in [52]. The work in [42] introduces a
smooth approximation to the robustness function of the STL formula, which allows using gradient-
based optimizers to design robust controllers for the satisfaction of STL formulas. Sequential Qua-
dratic programs are used in [43] in order to design motion plans for quadrotors that satisfy missions
specified in STL. In [9], an MPC controller is learned to satisfy STL specifications with non-strict
compliance. In general, open-loop controllers need to be designed and stored in advance, and MPC
controllers need to be computed at the run-time. Computing MPC controllers for high-order sys-
tems include solving large optimization problems at each step [28], so in general, they do not scale
to higher-order systems since their run-time computation is challenging. On the other hand, stor-
ing the results of the offline computation of open-loop or MPC controllers (e.g., as a lookup table)
requires too much memory [32], so using Neural networks (NN) to approximate controllers [31,
49], learn optimal policies offline [25], or to improve baseline controllers [59] is very common.
The application of NNs in high assurance systems has been studied in [50]. In this work, we will
present a framework to learn optimal policies offline using a Neural Network controller which
does not require much memory.

Model-based Reinforcement Learning methods are also another line of work close to our work
[35, 54, 58]. Recently, Reinforcement Learning methods have been developed that make policy
learning w.r.t temporal logic specifications possible, see e.g., [24, 36]. Despite the recent advances
using Reinforcement Learning methods, providing guarantees for the behavior of systems trained
using them is challenging. This is due to the complicated behavior of the Neural Networks which
are used in these systems as function approximators. These systems sometimes have safety-critical
roles, and as a result, the problem of testing and system-level verification is of utmost importance.
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Some classic tools for verification that rely on over-approximation of reachable sets include
Flow* [8], CORA [3], and SpaceEx [23]. Verification methods for systems including neural net-
works are studied in [21, 30, 55]. However, verification approaches are usually unsuccessful when
the complexity and dimension of the system increases.

Because of the limitations that verification approaches usually have in the application, testing
methods are used to find falsifying system behaviors. S-TaLiRo [4], and Breach [14] are general-
purpose tools for falsification. The problem of testing autonomous vehicles equipped with NNs
for perception, guided by system-level requirements are studied in [1, 16, 51].

The falsifying/adversarial samples that are found during the testing process can be used for
retraining the Neural nets, in order to improve their accuracy. Adversarial training is used in [17,
18] for improving the performance of the NNs used in an autonomous vehicle for perception.
We will also use adversarial training to improve the Neural Network controller which is initially
trained using a set of random samples. The problem of adversarial training in our paper can be
looked at as a min-max game, in which adversaries and the NN play against each other: adversaries
minimize the robustness of the STL formula to falsify it, and the NN tries to adapt and increase the
robustness when it is retrained accordingly. A zero-sum game is formulated in [48, 53] to design
STL controllers that maximize the worst-case robustness value.

The work in [21] can be viewed as the closest work to our work wherein Neural network con-
trollers are designed to satisfy reachability and region stability properties. Using a smooth ap-
proximation of the STL robustness function, we will design controllers for general STL formulas.
Another difference is that in order to guarantee safe worst-case performance, our neural networks
are trained to maximize the worst-case robustness values. Besides, in a post-training procedure, our
algorithm searches for adversarial samples and retrain the NN using them. Another main contri-
bution of the paper over the aforementioned work is providing a gradient-based backpropagation
formulation which is not prone to vanishing and exploding gradients while backpropagation using
automatic differentiation is.

3 PRELIMINARIES

We consider a discrete time dynamical system Σ{
xt+1 = f (xt ,ut )

yt = д(xt )
(1)

where xt ∈ X ⊂ Rnx is the system state,yt ∈ Rny is the system output,ut ∈ U ⊂ Rnu is the control
input, f : X ×U → X is a differentiable function of its arguments, and x0 ∈ X0 ⊂ X is the initial
state. Given an initial state x0 ∈ X0 and a control sequence u

N = u0,u1, . . .uN , s.t, ∀t : ut ∈ U , the
bounded time solution of the system is denoted as x(x0,u

N ) = x0,x1, . . . ,xN , where ∀t : xt ∈ X
and xt+1 = f (xt ,ut ).

3.1 Controllers for Robust Satisfaction of Signal Temporal Logic Specifications

The controller that computes ut should be designed such that the closed-loop system of Equa-
tion (1) robustly satisfies a specification expressed as a Signal Temporal Logic (STL) [37] formula.

