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Neural Networks have become one of the most successful universal machine-learning algorithms. They play a

key role in enabling machine vision and speech recognition and are increasingly adopted in other application

domains. Their computational complexity is enormous and comes along with equally challenging memory re-

quirements in regards to capacity and access bandwidth, which limits deployment in particular within energy

constrained, embedded environments. To address these implementation challenges, a broad spectrum of new

customized and heterogeneous hardware architectures have emerged, often accompanied with co-designed

algorithms to extract maximum benefit out of the hardware. Furthermore, numerous optimization techniques

are being explored for neural networks to reduce compute and memory requirements while maintaining ac-

curacy. This results in an abundance of algorithmic and architectural choices, some of which fit specific use

cases better than others.

For system-level designers, there is currently no good way to compare the variety of hardware, algorithm,

and optimization options. While there are many benchmarking efforts in this field, they cover only subsec-

tions of the embedded design space. None of the existing benchmarks support essential algorithmic optimiza-

tions such as quantization, an important technique to stay on chip, or specialized heterogeneous hardware

architectures. We propose a novel benchmark suite, QuTiBench, that addresses this need. QuTiBench is a novel

multi-tiered benchmarking methodology (Ti) that supports algorithmic optimizations such as quantization

(Qu) and helps system developers understand the benefits and limitations of these novel compute architec-

tures in regard to specific neural networks and will help drive future innovation. We invite the community to

contribute to QuTiBench to support the full spectrum of choices in implementing machine-learning systems.
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1 INTRODUCTION

Over the past several years, neural networks (NNs)1 have become incredibly successful. A huge
variety of neural networks are increasingly deployed in conjunction with robotics, advanced dri-
ver assistance systems (ADAS), security monitors, and many other applications. Furthermore, as
they have the theoretical property of being a universal approximator that requires zero domain
expertise, they are increasingly applied to previously unsolved problems, and sometimes to replace
existing algorithms, unless of course the original algorithm is of much lower complexity. Note that
the applications listed above are all embedded applications, and there is an increasing interest in
training as well as inference in such environments.

The challenge of deploying these networks lies in their compute and memory intensity, which
poses the largest barrier to adoption particularly within the embedded space where compute re-
sources, power, and memory are at premium. Inference requires often billions of operations and
training for modern algorithms involves tens of single-precision exaflops to converge and has tens
of millions of parameters [4]. The interest to apply these techniques in energy constrained envi-
ronments has spawned a rise in algorithmic and architectural innovation. Algorithmic optimiza-
tions include topological transformations with pruning and compression schemes. In addition, the
general trend toward transprecision computing [51, 78] can be nicely exploited within this par-
ticular application context. Extreme reduced-precision neural networks, for example, which take
datatypes down to ternary or even binary representations, can bring significant hardware cost
savings and minimal accuracy impact, as visualized in Figure 1 [8].

Architectural innovation is showcased by Google’s TPU [41]; numerous start-up companies
such as Nervana, Graphcore, GROC, and Cerebras; as well as a spectrum of reconfigurable accel-
erators leveraging FPGAs. Each of these architectures brings its own inherent benefit. Overall, it
is becoming increasingly difficult to predict which architecture will deliver what performance for
which particular neural network. This poses the key challenge that we address with our bench-
mark suite.

Benchmarks at their core encompass a suite of tests for evaluating performance or level of qual-
ity. When done well, benchmarking creates clarity by establishing fair baselines and providing
representative comparisons between different platforms and compute fabrics. They act as the an-
tidote to product marketing and provide system designers a toolbox to avoid making poor choices
where end systems fail to meet requirements, such as throughput, power, or cost, and delay prod-
uct launch. The benefits of a good benchmarking suite go beyond this and provide insights from
all perspectives. Benchmarks can be of high benefit to hardware designers as well as end users.
Benchmarks drive optimizations for semiconductor companies who are customizing compute fab-
rics for deep learning applications, and for end users standardized tests help drive optimal pur-
chasing choices. Finally, for newcomers to the domain, benchmarking suites can offer objective
summaries that introduce key figures of merit and basic choices as well as setting expectations of
the state of the art.

This is an extremely complex design space to visualize, as shown in Figure 2. There are numer-
ous machine-learning applications, and each of these can be trained with different datasets and

1We use the terms neural network and model synonymously throughout this article.
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Fig. 1. Accuracy-hardware cost tradeoffs.

Fig. 2. Multidimensional design space.

different neural network models and variations and, depending on these factors (as well as
numerical representations, learning techniques and hyperparameter selection), can produce
different results, the key figure of merit being test error rate or, conversely, accuracy. There
are numerous choices with different hardware platforms within the cloud and IoT spaces and
everywhere in between. All of the implementation alternatives will deliver different performance

in tera or giga operations per second (TOP/s or GOP/s), response time, power consumption, cost,
and required development effort.

Within this space there are two main types of benchmarks: machine-learning (ML) benchmarks

and performance benchmarks. Machine-learning benchmarks are typically aimed at achieving
low test error, independent of the hardware implications, therefore being of limited efficiency.
Examples are the ILSVRC ImageNet competition, as well as more sophisticated efforts such
as MLBench [48]. Performance benchmarks are agnostic of the target application, measuring
performance characteristics such as throughput and power for characteristic compute patterns.
Even when tailored toward characteristic ML workloads, they do not capture the fact that for
different hardware architectures, different compute patterns should be used. Most importantly,
they do not correlate their results regarding algorithmic optimization back to the application-level
target, which is accuracy, and therefore provide the necessary freedom and scope for algorithmic
modifications, an essential ingredient to extracting performance out of heterogeneous computing
systems.

In this article, we present QuTiBench, a benchmarking suite that lies at the intersection of the
machine-learning and hardware communities and spans the full design space. QuTiBench couples
neural network performance with hardware performance and as such can provide insights as to
what is the best possible combination within this design space for specific use cases. Although
there are a number of efforts emerging in this space, such as DeepBench and MLPerf, there is
currently no comprehensive benchmarking suite in existence that addresses the scope of what is
needed and in particular targets embedded systems. QuTiBench is unique in the way we support
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quantization (Qu), which is an important optimization technique for neural networks and lever-
aged by many specialized hardware architectures. Furthermore, QuTiBench provides multiple tiers
of tests (Ti) that can provide deep insights for the composition of complex systems and provide
tradeoffs between speed and accuracy across a broad range of systems.

The main contribution of this article is the definition of QuTiBench, which has the following
unique features:

• It is a multi-tiered approach that supports a range of compromises for benchmarking in
regards to quality of prediction and effort. In particular, QuTiBench supports theoretical
results as a measuring stick, different computational patterns for different neural networks,
and combinations of microbenchmarks and full applications for addressing the end user
design space.

• It supports algorithmic optimizations and levels of development effort, including naive and
optimized implementations, by correlating everything at the application level’s figures of
merit.

• In particular, QuTiBench supports different approaches to quantization at all levels, which
is essential for efficient, low-power architectures.

• It supports a broad range of applications, both inference and training, and available systems
from cloud to IoT.

QuTiBench is still in its early stages. We hope the community will help make this a valuable
contribution to the machine-learning field. In this article, we provide the first analysis of theoret-
ical compute and memory requirements for both applications and candidate hardware platforms,
which forms level 0 of our benchmark suite. We present initial experimental results to validate the
benchmarking methodology, as well as outline plans for the remaining levels.

The remainder of this article is structured as follows: We start with background on neural
networks. Section 3 analyses the compute and memory requirements of a broad selection of
networks. Section 4 provides details on different hardware architectures and how inference and
training workloads can be mapped to them. This provides insights into the spectrum of imple-
mentation choices and how they are represented within the benchmark suite. In Section 5, we
take a closer look at the key components, characteristics, and challenges of a benchmarking suite
in machine learning. Section 6 describes existing efforts in this space, and Section 7 introduces
the key concepts of QuTiBench. We evaluate our approach with experimental results in Section 8.
Section 9 concludes the article and presents future directions. Full experimental results can be
found in the appendix.

2 BACKGROUND ON NEURAL NETWORKS

This effort focuses on neural networks (NNs), a class of machine-learning algorithms that forms a
subclass of artificial intelligence. With its property of being a universal approximator [18], NNs
increasingly outperform and replace existing algorithms. Neural networks can also provide au-
tomation for previously unsolved applications, where no algorithms exist. No domain expertise is
required, just sufficiently large datasets together with a sufficiently large topology for the network
to train for a given accuracy target. These factors contribute to NN’s popularity.

The design space (see Figure 3) is complex. For every application there are many different types
of NNs, and new algorithms continue to evolve. Furthermore, different types of datasets can be
used. The resulting combinations can achieve different accuracy targets and are accompanied by
different compute requirements. Also, a neural network model is always paired with the particular
framework in which it was trained, which can have impact on the accuracy.
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Fig. 3. Applications, datasets, and neural networks.

Table 1. Breadth of Popular ML Tasks and NN Types

Application NN Types Compute Type

Learning Technique Domain Task Models

Supervised Vision Image Classification MLPs, ResNet, VGG,
AlexNet, InceptionV3

FC, CNV

Object Detection Faster R-CNN, Yolo9000,
Yolov2

FC, CNV

Semantic Segmentation Mask R-CNN, SSD FC, CNV

NLP Machine Translation Transformer, Seq2Seq FC, CNV, recurrent

Speech Recognition DeepSpeech2 FC, CNV, recurrent

Sentiment Analysis Seq-CNN FC, CNV, recurrent

Language Modeling Memory Networks memory network

Recommendation Movies NCF ...

Unsupervised Vision Feature Extraction Autoencoder FC

Generative
Adversarial Learning

Vision Image
Generation/Modification

WGAN NV, DCNV

Deep Reinforcement Game Go MiniGo ...

Learning Atari ALE DeepQ, A3C ...

There is a large application space for neural networks (see Table 1) with domains ranging from
vision to natural language processing (NLP) to gaming and recommendation systems. In each
domain, there are numerous tasks that are amenable for neural networks; for example, within
the vision processing context: image classification, object detection, and semantic segmentation.
Furthermore, these models can be trained using different training techniques. Note that it is not
easy to define clear categories as terms overlap. For example, deep reinforcement learning tech-
niques can be applied to any network. Seq2Seq networks is a full family of networks, while
ResNet50, VGG, and InceptionV3 refer to specific topologies.

Table 1 shows the pool of candidate neural networks that we plan to use as part of our
benchmark, including both inference and training. While there is a large breadth of neural net-
works, there are many common layer types being used, which are ideal to form levels 1 and 2 of
QuTiBench. These layer types equate to the basic computational patterns and are based on pre-
vious analysis [1]. The most popular compute layers are fully connected, convolutional, pooling,

normalization, and recurrent layers. These come with very different compute and memory require-
ments and are briefly discussed here. A more detailed description can be found in Reference [75].
Fully connected layers compute the full cross product between input tensors (for example) and
a vector of weights; the latter are determined during training. Summed to a bias, this is then fed
into an activation function. Popular activation functions include the hyperbolic tangent function
and the rectified linear unit (ReLU). In convolutional layers, the output receives inputs from a
small receptive field of the previous layer. This approach greatly reduces the number of parame-
ters (or weights) involved and allows local features (e.g., edges, corners) to be found [47]. A basic
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two-dimensional (2D) convolutional layer is similar to a fully connected layer except that (a) each
neuron receives an image as input and produces an image as its output (instead of a scalar), (b) each
synapse learns a small array of weights that is the size of the convolutional window, and (c) each
pixel in the output image is created by the sum of the convolutions between all synapse weights
and the corresponding images. Recurrent layers are characterized by the fact that they contain
state over a sequence of input data. There are many different options for the implementation of
the recurrence within the layer, starting from simple recurrent layers to GRUs or LSTM layers,
which can be uni- or bidirectional, feature different numbers of feedback gates, and may include
numerous specializations such as peepholes and CRCs. Beyond these basic layer types, there are
many layer combinations emerging, such as inception layers in GoogleNet [76, 77], residual layers
in ResNet models [36], and so-called fire modules [38]. During training using backpropagation
with stochistic gradient descent, we need to compute the relative derivative to all inputs for these
layers. This works out to be similar in compute patterns to inference with transposed versions
of the inputs whereby a significantly larger amount of compute and memory is required [75].
However, additional compute such as batch normalization needs to be addressed.

2.1 Optimization Techniques

As mentioned in the Introduction, the challenge lies within the compute and memory require-
ments, which can often preclude inference deployment within the IoT context. To alleviate the
computational burden and maximize performance, many optimization techniques have been intro-
duced. Particularly successful techniques include pruning, compression, low rank approximations,
and quantization [33]. We discuss quantization, a specific focus of this work, and pruning in more
detail below. All of these techniques fall under the category of algorithmic optimizations. A rep-
resentative benchmark supports and measures these, as they are essential for viable deployment
solutions.

Quantization and Numerical Representations. Transprecision computing is making strides
in many application domains [51, 78] and is highly effective for neural network inference. In par-
ticular, quantization to reduced-precision datatypes, including 8-bit fixed-point integer and below,
as well as custom floating point formats. For example, quantized neural networks (QNNs) have
been shown to work extremely well. On smaller image classification benchmarks such as MNIST,
SVHN, and CIFAR-10, QNNs achieve state of the art accuracy despite reduction in precision [17,
93], even for partial or full binarization of fully connected and convolutional layers. XNOR-Net [67]
applies convolutional BNNs on the ImageNet dataset with topologies inspired by AlexNet, ResNet,
and GoogLeNet, report top-1 accuracies of up to 51.2% for full binarization and 65.5% for partial
binarization, while for the more challenging ImageNet benchmark, there is a small but noticable
accuracy drop. The resulting solution can run significantly faster in hardware and might still pose
an attractive design tradeoff. Furthermore, there is significant evidence that increasing network
layer size can recoup this drop in accuracy [27, 44, 56, 74, 91].

New quantization schemes show promising results using for example Half-wave Gaussian
Quantization (HWGQ) [10] to take advantage of the Gaussian-like distribution of batch normalized
activations. Furthermore, new training and optimization techniques [55, 96] work effectively. The
current lowest error rates for ImageNet classification have been achieved using ternarization [3,
94] as shown in Table 2. Quantization has been successfully applied to other tasks including 3D
object recognition, facial expression recognition [50, 73], optical character recognition, as well as
speech [31, 49, 70]. Even in training, research shows that 32 bits are not really needed given the
typical value ranges for weight and activation gradients and weight updates involved. Fixed-point
integers, half-precision floating point (FP16), bfloat16, flexpoint, or block floating point representa-
tions show state-of-the-art performance [30, 45, 54, 89]. All of these need to be accurately reflected
within the tests.
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Table 2. Latest Accuracy of QNNs

Network float top-1(top-5) QNN top-1(top-5)
GoogLeNet 71.4% (90.5%) 63.0% (84.9%)
VGG-like 69.8% (89.3%) 64.1% (85.6%)
ResNet-50 [3, 94] 79.26 (94.75%) 64.6% (85.9%)
ResNet-50 [96] 64.6% (87.8%)

Pruning. This is another popular optimization that has been shown to dramatically reduce
memory requirements through either synaptic pruning or filter pruning. When synaptic prun-
ing is leveraged, irregular compute patterns result that impact memory access efficiency, and
thus hardware architectures require support for sparse matrix representations to benefit from
this [31]. Filter pruning yields regular compute patterns and benefits thereby a broader selection of
platforms [33].

