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ABSTRACT  
Today, an increasing number of Internet of Things (IoT) healthcare 
devices, crucial to a person’s wellbeing and life, connects to the 
internet and consequently is exposed to a variety of threats. These 
devices possess low computational resources, and as a result they 
cannot use security tools such as antivirus or firewalls. 
Consequently, they become easy targets for cyber-attacks and 
malware infection, thus putting a person’s life at risk. One way to 
protect these devices from malware infection is Remote 
Attestation (RA), a process by which a device with low 
computational power (prover) verifies its internal state to a party 
with higher computational resources (verifier) upon the latter’s 
request. However, in case the verifier is malicious, it may 
constantly send numerous requests for RA to a prover to prevent 
it from performing the functions it was designed for. Thus, 
keeping it busy and rendering it unusable to its legit users as well 
as services. In short, the verifier performs a Computational Denial 
of Service (CDoS) attack against the prover. This paper proposes 
the BARRETT architecture which uses a Public Ethereum Network 
(PEN) in conjunction with an RA protocol to protect the prover 
from CDoS attacks. In particular, the PEN in BARRETT deters 
CDoS by forcing the verifier to pay a fee in Ether cryptocurrency 
every time they wish to send an Attestation Request (AR) to a 
prover. The verifier pays the fee since in BARRETT it can send the 
AR only via Ethereum transactions. Consequently, any attempt to 
perform a CDoS becomes prohibitively expensive.   
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1 Introduction  
Due to their low computational resources, IoT healthcare devices 
are easy targets of cyber-attacks since they cannot use security 
measures such as antivirus or firewall to defend themselves. These 

attacks aim to prevent them from functioning properly or turn 
them to bots for Distributed Denial of Service (DDoS) attacks. It is 
crucial to a person’s wellbeing and life that such devices operate 
as expected and without interruptions. There have been examples 
of attacks against medical IoT devices such as the one [1] presents. 
In this case, researchers hacked a medical ultrasound IoT device 
which used outdated software.  

A way to protect these devices from malware and cyber-attacks 
that may corrupt their firmware is RA. RA is a process through 
which an IoT device with low computational resources (prover) 
proves the correctness of its firmware and software to a remote 
party (verifier) with considerably higher computational resources, 
upon the latter’s request. After receiving the request, the prover 
computes a checksum of its memory and generates a Report (R). 
Then the prover sends R to the verifier. There R goes through the 
verification process, and if the verification of R fails, then 
corrective actions are taken to restore the prover.  

In the scope of this paper, our objective is to perform RA on 
healthcare IoT devices, which in many cases are members of 
dynamic and heterogeneous networks that dominate daily life. In 
addition to performing RA on the devices of such networks, we 
also seek to protect them from problems that may occur from the 
usage of RA protocols.    

A problem that occurs in many RA settings is that a malicious 
verifier may repeatedly send ARs to a prover in order to prevent it 
from performing the tasks it was designed for or deplete its 
battery. This happens when the verifier sends multiple ARs to the 
prover, thus constantly forcing it to perform attestation. This issue 
makes a protocol that was designed to protect IoT devices a means 
to attack them. This type of attack is known as a CDoS attack. 
Some RA solutions propose the inclusion of timestamps [2] or 
nonces [3] in the ARs to protect the prover from the above attack. 
Specifically, the freshness of the timestamp or the uniqueness of 
the nonce prevents the execution of the RA process for replayed 
ARs. However, a malicious verifier may bypass these mechanisms 
in the following way. Let’s assume that a verifier creates thousands 
of ARs, each one of them milliseconds after the other. Each of these 
ARs has a respective timestamp, and as soon as the verifier 
generates all of them it sends them to the prover. Since every AR 
has a different timestamp [2], the RA protocol will not treat this 
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behavior as a replay attack and will accept them all. That will force 
the prover to measure its internal state for every AR that reaches 
it. Similarly, in case a nonce is used to prevent AR replay attacks, 
this does not prevent the prover from invoking and executing the 
RA process for ARs with different nonces. It is worth mentioning 
that most of the related work does not address this issue.  