3.1.1 Signal Temporal Logic (STL). STL is a logical formalism that allows efficient and unam-
biguous specifications of a wide variety of desired system properties beyond basic properties like
stability and reachability. An STL formula is a composition of temporal and Boolean operations
over predicates over signals. A predicate pk represents a set of states defined using a real-valued
function μ : X → R as Pk = {x ∈ X | μ (x ) > 0}1. Let P = {p1, . . .pL } be the set of all predicate

1The STL formula and its predicates can be defined over the system outputs, as well.
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expressions of interest for an STL formula and I ⊂ R+ be any non-empty interval. The set of
all well-formed STL formulas φ is inductively defined as

φ := � | p | ¬φ | φ ∧ψ | φUIψ ,

where p ∈ P , and �, ¬ and ∧ are Boolean true, negation and and operations, and U is the until
temporal operator, which requires ψ to be satisfied at some time in I and until then, φ needs to
be satisfied. The validity of a formula φ with respect to a signal x at time t is defined inductively
as follows:

(x, t ) |= pk ⇔ μk (xt ) > 0

(x, t ) |= ¬φ ⇔ ¬((x, t ) |= φ)

(x, t ) |= φ ∧ψ ⇔ (x, t ) |= φ ∧ (x, t ) |= ψ
(x, t ) |= φUIψ ⇔ ∃t ′ ∈ (t + I) s .t . (x, t ′) |= ψ ∧ ∀t ′′ ∈ [t , t ′), (x, t ′′) |= φ

where (t + I) = {t + c | c ∈ I}. Other operators like disjunction (∨), Always (�) and Eventually
(�) can be defined using the above operators (see [5]). The trajectory x satisfies φ if (x, 0) |= φ. An
STL formula is bounded-time if all its temporal intervals are bounded.

Definition 3.1. The maximum trajectory length N required to decide satisfiability of an STL
formula is called the formula horizon. The formula horizon is the maximum over the sums of all
the nested upper bounds on the temporal operators.

For instance the horizon of the formula �[0,t1] (�[0,t2]p) is equal to t1 + t2. In this paper, we
consider bounded time STL formulas.

A desired controller for the system, maximizes the satisfaction of an STL in order to account
for suitable reactions to disturbances and other uncertainties. The degree of satisfaction of an STL
formula [15] which we call the robustness value, can be calculated using a real-valued function ρφ

of a trajectory x, and t such that (x, t ) |= φ ≡ ρφ (x, t ) > 0.

ρpk
(x, t ) =μk (xt )

ρ¬φ (x, t ) = − ρφ (x, t )

ρφ∧ψ (x, t ) =min(ρφ (x, t ), ρψ (x, t ))

ρφ UIψ (x, t ) = max
t ′ ∈(t+I)

(
ρψ (x, t ′), min

t ′′ ∈[t,t ′)
ρφ (x, t ′′)

)

Temporal operators like Always and Eventually, can be treated as conjunctions and disjunctions
along the time axis.

Remark. Note that the interpretation of robustness as defined above (and in [15]) can differ
from the notion of the robustness as defined in [22] for general functions of the form μk (x ) > 0.
Using the interpretation in [22], the robustness w.r.t a predicate pk , is the signed distance (see
[22] for more information) of x from the predicate set Pk = {x ∈ X |μk (x ) > 0}. However in [15],
the robustness w.r.t this predicate is simply defined as μk (x ) which fails to define a robustness
tube around the signal within which all the trajectories satisfy the property. That is we should
expect the same robustness value for x no matter μk (x ) = x or μk (x ) = 2x . Nevertheless, for both
semantics, positive sign of the robustness implies Boolean satisfaction and negative sign implies
falsification.

In spite of the above discussion, in this paper, we choose to work with the STL semantics [15] as
they’re easier to analyze and differentiate. In order to get robustness values that reflect the radius
of robustness tubes around trajectories, we only use predicate functions of the form μk (x ) = x − c
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Fig. 2. The closed-loop system with its NN controller to satisfy an STL formula φ.

where c is a constant. The robustness interpretation over the predicates of this form are the same
using both methods.

3.1.2 Neural Network Controllers for Robust Satisfaction of STL. Consider h : Rny → U to be
a differentiable function. The controller ut = h(yt ) should be designed in order to maximize the
robustness value. Since the function spaces are infinite-dimensional, the function h needs to be
parameterized in order to decrease the complexity of the optimization problem. As neural networks
are known to be universal function approximators [29], we consider h to be a Feedforward Neural
Network (FNN) parameterized using its weights.

Definition 3.2. Feedforward Neural Networks (FNN) FNNs are static or memory-less networks.
The most general FNN is Multi-Layer Perceptron (MLP), which can approximate any nonlinear
function. We can define FNNs using the number of their inputs nI , outputs nO , layers nL , and
weights (Wi ,bi )nL

i=1 which connect the ith layer to the ith + 1 layer or the outputs. The ith layer
applies the following function to its inputsUi ∈ IRmi :

Ui+1 = ζi (W T
i Ui + bi ) i ∈ {1, 2 . . . , l } (2)

where ϕi is an activation function chosen to be one of the continuous nonlinear functions: ReLU,
tanh, arctan, logistic or sigmoid.