3 NEURAL NETWORKS AND THEIR COMPUTE AND MEMORY REQUIREMENTS

We analyze neural networks with regards to their arithmetic compute, intermediate storage
requirement and memory footprint. While actual hardware requirements depend on numerous
attributes, at this point we are characterizing the theoretical requirements in an architecturally
independent way. For example, actual on-chip requirements and external memory requirements
depend on implementation choices but can be derived directly, so this analysis is useful to
categorize the different requirements. The scope of the analysis is currently constrained to the
models shown in Figure 5; the planned scope is listed in the appendix.

Inference. Each NN layer (L0, L1, etc.) requires a specific number of arithmetic operations
OL0,OL1,OL2 in the form of multiplies, additions, and so on. We measure these in giga or tera
operations, respectively (GOPs, TOPs). The overall compute of a network with n layers, Ototal, is
the sum of the compute in each individual layer (see Equation (1)). We define the total modelsize
Wtotal as the sum of the weight requirements per layer measured in millions of elements (ME); this
is independent of any choice in numerical representation. The real memory footprint can be de-
rived by multiplying with the size of the given datatype (for example, 32b for single-precision
floating point). We quantify the intermediate buffer requirement Ttotal in an implementation
neutral fashion. For this, we calculate the sum of the required amount of tensors Ti that precede
each layer. These are derived as the product of feature map dimensions (wi, hi) and number of
channels (chi). Note that all of this applies to non-linear topologies such as DenseNet [37]; how-
ever, our models currently do not reflect graph connectivity. We plan to address this in the future.

Ototal =

n−1∑

i=0

Oi , Wtotal =

n−1∑

i=0

Wi , Ttotal =

n−1∑

i=0

Ti ,Ti = wi × hi × chi (1)

Training. While training is currently the focus in the cloud, we expect that it will become
essential in embedded as well as on-line learning takes off. In regards to requirements, we need
to consider backpropagation in addition to inference. As depicted in Figure 4, training requires
additional data structures. First, symmetrically to the tensors Ti, we need to buffer their gradients
TGi. Furthermore, so-called weight gradients need to be stored WGi, which are the derivative (in
relation to the input weights) of the gradient TGi + 1. Depending on given optimization strategies,
weight updates need to be buffered as well. This results in roughly 3 times the buffer requirements
for weights and double the amount for tensors. Regarding compute, backpropagation requires
roughly 3 times the inference compute for a single image of the training dataset (plus one update
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Fig. 4. Compute, buffer and storage elements.

Fig. 5. Compute requirements training and inference for a spectrum of NNs (visualization of QuTiBench

Level 0—CNN statistics).

Table 3. Ranges and Mean Requirements

Inference Training

OItotal (GOPs) Wtotal (MBytes) Ttotal (MBytes) OTtotal (GOPs) WUtotal (MBytes) TGtotal (MBytes)

Min 0.00 0.00 0.13 0.00 0.27 0.00

Max 412.17 71.14 138.34 1236.64 276.69 71.14

Mean 62.59 11.9 38.02 187.79 76.05 11.9

Assuming 8b datatypes for inference and 32b for training.

operation per weight parameter). Overall compute needs to be multiplied with number of iterations
and number of inputs in the training dataset. Note that data dependencies are significantly more
intricate and challenging for training. This is currently not reflected within the theoretical analysis.

Summary of Requirements. Figure 5 visualize initial results, where for Seq2Seq models, we
assume a sequence length of 3,000 (based on the LSTM test case in DeepBench [20]). The key
observations are as follows: First, the compute and memory requirements are on average very
high. Mean model size is too big to fit into most on-chip low-latency memory (with 71.14MB),
and compute is in the GOPs range for every single input datum. Second, there is a significant
variation in all requirements for both training and inference as summarized in Table 3. No simple
generalizations can be made, even within subcategories such as image recognition, as models vary
greatly depending on size and complexity of images, number of objects to be recognized, and so
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on. The defined parameters, Ototal, Wtotal, Ttotal, OTtotal, WUtotal, and TGtotal, help describe the
compute requirement for inference and training of each individual network and can be used for
baseline computations, taking architectural constraints into consideration, and cross-correlated
with roofline models to provide rough performance guidance.

4 HARDWARE ARCHITECTURES FOR DEEP LEARNING

We discuss target hardware systems, their architectures, and implementation alternatives. While
we present details on cloud platforms, the focus of this article is on embedded systems. There is
a huge range in the types of hardware architectures used for machine-learning applications, in-
cluding CPUs, GPUs, FPGAs, and specialized architectures. The field has spawned significant new
research in computer architecture and created so-called deep learning processing units (DPUs),
which are specialized for this application domain and can be implemented either with ASICs or in
FPGAs. Architectures can broadly be classified by the basic type of compute operation, memory
bandwidth, level of parallelism, degree of specialization, and inherent-precision support. CPUs
are widely used for ML applications and are viewed as serial compute engines, optimized for sin-
gle thread performance, with implicitly managed memory hierarchies (including three levels of
caches) and support floating point operations. GPUs are vector processors that support smaller
floating point formats (FP16) natively, most recently fixed-point 8-bit integer formats, and have a
mix of implicitly and explicitly managed memory. DPUs, such as Google’s Tensor Processing Unit
(TPU), work with tensors, have explicitly managed and specialized memory hierarchies, and sup-
port integer operations. With newer generations, the boundaries between different hardware ar-
chitectures are blurring. CPUs are usually multicore to support parallel processing and incorporate
vector processing units, GPUs are adding tensor processing units, and the TPU now supports float-
ing point operations. FPGAs can support any of the above configurations with explicitly managed
memory. FPGAs are the most flexible of all target hardware and can be configured to support any
numeric representation, even bit-serial hardware architectures that provide runtime configurable
precision. Custom ASIC implementations, which minimize hardware cost and maximize perfor-
mance, have emerged to exploit specific precision arithmetic and customized memory systems.
Tables 4 and 5 list many of these hardware targets along with published performance numbers.2

One of the goals of QuTiBench is to provide a more systematic way to compare performance and
accuracy between these systems rather than relying on vendor reported metrics.

NVIDIA GPUs are some of the most popular hardware targets for machine learning, and newer
families of chips have been introduced to specifically accelerate this task. For example, the Volta
architecture, introduced in 2018, was particularly designed to accelerate AI and incorporates ten-
sor cores as a new feature, as well as improved FP32 and FP64 support for training in a data center
setting [22]. AMD announced the Vega GPU [24] with new deep learning instruction set oper-
ations, with the goal of obtaining parity with NVIDIA’s high-end Tesla V100 datacenter GPUs.
Both companies have low-power GPUs: the AMD Vega mobile GPU [34] and NVIDIA Jetson TX2
[26].

Google introduced its TPU in 2016 [71], which was designed to accelerate Google’s TensorFlow
framework. The first generation supported integer arithmetic with a massively parallel 8-bit matix
multiply engine. The second generation TPU was anounced in May 2017 [41] and the third genera-
tion in May 2018 [80]. These newer chips boast improved memory performance as well as support
for floating point specifically aimed at training.

There are a number of startups introducing custom hardware in this space. Within the cloud
space, there are Graphcore, Cerebras, Groq, and Wave Computing. Within the embedded space,

2These tables form part of level 0 of our benchmark suite and can be used as a basis for performance estimation.
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Table 4. Hardware Architectures for Cloud Systems with Theoretical Performance

(QuTiBench Level 0—Hardware Platform Statistics)

Platform
Num.

Choice
Throughput

(TOPs)
Mem BW

(GBps)
Power (W)

Performance/
Power (TOPs/W)

GPUs

NVIDIA V100 [22] FP32 14 250 300 0.06

NVIDIA V100 FP16 112 250 300 0.45

NVIDIA P100 [61] FP32 8 732

NVIDIA P100 FP16 16 732

NVIDIA P40 [64] INT8 47 200 346 0.24

NVIDIA P4 INT8 22 60 192 0.37

AMD Vega10 [87] FP32 13.7 484 345 0.04

TPUs

Google TPUv1 [71] INT8 92 75 34 1.23

Google TPUv2 [41] FP16 45 600

Google TPUv3 [80] FP16 90

ASIC DPU

Graphcore Custom 224 300 0.75

Groq unknown 400 8

Nervana custom16 55

Wavecomputing 1DPU INT8 181 271 0.7

FPGA DPU

Xilinx VU9P 2b/8b 93.00 88 100 1.06

Xilinx VU9P 2b/4b 139.88 88 100 1.59

Xilinx VU9P 2b/2b 192.52 88 100 2.19

Microsoft Brainwave Stratix X [14] FP8 90 125 0.72

where the design constraints are even more stringent, we find even more, as are listed in Table 5.
Most are secretive about the details of their designs, and this landscape is rapidly changing. Intel
is investigating several custom accelerators, including Nervana and Movidius. Fathom [7] is Mo-
vidius’ ultra-low-power Neural Compute Stick, which operates at about 1W. At the extreme, bi-
narized neural networks, which are very high throughput at extremely low power, are exploited
in the following ASICs: BinarEye [58], BNN Custom Fabric [5], Stripes Bitserial ASIC [42], and
IBM AI Accelerator [39]. Others exploit sparse computing engines, such as EIE and its successor
ESE [31], SCNN [66], Cnvlutin [2], and Cambricon-S and Cambricon-X [92].

FPGAs are an extremely popular platform for machine learning. As they are highly flexible and
can be used in a variety of different configurations and support any arithmetic format, they can
be fully customized toward specific neural network topologies, thereby achieving high perfor-
mance and efficiency. However, for the same reason, they are extremely difficult to characterize
in general. FPGAs are available in the cloud, such as the Xilinx Ultrascale+ VU9P available as part
of the public Amazon Web Services (AWS) cloud infrastructure. Within the embedded space, we
have pioneered the first binarized neural network accelerators [27, 84] and provided many proof
points for customized reduced-precision implementations [8]. Umuroglu et al. [86] demonstrates
that runtime programmable precision can be achieved with a bitserial approach, providing highly
attractive performance on FPGAs, with little overhead. Intel FPGAs have also been successfully
applied to machine-learning applications using a range of different numerical representations [63].
The Microsoft Brainwave project [14] aims at applying FPGAs at datacenter scale using their own
custom floating point representation. Focusing on the IoT market, Lattice has announced binarized
neural network libraries targetting low-power FPGAs and achieving 1TOPS/W [46].
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Table 5. Low-power Hardware Architectures and Theoretical Performance

(QuTiBench Level 0—Hardware Platform Statistics)

Platform
Num.

Choice
Throughput

(TOPs)
Mem BW

(GBps)
Power (W)

Performance/
Power (TOPs/W)

CPUs

Bitserial Cortex-A57 on Jetson TX1 [85] BIN 0.09 0.019

GPUs

NVIDIA TX2 (MaxP) [26] FP32 .575 59.7 15.0 0.038

NVIDIA TX2 (MaxP) [26] FP16 1.15 59.7 15.0 0.077

ASIC DPU

Movidius Myriad 2 [7] INT8 .15 1.2 0.125

Movidius Myriad X [60] INT8 1 1 1

Kalray MPPA Turbocard3 [43] FP32 1.6 110 0.014

BinarEye [58] BIN 0.09–2.8� 230†

BNN Custom Fabric [5] BIN 1.4 0.6 2.3

Stripes Bitserial ASIC [42] BIN 128.5 4.3

IBM AI Accelerator [39]3 BIN 12

Eyeriss [13] INT16 0.084 1.17 †

ARM ML Processor [6] unknown 4.6 3

DianNao [12] INT16 0.452 120 0.485 0.93

EIE(28nm) [32] INT4 3 (0.102 sparse) 2.36 1.27 2.4 (0.08 sparse)

Cambricon-X [92] INT16 0.544

FPGA DPU

Lattice SenseAI [46] BIN 1.4 0.6 2.3

Bismo biserial on PYNQ [86] BIN 6.5 4.64 1.4

FINN on ZC706 [84] BIN 11.6 0.408

ZCU104 (Deephi-666MHz) INT8 4.60 19.2

ZCU104 (Theoretical-775MHz) INT8 5.36 19.2

GX1150 on HARPv2 [59] BIN 0.041 0.85

Measured �

Chip-level power consumption only †

5 CHARACTERISTICS AND CHALLENGES IN BENCHMARKING

5.1 Key Components of a Benchmark

A benchmark can be defined as a set of standards used for evaluating performance or level of
quality. A more practical definition implies that the “set of standards” is supplied in the form of a
well-defined set of executable tests and measured regarding a specific set of figures of merit. Some-
times additional items are included such as performance analysis or profiling tools, which can help
shed light on system bottlenecks. Test infrastructure or a testbed can be provided to ensure repro-
ducibility. This makes particular sense when specialized and not easily available hardware systems
are involved. Data management can be handled together with the benchmark suite and stored in
an accessible location as for example with DAWNbench [16], MIT’s Eyeriss project [25], and the
Request tournaments online score card [68]. In this article, we differentiate profiling tools and test
infrastructure and measurements from the actual benchmark test suite (see Figure 6). Somewhat
related to benchmarking are modelzoos, such as OpenAI Gym [9] and rllab [21], which are
selections of sample code. They are not necessarily aiming to be representative and typically

3We will add the VLSI reference as soon as it becomes live.
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Fig. 6. Benchmarking collateral.

include simplified implementations to teach concepts. QuTiBench focuses initially on the
benchmark suite and measurements.

5.2 Characteristics

Benchmarking can bring many insights. For end-users and system designers, it helps to estimate
expected system-level performance and provides an understanding of what algorithms work best
on which hardware platform. For hardware designers, benchmarks provide design perspectives
and clear cut guidelines regarding what figures of merit matter and what workloads look like. Neu-
ral networks are pushing the limits of what is possible, therefore careful system-level co-design of
hardware and algorithms, and realistic expectations of what is achievable given the design choices
using benchmarking, are crucial. To bring maximum benefit, the following characteristics are es-
sential, which are discussed in greater detail below:

• representative of common workloads
• supportive of algorithmic modifications
• objective and reproducible
• portable to heterogeneous hardware systems
• complexity vs accuracy tradeoff
• adaptive “living” benchmark supported by industry and academia

Representative. Benchmarks need to be representative of real-world workloads. In machine
learning, this requires breadth across a spectrum of applications, algorithms, and computational
patterns. Computational patterns are important to maximize insights into different hardware ar-
chitectures. Application coverage is essential, as it provides more holistic insights into system-level
performance, which can be hard to predict given the emerging complexity of increasingly hetero-
geneous hardware systems.

