

BARRETT BlockchAin Regulated REmote aTTestation

Michail Bampatsikos
 Institute of Informatics and

Telecommunications
 National Centre for Scientific
Research Demokritos, Greece,

m.bampatsikos@iit.demokritos.gr

Christoforos Ntantogian
 Department of Digital Systems
 University of Piraeus, Piraeus,

Attica, Greece, dadoyan@unipi.gr

Stelios C.A. Thomopoulos

Christos Xenakis
 Department of Digital Systems
 University of Piraeus, Piraeus,

Attica, Greece, xenakis@unipi.gr

 Institute of Informatics and Telecommunications
 National Centre for Scientific Research Demokritos, Greece, scat@iit.demokritos.gr

ABSTRACT
Today, an increasing number of Internet of Things (IoT) healthcare
devices, crucial to a person’s wellbeing and life, connects to the
internet and consequently is exposed to a variety of threats. These
devices possess low computational resources, and as a result they
cannot use security tools such as antivirus or firewalls.
Consequently, they become easy targets for cyber-attacks and
malware infection, thus putting a person’s life at risk. One way to
protect these devices from malware infection is Remote
Attestation (RA), a process by which a device with low
computational power (prover) verifies its internal state to a party
with higher computational resources (verifier) upon the latter’s
request. However, in case the verifier is malicious, it may
constantly send numerous requests for RA to a prover to prevent
it from performing the functions it was designed for. Thus,
keeping it busy and rendering it unusable to its legit users as well
as services. In short, the verifier performs a Computational Denial
of Service (CDoS) attack against the prover. This paper proposes
the BARRETT architecture which uses a Public Ethereum Network
(PEN) in conjunction with an RA protocol to protect the prover
from CDoS attacks. In particular, the PEN in BARRETT deters
CDoS by forcing the verifier to pay a fee in Ether cryptocurrency
every time they wish to send an Attestation Request (AR) to a
prover. The verifier pays the fee since in BARRETT it can send the
AR only via Ethereum transactions. Consequently, any attempt to
perform a CDoS becomes prohibitively expensive.

CCS CONCEPTS
• Social and professional topics~Health information exchanges

KEYWORDS
Remote Attestation, Blockchain, Ethereum, IoT, Healthcare,

Denial of Service, DoS, Internet of Things, Security

1 Introduction
Due to their low computational resources, IoT healthcare devices
are easy targets of cyber-attacks since they cannot use security
measures such as antivirus or firewall to defend themselves. These

attacks aim to prevent them from functioning properly or turn
them to bots for Distributed Denial of Service (DDoS) attacks. It is
crucial to a person’s wellbeing and life that such devices operate
as expected and without interruptions. There have been examples
of attacks against medical IoT devices such as the one [1] presents.
In this case, researchers hacked a medical ultrasound IoT device
which used outdated software.

A way to protect these devices from malware and cyber-attacks
that may corrupt their firmware is RA. RA is a process through
which an IoT device with low computational resources (prover)
proves the correctness of its firmware and software to a remote
party (verifier) with considerably higher computational resources,
upon the latter’s request. After receiving the request, the prover
computes a checksum of its memory and generates a Report (R).
Then the prover sends R to the verifier. There R goes through the
verification process, and if the verification of R fails, then
corrective actions are taken to restore the prover.

In the scope of this paper, our objective is to perform RA on
healthcare IoT devices, which in many cases are members of
dynamic and heterogeneous networks that dominate daily life. In
addition to performing RA on the devices of such networks, we
also seek to protect them from problems that may occur from the
usage of RA protocols.

A problem that occurs in many RA settings is that a malicious
verifier may repeatedly send ARs to a prover in order to prevent it
from performing the tasks it was designed for or deplete its
battery. This happens when the verifier sends multiple ARs to the
prover, thus constantly forcing it to perform attestation. This issue
makes a protocol that was designed to protect IoT devices a means
to attack them. This type of attack is known as a CDoS attack.
Some RA solutions propose the inclusion of timestamps [2] or
nonces [3] in the ARs to protect the prover from the above attack.
Specifically, the freshness of the timestamp or the uniqueness of
the nonce prevents the execution of the RA process for replayed
ARs. However, a malicious verifier may bypass these mechanisms
in the following way. Let’s assume that a verifier creates thousands
of ARs, each one of them milliseconds after the other. Each of these
ARs has a respective timestamp, and as soon as the verifier
generates all of them it sends them to the prover. Since every AR
has a different timestamp [2], the RA protocol will not treat this

WI '19 Companion, October 14-17, 2019, Thessaloniki, Greece Michail Bampatsikos et al.

behavior as a replay attack and will accept them all. That will force
the prover to measure its internal state for every AR that reaches
it. Similarly, in case a nonce is used to prevent AR replay attacks,
this does not prevent the prover from invoking and executing the
RA process for ARs with different nonces. It is worth mentioning
that most of the related work does not address this issue.