The weight matrices Wi and the bias vectors bi should be adjusted in order to maximize the
robustness value. The function N formed by the decomposition of the neurons in Equation (2),
calculates the final output of the FNN at time t given the inputs at that time and (Wi ,bi )nL

i=1. The
weightsWi and the bias vectors bi are collectively denoted asW . We write the output of the NN
as ut = N (yt ,W ). As a result, the closed loop system (shown in Figure 2) can be described as:{

xt+1 = f (xt ,N (yt ,W ))
yt = д(xt )

(3)

Given an initial condition x0 ∈ X0, the bounded time solution of the closed loop system (3) is
x(x0,W ) = x0,x1, . . . xN , where ∀t : xt ∈ X , yt = д(xt ), and xt+1 = f (xt ,N (yt ,W )).

3.1.3 Smooth Approximation of STL Robustness. The robustness function is a non-differentiable
function of its inputs, as it consists of composition of max and min functions. As a result, in order to
avoid less efficient optimizers like non-smooth optimizers, stochastic heuristics, or Mixed-Integer
Programming solvers, we work with the smooth approximation [42] of the robustness function ρ̃φ

which replaces the min and max functions with soft min (min) and soft max (max) functions:

min(x ,α ) = − 1

α
ln

(
ΣN

i=1e
−αxt

)
(4)

max(x ,α ) = −min(−x ,α ) (5)
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where xt is the t th argument of x . This function approaches the min function as α → ∞. It’s been
shown in [42] that an ϵ can be computed such that |ρφ − ρ̃φ | < ϵ . As a result, ρ̃φ > ϵ guarantees
satisfaction of φ.

4 PROBLEM STATEMENT

Consider the dynamical system S = (Σ,X0,U ), where Σ is described in Equation (1), X0 is a set
of initial conditions, and U is the set of admissible control inputs. We would like to design a NN
controllerN for the systemS that satisfies the input constraint such that the minimum robustness
value over the set of initial conditionsX0 is maximized. The problem is formally defined as follows:

Problem 1. Given the dynamical system S, an STL formula φ whose horizon is N , and a fixed

architecture for the neural network N , solve the following optimization problem:

W ∗ = argmax
W

min
x0∈X0

ρφ (x(x0,u
N )) (6)

s .t

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

xt+1 = f (xt ,ut )
yt = д(xt )

ut = N (yt ,W )
x(x0,u

N ) = x0,x1, . . . ,xN

5 TRAINING THE NEURAL NETWORK CONTROLLER FOR STL SATISFACTION

The NN weightsW have a complex chained effect on the cost function of Problem 1 through the
system state trajectory. Based on our experiments, direct policy search variants of reinforcement
learning approaches based on evolution strategies [27], like covariance matrix adaptation evolu-
tion strategy (CMA-ES) algorithm, were not able to find a good set of parameters (W ) without ad-
ditional support. Nonetheless, their exploration power is usually able to bring the parameters close
to their optimal value. On the other hand, with a good initialization, gradient based approaches
were found to be very effective in training neural networks using back propagation approaches
[7].

In this paper, we use the best of two worlds: the exploration power of the evolution based meth-
ods with a large enough population size, and the exploitation power of gradient based methods.

5.1 Neural Network Controller Architecture

We assume a given neural network architectureN for the controller with nI = ny , nO = nu , which
satisfies the input constraints. In other words, N is a function with a range U (N : Rny → U ).
In order to satisfy the input constraints, the output layer can apply a scaled Hyperbolic tangent
sigmoid transfer function (see Figure 3) to its inputs. Assuming u and u to be the upper and lower
bounds on U respectively, using the following activation function ensures the satisfaction of the
input constraint:

tansiд(x ,U ) = u +
u − u

2
(tansiд(x ) + 1) (7)

Remark. If an output feedback control law exists that satisfies the STL formula ∀x0 ∈ X0, then
provided enough data, and using an appropriate neural network architecture, optimal weightsW
can be found such that the system of Equation (3) satisfies φ for all x0 ∈ X0. Note however that, in
general, for satisfying the temporal and reactive properties of STL formulas, more features than
the system’s current states/outputs, or a controller with memory may be required.
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Fig. 3. Tangent Sigmoid function.

5.2 NN Weights Initialization Using Global Optimization

In this step of the training, we look for a set of parameters that on average maximizes ρφ for a set
of randomly selected initial states x0 ∈ X0. We denote this finite set of initial states by X s

0 and its
size, i.e, number of samples with |X s

0 |. Starting from a set of randomized weights and bias values
W , a global optimizer, minimizes the following loss (cost) function

C (W ) =
∑

x0∈X s
0

cφ (x(x0,W )) (8)

where cφ = −ρφ .
In the initialization stage, the above cost function can be minimized using any method for global

optimization. In this paper, we use the CMA-ES algorithm [27], which is a derivative-free, evolution
based numerical optimization method. CMA-ES is primarily a local optimization approach, but it
has also been reported to be reliable and highly competitive for global optimization when using
larger population sizes [26]. In our experiments, we use the following relation2 in order to choose
the population size

population size = 10 × (4 + round (3 × ln( |W |))) (9)

where ln is the natural logarithm function and |W | is the number of NN weights and bias
parameters.