Support for algorithmic modification. Algorithmic modifications are inevitable to extract
best possible performance from diverse hardware systems, for example to take advantage of
caching and parallel hardware resources. Within machine learning, software and hardware co-
design are compulsory [29] for energy constrained compute environments. To support this al-
gorithmic freedom within the benchmark suite, application coverage is essential, as we correlate
hardware performance independent of the algorithm back to application performance, which is
equivalent to accuracy in this context. However, optimized performance alone is not sufficient, as
not every system designer may be able to achieve it. We also need to reflect the out-of-the-box,
naive performance. Both optimized and naive are representative of a specific hardware platform,
and the difference gives a good indication of the development effort involved. We believe both
should be part of the benchmarks and be captured together with development time or lines of
code. Specifically for neural networks, quantization, compression, topological changes, and prun-
ing techniques are important optimization techniques that need to be considered.

Objective and Reproducible. To provide clear differentiation between marketing and sci-
entific efforts, reproducible and objective results that do not favour any particular system
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configuration or hardware architecture are needed. Reproducible results are a key ingredient in
the move toward Open Science; however, what does reproducibility actually entail? In the context
of the plethora of esoteric AI accelerators, is it sufficient that an objective third party has validated
the results? Or does it imply that everyone on the planet should be in a position to reproduce the
results if they had access to the system at a reasonable cost? Some hardware systems are too ex-
pensive; for example, an NVIDIA V100 may be beyond someone’s budget. Other hardware choices
are only available for rent, such as Google’s TPU versions as part of Google cloud.

Portability. is a challenging subject as specialized hardware architectures come with their own
design entry languages and compiler tool stacks. The community is fragmented by a huge choice
of frameworks including Caffe, Tensorflow, Mxnet, Theano, pytorch, and Darknet. Moreover, the
prediction accuracy of a network depends on the choice of framework, since training data are
passed through different preprocessing stages, and numerical inaccuracies accumulate and mani-
fest themselves as discrepancies. These inaccuracies are exacerbated by the characteristics of float-
ing point arithmetic [28]. As a result, models and frameworks are inherently tied together. There
are three basic choices: The first is to constrain ourselves to exactly one framework as was done
with Fathom [1]. Second, we could support all frameworks. However, given that we are dealing
with different hardware backends, this causes an explosion in test infrastructure, as the number of
tests multiplies with the number of frameworks. The final choice, and probably the cleanest, is to
support one of the intermediate neural network representations such as ONNX [65], NNEF [62],
or TVM [83], which provide translation between all popular frameworks. However, this requires
hardware vendor support, which is currently limited.

Complexity vs. Speed vs. Accuracy. Speed of result is essential, as the key purpose of a bench-
mark is to provide faster insights than developing the full end-system. There is a tradeoff between
speed, benchmark complexity, and the accuracy of the results. Benchmarks that provide applica-
tion and algorithmic breadth may require a large number of tests, thus making the benchmark
suite inherently complex and limiting the usefulness of the benchmark. Sometimes it is important
to have less accurate predictions at a faster rate, and, for different users, different tradeoffs are
acceptable.

Adaptive. As machine learning is a highly active research field where algorithms change fast,
the benchmark suite should be adaptive and able to incorporate emerging popular algorithms,
compute patterns, and end applications.

6 RELATED WORK: EXISTING BENCHMARKING

In this section, we take a look at existing benchmarks and compare them regarding algorithmic
scope and figures of merit. QuTiBench differs from these efforts in a number of ways:

• Existing benchmarks do not address the fact that heterogeneous hardware platforms typi-
cally require co-designed algorithms and offer flexibility in precision for datatypes specifi-
cally, although MLPerf has open models for training. We introduce correlation of applica-
tion and architecture figures of merit to compare different combinations of algorithms and
architectures at the application level.

• We offer full visualization of the design space rather than comparing performance for fixed
levels of accuracy. Thus, interesting tradeoffs can be highlighted.

• None of the existing benchmarks offer the some level of tiering, including theoretical level,
and stacks of microbenchmarks that can help isolate problematic data movement patterns
and tensor dimensionalities.

• Finally, there is a difference in scope. Most benchmarks currently focus foremost on training.
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Fig. 7. Categories of benchmarks and corresponding figures or merit.

In the following, we expand and elaborate on the differences in greater detail. For this, we dif-
ferentiate among ML benchmarks, performance benchmarks, and NN system benchmarks.
Machine-learning benchmarks exclusively focus on application performance, which is accuracy.
There is no consideration of compute effort required or resulting execution time. Performance
benchmarks record hardware performance only, specifically throughput (measured in processed
inputs per time or TOP/s), latency or response time in milliseconds (ms), and power consumption
in watts. Performance benchmarks only look at hardware performance and are agnostic of the
application. NN system benchmarks, as shown in Figure 7, lie at the intersection and are at the
heart of what we are striving for. They combine all figures of merit; both system performance and
accuracy are correlated. In addition, functional correctness even during performance testing needs
to be ensured.

6.1 NN System Benchmarks

QuTiBench falls into this family of benchmarking suites that are unique in that they combine
representative machine-learning workloads with figures of merit from hardware performance
benchmarks. A full comprehensive comparison of all benchmarks can be found in Table 7.
BenchIP [79] is a benchmarking suite that has a broad set of machine-learning tasks. Similarly to
QuTiBench, BenchIP adopts a multi-tiered approach with micro- and macro-benchmarks. How-
ever, BenchIP does not support the theoretical layer, which we use to cover compute efficiency and
track benchmarking results. BenchIP also does not cover level 2, namely stacks of layers, which we
believe bring great merit in isolating bottlenecks in data movement and highlighting problematic
dimensionality in tensors. Finally, BenchIP does not offer the concept of comparison via pareto
curves, which is essential to (a) visualize the full scope of potential solutions within the design
spectrum and (b) provide the necessary scope for algorithm optimizations matching the specifics of
various accelerators. Fathom [1] is probably the first attempt to provide a representative workload
for benchmarking that has algorithmic breadth beyond convolution neural networks inference
and includes example training and unsupervised learning such as reinforcement learning and
recurrent models. However, Fathom does not address the spectrum of numerical representations.
It also does not support heterogeneous hardware platforms. In regards to framework strategy,
Fathom advocates a unified software package, relying on compatible software stacks to emerge,
and therefore only supports one framework, TensorFlow. With a primary focus on benchmarking
for training and achieving application coverage rather than algorithmic breadth, TBD [95] adopts
some of the concepts introduced in Fathom. It supports more frameworks and datasets and covers
a range of applications, including image classification, machine translation, object detection,
speech recognition, and adversarial and deep reinforcement learning. MLPerf [57] is a promising
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approach at providing system-level benchmarks. Similarly to Fathom and TBD, it covers a
representative range of applications adding sentiment analysis and recommendation as target
applications. It currently considers only training but inference is in process. MLPerf is created by
a consortium of industry partners and universities, which should address objectivity criteria. Its
key strengths are explicitly defining figures of merit and its strong industrial support. It provides
the concept of open models, which allow for algorithmic optimizations that facilitate performance
improvements for specific architectures. However, it does not explicitly support quantization.

DAWNBench [16] exclusively looks at ImageNet classification for training and inference. The
benchmark sets very clear figures of merit such as “Time taken to train an image classification
model to a top-5 test accuracy of 93% or greater” and “Latency required to classify one ImageNet
image using a model with a top-5 test accuracy of 93% or greater,” and as such supports the concept
of algorithmic optimizations by tying hardware performance to accuracy achieved at the applica-
tion level but falls short of visualizing the full design space. Finally, DAWNBench does not provide
further insights beyond the specified figures of merit and is limited in application scope.

The Collective Knowledge Framework [15] in conjunction with the ASPLOS Request Tour-
nament [68], while narrow in scope (limited to ImageNet Classification inference), opens up the de-
sign space for different hardware accelerators, facilitating architecture specific algorithmic trans-
formations and correlation between accuracy and performance and power within a larger design
space. This is essential to support heterogeneous hardware architectures. ASPLOS excels in repro-
ducibility, leveraging ACM artifact evaluation technology, and providing insight into hardware
performance and error rate tradeoffs, through an online scorecard.

6.2 ML Benchmarks

The machine-learning community has defined its own benchmarks that have an exclusive focus
on achieved accuracy independent of the required compute, employing ensemble techniques and
multi-crop that, in essence, linearly scale up the compute load per input data. The most popular
of these is the ImageNet Large Scale Visual Recognition (ILSVR) Challenge [69]. The asso-
ciated compute requirements are unrealistic, particularly when deployed in energy-constrained
environments. CortexSuite [81] and BenchNN [11] are limited to measuring accuracy, where
CortexSuite is constraint to perception and cognition while BenchNN shows the value of machine
learning for approximate computing, based on 5 of the 12 recognition, mining, and synthesis ap-
plications from the PARSEC benchmark suite. DjiNN and Tonic [35] focuses on deep learning
tasks for warehouse scale computers, including image, speech processing, and natural language
processing. While kaggle(www.kaggle.com) is not specifically a benchmark, it hosts a portfo-
lio of data science challenges where the machine-learning community competes with the latest
topologies and algorithms for highest accuracy. MLBench [48] compares human-derived learn-
ing algorithms against machine-learning services from Amazon and Microsoft Azur.

6.3 Performance Benchmarks

DeepBench [20] is probably the most successful suite of microbenchmarks for neural network
performance that measures and compares basic compute operations. It benchmarks individually
direct convolutions, matrix multiply, and a specific LSTM layer for single-precision, half-precision
floating point, and for some operations 8b fixed-point integer datatypes on hardware architec-
tures. It currently features cloud deployment and some embedded data points on raspberry pi
and iphone. It captures the most popular compute patterns; however, it lacks support for lower-
precision datatypes and exclusively investigates performance. As such, it does not provide the
mechanisms to tie algorithmic modifications back to the application level and does not provide in-
sights into compute performance for reduced-precision representations. DeepBench also does not
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cover data movement bottlenecks between layers, as well as potential bottlenecks around buffer-
ing state, as required for LSTMs, for example, where capacity and access latency crucially impact
overall speed.

There are more general, machine-learning-agnostic, hardware benchmarks such as TPC [82]
for the data processing community, SHOC [19], SPEC [72], and STREAM [52]. SHOC looks
specifically at how to benchmark heterogeneous hardware systems using OpenCL as design en-
try. Similarly to QuTiBench, SHOC deploys microbenchmarks combined with application bench-
marks and is multi-tiered. SPEC includes a broad range of applications, including graphics, MPI,
mail servers, virtualization, and storage, and STREAM exclusively focuses on memory bandwidth.
None are specifically designed for machine learning and address the challenges of this application
domain. gemmlowp [23], while it is not a benchmark, is specifically designed for matrix multiply
operations; it includes low-precision operations that may be suitable as a basis for implementation
of part of our benchmark suite.

Summary. Overall, support for algorithmic optimization is limited across the whole spectrum
of benchmarks, in particular in regards to quantization and pruning. None of the benchmarks
above provide a multi-tiered approach in the same way we do. These can provide understanding
of compute and data movement bottlenecks within the system or offer theoretical levels with
efficiency tracking. None of the benchmarks offer a fair comparison for co-design algorithms and
full design space visualization. In Tables 6 and 7, we summarize the application scope of existing
and our proposed benchmark, as well as the key differentiators between existing benchmarks and
our proposal and discuss in Section 7 how we address these characteristics.

7 THE BENCHMARK PROPOSAL

The targeted design space is vast and compromised of a multidimensional spectrum of algorithmic
and architectural co-designed end solutions. The aim of the benchmark is to expose the spectrum of
possibilities and accurately reflect the capabilities of the different hardware platforms. QuTiBench
has the following key characteristics: We take a multi-tiered approach, which is one of our key
contributions (Figure 8). We tier the benchmark suite with respect to abstraction levels as well as
numerical representations for both training and inference tasks. This not only provides attractive
compromises in regards to speed versus minimal discrepancy with target workloads but also brings
advantages such as additional system-level insights.

The second key differentiator of our approach is the support for algorithmic optimization by
coupling hardware performance with accuracy at the application level. In particular, this allows
for objective comparison between floating point implementations and reduced-precision models
that can achieve much higher performance at a significantly reduced energy cost, among many
other possible optimization strategies. Results are visualized via pareto graphs (accuracy versus
latency, throughput, and throughput/power) and optimal solutions can be found along the pareto
frontier. Third, we include a theoretical level as a baseline for benchmarking and performance
estimation.

The unique characteristics of QuTiBench include test suites at various abstraction levels, algo-
rithmic optimizations, and quantization, in particular considerations in regards to datasets, hy-
perparameters, and framework challenges, such as reproducibility and adaptibility (see Refer-
ence [53]).

Multiple Tiers—Abstraction Levels. We defined four levels of abstraction (Figure 8) discussed
below.

Level 0—Theoretical. Records for all target hardware backends theoretically possible peak per-
formance (TOps or GOps), external memory bandwidth (GBps), thermal design power (watts), and
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Table 6. Benchmarks, Applications, Datasets, and Models

Application MLPerf Fathom TBD BenchIP

Domain - Task Dataset - Model Dataset - Model Dataset - Model Dataset - Model

Supervised Learning

Vision - Image Classification ImageNet - ResNet ImageNet - ResNet ImageNet1k -
ResNet50

ImageNet - ResNet

ImageNet - VGG,
AlexNet

ImageNet1k -
InceptionV3

ImageNet - VGG,
AlexNet

Vision - Image Classification MNIST - LeNet-5

Vision - Object Detection COCO - Pascal VOC 2007 -
Faster R-CNN

Pascal VOC 2012 -
Faster R-CNN

Vision - Semantic Segmentation Mask R-CNN - - Pascal VOC 2012 -
DeconvNet

Vision - Image Captioning - - - Visual Gnome - FCLN

Vision - Video Captioning - - - MSVD - S2VT

Vision - Face Recognition - - - LFW - Deep Face Recog

NLP - Machine Translation WMT Eng-German -
Transformer

WMT-15 - Seq2Seq IWSLT15 - Seq2Seq English WSJ - SyntxNet

NLP - Machine Translation IWSLT15 -
Transformer

NLP - Speech Recognition Librispeech -
DeepSpeech2

TIMIT - DeepSpeech Librispeech -
DeepSpeech2

RNN - WSJ

NLP - Sentiment Analysis IMDB - Seq-CNN - - -

NLP - Language Modeling - babI - Memory
Networks

- -

Recommendation - Movies MovieLens-20M - NCF - -

Unsupervised Learning

Vision - Feature Extraction - MNIST - Autoencoder - -

Vision - Adversarial Learning - - Downsampled
ImageNet - WGAN

-

Recommendation - - - -

Deep Reinforcement Learning

Game - Go Go - Mini-Go

Learning - Atari ALE Atari ALE - Deep Q Atari2000 - A3C

cost ($) and for all models their compute and memory requirements; data points are shown in Sec-
tion 3 and 4. Combining application requirements with hardware platform characteristics can be
leveraged for performance predictions using roofline models [88]. Level 0 is a base layer, with re-
sults that are available instantly and provide a target point of reference, guidance for optimization
efforts, and allows us to compute metrics such as achievable compute efficiency. At level 0, we
already introduce the notion of performance per datatype operation, which is essential to support
quantization as an algorithmic optimization.

