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Abstract

Configurable software systems provide options that affect functional and non-functional system
properties. Selection of options forms system configurations with corresponding properties values.
Nowadays configurable software systems are ubiquitously used by software developers, system ad-
ministrators, and end users due to their inherent adaptability. However, this flexibility comes at a
cost. Configuration space exponentially explodes with addition of new options, making exhaustive
system analysis impossible.

Nevertheless, many use cases require a deep understanding of a configurable system behavior,
especially if the system is redeployed across heterogeneous hardware. This leads to the following
research questions: (1) Is it possible to transfer configurable software property information across a
collection of heterogeneous hardware? (2) Is it possible to transfer relative configurations optimality
information across heterogeneous hardware?

We address the first question by proposing an approach for transferring performance prediction
models of configurable systems across heterogeneous hardware. This approach builds a predictor
model to approximate performance on a source hardware, and a separate transferrer model to trans-
fer approximated performance values to a destination hardware. Experiments on three configurable
software systems across 23 heterogeneous hardware environments demonstrated high accuracy (less
than 10% error) for all studied combinations.

We address the second question by proposing an approach for approximation and transferring
of Pareto frontiers of optimal configurations (based on multiple system properties) across hetero-
geneous hardware. This approach builds an individual predictor and transferrer for each analyzed
system property. Using trained models, we can build an approximated Pareto frontier on a source
hardware and transfer this frontier to a destination hardware. Experiments on five configurable
systems across 34 heterogeneous hardware demonstrated feasibility of the approach and that the
accuracy of a transferred frontier mainly depends on the approximation rather than the transferring
process, while being linearly proportional to a training sample size.
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Chapter 1

Introduction

Many modern software systems provide configuration options. These configuration options generally
have a strong impact on a target system’s functional behavior and non-functional properties, such
as memory consumption, response time, and performance. Configuration options that are available
to end users of a system are sometimes called features ( , ), while a specific selection
of features’ values determines a particular system configuration.

Nowadays highly configurable complex software systems, such as compilers, database engines,
data compression software, and multimedia codecs, are more and more used by software developers
and system end users. On the one hand, configurable software systems naturally allow to address
various real-world functional and non-functional requirements due to their inherent adaptability
and flexibility. Thus configurable software can conform to different use cases and reduce business
expenses. But on the other hand, these benefits in applications of configurable software come
at a cost. Exponential growth of the configuration space with introduction of new configurable
features makes it virtually infeasible to fully and comprehensively analyze or test a subject system
by exhaustively iterating through and measuring each possible system configuration.

Nevertheless, real-world business requirements might demand deep understanding of a system’s
functional and non-functional behavior. Moreover, many use cases require understanding of how
a configurable system’s behavior will change if the system is redeployed in a different hardware
environment. Will a particular system configuration retain its’ non-functional properties if the
system is redeployed on a different hardware? Will a particular optimal configuration maintain it’s
relative efficiency when compared to other system configurations?

For example, similar questions may arise when a system administrator thoroughly analyzes
a complex configurable software system on one hardware environment but needs to redeploy it
to a different hardware. Thus the system administrator would be interested in understanding
various system properties, like runtime performance and memory consumption, of the system across
hardware, without investing much more effort into benchmarking and analysis of the system’s
configuration space. A resembling scenario might occur in the domain of software performance
testing, when a software engineer wants to be sure that a configurable system meets minimal
performance requirements across a range of different hardware platforms.

System performance by itself is considered to be one of the most important non-functional system
properties, since it might directly affect business processes and the quality of interaction between



a business user and a system. Numerous and diverse research dedicated to performance prediction
and modeling of software systems gave rise to an independent field of research called performance
engineering. However, up until recently, not much attention was given to the aforementioned prob-
lem of transferring of performance knowledge across different hardware environments. Therefore, in
the current work we specifically focus our research on performance of configurable software systems.

Unfortunately, previous research on prediction and transferring of performance of software sys-
tems doesn’t always take into the account some restrictions that might occur in a real-world scenario
(see Section 2.3 for details). For example, researchers investigate highly specialized hardware envi-
ronments and software systems, expect a practitioner to have full control over the prediction and
transferring process, etc. On the contrary, the main goal of our research is to develop a pragmatic
methodology that could be applied in real-world scenarios. This goal resulted in several major
constraints that guided the development of our approach.