Note that a global minimizerWG of the cost function in Equation (8) does not necessarily max-
imize the worst case robustness value as required in Problem 1. The reason is that, firstly, a finite
number of randomly selected initial conditions are considered in the cost formulation, and sec-
ondly,W ∗

G is trained on the average performance rather than the worst case performance. Specif-
ically, using N (yt ,W

∗
G ) as the controller:

(1) There may exist x0 ∈ X0 − X s
0 such that the solution to the closed loop system (3)

does not satisfy the specification, since the training is done using a finite set of initial
states.

(2) Or, there may exist adversarial samples x0 ∈ X s
0 , as the cost formulation is over the average

robustness value and not the minimum (worst-case) robustness value.

As a result, in Section 5.5, we design a two-player game that uses adversarial examples to improve
the weights of the neural network.

5.3 NN Weight Update Using Lagrange Multipliers for Incremental Robustness

In model-based Reinforcement Learning, backpropagation of the desired change of the objective
function to the weights of the NN is used for policy improvement [13].

2This is suggested in the Matlab’s implementation of CMA-ES.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 107. Publication date: October 2019.



Worst-case Satisfaction of STL Specifications Using FNN Controllers 107:9

In practice, direct backpropagation into the policy using automatic differentiation methods
(through the unwinding of the states as described in [21]) has shortcomings like numerical insta-
bility. This numerical instability causes vanishing or exploding gradients, especially when working
with long temporal sequences of states3. Mathematically, the reason is that when calculating the
gradient of the cost function w.r.tW using the chain rule, in each time step, the derivative calcu-

lated in the previous time step should be multiplied with the Jacobin matrix of the dynamics ∂f

∂x
. If

the eigenvalues of the Jacobian matrix are smaller than one, gradients will vanish over time, and
if they are greater than 1 gradient will explode over time. As a result, researchers usually solve the
constrained – by the system dynamics – problem using relaxations [35, 39].

When training Recurrent NNs (RNN) that approximate time series, one way to deal with this
problem is redesigning them to have fewer layers and memory blocks. However, in our problem,
the memory comes from physical laws and system dynamics that cannot be altered. Also, we may
require long sequences to decide on the satisfiability of the STL formula (see Definition 3.1 on the
formula horizon) when designing a controller that satisfies the specification. Consequently, train-
ing algorithms based on automated differentiation may face numerical instability which prevents
effective training and wastes computation effort. As a result, in what follows, we derive a weight
update law based on an optimal control approach which does not need recursive multiplication
of the gradients - as required in direct differentiation based on the chain rule - and incrementally
improves the robustness value.

As gradient-based approaches require differentiability of the objective function, we alter the
optimization problem of Equation (6) in Problem 1, as follows:

max
W

min
x0∈X s

0

ρ̃φ (x(x0,u
N )) (10)

s .t

{
xt+1 = f (xt ,N (д(xt ),W ))
x(x0,u

N ) = x0,x1, . . . ,xN

Consider the following objective function for one of the trajectories starting from x0 ∈ X s
0 and

subject to the dynamical constraints:{
Jx0 (W ) = ρ̃φ (x0,x1, . . . ,xN ),
xt+1 = f (xt ,N (д(xt ),W ))

using the Lagrange multipliers associated with the state equations which are called co-states, the
dynamical constraints can be incorporated into the objective function, as follows:

J̄x0 (W ) = ρ̃φ (x0,x1, . . . ,xN ) +
N−1∑
t=0

λ�t+1

(
f (xt ,N (д(xt ),W ))) − xt+1

)

= ρ̃φ (x0,x1, . . . ,xN ) + H0 − λ�NxN +

N−1∑
t=1

(
Ht (xt ,W ) − λ�t xt

)
(11)

where λt s are the co-states, and Ht = λ�t+1 f (xt ,N (д(xt ),W )) is the Hamiltonian. Thus, we have:

δ J̄x0 (W ) =
N−1∑
t=1

(
∂Ht

∂xt
+
∂ρ̃φ

∂xt
− λ�t

)
δxt +

(
∂ρ̃φ

∂xN
− λ�N

)
δxN +

N−1∑
t=0

∂Ht

∂W
δW (12)

3The same problem happens when training Recurrent Neural networks with backpropagation through time [45].
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The following equations enforce δ J̄x0 (W ) ≥ 0:

λ�N =
∂ρ̃φ

∂xN
, (13)

λ�t =
∂Ht

∂xt
+
∂ρ̃φ

∂xt
= λ�t+1

(
∂ f

∂xt
+
∂ f

∂ut

dN
dxt

)
+
∂ρ̃φ

∂xt
, (14)