Two tables are presented in the appendix, one for hardware characteristics and one for neural
networks. The hardware table has one row per hardware platform and supported native datatype;
a minimum of Half Precision (FP16), Single Precision (FP32), and INT8 are recorded.4 In the sec-
ond table, for each CNN, we record four values: total number of compute operations for a single
input, the model size, the size of the state, and the total amount of tensors in between layers that
require buffering. These values can be used as a basis to derive memory requirements and compute
requirements for both inference and training; examples are shown in Figure 5.

Level 0—Roofline Analysis. Using assumptions for where weights, tensors, gradients, weight
updates, and state of a neural network are stored, combined with the size of the datatypes used,

4If INT8 is not natively supported, then it can be embedded inside FP16.
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Table 7. Feature Comparison of Existing Benchmarks and QuTiBench

Criteria MLPerf DeepBench DawnBench Fathom TBD BenchIP QuTiBench

Machine-learning Task

Training yes micro yes micro yes yes planned

Inference planned micro yes micro yes yes (Section 8)

Coverage - see Table 6

Applications broad narrow broad broad broad

Compute Patters broad medium narrow broad broad broad broad

Data Movements broad

Support for Algorithmic
Optimizations

limited limited yes (Section 8)

Full Design Space
Representation

yes yes yes (Section 8)

Deployment Target

Cloud yes yes yes yes yes yes planned

Embedded yes yes yes yes (Section 8)

Benchmark Abstraction

Theoretical yes

Microbenchmarks
Compute

yes yes yes yes (Section 8)

Microbenchmarks Data
Movement

yes (Section 8)

Full Applications yes yes yes yes yes (Section 8)

Speed vs Accuracy
Tradeoff

limited yes (Section 8)

Bottleneck Insights yes yes (Section 8)

Reproducibility yes yes yes yes yes planned planned

Fig. 8. A multi-layered approach with precision support.

allows us to derive the arithmetic intensity of a neural network during training and inference.
Combined with the roofline for a given hardware platform, we can provide insight as to whether a
neural network will be memory or compute bound and guidance for what is theoretically possible
(Figure 9).

Level 1—Compute Patterns. Level 1 exposes achievable compute performance for typical com-
pute patterns encountered within neural networks, which equates to popular layers, including
convolutions, fully connected layers, recurrent layers, residual layers, and squeeze layers, over
a range of dimensions and with different numerical representations (Section 2). These tests are
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Fig. 9. TX2 and ZCU104 Level0 rooflines with GoogleNet and ResNet50.

comparable to DeepBench [20], with the significant difference that we provide much broader
support for specialized numerical representations. For each of these compute patterns, and for both
inference and training, we record the following figures of merit: measured performance (TOps or
GOps), latency (ms), power consumption (watts) of the full platform in the embedded space and of
the board excluding the host system in the cloud.5 While level 1 does not capture application-level
accuracy, the tests will include verification of functional correctness. The results should reflect
achievable compute performance, excluding potential bottlenecks for moving data, which are ad-
dressed in level 2. While requiring execution, the tests at level 1 are relatively rapid. We include a
sweep over batch and thread sizes.

Level 2—Compute and Data Movement. Level 2 is composed of simple combinations of level
1 tests and can thereby effectively capture potential bottlenecks such as tensor movement between
layers, as well as storage requirements. It considers stacks of level 1 layers and only includes a
subset of all possible combinations to keep test time to a minimum. We include mixed precision
between layers in these small template stacks for both inference and training. Figures of merit are
identical to level 1. In particular, the latency variation between level 1 with single fused layers and
level 2 with layer stacks will bring insight into data movement and buffering bottlenecks.

Level 3—Applications. Application coverage is essential to offer space for algorithmic inno-
vation, which can achieve superior system-level performance and can only be validated when
combined with application results. As such, achieved accuracy becomes the bar for normalizing
results and independent of the neural network. We include the initially planned datasets and mod-
els (Table 6), taken from existing benchmarks and complement these with models that have been
explored to work well with pruning and quantization optimizations. Furthermore, contributors
are welcome to provide different models for given machine-learning tasks. See the appendix for
complete list.

For inference, we include performance measurements for a single image. The error rate is the
reported test error over the whole test dataset. For training, we report throughput, training time
(latency), and power for a single image as well (including correctness tests). We also provide mea-
surements over longer training sequences with specific accuracy targets, for example, measure
complete training time 90% top5 error for ImageNet classification with a ResNet50. Finally, we of-
fer the option to optimize the training algorithm and network and record all possible data points in
a multi-dimensional graph; for those it is essential to include development time. Similar concepts

5Power measurements might not always be available and might require specialized test infrastructures and testbeds.
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are being applied in MLPerf and Request [15, 57]. There is no single criteria that decides whether
one solution is optimal, as for different use cases, different figures of merit apply. All combinations
yield different tradeoffs within the multidimensional design space. As such, we present all solu-
tions and measurements within multi-dimensional figures, whereby the pareto frontier represents
the best possible compromises (Figure 1).

Algorithmic Optimizations Including Quantization. This benchmarking proposal opens up
the opportunity for algorithmic innovations. We include in this pruning and topological changes,
while initially focusing on quantization and numerical representations. For this, we include, on
every level of the benchmark, several numerical representations, including FP32, FP16, INT8, BIN,
and TERN, and allow for arbitrary choices to be included, for example, Microsoft’s custom floating
point [40]. Training each neural network with different quantization approaches and different and
potentially esoteric numerical representations is highly time intensive. Therefore, careful logging
of trained quantized models is a high priority for level 3.

Frameworks and Datasets. Datasets are a key input to the benchmark and impact accuracy
results. We rely on open source datasets exclusively. Framework support is expected to be one
of the biggest challenges since each framework is directly connected with a neural network and
datasets within an application context and models are not necessarily portable. Therefore, we need
operational hardware backends for a diverse set of AI accelerators, which may or may not be avail-
able. Furthermore, quantization is not necessarily mainstream in frameworks. It is not yet clear
to what extent cross compilation tools such as TVM [83] can help, while exchange formats such
as ONNX [65] are still immature, lack adoption and very importantly full quantization support.
Training scripts exposing all hyperparameters, training initializations, and so on, must be fully
logged, as they can have significant impact on accuracy.

Power and Energy. To represent power and energy cost, we only report platform power mea-
sured at the socket. While this is not necessarily accurate, there are strong reasons behind this
choice. First, the measurement needs to be fair; therefore, we believe subsystems, including mem-
ory, specifically need to be taken into account. Second, more detailed current sampling on the
platforms may be available on some platforms, but each platform comes with different interfaces
and may or may not provide access to all power rails. While the accuracy of typical socket power
meters is around 10%, we found that these results remain representative of the systems. Further-
more, we average the results over 10 measurements.

Another consideration is whether to consider power or energy per frame. We settled on using
absolute power consumption since when multithreading or batching is applied, it is hard to derive
a representative number for energy and would differ depending on whether the end application is
latency or throughput driven. Finally, idle power with these platforms can represent a significant
percentage of the overall power budget and would therefore cloud the observation. In particular,
one FPGA platform is an evaluation board with many peripherals, which is reflected in high idle
power (19.9W) compared to the GPU (between 3.4 and 5.0W depending on operating mode), while
the additional dynamic power consumption is minimal and yields the FPGA overall as the more
efficient platforms despite the initial load.

Testbeds, Reproducibility, and Recorded Measurements. To provide useful scientific re-
sults, all experiments and measurements must be validated and reproducible. Specifically:

• All input data to the test suites must be openly accessible.
• Many platforms can be made available through virtualized compute environments, which

is adequate if the cost is not prohibitive. However, some platforms may not be avail-
able. Therefore, an open testbed may be advisable and considered as an extension to this
benchmark.
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Table 8. Level 0—Performance Predictions

Performance TX2 ZCU104

Predictions [TOPs] FP32-MaxN FP16-MaxN FP32-MaxQ FP16-MaxQ INT8-666MHz INT8-750MHz

ResNet50 = GoogleNetV1 0.667 1.333 0.437 0.874 4.604 5.357

• As the higher levels of benchmarks may require a long time to run and hardware may not
be available, we advocate recording of results, whereby each entry will be validated by a
third party such that results are guaranteed to be (a) reproducible and (b) correct.

Our colleagues in the Request Tournament effort [68] leverage ACM’s rigorous artifact evalua-
tion technology and the Collective Knowledge Workflow Framework [15] and do an outstanding
job addressing this. We aim to adopt the same principles.

Adaptability. Machine learning is currently a highly dynamic field, and specific algorithms
may become very quickly outdated and new models may emerge and take over rapidly. We plan
to adapt fast and add/retire models as machine-learning science matures.

8 EXPERIMENTAL RESULTS AND EVALUATION

We present measured results aimed at evaluating the defined benchmarking tests and figures of
merit to ensure that they accurately reflect a system’s capabilities. For test platforms, we used
the Nvidia TX2 GPU and the Xilinx ZCU104 FPGA. For both platforms, we carried out all levels
of tests on one specific machine-learning task, ImageNet classification, for two different neural
networks, GoogleNetV1 and ResNet50. We use FP32, FP16 (supported by GPU), and INT8 (sup-
ported by FPGA) as numerical representations, a form of algorithmic optimization. We run GPU
platforms with a spectrum of batch sizes and different operating modes (MaxN, MaxQ, MaxP),
which are optimized for different performance and power consumption targets.6 For FPGAs, there
are a spectrum of implementations available. We exercise the Deephi DPU overlay, which uses
threads instead of batch sizes to achieve high system utilization and therefore exercise a spectrum
of thread counts. For FPGAs we show the theoretical limits of the current implementation (which
is clocked at 666MHz), as well as the datasheet peak performance of 750MHz. For GPUs, we use
the theoretical peak as dictated by the clock frequencies defined by the operating mode. Full exper-
imental results are provided in the appendix. We currently have only exercised inference results
to validate the benchmark methodology. In the following, we evaluate each benchmarking level
individually and then provide a first critical review of these early results.

Level 0. Using values for hardware platforms and arithmetic intensity (AI) we created rooflines
for the target platforms and performance predictions for both networks.7 Figure 9 shows that both
NNs will be compute bound for INT8, FP16, and FP32. The arithmetic intensity should be higher
for larger batch sizes (batch size of 1 is shown), but the performance prediction for larger batch
sizes will be identical. The theoretical performance prediction can be derived from this and is
summarized in Table 8. These numbers are used to compute efficiency for levels 1, 2, and 3.

Level 1 and Level 2. We restrict the evaluation of level 1 and level 2 to ResNet50, as this is
sufficient to make the key observations. The ResNet50 topology is relatively regular in structure,
consisting of a top convolutional layer with pooling combination, 16 residual blocks, and a fully
connected layer. Each residual block is composed of thresholding layers, convolutions, and ele-
mentwise additions. As the convolutions account for the majority of the compute, we focus mainly

6We also tested MaxP, however, never achieved optimal values for any figure of merit.
7We assumed that all weights are kept off-chip and all intermediate results are on-chip. This assumption will be revised in

the future.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2019.



37:22 M. Blott et al.

Fig. 10. Performance comparison layer0, layer1, layer2, and layer3 for TX2 (MaxN, FP16 configuration).

on the convolutional layers of the network. Since the platform-specific frameworks perform layer
fusion as network optimization, level 1 represents the smallest possible fused layer structure.
Table 16 shows level 1 and level 2 latency results for one TX2 hardware configuration (MaxN,
FP16) with different batch sizes as well as level 1 results for ZCU104 with different thread numbers.
We restrict level 1 to convolutions of different sizes and select the residual layers res2a, res3a,
res4a, and res5a to get an overview over the whole network. Level 2 results are provided for all
residual layers of the network. Due to limited support by the hardware-specific framework, it is
not possible to benchmark level 2 on FPGA platforms. We observe a large discrepancy in execution
time for different residual stacks, even though the compute requirements within each is similar. It
is likely that data movement varies significantly depending on the incoming and outgoing tensor
dimensions. Therefore, it is important to include as many layer types inside level 1 and 2 testing.
We would expect this to be even more pronounced for other topologies, as they may be less bal-
anced than ResNet50. We also observe a large discrepancy between the performance of different
convolutional layers (Table 16, level 1). Unlike the residual blocks, this is anticipated, as they come
with very different compute requirements. Furthermore, the differences are more pronounced with
larger batch size. It is therefore our plan to include the full spectrum of convolutional layers within
level 1.

Multi-Tiered Concept. Figure 10 depicts the performance measurements of the various lev-
els. We restricted the visualized experiments to MaxN, FP16 configuration on TX2, and a subset
of microbenchmarks on level 1 and level 2 for a spectrum of batch sizes. Note that the theo-
retical peak performance is significantly higher than measured performance, only within reach
of individual layers that fit the hardware architecture well. The system (level 3) achieves from
41.1 to 60.7% efficiency, where larger batch sizes achieve higher performance. Level 2 results are
on average more negative than achieved performance (level 3) and a fairly good approximation
within 16% of the achievable level 3 system performance but far off level 3 compute performance.
Level 1 results have usually better performance than the level 2 results. This makes intuitively
sense, as a limited amount of bottlenecks are exposed during execution of the benchmark. In par-
ticular, lower weight storage is required, which is most likely contained on-chip, thereby alleviat-
ing any potential memory bottlenecks. Also it can be said that the averaged level 1 results provide
a good estimation of possible compute performance on level 3. As already mentioned, for level 1
and 2 results, we observe large variations in performance ranges for different dimensions of convo-
lutions. The insight is that to provide a good projection from level 1 or level 2 to level 3, we need
to provide full coverage of convolutional layers. Another challenge is that many backend tools
perform automated layer fusion such as merging batch normalization with convolutions, which
makes testing in isolation inaccurate.
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Fig. 11. Level 3: System performance evaluation.

Level 3—Full system-level performance evaluation. The aim of level 3 is to explore optimal
solutions within the design space regarding application performance independent of model topol-
ogy and algorithmic optimizations. We include results for both platforms (TX2, ZCU104), for INT8,
FP16, and FP32, across the spectrum of batch sizes and thread numbers for both GoogleNetV1 and
ResNet50. See plots of pareto points (Figure 11) and results in the appendix. We made the follow-
ing key observations: First, the ZCU104 FPGA provides the highest system-level (948GOPs) and
compute-level performance (1067GOPs) compared to the GPU platform (809GOPs and 1011GOPs,
respectively) for both GoogleNetV1 and ResNet5050 (Figure 11, top left). For GoogleNetV1, the
FPGA provides better performance and accuracy. For ResNet50, the FPGA provides better per-
formance but lower accuracy compared to the GPU platform. Further, GoogleNetV1 topology pro-
vides more than 2× the performance compared to ResNet50, due to the significantly lower compute
per frame required as part of the neural network topology, while ResNet50 provides best accuracy
across the platforms. The accuracy difference is 1.59% for the FPGA and 4.27% for the GPU (Fig-
ure 11, top left). Additionally, the ZCU104 outperforms the TX2 in regards to latency by orders
of magnitude and across topologies unless GPUs operate with small batch size, where the perfor-
mance efficiency drops. GPU latency varies from a minimum of 8ms to a maximum of 1838.5ms
for batch=128. FPGA latency varies from 9.65 to 65ms. Finally, the GPU platform is more power
efficient, which can be attributed to the GPU platform being more optimized, whereas the FPGA
platform is more general purpose. This is apparent when considering idle power (Section 7, 5W
for TX2 and 19.9 for ZCU104).