Another problem that may manifest in an RA setting is that the
verifier may deliberately cause network congestion, by sending
multiple ARs, to the part of the network to which the prover is
connected. The purpose of this action is delaying the exchange of
information between the prover and parties entitled to interact
with it. That can have grave consequences in scenarios where the
timely exchange of information is crucial such as in the case of
healthcare IoT devices. In the context of this paper with the term
network congestion we refer to the malicious behavior described
above.

These shortcomings make apparent the need to deter such
attacks and reduce the frequency on which a prover receives ARs
by verifiers. To achieve this, we propose the BARRETT
architecture, the purpose of which is to protect provers from CDoS
and network congestion by combining an RA protocol with a PEN.

The PEN acts as the component that prevents CDoS attacks and
network congestion as follows: A verifier, which is a general-
purpose computer and a node in the PEN, submits ARs in the form
of Ethereum transactions. The term Ethereum transaction in the
context of this work refers to a transaction that contains an AR
unless stated otherwise. To submit a transaction to the PEN every
node, including the verifiers, must pay a fee. This requirement
makes any attempts of conducting a CDoS attack or causing
network congestion prohibitively expensive in terms of monetary
cost. Therefore, the potential loss of funds, which is proportional
to the number of ARs, de-incentivizes the verifier from performing
CDoS attacks or causing network congestion. After the verifier
submits the transaction containing AR to the PEN, the transaction
undergoes validation and then is inserted into a block. The mining
process adds the block on the Ethereum blockchain, and then a
smart contract notifies the prover about the AR. Besides notifying
the prover about the AR, the smart contract also acts as an
additional defense mechanism against CDoS and network
congestion. It does that by setting a limit to the number of verifiers
that can concurrently send ARs to a prover as well as to the
number of ARs that can reach a prover in a period of time.

An additional characteristic of PENs that contributes to the
prevention of CDoS attacks in an RA setting are the mining delays.
Specifically, these delays reduce the frequency on which ARs reach
a prover, thus diminishing the potential workload that a multitude
of these ARs might impose on a device. These delays also prevent
the verifier from causing network congestion to the network
segment the prover is connected. In short, we employ Ethereum to
protect the prover from CDoS attacks and network congestion by
having it regulate the number of ARs that reach the latter.

In summary, the contributions of this paper are the following:

• We propose the BARRETT architecture which protects
provers from CDoS attacks and from network
congestion. It achieves that through the PEN, which
imposes a fee for every AR, thus making CDoS
prohibitively expensive. Additionally, a smart contract

executing on the PEN enables BARRETT to protect the
provers from the above issues by setting a limit to the
number of ARs that can reach a prover in a period of
time.

• We present a solution which via the Ethereum
blockchain provides non-repudiation of actions and an
immutable log that enables us to determine if a verifier
behaves dishonestly. In particular, if a verifier labels a
legit R as dishonest, BARRETT will detect its foul play
since the blockchain stores both the prover’s R and the
verifier’s evaluation of R.

The paper is structured as follows. Section2 provides a brief
description of the related work with regards to RA as well as the
use of blockchain in DDoS mitigation. Section3 presents the
BARRETT architecture as well as the threat model and
assumptions. Performance and security of the architecture are
examined in section 4. Finally, section 5 concludes the paper and
discusses future work.

2 Related Work
A typical RA protocol operates as follows: A verifier sends an AR,
which contains a challenge c, to a prover. The prover invokes some
trusted attestation code which computes a measurement over a
memory region that was specified by the verifier in its request. In
most cases, this measurement is a Message Authentication Code
(MAC) computation over the memory region using a secret key K
shared between the prover and the verifier. The prover’s security
architecture protects K. The prover then sends R, which is the
output of the measurement process, to the verifier who determines
if it is valid by using K and reaches a conclusion whether the
prover is in a healthy or compromised state. There are four types
of RA, (1) Hardware-based RA, (2) Software-based RA, (3) Hybrid
RA, and (4) Swarm RA.