δW =
N−1∑
t=0

∂Ht

∂W
=

N−1∑
t=0

λt+1
∂ f

∂ut

∂N
∂W

(15)

where ∂f

∂xt
=

∂f

∂xt

���(xt ,ut )
, is the Jacobian matrix of the open loop system, ∂f

∂ut
=

∂f

∂ut

���(xt ,ut )
is the

derivative of the open loop system w.r.t its inputs,
∂ρ̃φ

∂xt
is the derivative of the smooth robustness

function to its t th argument, dN
dxt
= ∂N

∂yt

∂д

∂xt
is the derivative of the NN to its inputs multiplied

by their derivative to the states, and ∂N
∂W

is the derivative of the NN w.r.t its weights which is
usually readily available. Equations (13) and (14) provide the terminal condition and the backward
dynamics for the co-states, respectively. Equation (15) provides the desired change in the weights
of the neural network in order to increase the objective function Jx0 (W ). As a result, changing the
weights of the NN in the direction δW using a small enough step size will increase the robustness
function ρφ for a single trajectory starting from x0 - assuming the soft min and max constant α
is large enough. To emphasize the dependency of the desired change in the weights on the initial
condition x0, we will denote it as δWx0 . As a result, in order to improve the objective function in
Equation (10) which depends on all the samples in X s

0 rather than just one sample, the weights of
the NN should be changed in the following direction:

ΔW =
∑

x0∈X s
0

kx0 (i )δWx0 (16)

where kx0 is a vector of length |X s
0 | whose ith element is proportional to the effect of the robustness

value ρ̃φ (x(x0,W )) in the value of the overall objective function J = min
x0∈X s

0

ρ̃φ (x(x0,u
N )). We write

these robustness values collectively as rx0 , as a result:

kx0 =
∂min(rx0 )

∂x
(17)

where ∂min
∂x

is the derivative of the soft min function in Equation (4).
Note that changingW in the direction δWx 0

, where x0 corresponds to the minimum robustness
value in X s

0 , may result in a decrease in the worst case robustness value. The reason is that the
change in the robustness value for the other samples in X s

0 are not considered and there could
exist some x0 ∈ X s

0 ,x0 � x0 which may worsen the minimum robustness value. Considering only
the worst sample in the weight update law breaks the completeness of the method, and may cause
oscillations between improving the policy for two x0 ∈ X s

0 . However, using Equation (16) for up-
dating the weights ensures an improvement in the worst-case behavior in X s

0 under mild assump-
tions, as it considers the effect of the weight perturbation on all the samples. In practice, in order
to reduce the computational complexity, one can remove the terms for which kx0 (i ) << max (kx0 )
in Equation (16) and avoid calculating δWx0 for them.
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Proposition 5.1. Assuming that the set of weights W is not a local minimizer of minx0∈X s
0
ρ̃φ ,

there exists a small enough step size h̄w > 0 such that for all 0 < hw ≤ h̄w :

min
x0∈X s

0

ρ̃φ (x(x0,W + hw ΔW ) > min
x0∈X s

0

ρ̃φ (x(x0,W ))

Proof. This is a direct result of the design choice, since by design, ΔW is a descent direction of
the cost function in Equation (10). �

5.3.1 Choosing the Step Size. Theoretically, the ideal step size for updating W is the upper-
bound for all the h̄w values that satisfy the condition in Problem 5.1. In practice, however, finding
such an ideal step size is not possible. Choosing a proper step size hw is important for convergence
of the gradient-based policy search methods. Choosing very large step sizes can result in passing
better level sets and local extremes, and choosing very small step sizes will cause insignificant and
slow improvements. As a result, in gradient-based optimization, the step size is usually changed
adaptively.

In this work, we choose step sizes proportional to the norm of the weight matrix |W |, hw =

k |W |. At the first iteration, we pick k = k0 << 1 and change it adaptively later, as described in
Algorithm 1. The value returned by Algorithm 1 in one iteration is used as the initial step size in
the next iteration.

5.4 Training on X s
0

In order to find a controller that maximizes the worst-case robustness value in the set of randomly
selected initial conditions X s

0 ⊂ X0, we use a global optimizer to explore the search space and find
a set of weights W that optimize the average robustness value on X S

0 . Given the limitations of
randomized search methods, the resulting weights from the previous stage are used to initialize
the gradient-based local search described in Section 5.1 which is used later to improve the worst-
case performance in X s

0 . This is described in Algorithm 2. If the purpose is to only satisfy the
requirement, then the while loop can be exited as soon as the worst-case robustness value on
X s

0 becomes positive. Note that the solution to the optimization problem of Equation (10) can be
negative in general: there may exist x0 ∈ X s

0 for which the specification is not satisfied even with
the best set of weights, either since φ is hard, or since the controller choice is not suitable.