In this evaluation, we consider full system-level performance (Figure 11), including initial data
movement as well as compute-only performance. Depending on the end application, it may be im-
portant to factor out the initial data movement from the overall time, as the inference engine might
be included in a larger compute data path, where the inputs are streamed directly from on-chip re-
sources. However, when analyzing the experimental data points for both GPU and FPGA platforms,
it appears that the difference is very regular in nature, and it is not obvious that a distinction within
the benchmark is necessary (see the appendix) as long as it is clearly indicated what is measured.
The pareto curves are an effective means to compare different topologies and different platforms
leaving space for algorithmic optimizations. We plan to leverage three- or four-dimensional graphs
to additionally explore relationships between latency and system-level performance.
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9 CONCLUSION AND FUTURE WORK

Neural networks are fast gaining popularity across an increasing number of applications. However,
they are accompanied by challenging compute and memory requirements, as shown in Section 3,
which is seriously challenging the semiconductor industry, which is facing performance scalability
issues. This is of particular importance for embedded computing environments, where real estate,
power, and available compute and memory resources are at a premium. As such, the industry
is turning to both algorithmic innovation in form of new topologies, quantization, and pruning
strategies, as well as architectural innovation with more and more heterogeneous devices and the
emergence of specialized DPUs. To facilitate better insights into the increasingly complex space
of end solutions that involve hardware-software codesign and evaluate new concepts in computer
architecture, novel NN system benchmarks are needed.

QuTiBench is a proposed novel benchmarking methodology to help drive hardware innovation
and provide insights for system-level designers in understanding possible performance accuracy
tradeoffs for newly devised and fine-tuned algorithms combined with highly customized accelera-
tors. Key contributions are that we provide concepts that allow benchmarking of highly optimized
algorithms by tying hardware characteristics back to the end application, thereby providing the
needed algorithmic freedom. Another key differentiator in this benchmarking concept is the intro-
duction of the multi-tiered approach, including a theoretical level and consideration of a spectrum
of numerical representations at all levels. As such, the benchmark can provide insights at various
abstraction levels. This brings two key advantages: (a) It provides a spectrum of insights, and users
can choose from instant but perhaps crude results to elaborate results that require longer evalua-
tion, and (b) the multi-tiered approach provides insights into system bottlenecks. For example, are
the recurrent or the fully connected layers the challenge? Or is the bottleneck the data movement
in between? We present initial experimental results on two types of neural network topologies
aimed at image classification tasks and exercise them on two different types of hardware plat-
forms for all levels of the proposed benchmarks. We present some of the lessons learned while
exercising the benchmarks and challenges encountered and analyze the quality of the results in
regards to real system performance at the various levels.

This effort is just beginning. Future work will focus on refining details and running broader ex-
perimentation. We plan to expand on level 0 results first and build out test suites targeting FPGAs,
GPUs, CPUs, and DPUs within the embedded space. Many concepts regarding reproducibility need
to be refined, as well as automated software testing infrastructure as proposed by deep500.org. Also
collaboration with larger efforts such as MLPerf will be beneficial to gain traction. We invite the
research community to contribute to QuTiBench.
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A APPENDIX: TABLE OF RESULTS

In this section, we provide additional detailed data points: Table 9 provides an overview of planned
applications, datasets and models. Table 10 shows level 0 data for QuTiBench. Difference between
system-level and compute performance is visualized in Figure 12. Tables 11 and 12 summarize
level 1 performance measurements, and Tables 13, 14, and 15 show level 2 and 3 measurements re-
spectively. Finally, Table 16 lists latency discrepancy between different convolutional and residual
layers for level 1 and 2.

Table 9. Planned Applications, Datasets, and Models

Learning Technique Application QuTiBench

Dataset Model

Supervised Vision Image
Classification

ImageNet, MNIST ResNet50, MobileNet(V1),
GoogleNet, MLP

Vision Object Detection Pascal VOC SSD-ResNet34, YoloV2

Vision Semantic
Segmentation

Pascal VOC Mask R-CNN,
SSD-MobileNet

NLP Machine
Translation

WMT’14 English-to-
French&German

GNMT [90]

NLP Speech
Recognition

Librispeech DeepSpeech2

NLP Sentiment
Analysis

SST, IMDB, SemEval2018 Multiplicative LSTM

NLP Language
Modeling

babI Memory Network

Recommendation Movies Movielens 20M NCF

Unsupervised Vision Feature
Extraction

MNIST autoencoder

Vision Adversarial
Learning

ImangeNet WGAN

Deep Reinforcement
Learning

Game Go Go MiniGo

Atari ALE Atari ALE DeepQ

Table 10. Level 0—Hardware Platforms and Neural Network Model

Hardware Platform datatype Figures of Merit (theo.) Model Figures of Merit (theo.)

(TOPs) (GBps) (W) [$] (GOP) Size (ME) AI (OP:Byte)

Nvidia Jetson TX2 MaxN FP32 0.67 59.7 NA 469 ResNet50 (b=1, INT8) 7.72 25.50 303

Nvidia Jetson TX2 MaxP FP32 0.57 59.7 15.0 469 ResNet50 (b=8, INT8) 7.72 25.50 2422

Nvidia Jetson TX2 MaxQ FP32 0.44 59.7 7.5 469 ResNet50 (b=1, FP16) 7.72 25.50 151

Nvidia Jetson TX2 MaxN FP16 1.33 59.7 NA 469 ResNet50 (b=8, FP16) 7.72 25.50 1211

Nvidia Jetson TX2 MaxP FP16 1.15 59.7 15.0 469 GoogleNetV1 (b=1, INT8) 3.13 5.98 523

Nvidia Jetson TX2 MaxQ FP16 0.87 59.7 7.5 469 GoogleNetV1 (b=8, INT8) 3.13 5.98 4188

Xilinx ZCU104 DPU 666MHz INT8 4.60 19.2 NA 895 GoogleNetV1 (b=1, FP16) 3.13 5.98 262

Xilinx ZCU104 DPU 775MHz INT8 5.36 19.2 NA 895 GoogleNetV1 (b=8, FP16) 3.13 5.98 2094

Fig. 12. System versus compute performance.
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Table 11. Level 1—ZCU104 Inference Results ResNet50 Individual Convolutional Layers

ZCU104 Network Parameters Figures of Merit

thread=1 thread=8

Layer (MOP) in dim in ch filter stride out ch Latency Throughput (Eff) Latency Throughput (Eff)

(ms) (GOPs) (ms) (GOPs)

res2a_branch2a 25.7 56 64 1 1 64 0.060 428.05 (0.09) 0.082 630.21 (0.14)

res2a_branch2b 231.2 56 64 3 1 64 0.190 1216.84 (0.26) 0.190 2428.70 (0.53)

res2a_branch2c 102.8 56 64 1 1 256 0.220 467.23 (0.10) 0.258 798.45 (0.17)

res2a_branch1 102.8 56 64 1 1 256 0.430 239.08 (0.05) 0.464 443.34 (0.10)

res2b_branch2a 102.8 56 256 1 1 64 0.142 725.63 (0.16) 0.196 1049.57 (0.23)

res2b_branch2b 231.2 56 64 3 1 64 0.190 1216.84 (0.26) 0.190 2428.19 (0.53)

res2b_branch2c 102.8 56 64 1 1 256 0.429 239.64 (0.05) 0.463 443.98 (0.10)

res2c_branch2a 102.8 56 256 1 1 64 0.140 734.13 (0.16) 0.193 1063.14 (0.23)

res2c_branch2b 231.2 56 64 3 1 64 0.190 1216.84 (0.26) 0.190 2428.32 (0.53)

res2c_branch2c 102.8 56 64 1 1 256 0.435 236.20 (0.05) 0.462 444.69 (0.10)

res3a_branch2a 51.4 28 256 1 2 128 0.090 571.05 (0.12) 0.128 800.12 (0.17)

res3a_branch2b 231.2 28 128 3 1 128 0.210 1100.95 (0.24) 0.214 2159.44 (0.47)

res3a_branch2c 102.8 28 128 1 1 512 0.210 489.52 (0.11) 0.247 832.79 (0.18)

res3a_branch1 205.5 28 256 1 2 512 0.330 622.71 (0.14) 0.390 1052.87 (0.23)

res3b_branch2a 102.8 28 512 1 1 128 0.120 856.45 (0.19) 0.148 1391.07 (0.30)

res3b_branch2b 231.2 28 128 3 1 128 0.210 1100.95 (0.24) 0.214 2165.20 (0.47)

res3b_branch2c 102.8 28 128 1 1 512 0.320 321.24 (0.07) 0.353 582.88 (0.13)

res3c_branch2a 102.8 28 512 1 1 128 0.120 856.60 (0.19) 0.151 1361.41 (0.30)

res3c_branch2b 231.2 28 128 3 1 128 0.210 1100.95 (0.24) 0.215 2154.81 (0.47)

res3c_branch2c 102.8 28 128 1 1 512 0.303 339.02 (0.07) 0.354 580.14 (0.13)

res3d_branch2a 102.8 28 512 1 1 128 0.120 856.52 (0.19) 0.149 1383.86 (0.30)

res3d_branch2b 231.2 28 128 3 1 128 0.210 1100.95 (0.24) 0.214 2165.50 (0.47)

res3d_branch2c 102.8 28 128 1 1 512 0.301 341.20 (0.07) 0.353 582.72 (0.13)

res4a_branch2a 51.4 14 512 1 2 256 0.120 428.80 (0.09) 0.133 774.21 (0.17)

res4a_branch2b 231.2 14 256 3 1 256 0.210 1100.95 (0.24) 0.230 2011.48 (0.44)

res4a_branch2c 102.8 14 256 1 1 1024 0.290 354.46 (0.08) 0.379 541.92 (0.12)

res4a_branch1 205.5 14 512 1 2 1024 0.430 477.87 (0.10) 0.500 821.34 (0.18)

res4b_branch2a 102.8 14 1024 1 1 256 0.130 790.71 (0.17) 0.162 1271.41 (0.28)

res4b_branch2b 231.2 14 256 3 1 256 0.210 1100.95 (0.24) 0.229 2015.61 (0.44)

res4b_branch2c 102.8 14 256 1 1 1024 0.350 293.69 (0.06) 0.436 471.20 (0.10)

res4c_branch2a 102.8 14 1024 1 1 256 0.130 790.71 (0.17) 0.163 1263.60 (0.27)

res4c_branch2b 231.2 14 256 3 1 256 0.210 1100.95 (0.24) 0.231 2002.86 (0.44)

res4c_branch2c 102.8 14 256 1 1 1024 0.360 285.52 (0.06) 0.438 469.22 (0.10)

res4d_branch2a 102.8 14 1024 1 1 256 0.130 790.65 (0.17) 0.164 1251.14 (0.27)

res4d_branch2b 231.2 14 256 3 1 256 0.210 1100.95 (0.24) 0.229 2019.57 (0.44)

res4d_branch2c 102.8 14 256 1 1 1024 0.350 293.76 (0.06) 0.425 484.02 (0.11)

res4e_branch2a 102.8 14 1024 1 1 256 0.130 790.71 (0.17) 0.162 1267.18 (0.28)

res4e_branch2b 231.2 14 256 3 1 256 0.210 1100.90 (0.24) 0.230 2014.73 (0.44)

res4e_branch2c 102.8 14 256 1 1 1024 0.350 293.68 (0.06) 0.438 469.19 (0.10)

res4f_branch2a 102.8 14 1024 1 1 256 0.130 790.53 (0.17) 0.162 1265.78 (0.27)

res4f_branch2b 231.2 14 256 3 1 256 0.210 1100.95 (0.24) 0.230 2007.12 (0.44)

res4f_branch2c 102.8 14 256 1 1 1024 0.360 285.49 (0.06) 0.421 488.23 (0.11)

res5a_branch2a 51.4 7 1024 1 2 512 0.120 427.94 (0.09) 0.188 546.52 (0.12)

res5a_branch2b 231.2 7 512 3 1 512 0.330 699.93 (0.15) 0.493 937.72 (0.20)

res5a_branch2c 102.8 7 512 1 1 2048 0.470 218.66 (0.05) 0.600 342.79 (0.07)

(Continued)
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Table 11. Continued

ZCU104 Network Parameters Figures of Merit

thread=1 thread=8

Layer (MOP) in dim in ch filter stride out ch Latency Throughput (Eff) Latency Throughput (Eff)

(ms) (GOPs) (ms) (GOPs)

res5a_branch1 205.5 7 1024 1 2 2048 0.517 397.60 (0.09) 0.691 594.55 (0.13)

res5b_branch2a 102.8 7 2048 1 1 512 0.170 604.28 (0.13) 0.272 755.16 (0.16)

res5b_branch2b 231.2 7 512 3 1 512 0.331 698.07 (0.15) 0.499 926.34 (0.20)

res5b_branch2c 102.8 7 512 1 1 2048 0.500 205.56 (0.04) 0.628 327.34 (0.07)

res5c_branch2a 102.8 7 2048 1 1 512 0.170 604.49 (0.13) 0.265 775.00 (0.17)

res5c_branch2b 231.2 7 512 3 1 512 0.340 679.68 (0.15) 0.503 918.94 (0.20)

res5c_branch2c 102.8 7 512 1 1 2048 0.500 205.55 (0.04) 0.632 325.22 (0.07)

Table 12. Level 1—TX2 (MaxN, FP16) Inference Results ResNet50 Individual Convolutional Layers

TX2 Network Parameters Figures of Merit

MaxN, FP16, batch=1 MaxN, FP16, batch=128

Layer (MOP) in dim in ch filter stride out ch Latency Throughput (Eff) Latency Throughput (Eff)