Another problem that may manifest in an RA setting is that the 
verifier may deliberately cause network congestion, by sending 
multiple ARs, to the part of the network to which the prover is 
connected. The purpose of this action is delaying the exchange of 
information between the prover and parties entitled to interact 
with it. That can have grave consequences in scenarios where the 
timely exchange of information is crucial such as in the case of 
healthcare IoT devices. In the context of this paper with the term 
network congestion we refer to the malicious behavior described 
above.  

These shortcomings make apparent the need to deter such 
attacks and reduce the frequency on which a prover receives ARs 
by verifiers. To achieve this, we propose the BARRETT 
architecture, the purpose of which is to protect provers from CDoS 
and network congestion by combining an RA protocol with a PEN.  

The PEN acts as the component that prevents CDoS attacks and 
network congestion as follows: A verifier, which is a general-
purpose computer and a node in the PEN, submits ARs in the form 
of Ethereum transactions. The term Ethereum transaction in the 
context of this work refers to a transaction that contains an AR 
unless stated otherwise. To submit a transaction to the PEN every 
node, including the verifiers, must pay a fee. This requirement 
makes any attempts of conducting a CDoS attack or causing 
network congestion prohibitively expensive in terms of monetary 
cost. Therefore, the potential loss of funds, which is proportional 
to the number of ARs, de-incentivizes the verifier from performing 
CDoS attacks or causing network congestion. After the verifier 
submits the transaction containing AR to the PEN, the transaction 
undergoes validation and then is inserted into a block. The mining 
process adds the block on the Ethereum blockchain, and then a 
smart contract notifies the prover about the AR. Besides notifying 
the prover about the AR, the smart contract also acts as an 
additional defense mechanism against CDoS and network 
congestion. It does that by setting a limit to the number of verifiers 
that can concurrently send ARs to a prover as well as to the 
number of ARs that can reach a prover in a period of time.  

An additional characteristic of PENs that contributes to the 
prevention of CDoS attacks in an RA setting are the mining delays. 
Specifically, these delays reduce the frequency on which ARs reach 
a prover, thus diminishing the potential workload that a multitude 
of these ARs might impose on a device. These delays also prevent 
the verifier from causing network congestion to the network 
segment the prover is connected. In short, we employ Ethereum to 
protect the prover from CDoS attacks and network congestion by 
having it regulate the number of ARs that reach the latter.  

In summary, the contributions of this paper are the following:  

• We propose the BARRETT architecture which protects 
provers from CDoS attacks and from network 
congestion. It achieves that through the PEN, which 
imposes a fee for every AR, thus making CDoS 
prohibitively expensive. Additionally, a smart contract 

executing on the PEN enables BARRETT to protect the 
provers from the above issues by setting a limit to the 
number of ARs that can reach a prover in a period of 
time.  

• We present a solution which via the Ethereum 
blockchain provides non-repudiation of actions and an 
immutable log that enables us to determine if a verifier 
behaves dishonestly. In particular, if a verifier labels a 
legit R as dishonest, BARRETT will detect its foul play 
since the blockchain stores both the prover’s R and the 
verifier’s evaluation of R.  

The paper is structured as follows. Section2 provides a brief 
description of the related work with regards to RA as well as the 
use of blockchain in DDoS mitigation. Section3 presents the 
BARRETT architecture as well as the threat model and 
assumptions. Performance and security of the architecture are 
examined in section 4. Finally, section 5 concludes the paper and 
discusses future work.  