5.5 Adversarial Guided Training

As described earlier, finding a set of weights which maximally satisfies the specification φ on
the set X s

0 , does not guarantee the worst-case optimality for all x0 ∈ X0, nor does it guarantee the
satisfaction of the formula inX0. As a result, after training the weights onX s

0 , we use a falsification
paradigm in order to find worst-case adversarial samples for which ρφ < 0 and |ρφ | is maximized.
Given the NN controller and its weights W , a falsification method, aims to solve the following
problem [56, 57]:

argmin
x0∈X0

ρφ (x(x0,W )) (18)

s .t

{
xt+1 = f (xt ,N (д(xt ),W ))
x(x0,W ) = x0,x1, . . . ,xN

If an adversarial sample xa
0 was found, we will add the sample to X s

0 , and use the Lagrange multi-
pliers approach to update the NN weightsW until no more progress can be achieved (Algorithm 2
without the initial global training). Once a set of weightsW was found that maximally satisfies φ
on the updated set X s

0 , we look for another adversarial sample (See Algorithm 3). If we were not
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ALGORITHM 1: Step size adaptive update

Data: A dynamical system S,W , ΔW , initial step size k0, maximum number of iterations Im , increase and
decrease rates α and α , and the specification φ

.Result: The final step size k , and the improved weightsW ∗ ifW is not a local optimizer, and a local optima
flag ‘LO ’ o.w

dec_flag← false, inc_flag← false, LO ← false ;

k = k0, hw = k |W |,W ′ =W + hw ΔW , J∗ = min
x0∈X s

0

ρ̃φ (x(x0,W ));

for i = 1, . . . , Im do

ΔJ = min
x0∈X s

0

ρ̃φ (x(x0,W
′) − J∗;

if ΔJ > 0 then

J∗ = min
x0∈X s

0

ρ̃φ (x(x0,W
′));

if dec_flag then
return k,W ∗,LO , and exit

end

k ← αk ,W ∗ ←W ′;
hw = k |W |,W ′ =W + hw ΔW ;

inc_flag← true;

else

if inc_flag then
return k,W ∗,LO , and exit

end

k ← αk ;

hw = k |W |,W ′ =W + hw ΔW ;

dec_flag← true;

end

end

LO ← true;

return k,W , LO ;

able to satisfy φ for xa
0 the algorithm returns failure. The reason for a failure can be one of the

following:

• φ is not satisfiable on X0.
• A state feedback controller is not enough for decision making. More information/features

or controllers with memory might be required.
• The NN architecture is not suitable.
• There is no suitable policy in a small neighborhood aroundW .

Figure 1 shows the overall learning framework.
If the falsification method provides testing coverage guarantees (e.g, see [2]), once no more

adversarial samples were found, φ is satisfied on X0 almost surely. One can also try to verify the
property φ over the set X0 using a verification method for dynamical systems including neural
networks [19, 21, 30].

6 EXPERIMENTAL RESULTS

The following experimental results were performed in MATLAB 2018b. The simulations were run
on an Intel(R)Core(TM) i7-4790 CPU @3.6 GHz with 16 GB memory processor with Windows
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ALGORITHM 2: Training on X s
0

Data: A dynamical system S, an STL specification φ, a randomly selected set of initial conditions X s
0 , an NN

architecture N , and the inputs to Algorithm 1.
Result: Set of parametersW that solve the problem in Equation (10)
W ← Use a global optimizer to find the set of weightsW that optimizes the average robustness on XS

0
(Section 5.2);

LO ← false;

while ¬LO do

ΔW ← Use Equation (16) to find the ascent direction forW ;
(W ,LO ) ← Use Algorithm 1 to changeW in the ΔW direction

end

returnW ;

ALGORITHM 3: Retraining using adversarial samples

Data: A dynamical system S, an STL Specification φ, and a randomly selected set of initial conditions X s
0 ,

an NN architecture N and its parametersW , and the inputs to Algorithm 1.
Result: Set of the optimal parametersW
while true do

xa
0 ← Use a falsification method to solve problem 18;

if ρφ (x(xa
0 ,W )) < 0 then

X s
0 ← X s

0 ∪ x
a
0 ;

LO ← false;

while ¬LO do

ΔW ← Use Equation (16) to find the desired direction;
(W ,LO ) ← Use Algorithm 1 to updateW

end

if ρφ (x(xa
0 ,W )) < 0 then

return failure;
break

end

else

returnW ;
break

end

end

10 Enterprise. We use the Matlab implementation of CMA-ES [27] for global optimization. The
S-TaLiRo toolbox [4] is used to test the closed-loop system against the specification φ. The tool
has different optimization algorithms. Specifically, in this work, we use the Simulated Annealing
(SA) optimization method for finding the adversarial samples.

6.1 Vehicle Navigation

In this section, in order to evaluate the performance of the Lagrange multipliers approach, we use
it without the help of the global search for updating the weights of an NN, which is used to guide
a vehicle to accomplish a reach-avoid requirement formalized in STL. The vehicle navigates in a
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Fig. 4. Vehicle navigation: The vehicle should visit Goals 1 and 2 in this order while avoiding the unsafe set,

starting from a set of different steering angles.