(ms) (GOPs) (ms) (GOPs)

res2a_branch2a 25.7 56 64 1 1 64 0.06 414.52 (0.31) 5.05 651.15 (0.49)

res2a_branch2b 231.2 56 64 3 1 64 0.19 1197.93 (0.90) 22.78 1299.39 (0.97)

res2a_branch2c 102.8 56 64 1 1 256 0.18 577.53 (0.43) 20.15 653.15 (0.49)

res2a_branch1 102.8 56 64 1 1 256 0.21 487.20 (0.37) 23.66 556.19 (0.42)

res2b_branch2a 102.8 56 256 1 1 64 0.13 778.79 (0.58) 13.74 957.60 (0.72)

res2b_branch2b 231.2 56 64 3 1 64 0.19 1210.47 (0.91) 22.87 1293.82 (0.97)

res2b_branch2c 102.8 56 64 1 1 256 0.21 489.52 (0.37) 23.68 555.77 (0.42)

res2c_branch2a 102.8 56 256 1 1 64 0.13 784.73 (0.59) 13.74 957.88 (0.72)

res2c_branch2b 231.2 56 64 3 1 64 0.19 1210.47 (0.91) 22.85 1295.01 (0.97)

res2c_branch2c 102.8 56 64 1 1 256 0.21 489.52 (0.37) 23.67 555.82 (0.42)

res3a_branch2a 51.4 28 256 1 2 128 0.09 584.09 (0.44) 7.19 915.30 (0.69)

res3a_branch2b 231.2 28 128 3 1 128 0.21 1095.73 (0.82) 24.63 1201.33 (0.90)

res3a_branch2c 102.8 28 128 1 1 512 0.15 694.59 (0.52) 15.18 866.82 (0.65)

res3a_branch1 205.5 28 256 1 2 512 0.29 718.53 (0.54) 30.35 866.60 (0.65)

res3b_branch2a 102.8 28 512 1 1 128 0.13 767.16 (0.58) 12.07 1090.45 (0.82)

res3b_branch2b 231.2 28 128 3 1 128 0.21 1106.22 (0.83) 24.66 1199.92 (0.90)

res3b_branch2c 102.8 28 128 1 1 512 0.16 634.57 (0.48) 16.68 788.87 (0.59)

res3c_branch2a 102.8 28 512 1 1 128 0.13 767.16 (0.58) 12.10 1087.11 (0.82)

res3c_branch2b 231.2 28 128 3 1 128 0.21 1100.95 (0.83) 24.47 1209.19 (0.91)

res3c_branch2c 102.8 28 128 1 1 512 0.16 634.57 (0.48) 16.71 787.65 (0.59)

res3d_branch2a 102.8 28 512 1 1 128 0.13 767.16 (0.58) 12.12 1085.95 (0.81)

res3d_branch2b 231.2 28 128 3 1 128 0.21 1106.22 (0.83) 24.69 1198.56 (0.90)

res3d_branch2c 102.8 28 128 1 1 512 0.16 630.67 (0.47) 16.67 789.35 (0.59)

res4a_branch2a 51.4 14 512 1 2 256 0.08 642.50 (0.48) 7.10 926.26 (0.69)

res4a_branch2b 231.2 14 256 3 1 256 0.20 1185.64 (0.89) 23.12 1279.89 (0.96)

res4a_branch2c 102.8 14 256 1 1 1024 0.15 708.97 (0.53) 13.01 1011.64 (0.76)

res4a_branch1 205.5 14 512 1 2 1024 0.28 728.72 (0.55) 29.23 899.87 (0.68)

res4b_branch2a 102.8 14 1024 1 1 256 0.13 784.73 (0.59) 11.55 1139.45 (0.85)

res4b_branch2b 231.2 14 256 3 1 256 0.20 1179.59 (0.88) 22.33 1325.28 (0.99)

(Continued)
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Table 12. Continued

TX2 Network Parameters Figures of Merit

MaxN, FP16, batch=1 MaxN, FP16, batch=128

Layer (MOP) in dim in ch filter stride out ch Latency Throughput (Eff) Latency Throughput (Eff)

(ms) (GOPs) (ms) (GOPs)

res4b_branch2c 102.8 14 256 1 1 1024 0.15 680.79 (0.51) 13.75 957.18 (0.72)

res4c_branch2a 102.8 14 1024 1 1 256 0.13 778.79 (0.58) 11.62 1132.10 (0.85)

res4c_branch2b 231.2 14 256 3 1 256 0.20 1173.60 (0.88) 22.99 1287.35 (0.97)

res4c_branch2c 102.8 14 256 1 1 1024 0.15 680.79 (0.51) 13.76 956.14 (0.72)

res4d_branch2a 102.8 14 1024 1 1 256 0.13 778.79 (0.58) 11.57 1137.09 (0.85)

res4d_branch2b 231.2 14 256 3 1 256 0.20 1185.64 (0.89) 22.92 1291.17 (0.97)

res4d_branch2c 102.8 14 256 1 1 1024 0.15 680.79 (0.51) 13.76 956.00 (0.72)

res4e_branch2a 102.8 14 1024 1 1 256 0.13 778.79 (0.58) 11.59 1135.32 (0.85)

res4e_branch2b 231.2 14 256 3 1 256 0.20 1185.64 (0.89) 22.85 1295.41 (0.97)

res4e_branch2c 102.8 14 256 1 1 1024 0.15 680.79 (0.51) 13.78 954.89 (0.72)

res4f_branch2a 102.8 14 1024 1 1 256 0.13 784.73 (0.59) 11.65 1129.96 (0.85)

res4f_branch2b 231.2 14 256 3 1 256 0.20 1179.59 (0.88) 22.40 1321.26 (0.99)

res4f_branch2c 102.8 14 256 1 1 1024 0.15 680.79 (0.51) 13.78 955.17 (0.72)

res5a_branch2a 51.4 7 1024 1 2 512 0.14 372.46 (0.28) 7.61 864.77 (0.65)

res5a_branch2b 231.2 7 512 3 1 512 0.31 748.22 (0.56) 24.90 1188.59 (0.89)

res5a_branch2c 102.8 7 512 1 1 2048 0.27 386.47 (0.29) 12.53 1049.90 (0.79)

res5a_branch1 205.5 7 1024 1 2 2048 0.51 406.93 (0.31) 30.92 850.85 (0.64)

res5b_branch2a 102.8 7 2048 1 1 512 0.22 475.93 (0.36) 11.35 1159.74 (0.87)

res5b_branch2b 231.2 7 512 3 1 512 0.30 763.04 (0.57) 24.91 1188.26 (0.89)

res5b_branch2c 102.8 7 512 1 1 2048 0.27 382.16 (0.29) 13.21 995.87 (0.75)

res5c_branch2a 102.8 7 2048 1 1 512 0.22 473.73 (0.36) 11.39 1155.36 (0.87)

res5c_branch2b 231.2 7 512 3 1 512 0.31 753.09 (0.56) 24.91 1187.88 (0.89)

res5c_branch2c 102.8 7 512 1 1 2048 0.28 371.12 (0.28) 13.09 1005.53 (0.75)

Table 13. Level 2—Inference Results ResNet50 Residual Layers

MaxN MaxQ MaxP

HW Layer Parameters Lat Throughput (Eff) Lat Throughput (Eff) Lat Throughput (Eff)

(ms) (GOPs) (%) (ms) (GOPs) (%) (ms) (GOPs) (%)

TX2 res2a FP16, b=1 1.37 431.27 (0.32) 1.90 292.13 (0.25) 1.58 371.40 (0.42)

TX2 res2a FP16, b=2 2.17 464.25 (0.35) 3.08 314.23 (0.27) 2.50 401.64 (0.46)

TX2 res2a FP16, b=4 3.97 481.73 (0.36) 5.83 325.90 (0.28) 4.61 418.69 (0.48)

TX2 res2a FP16, b=8 7.69 491.73 (0.37) 11.30 330.22 (0.29) 8.91 426.23 (0.49)

TX2 res2a FP16, b=16 15.11 495.85 (0.37) 22.39 333.24 (0.29) 17.48 428.54 (0.49)

TX2 res2a FP16, b=32 30.39 436.04 (0.33) 44.20 333.95 (0.29) 34.49 430.49 (0.49)

TX2 res2a FP16, b=64 60.41 492.24 (0.37) 88.98 334.18 (0.29) 68.93 430.10 (0.49)

TX2 res2a FP16, b=128 119.12 495.33 (0.37) 177.37 333.95 (0.29) 137.24 430.10 (0.49)

TX2 res2b FP16, b=1 1.12 443.23 (0.33) 1.57 303.00 (0.26) 1.32 382.90 (0.44)

TX2 res2b FP16, b=2 1.95 481.92 (0.36) 2.77 333.25 (0.29) 2.29 416.41 (0.48)

TX2 res2b FP16, b=4 3.63 502.50 (0.38) 5.24 343.22 (0.30) 4.19 437.17 (0.50)

TX2 res2b FP16, b=8 6.95 509.95 (0.38) 10.06 352.14 (0.31) 7.99 445.00 (0.51)

TX2 res2b FP16, b=16 13.62 515.82 (0.39) 19.90 354.66 (0.31) 15.86 448.12 (0.51)

TX2 res2b FP16, b=32 27.19 518.82 (0.39) 39.57 356.64 (0.31) 31.05 451.28 (0.52)

TX2 res2b FP16, b=64 54.32 515.82 (0.39) 78.80 356.35 (0.31) 62.09 452.20 (0.52)

TX2 res2b FP16, b=128 108.24 517.02 (0.39) 158.53 355.50 (0.31) 124.29 450.38 (0.52)
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Table 13. Continued

MaxN MaxQ MaxP

HW Layer Parameters Lat Throughput (Eff) Lat Throughput (Eff) Lat Throughput (Eff)

(ms) (GOPs) (%) (ms) (GOPs) (%) (ms) (GOPs) (%)

TX2 res2c FP16, b=1 1.12 446.33 (0.33) 1.59 301.77 (0.26) 1.32 380.94 (0.44)

TX2 res2c FP16, b=2 1.96 483.48 (0.36) 2.75 333.75 (0.29) 2.27 419.53 (0.48)

TX2 res2c FP16, b=4 3.60 504.19 (0.38) 5.16 346.15 (0.30) 4.17 438.88 (0.50)

TX2 res2c FP16, b=8 6.89 512.87 (0.38) 10.12 347.49 (0.30) 8.04 446.33 (0.51)

TX2 res2c FP16, b=16 13.59 516.42 (0.39) 19.86 355.50 (0.31) 15.70 451.28 (0.52)

TX2 res2c FP16, b=32 27.01 518.22 (0.39) 39.22 356.92 (0.31) 31.14 451.74 (0.52)

TX2 res2c FP16, b=64 54.36 515.82 (0.39) 78.66 356.64 (0.31) 62.06 448.57 (0.51)

TX2 res2c FP16, b=128 108.07 516.42 (0.39) 158.11 355.22 (0.31) 123.99 449.92 (0.51)

TX2 res3a FP16, b=1 1.39 475.68 (0.36) 1.96 323.22 (0.28) 1.66 406.90 (0.47)

TX2 res3a FP16, b=2 2.38 523.41 (0.39) 3.45 356.13 (0.31) 2.81 449.19 (0.51)

TX2 res3a FP16, b=4 4.39 555.61 (0.42) 6.43 374.19 (0.33) 5.18 476.43 (0.55)

TX2 res3a FP16, b=8 8.46 563.90 (0.42) 12.39 385.63 (0.34) 9.80 490.72 (0.56)

TX2 res3a FP16, b=16 16.53 575.15 (0.43) 24.45 390.61 (0.34) 19.22 495.95 (0.57)

TX2 res3a FP16, b=32 32.86 576.80 (0.43) 48.62 391.37 (0.34) 38.07 498.40 (0.57)

TX2 res3a FP16, b=64 65.46 577.35 (0.43) 96.24 393.92 (0.34) 75.66 500.05 (0.57)

TX2 res3a FP16, b=128 133.09 568.13 (0.43) 194.49 389.61 (0.34) 151.72 496.77 (0.57)

TX2 res3b FP16, b=1 1.03 511.11 (0.38) 1.41 347.49 (0.30) 1.21 438.45 (0.50)

TX2 res3b FP16, b=2 1.69 562.54 (0.42) 2.40 385.54 (0.34) 1.96 488.23 (0.56)

TX2 res3b FP16, b=4 3.05 597.89 (0.45) 4.43 407.31 (0.35) 3.58 517.02 (0.59)

TX2 res3b FP16, b=8 5.80 616.86 (0.46) 8.45 420.72 (0.37) 6.75 533.04 (0.61)

TX2 res3b FP16, b=16 11.26 629.89 (0.47) 16.50 426.74 (0.37) 12.95 544.73 (0.62)

TX2 res3b FP16, b=32 22.24 630.78 (0.47) 33.51 428.78 (0.37) 25.61 547.40 (0.63)

TX2 res3b FP16, b=64 44.38 628.12 (0.47) 65.79 434.20 (0.38) 51.07 546.72 (0.63)

TX2 res3b FP16, b=128 87.72 636.16 (0.48) 129.87 434.62 (0.38) 101.77 548.74 (0.63)

TX2 res3c FP16, b=1 1.05 506.48 (0.38) 1.42 343.22 (0.30) 1.22 436.74 (0.50)

TX2 res3c FP16, b=2 1.70 561.84 (0.42) 2.43 380.61 (0.33) 1.96 486.64 (0.56)

TX2 res3c FP16, b=4 3.06 598.69 (0.45) 4.46 406.57 (0.35) 3.56 515.82 (0.59)

TX2 res3c FP16, b=8 5.81 613.47 (0.46) 8.47 419.93 (0.37) 6.70 536.24 (0.61)

TX2 res3c FP16, b=16 11.19 630.78 (0.47) 16.40 428.78 (0.37) 12.97 541.43 (0.62)

TX2 res3c FP16, b=32 22.05 632.56 (0.47) 32.55 430.43 (0.37) 25.68 546.72 (0.63)

TX2 res3c FP16, b=64 43.94 637.07 (0.48) 64.34 434.20 (0.38) 50.46 552.13 (0.63)

TX2 res3c FP16, b=128 87.87 636.16 (0.48) 129.02 431.68 (0.38) 101.34 550.09 (0.63)

TX2 res3d FP16, b=1 1.04 504.19 (0.38) 1.40 347.76 (0.30) 1.22 438.45 (0.50)

TX2 res3d FP16, b=2 1.70 561.13 (0.42) 2.40 385.20 (0.34) 1.95 488.77 (0.56)

TX2 res3d FP16, b=4 3.08 592.35 (0.44) 4.43 408.05 (0.36) 3.55 515.23 (0.59)

TX2 res3d FP16, b=8 5.84 613.47 (0.46) 8.41 423.10 (0.37) 6.71 536.88 (0.61)

TX2 res3d FP16, b=16 11.25 624.61 (0.47) 16.48 427.15 (0.37) 12.93 546.72 (0.63)

TX2 res3d FP16, b=32 22.04 631.67 (0.47) 32.74 430.85 (0.37) 25.51 551.45 (0.63)

TX2 res3d FP16, b=64 44.27 633.46 (0.48) 64.21 435.89 (0.38) 50.51 553.49 (0.63)

TX2 res3d FP16, b=128 88.66 630.78 (0.47) 129.91 431.27 (0.38) 101.91 549.41 (0.63)

TX2 res4a FP16, b=1 1.20 575.15 (0.43) 1.66 386.37 (0.34) 1.39 496.77 (0.57)