2 Related Work  
A typical RA protocol operates as follows: A verifier sends an AR, 
which contains a challenge c, to a prover. The prover invokes some 
trusted attestation code which computes a measurement over a 
memory region that was specified by the verifier in its request. In 
most cases, this measurement is a Message Authentication Code 
(MAC) computation over the memory region using a secret key K 
shared between the prover and the verifier. The prover’s security 
architecture protects K. The prover then sends R, which is the 
output of the measurement process, to the verifier who determines 
if it is valid by using K and reaches a conclusion whether the 
prover is in a healthy or compromised state. There are four types 
of RA, (1) Hardware-based RA, (2) Software-based RA, (3) Hybrid 
RA, and (4) Swarm RA.  

Hardware-based RA relies on using a secure hardware 
component such as the Trusted Platform Module (TPM) [4], or 
secure coprocessors to compute the checksum of the content 
loaded into memory. The purpose of the hardware components is 
to protect cryptographic keys and utilize them to encrypt or 
digitally sign data. Moreover, they can be used to produce a hash 
of a system’s firmware and software configuration. An early 
example of hardware-based RA is secure boot [5]. It is worth 
noting that Intel also produced a hardware-based approach called 
Software Guard Extension (SGX) RA [6]. Another hardware-
based RA protocol, which is very relevant to our work, because it 
combines RA with blockchain, is TM-Coin [7]. TM-Coin is the 
first and only approach so far, to the authors’ knowledge, that 
combines an RA protocol with blockchain. However, TM-Coin 
only uses the blockchain and its miners to store the prover’s R 
and perform verification duties respectively. Furthermore, it 
requires the provers that participate in it to use ARM Trustzone, 
which results in an increased monetary cost. The problem of high 
cost exists in every hardware-based RA approach. That is because 
the implementation of these approaches requires to purchase and 
integrate the security-oriented hardware with the device.    

Software-based RA verifies the internal state of devices that 
have no security-oriented hardware to support attestation. These 
approaches allow a device to use only software (e.g., hash 
functions) to compute a checksum of their memory. Some 
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software-based RA protocols are SWATT [8], VIPER [9], SBAP 
[10], SAKE [11], SCUBA [12] as well as ReDAS and ICE presented 
in [13] and [14] respectively. These protocols rely on time-based 
checksums and are only suitable for resource-constrained devices 
that communicate directly with the verifier [15]. Moreover, they 
are vulnerable to a variety of attacks such as the Time of Check 
Time of Use attack as well as return-oriented programming-based 
attacks [16].   

Hybrid RA is a hardware (Read-Only Memory/ ROM) software 
co-designed approach. In most hybrid RA approaches, the prover 
stores the code responsible for the attestation as well as the 
shared secret key K inside its ROM.  The first hybrid RA protocol 
was SMART [16], which did not allow a device to interrupt the 
RA process to perform a time-critical task. Trustlite [17] changed 
that by allowing interruptions of the RA process. Other hybrid 
RA approaches are HYDRA, TyTan, and SMARM [2] [18] [19]. 
HYDRA was the first hybrid RA to build upon formally verified 
software components that ensure memory isolation and 
protection but did not allow interruptions of the RA process. 
SMARM enabled the detection of malware that can relocate itself 
in different regions in the prover’s memory. Additionally, it gave 
the ability to the prover to interrupt the attestation process to 
perform time-critical tasks.  

Finally, swarm RA is a fourth kind of RA, the purpose of which 
is to assure a verifier that the internal state of a group of IoT 
devices is correct. Examples of swarm RA protocols are SEDA, 
SANA, and LISA [20] [21] [22]. Swarm RA uses one of the 
previous three approaches to attest a group of devices. A problem 
of most swarm RA approaches is that they do not support the 
interruption of the attestation process as well as the detection of 
relocating malware.  