First of all, we do not assume that a user has any control over the sampling process of a system’s
configuration space and might be restricted to historically benchmarked data only. Because of that,
to explore systems’ configuration spaces in our experiments we employ pseudo-random sampling in
order to imitate this worst-case scenario of impossibility to make any sampling choices by a user.

Secondly, we assume that a practitioner might have limited information about actual system
properties values, and it might not cover a configuration space entirely. Therefore, we analyze
different sampling sizes in our experiments, in order to provide an assessment of how accurate
predictors and transferrers might be.

Thirdly, we assume that a user can be working with a closed-source software and might not have
any understanding about internal workings of a system, and won’t be able to use this knowledge
to improve predictors or transferrers. Consequently, our methodology regards analyzed software
systems as ‘black-boxes’ that output particular properties’ values, given a configuration and a
workload.

Finally, our goal to make the approach practical imposes some restrictions on predictors and
transferrers of studied system properties. Users should be able to: (1) train these models using
minimal amount of training data, (2) build and validate the models in a completely automatic
fashion, (3) visualize the models in an intuitive way, in order to get additional insights from training
data and to verify that the models really work. All these requirements forced us to investigate basic
machine learning methods as candidate models for our methodology, such as linear regression and
regression tree models.

To sum up, described real-world challenges and requirements provide a research direction for
our work. We can formulate a set of questions that provide a research framework for our study:

1. Is it possible to transfer information about configurable software system performance across
a collection of heterogeneous hardware environments in a minimalistic and practical way?

2. Is it possible to transfer information about relative configurations optimality of a configurable
software system performance across a collection of heterogeneous hardware environments in
a minimalistic and practical way?

First of all, we begin our work by performing a comprehensive overview of related work that
is the most similar to our own research, presented in Chapter 2. We focus on two major topics in



the literature review: (1) modeling and predicting performance of configurable software systems,
and (2) transferring performance prediction models of highly configurable software systems across
heterogeneous hardware environments. For each of the two topics we summarize the most relevant
research and highlight the most important differences with our work.

Secondly, we address the first question about transferring performance information across het-
erogeneous hardware. We approach this question in Chapter 3 by transferring performance models
of software systems. Previously, researchers have successfully demonstrated the correlation between
feature selection and performance. However, the generality of these performance models across dif-
ferent hardware platforms has not yet been evaluated. We propose a technique for enhancing gen-
erality of performance models across different hardware environments using linear transformation.
Empirical studies on three real-world software systems show that our approach is computationally
efficient and can achieve high accuracy (less than 10% mean relative error) when predicting system
performance across 23 different hardware platforms. Moreover, we investigate why the approach
works by comparing performance distributions of systems and structure of performance models
across different platforms.

Thirdly, we answer the second question about transferring relative configuration optimality
information across heterogeneous hardware. We approach this question in Chapter 4 by utilizing
a notion of Pareto optimality. We call a system configuration Pareto optimal if it is not possible
to improve any of its properties values without worsening at least one other property value. A
subset of configuration space forms a Pareto frontier of optimal configurations in terms of multiple
properties, from which a user can choose the best configuration for a particular scenario. However,
when a well-studied system is redeployed on a different hardware, information about property value
and the Pareto frontier might not apply. We investigate whether it is possible to transfer this
information across heterogeneous hardware environments.

We propose a methodology for approximating and transferring Pareto frontiers of configurable
systems across different hardware environments. We approximate a Pareto frontier by training
an individual predictor model for each system property, and by aggregating predictions of each
property into an approximated frontier. We transfer the approximated frontier across hardware
by training a transfer model for each property, by applying it to a respective predictor, and by
combining transferred properties into a frontier.

We evaluate our approach by modeling Pareto frontiers as binary classifiers that separate all
system configurations into optimal and non-optimal ones. Thus we can assess the quality of approx-
imated and transferred frontiers using common statistical measures like sensitivity and specificity.
We test our approach using five real-world software systems from the compression domain, while
paying special attention to their performance. Evaluation results demonstrate that accuracy of
approximated frontiers depends linearly on predictors’ training sample sizes, whereas transferring
introduces only minor additional error to a frontier even for small training sizes.