Hardware-based RA relies on using a secure hardware
component such as the Trusted Platform Module (TPM) [4], or
secure coprocessors to compute the checksum of the content
loaded into memory. The purpose of the hardware components is
to protect cryptographic keys and utilize them to encrypt or
digitally sign data. Moreover, they can be used to produce a hash
of a system’s firmware and software configuration. An early
example of hardware-based RA is secure boot [5]. It is worth
noting that Intel also produced a hardware-based approach called
Software Guard Extension (SGX) RA [6]. Another hardware-
based RA protocol, which is very relevant to our work, because it
combines RA with blockchain, is TM-Coin [7]. TM-Coin is the
first and only approach so far, to the authors’ knowledge, that
combines an RA protocol with blockchain. However, TM-Coin
only uses the blockchain and its miners to store the prover’s R
and perform verification duties respectively. Furthermore, it
requires the provers that participate in it to use ARM Trustzone,
which results in an increased monetary cost. The problem of high
cost exists in every hardware-based RA approach. That is because
the implementation of these approaches requires to purchase and
integrate the security-oriented hardware with the device.

Software-based RA verifies the internal state of devices that
have no security-oriented hardware to support attestation. These
approaches allow a device to use only software (e.g., hash
functions) to compute a checksum of their memory. Some

BARRETT BlockchAin Regulated REmote aTTestation WI '19 Companion, October 14-17, 2019, Thessaloniki, Greece

software-based RA protocols are SWATT [8], VIPER [9], SBAP
[10], SAKE [11], SCUBA [12] as well as ReDAS and ICE presented
in [13] and [14] respectively. These protocols rely on time-based
checksums and are only suitable for resource-constrained devices
that communicate directly with the verifier [15]. Moreover, they
are vulnerable to a variety of attacks such as the Time of Check
Time of Use attack as well as return-oriented programming-based
attacks [16].

Hybrid RA is a hardware (Read-Only Memory/ ROM) software
co-designed approach. In most hybrid RA approaches, the prover
stores the code responsible for the attestation as well as the
shared secret key K inside its ROM. The first hybrid RA protocol
was SMART [16], which did not allow a device to interrupt the
RA process to perform a time-critical task. Trustlite [17] changed
that by allowing interruptions of the RA process. Other hybrid
RA approaches are HYDRA, TyTan, and SMARM [2] [18] [19].
HYDRA was the first hybrid RA to build upon formally verified
software components that ensure memory isolation and
protection but did not allow interruptions of the RA process.
SMARM enabled the detection of malware that can relocate itself
in different regions in the prover’s memory. Additionally, it gave
the ability to the prover to interrupt the attestation process to
perform time-critical tasks.

Finally, swarm RA is a fourth kind of RA, the purpose of which
is to assure a verifier that the internal state of a group of IoT
devices is correct. Examples of swarm RA protocols are SEDA,
SANA, and LISA [20] [21] [22]. Swarm RA uses one of the
previous three approaches to attest a group of devices. A problem
of most swarm RA approaches is that they do not support the
interruption of the attestation process as well as the detection of
relocating malware.

Regarding our proposal to use blockchain as a defensive
mechanism against CDoS attacks in RA settings, it is worth
mentioning that several works have proposed using blockchain
technology to mitigate DDoS attacks. Although DDoS differ from
CDoS attacks, both aim to make a network resource unavailable.
Many approaches suggest using blockchain to reinforce
collaborative defense mechanisms against DDoS attacks.
Collaborative defense mechanisms aim to mitigate the impact of
DDoS attacks by having various organizations and stakeholders to
cooperate through the exchange of DDoS related information.
Examples of such approaches are [23], [24], [25] and [26] which
propose the use of blockchain to handle the exchange of
information regarding DDoS attacks as an alternative to complex
information-sharing protocols. This information may include the
IP addresses of the attackers that performed DDoS, the IP
addresses of the victims of these attacks, as well as whitelisted IP
addresses. In addition to those, [27] proposes making the IoT
devices and the server with which they communicate members of
an Ethereum network in order to prevent DDoS. For a device to
send data to the server, it must generate a transaction containing
these data and submit it to the blockchain. To submit a transaction,
the device must pay a fee, so it must possess Ether balance (gas).
A smart contract limits the amount of gas every device can have.
This limitation depends on the device’s specifications, its
bandwidth as well as resources requirements. After the gas is
depleted, the IoT device can no longer send messages. This is done
to protect the server from DDoS attacks in case the devices become

bots. However, [27] does not consider using delays the mining
process causes as an additional way to mitigate DDoS attacks,
something we do to mitigate CDoS attacks.