Regarding our proposal to use blockchain as a defensive 
mechanism against CDoS attacks in RA settings, it is worth 
mentioning that several works have proposed using blockchain 
technology to mitigate DDoS attacks. Although DDoS differ from 
CDoS attacks, both aim to make a network resource unavailable. 
Many approaches suggest using blockchain to reinforce 
collaborative defense mechanisms against DDoS attacks. 
Collaborative defense mechanisms aim to mitigate the impact of 
DDoS attacks by having various organizations and stakeholders to 
cooperate through the exchange of DDoS related information. 
Examples of such approaches are [23], [24], [25] and [26] which 
propose the use of blockchain to handle the exchange of 
information regarding DDoS attacks as an alternative to complex 
information-sharing protocols. This information may include the 
IP addresses of the attackers that performed DDoS, the IP 
addresses of the victims of these attacks, as well as whitelisted IP 
addresses. In addition to those, [27] proposes making the IoT 
devices and the server with which they communicate members of 
an Ethereum network in order to prevent DDoS. For a device to 
send data to the server, it must generate a transaction containing 
these data and submit it to the blockchain. To submit a transaction, 
the device must pay a fee, so it must possess Ether balance (gas).  
A smart contract limits the amount of gas every device can have. 
This limitation depends on the device’s specifications, its 
bandwidth as well as resources requirements. After the gas is 
depleted, the IoT device can no longer send messages. This is done 
to protect the server from DDoS attacks in case the devices become 

bots. However, [27] does not consider using delays the mining 
process causes as an additional way to mitigate DDoS attacks, 
something we do to mitigate CDoS attacks.  

It is worth noting that many past works proposed using a 
Blockchain in conjunction with IoT devices for various purposes. 
One such example is [28], which proposed using blockchain and 
smart contracts to manage firmware updates of IoT devices.  

3 BARRETT Assumptions and architecture  

3.1 Assumptions and Threat Model  
In this paper, we assume that the verifier aims to attest healthcare 
IoT devices which may belong to a heterogeneous and dynamic 
network. This type of networks comprises devices that may have 
different software and hardware configuration. Moreover, some of 
these devices do not possess a TPM and are not single network-
hop neighbors with the verifier.  

The threat model of this paper focuses on adversaries that can 
interact only remotely with the prover. Thus, they cannot modify 
the hardware of the device since they do not have physical access 
to it. Moreover, we consider only internal adversaries (malicious 
verifiers) that use the RA protocol to harm the prover. External 
adversaries that seek to harm the provers by bypassing the RA 
protocol are out of the paper’s scope. The same applies to man in 
the middle attacks, malware, and eavesdropping on network 
traffic.  

3.2 The BARRETT Architecture  
The BARRETT architecture comprises three entities. (1) The PEN 
which is the main mechanism that protects the provers from CDoS 
attacks and network congestion. (2) The Verification Nodes (VNs) 
which are members of the PEN and act as the verifiers in 
BARRETT. There are two types of VNs: a) Full VNs that send ARs, 
verify R, store a copy of the blockchain and mine it. b) Light VNs 
that only send ARs and verify R. (3) Finally, we have the provers 
which are IoT devices and members of the PEN. The provers 
measure their internal state and produce R, which they submit to 
the blockchain as well as send it to the VN. Figure 1 depicts the 
interactions between each one of these parties.  

  
Figure 1: BARRETT Conceptual Architecture  
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The core component of the BARRETT architecture is the PEN 
since it is the main mechanism that prevents CDoS attacks against 
the provers and network congestion. It achieves that as follows. 
First by imposing a fee for every AR that a VN submits thus 
making CDoS prohibitively expensive in terms of monetary cost. 
Therefore, the potential loss of funds which is proportional to the 
number of ARs used in a CDoS attack, de-incentivizes the verifier 
from performing CDoS attacks. Second, by reducing the frequency 
on which ARs reach a prover in a period of time and as a result the 
number of times it invokes the RA process. BARRETT makes this 
possible through the mining delays that occur in PENs, which also 
delay the inclusion of transactions that contain ARs to the 
blockchain. Third, by having a smart contract impose a limit to the 
number of verifiers that can send ARs to a prover concurrently as 
well as to the number of ARs that can reach a prover in a period of 
time. The PEN comprises nodes that submit and in some cases 
mine various types of transactions. Some of these nodes are VNs 
that send ARs to the provers in the form of Ethereum transactions. 
Besides the VNs, the provers are also members of the PEN and a 
smart contract, deployed on the PEN, notifies them about ARs 
addressed to them.  