The thesis is partially based on two previously published papers. Chapter 3 is based on the paper
‘Transferring Performance Prediction Models across Different Hardware Platforms’ ( ,
), authored by Pavel Valov, Jean-Christophe Petkovich, Jianmei Guo, Sebastian Fischmeister

and Krzysztof Czarnecki. Pavel Valov designed and implemented experiments with collected systems
data, and wrote the paper itself. Jean-Christophe Petkovich designed and implemented benchmarks
for the studied software systems and collected the necessary data by using the benchmarks on



DataMill cluster of heterogeneous hardware platforms. Jianmei Guo provided ideas, guidance, and
reviews for the paper. Sebastian Fischmeister and Krzysztof Czarnecki provided general guidance
for the paper.

Chapter 4 is based on the paper called ‘Transferring Pareto Frontiers across Heterogeneous
Hardware Environments’ ( , ), authored by Pavel Valov, Jianmei Guo, and Krzysztof
Czarnecki. Pavel Valov designed and implemented benchmarks for the studied software systems,
collected system data using the benchmarks on Microsoft Azure cluster of heterogeneous hardware
platforms, designed and implemented research experiments and wrote the paper itself. Jianmei
Guo reviewed this work and provided feedback on methodology and writing of the paper. Krzysztof
Czarnecki provided general guidance for the paper.



Chapter 2

Related Work

Performance engineering of software systems is a complex and diverse field of knowledge that encom-
passes a variety of approaches and techniques for performance analysis and prediction in different
use cases ( , ). In the current chapter we aim to review and highlight research
that is the most relevant to our own work. Our research is primarily related to two major topics in
performance engineering community: (1) model-based performance prediction of configurable soft-
ware systems, and (2) transferring of performance prediction models across heterogeneous hardware
environments. We discuss these topics separately in the following sections.

2.1 Software performance prediction

Performance prediction of software systems plays a major role in the domain of software perfor-
mance engineering. Different aspects of this subdomain were covered in various literature reviews.
( ) performed an in-depth review of white-box model-based performance
prediction of software systems during a software development process. ( ) carried out
an exhaustive review of more than 20 methodologies for performance prediction of component-
based software systems, that not only utilize classical performance modeling techniques, such as
stochastic process algebras or queueing networks, but also employ a component-based structure of
analyzed software systems. ( ) explore challenges of performance prediction for
component-based software systems. Researchers analyze related work for three different approaches
for performance prediction: model-based, measurement-based, and mixed approaches. Authors
come to conclusion that the mixed approach for performance prediction is the most promising for
building a comprehensive performance reasoning framework for component-based systems.

Although aforementioned surveys ( , : , : ,

) provide a broad overview of different performance prediction methodologies, they virtually

do not describe research that is relevant to our work. First of all, researchers mainly concentrate
on white-box model-based prediction methods that are used during development phase of soft-
ware systems. Conversely, we focus on black-box model-based prediction methods that usually
require already implemented systems for analysis. Secondly, researchers mostly focus on mono-
lithic, component-based, or distributed software systems, without concentrating on their particular



configurations. On the contrary, we focus on highly configurable software systems and analyze how
their functional or non-functional properties change for different system configurations. Because of
that, we perform our own literature review, highlighting the most relevant research and comparing
it to our own work.

In the succeeding subsections we tried to group together and review research works that are
the most relevant to black-box model-based performance prediction of highly configurable software
systems. We classified all work into several main groups based on a type of configurable software
that a particular work studies. We have selected this classification, since a type of a studied
software usually has an impact on the overall process of performance prediction. We have formed
four different groups based on this criteria: (1) general-purpose configurable software systems, (2)
configurable solvers for propositional satisfiability and mixed integer problems, (3) configurable
general-purpose planners for artificial intelligence problems, and (4) configurable high-performance
algorithms for supercomputing hardware.

2.1.1 Performance prediction of configurable software systems

We begin with reviewing related work that deals with performance prediction of general-purpose
configurable software systems, i.e. systems that can operate on Intel and AMD based hardware,
and has a large user base, e.g. compilers, database engines, video codecs, etc. We understand that
this kind of grouping is not exactly strict, but it allowed us to group together similar performance
prediction methodologies.