It is worth noting that many past works proposed using a
Blockchain in conjunction with IoT devices for various purposes.
One such example is [28], which proposed using blockchain and
smart contracts to manage firmware updates of IoT devices.

3 BARRETT Assumptions and architecture

3.1 Assumptions and Threat Model
In this paper, we assume that the verifier aims to attest healthcare
IoT devices which may belong to a heterogeneous and dynamic
network. This type of networks comprises devices that may have
different software and hardware configuration. Moreover, some of
these devices do not possess a TPM and are not single network-
hop neighbors with the verifier.

The threat model of this paper focuses on adversaries that can
interact only remotely with the prover. Thus, they cannot modify
the hardware of the device since they do not have physical access
to it. Moreover, we consider only internal adversaries (malicious
verifiers) that use the RA protocol to harm the prover. External
adversaries that seek to harm the provers by bypassing the RA
protocol are out of the paper’s scope. The same applies to man in
the middle attacks, malware, and eavesdropping on network
traffic.

3.2 The BARRETT Architecture
The BARRETT architecture comprises three entities. (1) The PEN
which is the main mechanism that protects the provers from CDoS
attacks and network congestion. (2) The Verification Nodes (VNs)
which are members of the PEN and act as the verifiers in
BARRETT. There are two types of VNs: a) Full VNs that send ARs,
verify R, store a copy of the blockchain and mine it. b) Light VNs
that only send ARs and verify R. (3) Finally, we have the provers
which are IoT devices and members of the PEN. The provers
measure their internal state and produce R, which they submit to
the blockchain as well as send it to the VN. Figure 1 depicts the
interactions between each one of these parties.

Figure 1: BARRETT Conceptual Architecture

WI '19 Companion, October 14-17, 2019, Thessaloniki, Greece Michail Bampatsikos et al.

The core component of the BARRETT architecture is the PEN
since it is the main mechanism that prevents CDoS attacks against
the provers and network congestion. It achieves that as follows.
First by imposing a fee for every AR that a VN submits thus
making CDoS prohibitively expensive in terms of monetary cost.
Therefore, the potential loss of funds which is proportional to the
number of ARs used in a CDoS attack, de-incentivizes the verifier
from performing CDoS attacks. Second, by reducing the frequency
on which ARs reach a prover in a period of time and as a result the
number of times it invokes the RA process. BARRETT makes this
possible through the mining delays that occur in PENs, which also
delay the inclusion of transactions that contain ARs to the
blockchain. Third, by having a smart contract impose a limit to the
number of verifiers that can send ARs to a prover concurrently as
well as to the number of ARs that can reach a prover in a period of
time. The PEN comprises nodes that submit and in some cases
mine various types of transactions. Some of these nodes are VNs
that send ARs to the provers in the form of Ethereum transactions.
Besides the VNs, the provers are also members of the PEN and a
smart contract, deployed on the PEN, notifies them about ARs
addressed to them.

In addition to the above, the PEN also acts as an immutable
event log, which makes possible to detect when a VN behaves
dishonestly. BARRETT achieves that since the IoT device and the
VN submit as transactions to the blockchain R and the outcome of
the verification process respectively. As a result, in case a VN
labels on the blockchain an honest IoT device as compromised,
another VN will eventually detect this behavior, since the
blockchain also stores the prover’s R.

The second component of BARRETT are the VNs, which are
general-purpose computers that possess considerably higher
computational resources in comparison to the provers. For a VN
to be a member of the PEN, it must have an Ethereum account. To
each account, an address corresponds, that uniquely identifies it in
the blockchain network, as well as a public cryptography key pair.
Moreover, we assume that the Ethereum account of every VN has
some balance in Ether cryptocurrency. There are two types of VNs,
the light VNs, and the full VNs. The light VNs only submit
transactions that contain ARs to the blockchain and verify R a
prover produced and sent to them. The full VNs, on the other hand,
submit ARs on the blockchain and participate in the mining
process. Furthermore, they store a local copy of the blockchain and
verify R. The outcome of the verification process is submitted as a
transaction to the blockchain. Both types of VNs must pay a fee
each time they wish to submit an AR to the blockchain. Note that
every VN stores the secret key K, which shares with a prover and
uses in an RA session. The sharing mechanism of K is not within
the paper’s scope. It is worth noting that the full VNs may possess
higher processing power and storage capabilities in comparison to
the light VNs. That enables them to cope with the requirements
that the mining process and the storage of the blockchain copy
impose.