In addition to the above, the PEN also acts as an immutable 
event log, which makes possible to detect when a VN behaves 
dishonestly. BARRETT achieves that since the IoT device and the 
VN submit as transactions to the blockchain R and the outcome of 
the verification process respectively. As a result, in case a VN 
labels on the blockchain an honest IoT device as compromised, 
another VN will eventually detect this behavior, since the 
blockchain also stores the prover’s R.  

The second component of BARRETT are the VNs, which are 
general-purpose computers that possess considerably higher 
computational resources in comparison to the provers. For a VN 
to be a member of the PEN, it must have an Ethereum account. To 
each account, an address corresponds, that uniquely identifies it in 
the blockchain network, as well as a public cryptography key pair. 
Moreover, we assume that the Ethereum account of every VN has 
some balance in Ether cryptocurrency. There are two types of VNs, 
the light VNs, and the full VNs. The light VNs only submit 
transactions that contain ARs to the blockchain and verify R a 
prover produced and sent to them. The full VNs, on the other hand, 
submit ARs on the blockchain and participate in the mining 
process. Furthermore, they store a local copy of the blockchain and 
verify R. The outcome of the verification process is submitted as a 
transaction to the blockchain. Both types of VNs must pay a fee 
each time they wish to submit an AR to the blockchain. Note that 
every VN stores the secret key K, which shares with a prover and 
uses in an RA session. The sharing mechanism of K is not within 
the paper’s scope. It is worth noting that the full VNs may possess 
higher processing power and storage capabilities in comparison to 
the light VNs. That enables them to cope with the requirements 
that the mining process and the storage of the blockchain copy 
impose.  

The beneficiaries of all these restrictions BARRETT imposes on 
the VNs are the provers, which are IoT devices and members of 
the PEN. The provers have an Ethereum account with some Ether 
cryptocurrency balance and can submit transactions. As in VN’s 
case, the Ethereum account of each prover has an address that 
uniquely identifies it and a public cryptography key pair. 

Moreover, the RA process is stored and executed on the prover. 
Additionally, the prover stores in its ROM the RA process’s code 
and the shared secret key K. The prover’s security architecture 
protects K and the Ethereum account’s private key from 
unauthorized use. After the smart contract notifies the prover that 
a VN has submitted an AR on the blockchain concerning it, the 
prover computes the checksum of their internal state and produces 
R. Then the prover submits R to the blockchain in the form of a 
transaction and at the same time sends it to the VN who verifies it.  

Regarding the smart contract we mentioned earlier in this 
section, it is responsible for handling and regulating the 
submission of ARs to the PEN. Specifically, it sets a maximum limit 
to the total number of ARs that all the verifiers can submit to the 
blockchain in a predefined period of time. That happens only in 
case all these ARs concern the same prover. If the submitted ARs 
reach this limit, then the smart contract accepts no more ARs 
concerning that prover to the blockchain until that period of time 
elapses. To perform these functions, the smart contract stores the 
Ethereum address that corresponds to the account of each prover 
and each VN. It also stores the addresses to impose control w.r.t. 
which PEN nodes can participate in BARRETT and send ARs. 
Details regarding the deployment of the smart contract are outside 
the paper’s scope.  

3.3 Flow of Data  
Initially, a VN generates a transaction, that contains an AR, which 
submits to the PEN via the smart contract and pays the respective 
fee. After the transaction undergoes validation, it is inserted into a 
block, and then the mining process adds that block to the Ethereum 
blockchain. As soon as the mining of the block completes, the 
smart contract notifies the prover about the AR, which in turn 
authenticates it. If the authentication of the AR is successful, then 
the prover proceeds with executing the RA process and produces 
R. The prover submits R as a transaction to the PEN as well as 
sends it directly to the VN that submitted the AR. The VN verifies 
R, and if it is correct it accepts it otherwise rejects it and takes 
corrective action. In both cases, it publishes its decision on the 
blockchain. A high-level depiction of the flow of data in BARRETT 
provides Figure 1.  