( ) noticed that some performance-relevant relations, like resourse
demand relations, have irregular and jagged shape. To approximate resourse demand relations by
a simple analytical function, researchers employ multivariate adaptive regression splines (MARS,
see : ) and extend them with two different heuristics: (1) for calculating confidence
intervals of MARS predictions and (2) for sampling new data points to gain required accuracy
with minimal amount of data possible. This research is similar to our own work, since researchers
also implement a model-based approach by utilizing a regression model in order to interpolate a
performance metric function that depends on a configuration of independent features. However,
there are certain differences with our work. First of all, researchers use a different regression model
than us — regression splines instead of regression trees (CART, see , ). Secondly,
we focus on analysis and prediction of a total runtime under a certain benchmark as a system
performance metric, while researchers concentrate on immediate CPU resource demands.

( ) propose a measurement-based quantitative performance prediction
methodology for configurable software systems. The proposed methodology carries out performance
prediction by making all performance-relevant influences and interactions explicit, thus potentially
requiring a large amount of measured data. To lower the required amount of data for perfor-
mance prediction, authors implement and compare several different sampling heuristics: feature-
wise, pair-wise, triple-wise, and hot-spot. Feature-wise heuristic evaluates performance influence
of each individual configurable feature by calculating a performance delta between two minimal-
istic configurations: one with the target feature turned on and another with the target feature
turned off. Pair-wise heuristic measures an additional set of configurations in order to evaluate
all possible pair-wise feature interactions, which are considered to be among the most widespread



performance-relevant interactions. Triple-wise heuristic allows to quickly detect interactions be-
tween three features, based on the assumption that if given three features provide a pair-wise inter-
action in any combination, then most likely these features provide a triple-wise interaction as well.
Hot-spot heuristic detects highly-coupled features that significantly influence system performance.
Using aforementioned heuristics it is possible to narrow down performance-relevant features and
their interactions, calculate their performance deltas, and finally predict performance for a given
configuration. The proposed approach was implemented in a tool called SPL Conqueror (

, ), specifically designed for automatic performance measurement, prediction, and opti-
mization. Although researchers also try to predict runtime performance of configurable software
systems, they achieve it in a completely different fashion from ours. First of all, instead of using
random sampling, researchers use aforementioned heuristics in order to select which feature inter-
actions and system configurations to measure from the system’s whole configuration space, what
might not be possible in a real-world scenario where a practitioner might be limited by a fixed set of
previously benchmarked data only. Secondly, instead of using machine learning techniques in order
to figure out the relationship between system configurations and performance, researchers utilize
a heuristic to approximate performance values for a particular configuration based on previously
measured data.

( ) proposed an approach for automatic, measurement-based method for
inferring performance prediction functions. To minimize the amount of measurements, they de-
veloped three algorithms that iteratively select new data points if necessary: random breakdown,
adaptive random breakdown, and adaptive equidistant breakdown algorithms. To build actual per-
formance prediction functions, the authors use four different regression and interpolation methods:
MARS ( , ), CART ( : ), and GP ( , ). To validate built
prediction functions, they use three different strategies: random validation set, dynamic sector vali-
dation with local prediction error, and dynamic sector validation with global prediction error scope.
They provide a framework for evaluation of function building methods for performance prediction
and for evaluation of different combinations of function building methods and parameter tuning
strategies. Finally, they evaluated the methodology for performance prediction in two industrial
case studies. Despite the fact that researchers performed a comprehensive comparative study on
performance prediction of configurable software systems, their work is different from ours. First of
all, the main focus of our work is not to perform a comparison of different machine-learning meth-
ods or introduction of new sampling strategies, but to demonstrate that building and transferring
of performance prediction models is possible. Secondly, the described methods rely on a higher
level of control of a system’s configuration space and sampling process by a practitioner, while our
methodology doesn’t have the same assumptions.