TX2 res4a FP16, b=2 2.09 604.46 (0.45) 3.01 411.33 (0.36) 2.41 524.32 (0.60)

TX2 res4a FP16, b=4 3.74 654.12 (0.49) 5.46 446.87 (0.39) 4.34 569.20 (0.65)

TX2 res4a FP16, b=8 7.00 688.35 (0.52) 10.16 472.33 (0.41) 8.03 600.26 (0.69)

TX2 res4a FP16, b=16 13.40 706.02 (0.53) 19.71 480.59 (0.42) 15.37 621.85 (0.71)

TX2 res4a FP16, b=32 26.40 713.52 (0.54) 38.60 493.12 (0.43) 30.30 627.01 (0.72)

TX2 res4a FP16, b=64 52.32 722.89 (0.54) 76.46 494.33 (0.43) 60.23 628.96 (0.72)

TX2 res4a FP16, b=128 104.66 723.76 (0.54) 152.47 496.77 (0.43) 119.12 633.57 (0.72)
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Table 13. Continued

MaxN MaxQ MaxP

HW Layer Parameters Lat Throughput (Eff) Lat Throughput (Eff) Lat Throughput (Eff)

(ms) (GOPs) (%) (ms) (GOPs) (%) (ms) (GOPs) (%)

TX2 res4b FP16, b=1 1.03 599.49 (0.45) 1.40 407.31 (0.35) 1.16 514.64 (0.59)

TX2 res4b FP16, b=2 1.53 644.41 (0.48) 2.11 437.60 (0.38) 1.74 562.54 (0.64)

TX2 res4b FP16, b=4 2.60 706.51 (0.53) 3.81 474.76 (0.41) 3.03 610.96 (0.70)

TX2 res4b FP16, b=8 4.87 740.43 (0.56) 7.16 497.46 (0.43) 5.58 648.15 (0.74)

TX2 res4b FP16, b=16 9.33 763.18 (0.57) 13.65 520.03 (0.45) 10.82 660.60 (0.76)

TX2 res4b FP16, b=32 18.13 769.75 (0.58) 26.64 526.15 (0.46) 20.84 674.54 (0.77)

TX2 res4b FP16, b=64 36.31 776.43 (0.58) 52.95 530.51 (0.46) 41.50 675.56 (0.77)

TX2 res4b FP16, b=128 71.33 780.49 (0.59) 105.55 529.88 (0.46) 82.15 680.70 (0.78)

TX2 res4c FP16, b=1 1.03 598.69 (0.45) 1.40 408.42 (0.36) 1.16 511.11 (0.58)

TX2 res4c FP16, b=2 1.52 647.21 (0.49) 2.12 437.60 (0.38) 1.74 557.63 (0.64)

TX2 res4c FP16, b=4 2.63 695.53 (0.52) 3.79 474.76 (0.41) 3.06 602.72 (0.69)

TX2 res4c FP16, b=8 5.17 697.69 (0.52) 7.11 499.69 (0.43) 5.61 644.41 (0.74)

TX2 res4c FP16, b=16 9.29 764.48 (0.57) 13.64 518.82 (0.45) 10.74 660.60 (0.76)

TX2 res4c FP16, b=32 18.15 773.74 (0.58) 26.63 528.63 (0.46) 21.05 666.50 (0.76)

TX2 res4c FP16, b=64 35.81 780.49 (0.59) 52.86 530.51 (0.46) 41.59 674.54 (0.77)

TX2 res4c FP16, b=128 72.52 773.74 (0.58) 105.65 527.39 (0.46) 82.21 680.70 (0.78)

TX2 res4d FP16, b=1 1.02 599.49 (0.45) 1.40 408.05 (0.36) 1.16 514.64 (0.59)

TX2 res4d FP16, b=2 1.52 650.98 (0.49) 2.12 438.02 (0.38) 1.74 558.33 (0.64)

TX2 res4d FP16, b=4 2.62 703.18 (0.53) 3.82 474.26 (0.41) 3.02 613.47 (0.70)

TX2 res4d FP16, b=8 4.84 745.37 (0.56) 7.13 503.06 (0.44) 5.60 644.41 (0.74)

TX2 res4d FP16, b=16 9.29 763.18 (0.57) 13.58 521.24 (0.45) 10.72 661.57 (0.76)

TX2 res4d FP16, b=32 18.32 769.75 (0.58) 26.49 529.88 (0.46) 20.92 673.53 (0.77)

TX2 res4d FP16, b=64 36.17 775.08 (0.58) 53.11 528.63 (0.46) 41.41 678.64 (0.78)

TX2 res4d FP16, b=128 72.01 779.13 (0.58) 105.92 526.15 (0.46) 82.10 679.67 (0.78)

TX2 res4e FP16, b=1 1.02 601.10 (0.45) 1.40 407.31 (0.35) 1.16 514.64 (0.59)

TX2 res4e FP16, b=2 1.53 649.09 (0.49) 2.12 437.17 (0.38) 1.75 560.43 (0.64)

TX2 res4e FP16, b=4 2.64 696.61 (0.52) 3.81 474.26 (0.41) 3.03 610.13 (0.70)

TX2 res4e FP16, b=8 4.85 740.43 (0.56) 7.19 500.81 (0.44) 5.63 644.41 (0.74)

TX2 res4e FP16, b=16 9.33 758.00 (0.57) 13.67 518.22 (0.45) 10.68 663.53 (0.76)

TX2 res4e FP16, b=32 18.10 771.07 (0.58) 26.59 526.15 (0.46) 20.95 671.51 (0.77)

TX2 res4e FP16, b=64 35.83 780.49 (0.59) 52.81 531.14 (0.46) 41.24 676.58 (0.77)

TX2 res4e FP16, b=128 72.39 775.08 (0.58) 105.40 529.25 (0.46) 82.50 679.67 (0.78)

TX2 res4f FP16, b=1 1.02 599.49 (0.45) 1.39 408.42 (0.36) 1.17 514.05 (0.59)

TX2 res4f FP16, b=2 1.51 650.03 (0.49) 2.12 437.17 (0.38) 1.75 559.03 (0.64)

TX2 res4f FP16, b=4 2.64 699.88 (0.53) 3.80 474.76 (0.41) 3.02 610.96 (0.70)

TX2 res4f FP16, b=8 4.83 741.66 (0.56) 7.10 500.81 (0.44) 5.60 642.56 (0.74)

TX2 res4f FP16, b=16 9.27 763.18 (0.57) 13.57 521.85 (0.45) 10.76 664.52 (0.76)

TX2 res4f FP16, b=32 18.24 767.10 (0.58) 26.66 525.52 (0.46) 21.02 669.49 (0.77)

TX2 res4f FP16, b=64 36.10 771.07 (0.58) 52.77 532.41 (0.46) 41.20 675.56 (0.77)

TX2 res4f FP16, b=128 71.76 776.43 (0.58) 105.63 533.68 (0.46) 82.10 677.61 (0.78)

TX2 res5a FP16, b=1 1.73 413.29 (0.31) 2.43 281.55 (0.25) 1.98 357.60 (0.41)

TX2 res5a FP16, b=2 2.05 634.24 (0.48) 2.88 430.04 (0.37) 2.34 552.57 (0.63)

TX2 res5a FP16, b=4 3.68 664.17 (0.50) 5.44 447.20 (0.39) 4.29 576.80 (0.66)

TX2 res5a FP16, b=8 7.30 659.82 (0.49) 10.75 445.88 (0.39) 8.45 572.43 (0.65)

TX2 res5a FP16, b=16 13.52 707.67 (0.53) 19.64 484.05 (0.42) 15.51 615.53 (0.70)

TX2 res5a FP16, b=32 25.37 746.07 (0.56) 36.80 514.95 (0.45) 29.04 656.96 (0.75)

TX2 res5a FP16, b=64 48.45 778.71 (0.58) 71.37 532.16 (0.46) 56.06 675.29 (0.77)

TX2 res5a FP16, b=128 95.61 791.96 (0.59) 140.12 540.72 (0.47) 110.13 686.01 (0.78)
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Table 13. Continued

MaxN MaxQ MaxP

HW Layer Parameters Lat Throughput (Eff) Lat Throughput (Eff) Lat Throughput (Eff)

(ms) (GOPs) (%) (ms) (GOPs) (%) (ms) (GOPs) (%)

TX2 res5b FP16, b=1 1.24 456.82 (0.34) 1.71 307.16 (0.27) 1.41 391.96 (0.45)

TX2 res5b FP16, b=2 1.60 666.50 (0.50) 2.29 447.22 (0.39) 1.84 572.63 (0.66)

TX2 res5b FP16, b=4 2.66 704.29 (0.53) 3.85 472.75 (0.41) 3.12 607.64 (0.70)

TX2 res5b FP16, b=8 4.98 723.66 (0.54) 7.40 481.40 (0.42) 5.79 626.36 (0.72)

TX2 res5b FP16, b=16 8.79 810.18 (0.61) 13.01 540.78 (0.47) 10.17 704.29 (0.81)

TX2 res5b FP16, b=32 16.33 861.70 (0.65) 24.27 577.06 (0.50) 18.76 752.90 (0.86)

TX2 res5b FP16, b=64 31.47 892.66 (0.67) 47.00 596.29 (0.52) 36.27 775.08 (0.89)

TX2 res5b FP16, b=128 61.55 907.14 (0.68) 92.43 606.82 (0.53) 71.35 787.36 (0.90)

TX2 res5c FP16, b=1 1.23 460.58 (0.35) 1.71 312.74 (0.27) 1.38 398.95 (0.46)

TX2 res5c FP16, b=2 1.59 665.51 (0.50) 2.28 448.57 (0.39) 1.84 571.89 (0.65)

TX2 res5c FP16, b=4 2.66 705.40 (0.53) 3.85 469.77 (0.41) 3.10 610.13 (0.70)

TX2 res5c FP16, b=8 4.99 720.16 (0.54) 7.48 480.37 (0.42) 5.80 626.36 (0.72)

TX2 res5c FP16, b=16 8.79 811.66 (0.61) 13.08 540.78 (0.47) 10.11 703.18 (0.80)

TX2 res5c FP16, b=32 16.42 863.36 (0.65) 24.29 576.32 (0.50) 18.80 746.62 (0.85)

TX2 res5c FP16, b=64 31.34 892.66 (0.67) 47.02 596.29 (0.52) 36.12 777.78 (0.89)

TX2 res5c FP16, b=128 61.58 907.14 (0.68) 92.32 603.54 (0.53) 71.16 787.36 (0.90)

Table 14. Level 3—Inference Results ResNet50

ResNet50 Top-5 (Top-1) Acc Latency (ms) Throughput (GOPs) (Efficiency (%)) Power (W)

Platform Parameters (%) system compute system compute

ZCU104 INT8, t=1 90.85 (72.53) 17.96 14.96 324.91 (0.08) 516.07 (0.13) 21.41

ZCU104 INT8, t=2 90.85 (72.53) 19.69 16.63 786.49 (0.19) 931.12 (0.23) 25.78

ZCU104 INT8, t=3 90.85 (72.53) 25.37 22.46 906.78 (0.22) 1029.32 (0.25) 26.39

ZCU104 INT8, t=4 90.85 (72.53) 33.46 30.48 918.25 (0.23) 1017.81 (0.25) 26.53

ZCU104 INT8, t=5 90.85 (72.53) 40.28 37.26 943.85 (0.23) 1067.31 (0.26) 26.82

ZCU104 INT8, t=6 90.85 (72.53) 47.95 45.27 946.97 (0.23) 1056.38 (0.26) 26.83

ZCU104 INT8, t=7 90.85 (72.53) 56.74 53.61 943.37 (0.23) 1047.84 (0.26) 26.86

ZCU104 INT8, t=8 90.85 (72.53) 64.88 62.30 948.05 (0.23) 1044.11 (0.26) 26.89

TX2, MaxN FP16, b=1 92.12 (75.11) 13.99 10.68 547.84 (0.41) 725.23 (0.54) 12.57

TX2, MaxN FP16, b=2 92.12 (75.11) 23.65 18.25 651.39 (0.49) 855.59 (0.64) 13.57

TX2, MaxN FP16, b=4 92.12 (75.11) 43.79 34.23 703.76 (0.53) 911.67 (0.68) 13.76

TX2, MaxN FP16, b=8 92.12 (75.11) 84.79 65.86 728.19 (0.55) 937.28 (0.70) 13.92

TX2, MaxN FP16, b=16 92.12 (75.11) 162.58 126.23 759.76 (0.57) 976.60 (0.73) 13.69

TX2, MaxN FP16, b=32 92.12 (75.11) 317.87 247.34 779.00 (0.58) 999.84 (0.75) 13.70

TX2, MaxN FP16, b=64 92.12 (75.11) 620.08 490.37 799.24 (0.60) 1006.85 (0.76) 13.76

TX2, MaxN FP16, b=128 92.12 (75.11) 1211.85 975.98 809.47 (0.61) 1011.95 (0.76) 13.82

TX2, MaxN FP32, b=1 92.11 (75.15) 22.32 18.97 344.88 (0.26) 407.51 (0.31) 14.58

TX2, MaxN FP32, b=2 92.11 (75.15) 38.46 32.96 401.14 (0.30) 470.87 (0.35) 15.02

TX2, MaxN FP32, b=4 92.11 (75.15) 72.96 62.96 423.04 (0.32) 491.63 (0.37) 15.05

TX2, MaxN FP32, b=8 92.11 (75.15) 141.13 122.18 437.53 (0.33) 506.07 (0.38) 15.19

TX2, MaxN FP32, b=16 92.11 (75.15) 272.41 235.85 453.44 (0.34) 523.42 (0.39) 15.34

TX2, MaxN FP32, b=32 92.11 (75.15) 531.12 460.67 465.45 (0.35) 536.20 (0.40) 15.39
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Table 14. Continued

ResNet50 Top-5 (Top-1) Acc Latency (ms) Throughput (GOPs) (Efficiency (%)) Power (W)

Platform Parameters (%) system compute system compute

TX2, MaxN FP32, b=64 92.11 (75.15) 1042.67 913.42 473.23 (0.36) 539.88 (0.41) 15.51

TX2, MaxN FP32, b=128 92.11 (75.15) 2115.54 1810.90 462.78 (0.35) 544.51 (0.41) 15.21

TX2, MaxQ FP16, b=1 92.12 (75.11) 20.46 15.86 376.05 (0.28) 496.32 (0.37) 6.83

TX2, MaxQ FP16, b=2 92.12 (75.11) 34.65 26.69 444.47 (0.33) 582.64 (0.44) 6.94

TX2, MaxQ FP16, b=4 92.12 (75.11) 64.53 50.01 477.72 (0.36) 618.73 (0.46) 7.00

TX2, MaxQ FP16, b=8 92.12 (75.11) 124.75 96.69 494.70 (0.37) 638.71 (0.48) 7.06

TX2, MaxQ FP16, b=16 92.12 (75.11) 239.00 185.17 516.18 (0.39) 666.23 (0.50) 7.13