3.4 Design Decisions  
The main reason we chose a PEN is because we wish to deter 
malicious verifiers from sending multiple (thousands) ARs to a 
prover. In BARRETT, the PEN helps deter such behaviors primarily 
by requiring from the VNs to pay fees to submit ARs. Additionally, 
it offers higher data integrity and robustness in comparison to 
private as well as consortium Ethereum blockchains since 
thousands of nodes around the world store copies of the ledger. 
Moreover, the average block mining time in a PEN that uses Proof 
of Work [32] consensus algorithm is 13.27 seconds [29] at the time 
of this writing. This delay, just like the fees, plays a role in the 
protection of provers from CDoS attacks and network congestion. 
This delay helps since it significantly reduces the frequency on 
which a malicious verifier can send ARs via transactions. Note that 
the actual mining delay may vary significantly from the average 
one as there have been instances of its duration exceeding 40 
seconds or being as short as 5 seconds [30].  
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Regarding the RA protocol that BARRETT uses, we chose not 
to design our solution around a specific type of RA. The main 
rationale behind this decision is to enable our architecture to work 
with a variety of RA types and be compatible with them. Thus, our 
solution will be able to protect provers in a variety of RA scenarios 
from malicious verifiers.  

4 Performance and Security Analysis  

4.1 Performance Analysis  
In this section, we examine performance issues that the 
combination of a PEN with an RA protocol causes. As mentioned 
in section 3, the verifiers in our architecture are nodes in the PEN. 
While some of them can only submit transactions containing ARs, 
others participate in the mining process and store a local copy of 
the PEN’s blockchain ledger. As stated in [31] the size of the PEN’s 
ledger is 132.57 GB, thus storing a local copy of it imposes a 
significant storage overhead on the Full VNs. In addition to the 
storage overhead, the mining function of Ethereum imposes a 
considerable performance overhead to the full VNs. It is worth 
noting that full VNs can cope with storing a local copy of the 
blockchain since their storage space can range between 500 GB 
and 1 TB. Moreover, it is well within the full VNs’ capabilities to 
cope with the performance burden of the mining process. 
Additionally, since both types of the VNs, as well as the provers, 
have Ethereum accounts each of them must dedicate a total of 928 
bits from their respective memory for their Ethereum account 
information; 256 bits for its private key, 160 bits for their Ethereum 
address, and 512 bits for the public key [32]. Consequently, our 
architecture imposes a storage overhead of 928 bits on the prover, 
which is acceptable even in the case of class 1 IoT devices, that 
possess 10 KB of RAM and 100 KB of ROM.   

Another issue that the use of PEN in our solution causes is the 
relatively long delays due to the mining process. These delays also 
hold in the inclusion of an AR to the blockchain. The duration of 
these delays makes the BARRETT architecture unsuitable for 
scenarios in which there is very low tolerance for delays w.r.t. the 
time it takes for an AR to reach the prover.  In some cases, these 
delays can even exceed 40 seconds, which are added to the total 
time it takes for R to reach the verifier and consequently the 
system administrator. If the system administrator needs to take 
informed action about an IoT device immediately, then these 
delays may indirectly cause damage (e.g., in cases immediate 
action must be taken about a compromised sensor of an Industrial 
Control System). Therefore, the BARRETT architecture is only 
suitable for RA scenarios that are tolerant to delays. Note that 
mining delays with a duration close to 40 seconds frequently occur 
in PENs.  