2D environment according to the following dynamics

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎣

ṗx

ṗy

θ̇

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

vcos (θ )
vsin(θ )
v
L
tan(γ )

⎤⎥⎥⎥⎥⎥⎥⎦

(19)

where (px ,py ) is the x-y position of the center of the vehicle and θ is the angle that the vehicle’s
heading has with the x-axis. The inputs v,γ are the forward driving speed and the steering angle
of the front wheels. The inputs are limited to the sets [0, 5] and [−π/4,π/4], respectively. We
assume that initially the car is at (px0,py0) = (6, 8), but the heading angle can vary in the set
θ0 ∈ [−3π/4, θ̄]. We choose θ̄ = −5π/8 once and θ̄ = −π/2 later. The system is simulated using a
discretized step size Δt = 0.05 for 40 steps. The vehicle needs to visit goals 1 and then 2 in this
order while avoiding an obstacle [36]. This can be expressed in STL using the following nested
formula:

φ = �[1,40]

(
Goal1 ∧ �Goal2

)
∧ �[1,40]¬Unsafe

where the Unsafe, Goal1 and Goal2 sets are 2D sets: [1, 4] × [2, 5], [3, 4] × [0, 1] and [5, 6] × [3, 4],
respectively. These sets are shown in the left plot of Figure 4. We design an NN with 3 inputs
(the inputs are the system states), 2 hidden layers each with 5 neurons, and 2 outputs that are
applied to the system as the control inputs v,γ . The NN has tangent Sigmoid activation func-
tions and the input constraints are enforced by using the scaled tangent Sigmoid functions on the
outputs. Since the weight update law leads to local improvements in the weights, a good weight
initialization is important. In order to initialize the weights, we picked the weights randomly be-
tween −1 and 1 for 20 times and kept the one that maximizes the minimum robustness for samples
θ0 = −3π/4,−5π/8,−π/2.

The initial set was chosen as X s
0 = {−3π/4, θ̄ , (θ̄ − 3π/4)/2}. The soft min and max function’s

constant was picked as α = 100 in the optimization problem. The initial step size is set to k = 0.05.
For θ̄ = −5π/8, system trajectories starting from initial conditions x0 ∈ X s

0 using the initial NN
weights are shown with dashed blue lines in Figure 4(a). For θ̄ = −π/2, they are shown with dashed
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Fig. 5. Quadrotor needs to avoid the Unsafe set and reach the Goal set during a short interval of time. The

mission is shown in blue.

blue lines as well, in Figure 4(b). When θ̄ = −5π/8, a set of weights that could satisfy φ in the worst
case, was found using only 8 iterations of the while loop in Algorithm 2. When the initial condition
set grows larger, training the NN becomes harder as it needs to be able to generalize in a larger en-
vironment. In our experiment, when the initial condition set grows larger by choosing θ̄ = −π/2,
the objective function (worst-case robustness value) increases in the ascent direction only with
much smaller step sizes hw , and the satisfying set of weights is found after 576 iterations of the
while loop in Algorithm 2. After training over the sample setX s

0 , using Algorithm 3, no adversarial
examples were found in the the initial condition set for θ̄ = −5π/8. However, for θ̄ = −π/2, adver-
sarial samples were found 2 times, and the weights were updated accordingly using Algorithm 3.
Satisfying trajectories starting from x0 ∈ X s

0 are shown with solid black lines in Figure 4.

6.2 Quadrotor Mission

In this case study, we consider a 6 dimensional model of a quadrotor, as follows [30]:

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṗx

ṗy

ṗz

v̇x

v̇y

v̇z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vx

vy

vz

д tan(θ )
−д tan(ϕ)
τ − д

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

where (px ,py ,pz ) and (vx ,vy ,vz ) are the quadrotor’s position and velocity along x ,y, z axis,
θ ,ϕ,τ are the control inputs (for pitch, roll and thrust), and д = 9.81 is the gravity. The input
constraints are θ ,ϕ ∈ [−0.1, 0.1] and τ ∈ [7.81, 11.81]. We assume that initially the quadrotor is
still, (vx0,vy0,vz0) = (0, 0, 0), and at zero altitude xz0 = 0. The initial x-y position of the quadrotor
can vary in (px0,py0) ∈ [0.02, 0.05] × [0, 0.05]. The system is simulated using a discrete step size
Δt = 0.05 for N steps, where N is the STL formula horizon. The quadrotor should visit a Goal set
which is blocked by a tall wall (the ‘Unsafe’ set) during a short amount of time while avoiding the
wall. Formally, it needs to satisfy the following formula:

φ = �[1,35]¬Unsafe ∧ �[32,35]Goal

where the time intervals correspond to the discrete time steps. The projection of the Unsafe and
Goal sets into the quadrotor’s position states are [−∞, 0.17] × [0.2, 0.35] × [0, 1.2] and [0.05, 0.1] ×
[0.5, 0.58] × [0.5, 0.7], respectively. These sets are shown in Figure 5 with red and green boxes
respectively. The set of initial positions is shown in grey.
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Fig. 6. Sample trajectories inX s
0 , (a): after global training, (b): projection of (a) into x-y plane (c): Trajectories

after improving the NN weights using back propagation.