( ) proposed a variability-aware approach for performance prediction of config-
urable software systems based on small random samples of measured configurations. To reveal
a correlation between a selection of configuration options and system performance, the authors
use CART ( , ). They perform a case study of the proposed approach using six config-
urable software systems with different application domains, implementation languages, configuration
spaces and sizes. This study shows that the proposed approach on average achieves prediction ac-
curacy of 94%, when using small samples for CART prediction model training. Finally, the authors
show that the approach achieves the best results when a training sample has a similar performance
distribution as the whole population of configurations.



( ) extended the work of ( ), by carrying out an empirical com-
parison of regression methods for the problem of variability-aware performance prediction. They
compare prediction accuracy of four methods: CART ( , ), Bagging ( , ),
Random Forest ( , ), and Support Vector Regression (SVR, see ,

). For each method the authors generate multiple parameter settings, by using Sobol sampling,
and select parameters that provided the best, the average and the worst prediction accuracy for
each method. By analysing prediction accuracy of methods for combinations of different parameter
settings, target configurable software systems and training sampling sizes, they assess which meth-
ods provide the best prediction most of the time, i.e. which method is the most robust one. Results
showed Bagging to be the most robust technique for performance prediction, even when allowing
an interval for selecting the best performance accuracy.

( ) extend their previous work ( : ) and propose a new data-efficient
approach for performance prediction of configurable software systems. Authors provide an algorithm
called DECART that combines regression trees (CART, see ) ) with resampling and

parameter tuning procedures in an automatic fashion. Researches also perform case studies of
three resampling techniques and three parameter-tuning strategies. Finally, authors devise an
analytical metric for assessing representation quality of a population by a given sample of measured
configurations.

This cluster of work ( : , ; , ) is not only similar to our own
research, but it also laid a foundation for our work. Researchers also employ regression models for
performance prediction of configurable software and do it in a data-efficient way by using small
samples of actually measured configurations. However, there are certain differences. First of all,
researchers work with a wider range of regression models (see , ). But the main
difference with our work is that researchers completely do not investigate performance prediction
and analysis across heterogeneous hardware platforms, what is the main focus of our work.

( ) performed a thorough research in order to find the most optimal strategy for
sampling in the domain of performance prediction of configurable software systems. Authors define
optimality as a balance between effort of measuring performance of sampled configurations and
between accuracy of performance prediction based on the sampled configurations. To assess quality
of sampled configurations, authors estimate effort and accuracy together via a composite model of
sampling cost. Researchers implement a novel heuristic, operating on configurable feature frequen-
cies, for selecting a starting sample of training configurations. Authors improve projective sampling
by injecting the implemented heuristic into the sampling process and by comparing the imple-
mented heuristic with a classical t-way feature coverage based heuristic. Moreover, researchers not
only compare different initializing heuristics, but also compare progressive and projective sampling
techniques themselves in terms of the composite sampling cost. Finally, authors demonstrate via
an empirical study that the most cost-effective sampling strategy is projective sampling technique,
using exponential function as a projective function, with feature-frequency initialization heuristic.
Although researchers also work on performance prediction of configurable software systems, this
research is different from our work. Researchers concentrate on making this process more efficient
by saving a measurement budget through prediction model quality assessment. We, on the con-
trary, focus on building and transferring performance prediction models and we do not assume that
a practitioner might have any control over the measurement process.



( ) proposed a new approach for performance prediction of configurable soft-

ware systems, which utilizes Fourier transform and can predict a particular configuration per-
formance with required precision, while minimizing amount of actually measured configurations.
Authors regard software systems’ performance functions as Fourier sparse functions, since previous
research ( , : , ) has shown that these performance functions are
not arbitrary but are instead structured, due to internal structure of the studied software systems.
Based on this assumption, researchers devised a novel algorithm that is able to approximate these
structured Fourier sparse functions using their Fourier decomposition, while satisfying user-specified
accuracy and confidence levels requirements. Moreover, the proposed algorithm utilizes iterative
and progressive random sampling, thus allowing to minimize the overall configuration measurement
effort. Finally, authors perform a comprehensive evaluation of the proposed algorithm and com-
pare it to other performance prediction techniques for configurable software systems.
( ) continued their previous work ( , ) by formulating a mathematical model for
describing performance-relevant feature interactions (PRFIs) using Boolean functions. Researchers
represent feature interactions as partial derivatives, where a first-order partial derivative represents
a performance impact of a single configuration feature, while higher-order partial derivatives rep-
resent performance impacts of multiple features. Furthermore, authors propose two algorithms for
automatic feature interactions detection that operate on small random samples of configurations,
while possibly providing a specified confidence level and accuracy. Researchers expect the proposed
mathematical formulation and discovery algorithms to apply not only to performance-relevant non-
functional system properties, but to any quantifiable system characteristic. The main difference of
this research by ( , ) with our work is the use of Fourier analysis for performance
prediction.