The beneficiaries of all these restrictions BARRETT imposes on
the VNs are the provers, which are IoT devices and members of
the PEN. The provers have an Ethereum account with some Ether
cryptocurrency balance and can submit transactions. As in VN’s
case, the Ethereum account of each prover has an address that
uniquely identifies it and a public cryptography key pair.

Moreover, the RA process is stored and executed on the prover.
Additionally, the prover stores in its ROM the RA process’s code
and the shared secret key K. The prover’s security architecture
protects K and the Ethereum account’s private key from
unauthorized use. After the smart contract notifies the prover that
a VN has submitted an AR on the blockchain concerning it, the
prover computes the checksum of their internal state and produces
R. Then the prover submits R to the blockchain in the form of a
transaction and at the same time sends it to the VN who verifies it.

Regarding the smart contract we mentioned earlier in this
section, it is responsible for handling and regulating the
submission of ARs to the PEN. Specifically, it sets a maximum limit
to the total number of ARs that all the verifiers can submit to the
blockchain in a predefined period of time. That happens only in
case all these ARs concern the same prover. If the submitted ARs
reach this limit, then the smart contract accepts no more ARs
concerning that prover to the blockchain until that period of time
elapses. To perform these functions, the smart contract stores the
Ethereum address that corresponds to the account of each prover
and each VN. It also stores the addresses to impose control w.r.t.
which PEN nodes can participate in BARRETT and send ARs.
Details regarding the deployment of the smart contract are outside
the paper’s scope.

3.3 Flow of Data
Initially, a VN generates a transaction, that contains an AR, which
submits to the PEN via the smart contract and pays the respective
fee. After the transaction undergoes validation, it is inserted into a
block, and then the mining process adds that block to the Ethereum
blockchain. As soon as the mining of the block completes, the
smart contract notifies the prover about the AR, which in turn
authenticates it. If the authentication of the AR is successful, then
the prover proceeds with executing the RA process and produces
R. The prover submits R as a transaction to the PEN as well as
sends it directly to the VN that submitted the AR. The VN verifies
R, and if it is correct it accepts it otherwise rejects it and takes
corrective action. In both cases, it publishes its decision on the
blockchain. A high-level depiction of the flow of data in BARRETT
provides Figure 1.

3.4 Design Decisions
The main reason we chose a PEN is because we wish to deter
malicious verifiers from sending multiple (thousands) ARs to a
prover. In BARRETT, the PEN helps deter such behaviors primarily
by requiring from the VNs to pay fees to submit ARs. Additionally,
it offers higher data integrity and robustness in comparison to
private as well as consortium Ethereum blockchains since
thousands of nodes around the world store copies of the ledger.
Moreover, the average block mining time in a PEN that uses Proof
of Work [32] consensus algorithm is 13.27 seconds [29] at the time
of this writing. This delay, just like the fees, plays a role in the
protection of provers from CDoS attacks and network congestion.
This delay helps since it significantly reduces the frequency on
which a malicious verifier can send ARs via transactions. Note that
the actual mining delay may vary significantly from the average
one as there have been instances of its duration exceeding 40
seconds or being as short as 5 seconds [30].

BARRETT BlockchAin Regulated REmote aTTestation WI '19 Companion, October 14-17, 2019, Thessaloniki, Greece

Regarding the RA protocol that BARRETT uses, we chose not
to design our solution around a specific type of RA. The main
rationale behind this decision is to enable our architecture to work
with a variety of RA types and be compatible with them. Thus, our
solution will be able to protect provers in a variety of RA scenarios
from malicious verifiers.