TX2, MaxQ FP16, b=32 92.12 (75.11) 466.49 362.02 529.31 (0.40) 682.18 (0.51) 7.12

TX2, MaxQ FP16, b=64 92.12 (75.11) 924.53 717.12 534.18 (0.40) 687.93 (0.52) 7.13

TX2, MaxQ FP16, b=128 92.12 (75.11) 1838.48 1429.00 536.31 (0.40) 691.03 (0.52) 7.15

TX2, MaxQ FP32, b=1 92.11 (75.15) 32.66 27.94 235.37 (0.18) 279.20 (0.21) 7.60

TX2, MaxQ FP32, b=2 92.11 (75.15) 56.36 48.32 273.37 (0.21) 320.87 (0.24) 7.79

TX2, MaxQ FP32, b=4 92.11 (75.15) 106.84 92.09 288.78 (0.22) 335.67 (0.25) 7.77

TX2, MaxQ FP32, b=8 92.11 (75.15) 207.45 179.45 297.69 (0.22) 344.35 (0.26) 7.85

TX2, MaxQ FP32, b=16 92.11 (75.15) 398.74 344.35 309.54 (0.23) 358.82 (0.27) 7.97

TX2, MaxQ FP32, b=32 92.11 (75.15) 779.69 673.93 316.63 (0.24) 366.42 (0.27) 7.99

TX2, MaxQ FP32, b=64 92.11 (75.15) 1540.33 1333.24 320.57 (0.24) 370.36 (0.28) 8.03

TX2, MaxQ FP32, b=128 92.11 (75.15) 3118.09 2650.98 315.38 (0.24) 372.08 (0.28) 7.93

TX2, MaxP FP16, b=1 92.12 (75.11) 16.52 12.46 464.14 (0.35) 632.05 (0.47) 9.38

TX2, MaxP FP16, b=2 92.12 (75.11) 28.10 20.92 547.57 (0.41) 745.09 (0.56) 9.59

TX2, MaxP FP16, b=4 92.12 (75.11) 52.22 39.14 590.78 (0.44) 790.58 (0.59) 9.71

TX2, MaxP FP16, b=8 92.12 (75.11) 100.21 75.54 615.58 (0.46) 818.10 (0.61) 9.81

TX2, MaxP FP16, b=16 92.12 (75.11) 193.89 145.36 637.01 (0.48) 849.79 (0.64) 9.79

TX2, MaxP FP16, b=32 92.12 (75.11) 375.86 283.47 657.79 (0.49) 870.94 (0.65) 9.79

TX2, MaxP FP16, b=64 92.12 (75.11) 733.74 562.74 673.19 (0.51) 879.15 (0.66) 9.81

TX2, MaxP FP16, b=128 92.12 (75.11) 1453.87 1121.27 677.63 (0.51) 879.65 (0.66) 9.86

TX2, MaxP FP32, b=1 92.11 (75.15) 26.16 22.00 293.60 (0.22) 355.65 (0.27) 10.54

TX2, MaxP FP32, b=2 92.11 (75.15) 45.07 37.86 341.72 (0.26) 410.11 (0.31) 10.83

TX2, MaxP FP32, b=4 92.11 (75.15) 85.31 72.25 361.93 (0.27) 428.79 (0.32) 10.86

TX2, MaxP FP32, b=8 92.11 (75.15) 165.16 140.36 373.86 (0.28) 440.83 (0.33) 11.01

TX2, MaxP FP32, b=16 92.11 (75.15) 318.38 270.54 387.72 (0.29) 456.71 (0.34) 11.13

TX2, MaxP FP32, b=32 92.11 (75.15) 621.30 528.54 397.67 (0.30) 467.21 (0.35) 11.15

TX2, MaxP FP32, b=64 92.11 (75.15) 1219.10 1046.82 404.38 (0.30) 471.56 (0.35) 11.24

TX2, MaxP FP32, b=128 92.11 (75.15) 2495.53 2076.54 393.22 (0.29) 474.95 (0.36) 10.88

Table 15. Level 3—Inference Results GoogleNetV1

GoogLeNet Top-5 (Top-1) Acc Latency (ms) Throughput (GOPs) (Efficiency (%)) Power (W)

Platform Parameters (%) system compute system compute

ZCU104 INT8, t=1 89.26 (69.49) 9.65 6.68 323.50 (0.08) 468.64 (0.12) 21.49

ZCU104 INT8, t=2 89.26 (69.49) 9.99 7.06 499.97 (0.12) 895.19 (0.22) 24.60

ZCU104 INT8, t=3 89.26 (69.49) 11.88 9.30 784.16 (0.19) 1050.36 (0.26) 25.41

ZCU104 INT8, t=4 89.26 (69.49) 15.85 12.95 782.99 (0.19) 971.12 (0.24) 25.50

ZCU104 INT8, t=5 89.26 (69.49) 18.24 15.27 848.31 (0.21) 1122.66 (0.28) 25.96

ZCU104 INT8, t=6 89.26 (69.49) 21.88 18.35 851.75 (0.21) 1116.67 (0.27) 26.00

ZCU104 INT8, t=7 89.26 (69.49) 25.60 22.78 853.81 (0.21) 1081.32 (0.27) 25.93

ZCU104 INT8, t=8 89.26 (69.49) 28.91 25.94 846.70 (0.21) 1062.84 (0.26) 25.90

TX2, MaxN FP16, b=1 87.85 (66.94) 7.98 5.17 388.92 (0.29) 612.39 (0.46) 11.52

TX2, MaxN FP16, b=2 87.85 (66.94) 14.68 9.23 438.58 (0.33) 693.35 (0.52) 11.40

(Continued)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2019.



QuTiBench: Benchmarking Neural Networks on Heterogeneous Hardware 37:33

Table 15. Continued

GoogLeNet Top-5 (Top-1) Acc Latency (ms) Throughput (GOPs) (Efficiency (%)) Power (W)

Platform Parameters (%) system compute system compute

TX2, MaxN FP16, b=4 87.85 (66.94) 26.31 16.36 475.75 (0.36) 770.88 (0.58) 12.00

TX2, MaxN FP16, b=8 87.85 (66.94) 49.83 30.96 508.99 (0.38) 811.73 (0.61) 12.21

TX2, MaxN FP16, b=16 87.85 (66.94) 95.81 59.47 544.72 (0.41) 843.35 (0.63) 12.34

TX2, MaxN FP16, b=32 87.85 (66.94) 185.96 116.62 538.49 (0.40) 859.48 (0.64) 11.85

TX2, MaxN FP16, b=64 87.85 (66.94) 389.12 231.45 511.92 (0.38) 862.22 (0.65) 11.62

TX2, MaxN FP16, b=128 87.85 (66.94) 810.86 459.85 493.02 (0.37) 871.35 (0.65) 11.29

TX2, MaxN FP32, b=1 87.84 (66.94) 12.01 8.71 259.52 (0.19) 361.81 (0.27) 12.79

TX2, MaxN FP32, b=2 87.84 (66.94) 21.01 15.62 297.38 (0.22) 406.52 (0.30) 13.06

TX2, MaxN FP32, b=4 87.84 (66.94) 38.37 28.47 325.96 (0.24) 441.59 (0.33) 13.35

TX2, MaxN FP32, b=8 87.84 (66.94) 72.78 53.96 320.83 (0.24) 464.59 (0.35) 13.56

TX2, MaxN FP32, b=16 87.84 (66.94) 141.92 104.99 353.06 (0.26) 477.28 (0.36) 13.70

TX2, MaxN FP32, b=32 87.84 (66.94) 279.20 206.82 361.42 (0.27) 484.49 (0.36) 13.77

TX2, MaxN FP32, b=64 87.84 (66.94) 571.52 409.48 347.85 (0.26) 488.15 (0.37) 13.53

TX2, MaxN FP32, b=128 87.84 (66.94) 1165.91 811.57 342.21 (0.26) 490.41 (0.37) 13.17

TX2, MaxQ FP16, b=1 87.85 (66.94) 12.42 7.71 249.66 (0.19) 420.01 (0.32) 5.88

TX2, MaxQ FP16, b=2 87.85 (66.94) 21.48 13.39 290.21 (0.22) 474.86 (0.36) 6.01

TX2, MaxQ FP16, b=4 87.85 (66.94) 38.55 23.99 323.91 (0.24) 524.72 (0.39) 6.13

TX2, MaxQ FP16, b=8 87.85 (66.94) 73.30 45.40 340.72 (0.26) 552.66 (0.41) 6.20

TX2, MaxQ FP16, b=16 87.85 (66.94) 141.55 87.55 353.38 (0.27) 571.79 (0.43) 6.24

TX2, MaxQ FP16, b=32 87.85 (66.94) 277.12 172.07 362.00 (0.27) 582.64 (0.44) 6.24

TX2, MaxQ FP16, b=64 87.85 (66.94) 574.23 340.85 346.43 (0.26) 588.26 (0.44) 6.09

TX2, MaxQ FP16, b=128 87.85 (66.94) 1182.94 680.24 335.61 (0.25) 589.83 (0.44) 6.03

TX2, MaxQ FP32, b=1 87.84 (66.94) 17.54 12.82 177.36 (0.13) 249.47 (0.19) 6.70

TX2, MaxQ FP32, b=2 87.84 (66.94) 30.80 22.77 202.46 (0.15) 277.85 (0.21) 6.89

TX2, MaxQ FP32, b=4 87.84 (66.94) 56.49 41.81 220.94 (0.17) 300.29 (0.23) 7.02

TX2, MaxQ FP32, b=8 87.84 (66.94) 107.28 79.34 233.39 (0.18) 316.27 (0.24) 7.11

TX2, MaxQ FP32, b=16 87.84 (66.94) 208.77 154.43 239.76 (0.18) 324.46 (0.24) 7.16

TX2, MaxQ FP32, b=32 87.84 (66.94) 410.81 303.79 244.50 (0.18) 330.06 (0.25) 7.18

TX2, MaxQ FP32, b=64 87.84 (66.94) 835.95 602.25 238.58 (0.18) 332.87 (0.25) 7.08

TX2, MaxQ FP32, b=128 87.84 (66.94) 1702.86 1196.52 232.88 (0.17) 333.96 (0.25) 7.02

TX2, MaxP FP16, b=1 87.85 (66.94) 9.69 6.09 318.13 (0.24) 532.93 (0.40) 8.07

TX2, MaxP FP16, b=2 87.85 (66.94) 16.66 10.53 374.39 (0.28) 606.07 (0.45) 8.28

TX2, MaxP FP16, b=4 87.85 (66.94) 31.93 18.85 415.17 (0.31) 668.51 (0.50) 8.47

TX2, MaxP FP16, b=8 87.85 (66.94) 60.46 35.59 428.38 (0.32) 705.81 (0.53) 8.61

TX2, MaxP FP16, b=16 87.85 (66.94) 108.66 68.56 459.58 (0.34) 731.15 (0.55) 8.69

TX2, MaxP FP16, b=32 87.85 (66.94) 226.68 134.27 443.19 (0.33) 745.48 (0.56) 8.35

TX2, MaxP FP16, b=64 87.85 (66.94) 478.58 266.78 409.86 (0.31) 749.71 (0.56) 8.07

TX2, MaxP FP16, b=128 87.85 (66.94) 1019.48 530.68 392.21 (0.29) 753.68 (0.57) 7.74

TX2, MaxP FP32, b=1 87.84 (66.94) 14.35 10.17 217.30 (0.16) 315.68 (0.24) 9.15

TX2, MaxP FP32, b=2 87.84 (66.94) 25.01 17.89 249.21 (0.19) 354.04 (0.27) 9.37

TX2, MaxP FP32, b=4 87.84 (66.94) 45.84 32.72 272.61 (0.20) 382.77 (0.29) 9.56

TX2, MaxP FP32, b=8 87.84 (66.94) 86.85 61.95 290.61 (0.22) 404.57 (0.30) 9.71

TX2, MaxP FP32, b=16 87.84 (66.94) 169.26 120.61 295.84 (0.22) 415.80 (0.31) 9.75

TX2, MaxP FP32, b=32 87.84 (66.94) 330.80 237.45 302.80 (0.23) 421.99 (0.32) 9.77

TX2, MaxP FP32, b=64 87.84 (66.94) 687.11 470.42 288.46 (0.22) 425.71 (0.32) 9.50

TX2, MaxP FP32, b=128 87.84 (66.94) 1426.28 932.76 279.73 (0.21) 427.71 (0.32) 9.16
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Table 16. Level 1 and 2—Discrepancy between Latency of Different Convolutions and Residual Layers

Level 2 Level 1

Residual TX2, MaxN, FP16 Conv. TX2, MaxN, FP16 ZCU104,INT8

Layer (MOP) b=1 (ms) b=128 (ms) Layer (MOP) b=1 (ms) b=128 (ms) t=1 (ms) t=8 (ms)

res2a 462.44 1.37 119.12 res2a_branch2a, 1x1 25.70 0.06 5.05 0.06 0.08

res2b 436.74 1.12 108.24 res2a_branch2b, 3x3 231.20 0.19 22.78 0.19 0.19

res2c 436.74 1.12 108.07 res2a_branch2c, 1x1 102.80 0.18 20.15 0.22 0.26

res3a 590.88 1.39 133.09 res2a_branch1, 1x1 102.80 0.21 23.66 0.43 0.46

res3b 436.74 1.03 87.72 res3a_branch2a, 1x1 51.40 0.09 7.19 0.09 0.13

res3c 436.74 1.05 87.87 res3a_branch2b, 3x3 231.20 0.21 24.63 0.21 0.21

res3d 436.74 1.04 88.66 res3a_branch2c, 1x1 102.80 0.15 15.18 0.21 0.25

res4a 590.88 1.20 104.66 res3a_branch1, 1x1 205.50 0.29 30.35 0.33 0.39

res4b 436.74 1.03 71.33 res4a_branch2a, 1x1 51.40 0.08 7.10 0.12 0.13

res4c 436.74 1.03 72.52 res4a_branch2b, 3x3 231.20 0.20 23.12 0.21 0.23

res4d 436.74 1.02 72.01 res4a_branch2c, 1x1 102.80 0.15 13.01 0.29 0.38

res4e 436.74 1.02 72.39 res4a_branch1, 1x1 205.50 0.28 29.23 0.43 0.50

res4f 436.74 1.02 71.76 res5a_branch2a, 1x1 51.40 0.14 7.61 0.12 0.19

res5a 590.88 1.73 95.61 res5a_branch2b, 3x3 231.20 0.31 24.90 0.33 0.49

res5b 436.74 1.24 61.55 res5a_branch2c, 1x1 102.80 0.27 12.53 0.47 0.60

res5c 436.74 1.23 61.58 res5a_branch1, 1x1 205.50 0.51 30.92 0.52 0.69

Min 1.02 61.55 Min 0.06 5.05 0.06 0.08

Max 1.73 133.09 Max 0.51 30.92 0.52 0.69

Var 0.04 454.94 Var 0.01 79.42 0.02 0.03
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