We pick a NN with 6 inputs (the states of the quadrotor), 3 outputs (the control inputs of the NN),
3 hidden layers with 6,10, and 6 neurons. The NN has tangent Sigmoid activation functions and a
scaled tangent Sigmoid in the output to enforce the control input constraints. Initially, we pick the
corners and the center of the initial set to create X s

0 . In the initial training phase, the weights of
the NN are selected in order to minimize a cost function which depends on the average distance
of the quadrotor’s trajectories from a motion plan that satisfies the specification. This distance is
measured using a simplified dynamic time warping metric [40]. The motion plan is a simple piece-
wise constant trajectory that the quadrotor is not able to perfectly follow given its dynamics. This
plan is shown in Figure 5. A final cost based on whether the trajectory reaches the goal set on time
or not is added to the cost function. One hundred iterations of the CMA-ES with a population size
of 200 were used for initial training of the neural network. This phase took about 3 × 104 seconds
(about 8 hours) on our machine4. The trajectories ofX s

0 after the initial training phase are shown in
Figure 6(a,b). As it’s clear from the figure, one of the trajectories (in purple) does not satisfy φ. As a
result, we improve the set of NN weightsW , using the Lagrange multiplier weight update law (see
Algorithm 2). We pickα = 1000 and an initial step size ofk = 0.1. The trajectories after this step are
shown in Figure 6(c). In the adversarial training phase (see Algorithm 3), 3 adversarial examples

4We did not use GPUs to reduce the training time.
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Table 1. Comparison of Training Using the Proposed

Approach (LM) and CMA-ES

LM CMA-ES
training time (sec.) 3 × 104 + 103 8.6 × 104

num. of falsifications found 3 6

Fig. 7. Robustness surfaces using the controllers trained with LM and CMA-ES approach.

were found using S-TaLiRo’s SA optimization, they were added to the samples set X s
0 , and the

NN weights were adjusted using our weight update law accordingly until no further adversarial
samples were found. The NN weight update using the Lagrange multipliers approach - on the initial
set plus its integration with the adversarial samples - took about 1000 seconds. An interesting
observation is that while the NN was not designed to output discretized values, after the training
phase, the weights were tuned such that the NN outputs were almost always equal to the minimum
or maximum allowed values of the control inputs. In other words, the output layer activation
function was always saturated. This is interesting since as described in [30], the optimal policy is
a bang-bang strategy.

The results from the above Lagrange Multipliers (LM) approach were compared with the results
using a pure CMA-ES method as described in the following:

(1) The initial set X s
0 is selected as before.

(2) CMA-ES is used to maximize the minimum robustness value on X s
0 with a maximum of

100 iterations and it returns whenever the set of weights satisfies φ on X s
0 in the worst

case.
(3) A falsification approach is used. If an adversarial sample is found, it will be added to X s

0 ,
and the algorithm goes back to step (2), otherwise, the algorithm returns.

Comparison results on the training time and the number of adversarial samples found before the
algorithm returns can be found in Table 1. The training time for our approach is less than half the
training time for the CMA-ES approach (training using CMA-ES approach took about a day). In
order to compare the quality of the resulting controller using these approaches, we finely grid the
set of initial conditions and evaluated the corresponding robustness values. Resulting surfaces for
the two approaches are shown in Figure 7 which shows a better worst-case performance using the
LM approach. Note that, in both cases, a few samples with negative robustness values were found
since the falsification approach that we used did not have coverage guarantees. These negative
robustness values are much smaller in amplitude when using the controller designed by the LM
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approach while the training time was also much less. Based on the Goal set dimension, the upper
bound to the robustness value is 0.1−0.05

2 = 0.025 which requires that the trajectory visits the center
of the Goal set within the specified time interval.

7 CONCLUSIONS

Given a system model, we proposed a systematic approach to training neural network controllers
that satisfy system properties given in STL. The loss functions for training the NNs are inspired
by the robustness of the STL formula which is defined over temporal sequences corresponding to
the closed-loop system response. Since usually the minimum length of the temporal sequences re-
quired for calculating the robustness value is large, training using automatic differentiation meth-
ods for backpropagation faces the problem of vanishing and exploding gradients, as a result, we
provided a formulation for gradient-based training which solves this issue. Furthermore, after
training the NN with random samples, we iteratively search for adversarial samples to the STL
property, add them to the sample set and retrain the NN. We demonstrate our approach on a 6 di-
mensional model of a quadrotor that needs to accomplish a mission specified in an STL formula.

While we used state feedback neural network controllers, a controller might require more in-
formation than the current states in order to satisfy general STL properties. Specifying features
that are required for satisfying different STL properties will be investigated in future work. NN
controllers with memory for satisfying STL formulas will also be studied.
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