4 Performance and Security Analysis

4.1 Performance Analysis
In this section, we examine performance issues that the
combination of a PEN with an RA protocol causes. As mentioned
in section 3, the verifiers in our architecture are nodes in the PEN.
While some of them can only submit transactions containing ARs,
others participate in the mining process and store a local copy of
the PEN’s blockchain ledger. As stated in [31] the size of the PEN’s
ledger is 132.57 GB, thus storing a local copy of it imposes a
significant storage overhead on the Full VNs. In addition to the
storage overhead, the mining function of Ethereum imposes a
considerable performance overhead to the full VNs. It is worth
noting that full VNs can cope with storing a local copy of the
blockchain since their storage space can range between 500 GB
and 1 TB. Moreover, it is well within the full VNs’ capabilities to
cope with the performance burden of the mining process.
Additionally, since both types of the VNs, as well as the provers,
have Ethereum accounts each of them must dedicate a total of 928
bits from their respective memory for their Ethereum account
information; 256 bits for its private key, 160 bits for their Ethereum
address, and 512 bits for the public key [32]. Consequently, our
architecture imposes a storage overhead of 928 bits on the prover,
which is acceptable even in the case of class 1 IoT devices, that
possess 10 KB of RAM and 100 KB of ROM.

Another issue that the use of PEN in our solution causes is the
relatively long delays due to the mining process. These delays also
hold in the inclusion of an AR to the blockchain. The duration of
these delays makes the BARRETT architecture unsuitable for
scenarios in which there is very low tolerance for delays w.r.t. the
time it takes for an AR to reach the prover. In some cases, these
delays can even exceed 40 seconds, which are added to the total
time it takes for R to reach the verifier and consequently the
system administrator. If the system administrator needs to take
informed action about an IoT device immediately, then these
delays may indirectly cause damage (e.g., in cases immediate
action must be taken about a compromised sensor of an Industrial
Control System). Therefore, the BARRETT architecture is only
suitable for RA scenarios that are tolerant to delays. Note that
mining delays with a duration close to 40 seconds frequently occur
in PENs.

4.2 Security Analysis
In this section, we examine the security of BARRETT architecture
as well as the security properties it obtains from the PEN. As
section 3 explains, the PEN acts as an immutable event log in the
BARRETT architecture that records in the form of transactions the
actions of every party (VNs and provers) that participates in
BARRETT. The parties cannot refute their transactions since they
sign those with the private key of their respective Ethereum
account. Consequently, BARRETT also provides accountability

and non-repudiation of actions. Moreover, since, there are
thousands of nodes around the world that store a copy of the
public blockchain, single points of failure are non-existent. Thus,
we also obtain high and constant data availability.

Another feature of our solution that stems from using a PEN is
that transaction fees deter a malicious verifier from performing
CDoS. This happens because to send thousands of ARs as
blockchain transactions would require from the verifier to pay a
prohibitively high fee. Even if the attacker possesses enough ether
balance to pay for the transaction fees to carry out the attack, it
has to consider what is the benefit and the cost of such an attack.
Additionally, the delays imposed by the mining process in our case
contribute to significantly reducing the frequency by which ARs
reach a prover. As a result, if a malicious verifier has a relatively
significant amount (e.g., 100) of Ether at its disposal which aims to
use them all to generate multiple transactions containing ARs,
these ARs will not reach the targeted prover at the same time.
Furthermore, as section 3 states, the average duration of mining
delays is 13.27 seconds. Consequently, one AR per 13.27 seconds
on average is not enough to cause congestion to the part of the
network to which a prover is connected. It is worth mentioning
that the actual mining delay in many cases differs from the average
as there have been instances of it being as short as 5 seconds or
even exceeding 40 seconds. Therefore, the time an AR reaches a
prover may vary.

It is worth noting that the delays and the fees are not enough
in case a prover receives many ARs from different verifiers
concurrently. These ARs will eventually force the prover to invoke
the RA process, thus preventing it from performing its tasks. One
may claim that an RA approach which allows interruptions of the
RA process by time-critical tasks, can mitigate this. The problem
with such approaches is that the RA process is only interrupted
when the IoT device must perform its task. So, in case the device
under attack does not have to perform its time-critical task for a
long time (e.g., eight hours) the RA process will keep executing
until it is eventually interrupted by the task. Our architecture
mitigates this issue by using the smart contract we described in
section 3 to impose a limit to the number of ARs that can reach a
prover in a period of time. Moreover, the smart contract sets a
maximum limit to the number of VNs that can send ARs to a
prover within that period of time.