4.2 Security Analysis  
In this section, we examine the security of BARRETT architecture 
as well as the security properties it obtains from the PEN. As 
section 3 explains, the PEN acts as an immutable event log in the 
BARRETT architecture that records in the form of transactions the 
actions of every party (VNs and provers) that participates in 
BARRETT. The parties cannot refute their transactions since they 
sign those with the private key of their respective Ethereum 
account. Consequently, BARRETT also provides accountability 

and non-repudiation of actions. Moreover, since, there are 
thousands of nodes around the world that store a copy of the 
public blockchain, single points of failure are non-existent. Thus, 
we also obtain high and constant data availability.  

Another feature of our solution that stems from using a PEN is 
that transaction fees deter a malicious verifier from performing 
CDoS. This happens because to send thousands of ARs as 
blockchain transactions would require from the verifier to pay a 
prohibitively high fee. Even if the attacker possesses enough ether 
balance to pay for the transaction fees to carry out the attack, it 
has to consider what is the benefit and the cost of such an attack. 
Additionally, the delays imposed by the mining process in our case 
contribute to significantly reducing the frequency by which ARs 
reach a prover. As a result, if a malicious verifier has a relatively 
significant amount (e.g., 100) of Ether at its disposal which aims to 
use them all to generate multiple transactions containing ARs, 
these ARs will not reach the targeted prover at the same time. 
Furthermore, as section 3 states, the average duration of mining 
delays is 13.27 seconds. Consequently, one AR per 13.27 seconds 
on average is not enough to cause congestion to the part of the 
network to which a prover is connected. It is worth mentioning 
that the actual mining delay in many cases differs from the average 
as there have been instances of it being as short as 5 seconds or 
even exceeding 40 seconds. Therefore, the time an AR reaches a 
prover may vary.  

It is worth noting that the delays and the fees are not enough 
in case a prover receives many ARs from different verifiers 
concurrently. These ARs will eventually force the prover to invoke 
the RA process, thus preventing it from performing its tasks. One 
may claim that an RA approach which allows interruptions of the 
RA process by time-critical tasks, can mitigate this. The problem 
with such approaches is that the RA process is only interrupted 
when the IoT device must perform its task. So, in case the device 
under attack does not have to perform its time-critical task for a 
long time (e.g., eight hours) the RA process will keep executing 
until it is eventually interrupted by the task. Our architecture 
mitigates this issue by using the smart contract we described in 
section 3 to impose a limit to the number of ARs that can reach a 
prover in a period of time. Moreover, the smart contract sets a 
maximum limit to the number of VNs that can send ARs to a 
prover within that period of time.  

5 Conclusion and Future Work  
This paper presented the BARRETT architecture, which proposed 
combining an RA protocol with a PEN to protect provers from 
CDoS attacks performed by malicious verifiers. Towards this end, 
we suggested using Ethereum transaction fees to deter adversarial 
verifiers from sending multiple ARs via the blockchain. We 
described some performance issues that arise by using BARRETT 
and discussed how our architecture impacts the security of RA 
settings. Moreover, we concluded that BARRETT is not suitable for 
scenarios where there is low tolerance for delays in RA, due to the 
delays the mining process in PENs causes. Future work will 
examine replacing the public Ethereum with a private as well as 
the consequences of such modification to the BARRETT 
architecture. Additionally, we will present ways through which 
BARRETT can help an RA protocol to detect malware that an 
adversary has installed on a prover. Moreover, we will expand the 



WI '19 Companion, October 14-17, 2019, Thessaloniki, Greece  Michail Bampatsikos et al.  
  

threat model of BARRETT to accommodate adversaries that act 
outside the protocol. We will also examine the case in which the 
monetary cost that the fees of BARRETT impose can become 
prohibitively expensive to honest VNs. This issue can occur in case 
a VN needs to monitor frequently (e.g., every hour) the status of a 
prover and thus must send a proportional number of requests. 
Additionally, we will propose ways to mitigate this issue. Finally, 
we aim to create a methodology which will determine the amount 
of the fee that a verifier will be required to pay in order to send an 
AR. The methodology will determine that amount by taking into 
account the value and importance of a device to its stakeholders.  
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