5 Conclusion and Future Work
This paper presented the BARRETT architecture, which proposed
combining an RA protocol with a PEN to protect provers from
CDoS attacks performed by malicious verifiers. Towards this end,
we suggested using Ethereum transaction fees to deter adversarial
verifiers from sending multiple ARs via the blockchain. We
described some performance issues that arise by using BARRETT
and discussed how our architecture impacts the security of RA
settings. Moreover, we concluded that BARRETT is not suitable for
scenarios where there is low tolerance for delays in RA, due to the
delays the mining process in PENs causes. Future work will
examine replacing the public Ethereum with a private as well as
the consequences of such modification to the BARRETT
architecture. Additionally, we will present ways through which
BARRETT can help an RA protocol to detect malware that an
adversary has installed on a prover. Moreover, we will expand the

WI '19 Companion, October 14-17, 2019, Thessaloniki, Greece Michail Bampatsikos et al.

threat model of BARRETT to accommodate adversaries that act
outside the protocol. We will also examine the case in which the
monetary cost that the fees of BARRETT impose can become
prohibitively expensive to honest VNs. This issue can occur in case
a VN needs to monitor frequently (e.g., every hour) the status of a
prover and thus must send a proportional number of requests.
Additionally, we will propose ways to mitigate this issue. Finally,
we aim to create a methodology which will determine the amount
of the fee that a verifier will be required to pay in order to send an
AR. The methodology will determine that amount by taking into
account the value and importance of a device to its stakeholders.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the anonymous reviewers for
their valuable comments. In this paper, the research of the authors
M. Bampatsikos and S. C. A. Thomopoulos is supported by Stavros
Niarchos Foundation (SNF) in conjunction with EXODUS Ltd,
under Grant No. 12149 "Support of scholarships for industrial
PhD's and post-doc industrial positions and adjunct industrial
researcher” whereas the research of the authors C. Xenakis and C.
Ntantogian in this paper is supported by the EU as part of the
CUREX project (H2020-SC1-FA-DTS-2018-1 under grant
agreement No 826404).

REFERENCES
[1] Checkpoint, "UltraHack: The security Risks of Medical IoT," 2019. [Online].

Available: https://blog.checkpoint.com/2019/03/07/ultrahack-the-securityrisks-
of-medical-iot/ . [Accessed 30 July 2019].

[2] K. Defrawy, N. Rattanavipanon and G. Tsudik, "HYDRA: hybrid design for
remote attestation (using a formally verified microkernel)," in Proceedings of the
10th ACM Conference on Security and Privacy in Wireless and Mobile Networks,
Massachusetts, 2017.

[3] F. Brasser, K. B. Rasmussen, A. Sadeghi and G. Tsudik, "Remote attestation for
low-end embedded devices: the prover's perspective," in Proceedings of the 53rd
Annual Design Automation Conference, 2016.

[4] Trusted Computing Group, Trusted Platform Module Part 1: Architecture, 2016.
[5] W. A. Arbaugh, D. J. Farber and J. M. Smith, "A secure and reliable bootstrap

architecture," in Proceedings of the 1997 IEEE Symposium on Security and Privacy,
Oakland, 1997.

[6] V. Costan and D. Srivinas, "Intel SGX Explained," IACR Cryptology, 2016.
[7] J. Park and K. Kwangjo, "TM-Coin: Trustworthy management of TCB

measurements in IoT," in Proceedings of the IEEE International Conference on
Pervasive Computing and Communications Workshops (PerCom Workshops),
Kona, 2017.

[8] A. Seshadri, A. Perrig, L. van Doorn and P. Khosla, "SWATT: softWare-based
attestation for embedded devices," in Proceedings of the IEEE Symposium on
Security and Privacy 2004, Berkeley, 2004.

[9] Y. Li, J. M. McCune and A. Perrig, "VIPER: verifying the integrity of PERipherals'
firmware," in Proceedings of the 18th ACM conference on Computer and
communications security, 2011.

[10] L. Yanlin, M. M. Jonathan and A. Perrig, "SBAP: Software-Based Attestation for
Peripherals," in Proceedings of the Trust and Trustworthy Computing 2010, 2010.

[11] A. Seshadri, M. Luk and A. Perrig, "SAKE: Software Attestation for Key
Establishment in Sensor Networks," in Proceedings of the International
Conference on Distributed Computing in Sensor Systems, 2008.

[12] A. Seshadri, M. Luk, A. Perrig, L. van Doorn and K. K. Pradeep, "SCUBA: Secure
Code Update By Attestation in sensor networks," in Proceedings of the 5th ACM
workshop on Wireless security, 2006.

[13] A. M. Azab, C. Kill, E. Sezer, P. Ning and X. Zhang, "Remote attestation to
dynamic system properties: Towards providing complete system integrity
evidence," in Proceedings of the 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks, 2009.

[14] A. Seshadri, M. Luk, A. Perrig, L. van Doorn and P. K. Khosla, "Using FIRE & ICE
for Detecting and Recovering Compromised Nodes in Sensor Networks,"

 2004. [Online]. Available:
https://www.researchgate.net/publication/235102807_Using_FIRE_ICE_for_De
tecting_and_Recovering_Compromised_Nodes_in_Sensor_Networks.
[Accessed 1 May 2019].

[15] A. Francillon, Q. Nguyen, K. B. Rasmussen and G. Tsudik, "Systematic
Treatment of Remote Attestation," IACR Cryptology, 2014.

[16] K. Defrawy, A. Francillon, D. Perito and G. Tsudik, "SMART: Secure and
Minimal Architecture for (Establishing a Dynamic) Root of Trust," in Proceedings
of NDSS Symposium 2012, 2012.

[17] P. Koeberl, A. Sadeghi and V. Varadharajan, "TrustLite: A Security Architecture
for Tiny Embedded Devices," in Proceedings of the Ninth European Conference on
Computer Systems, 2014.

[18] F. Brasser , B. Mahjoub , A. Sadeghi , C. Wachsmann and P. Koeberl, "TyTAN:
Tiny trust anchor for tiny devices," in Proceedings of the IEEE Design Automation
Conference (DAC), 2015.

[19] X. Carpent, N. Rattanavipanon and G. Tsudik, "Remote Attestation of IoT
Devices via SMARM: Shuffled Measurements Against Roving Malware," in
Proceedings of the IEEE International Symposium on Hardware Oriented Security
and Trust, 2018.

[20] N. Asokan, F. Brasser, A. Ibrahim, A. Sadeghi, M. Schunter, G. Tsudik and C.
Wachsmann, "SEDA: Scalable Embedded Device Attestation," in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
2015.

[21] M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A. Sadeghi and M. Schunter,
"SANA: Secure and Scalable Aggregate Network Attestation," in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
2016.

[22] X. Carpent, K. Eldefrawy, N. Rattanavipanon and G. Tsudik, "Lightweight
Swarm Attestation: A Tale of Two LISA-s," in Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, 2017.

[23] J. Dheeraj and S. Gurubharan, "DDoS Mitigation Using Blockchain,"
International Journal of Research in Engineering, Science and Management,
October 2018.

[24] Z. Ahmed, N. Afaqui and O. Humayan, "Detection and Prevention of DDoS
attacks on Software Defined Networks Controllers for Smart Grid," International
Journal of Computer Applications, March 2019.

[25] B. Rodrigues, T. Bocek, A. Lareida, D. Hausheer, S. Rafati and S. Burkhard, "A
Blockchain-Based Architecture for Collaborative DDoS Mitigation with Smart
Contracts," in Proceedings of the IFIP International Conference on Autonomous
Infrastructure, Management and Security 2017, 2017.

[26] B. Rodrigues, T. Bocek and B. Stiller, "Multi-domain DDoS Mitigation Based on
Blockchains," in Proceedings of the IFIP WG 6.6 International Conference on
Autonomous Infrastructure, Management, and Security, 2017.

[27] U. Javaid, A. Siang, M. Aman and B. Sikdar, "Mitigating loT Device based DDoS
Attacks using Blockchain," in Proceedings of the 1st Workshop on
Cryptocurrencies and Blockchains for Distributed Systems, 2018.

[28] K. Christidis and M. Devetsikiotis, "Blockchains and Smart Contracts for the
Internet of Things," IEEE Access, May 2016.

[29] Etherscan, "Ethereum Block Time History (2019)," 2019. [Online]. Available:
https://etherscan.io/chart/blocktime. [Accessed 2019].

[30] Ethstats, "Ethstats," 2019. [Online]. Available: https://ethstats.net. [Accessed 30
July 2019].

[31] Etherscan, "Ethereum Chain Data Size Growth," 2019. [Online]. [Accessed 30
July 2019].

[32] G. Wood and A. M. Antonopoulos, Mastering Ethereum, Sebastopol, California,
USA: O'Reily Medica Inc, 2018.