( ) proposed a novel approach called WHAT for performance prediction of con-
figurable software systems using spectral learning. WHAT performs dimensionality reduction of
configuration space by using a spectrum of a distance matrix between configurations. Thus it is
possible to achieve more accurate and stable results with fewer sampled configurations. Authors
claim that using two to ten times smaller samples of measured configurations the proposed approach
achieves a comparable accuracy with smaller standard deviation compared to other state of the art
techniques.

2.1.2 Performance prediction and optimization of complex algorithms

We continue by reviewing related research that works on performance prediction and optimization
of complex algorithms for solving hard combinatorial, propositional satisfiability, and mixed integer
programming problems. Although we do not study performance optimization in our own research,
we highlighted some research from this domain, since it utilizes similar approaches and machine
learning techniques.

( ) performed a research study in order to show that it is possible to utilize
empirical hardness models to predict runtime performance of complex configurable algorithms. By
empirical hardness models researchers understand machine learning models that are used to predict
runtime performance of configurable algorithms in general and search algorithms in particular for
this work. To implement actual empirical models, researchers use ridge regression (



, ). Unlike previous related work ( , : , )
that concentrated on algorithms that are deterministic and complete, i.e. always provide a solution,
researchers investigate incomplete randomized algorithms and specifically stochastic local search
algorithm that is applicable to a variety of hard combinatorial problems. Moreover, researchers not
only investigate harder practical problems, but also incorporate algorithm configuration options
into empirical hardness models along with extracted features of a particular problem instance.
Finally, researchers analyze whether it is possible to automatically tune algorithm parameters for
each particular problem instance. This work is different from ours in several ways. First of all,
researchers use different regression model instead of regression trees: ridge regression. Secondly,
researchers focus on highly specialized software, stochastic local search algorithm, instead of general-
purpose software systems.

( ) continue their work in performance engineering domain by concentrating on
the problem of performance optimization of configurable algorithms. Researchers focus on model-
based performance optimization of configurable randomized algorithms. Researchers select sequen-
tial parameter optimisation (SPO) based on Gaussian processes ( : ) among several
investigated optimization approaches as the most robust one. Authors thoroughly analyze the SPO
approach and propose a new approach called SPO+ by extending SPO with a new intensification
procedure and response values. Researchers validate the proposed approach based on two complex
algorithms: (1) CMA-ES ( : ), a derandomized evolution strategy (ES) with
covariance matrix adaptation (CMA) for local search problem, and (2) SAPS ( : ),
an efficient dynamic local search algorithm. Finally researchers demonstrate that the new pro-
posed approach achieves competitive performance when compared with other measurement-based
optimization approaches.

( ) continue their work on sequential parameter optimization of configurable
algorithms’ performance. Researchers introduce time bounds into Sequential Parameter Optimiza-
tion (SPO) technique via random sampling of parameters, a novel intensification algorithm, and
an updated prediction model. In the current work authors specifically focus on algorithms that
have configuration parameters from continuous domains while using a single benchmark for each
algorithm. Researchers concentrate on modifying SPO in order to provide solutions within speci-
fied time frames. First of all, researchers introduce interleaved random sampling of configuration
parameter settings into the optimization process in order to skip expensive initial design. Sec-
ondly, authors develop a novel time-bounded algorithm to set a number of performed runs for each
studied parameter setting, also called intensification algorithm. Thirdly, researchers make the opti-
mization process even more efficient by replacing Gaussian process ( , ) models with
projected process models ( , : , : , ).
Finally, researchers demonstrate that the proposed improvements to the sequential optimization
provide major benefits, such as: much shorter times for parameter tuning, model building, and
optimization process itself.

( ) continue their work on algorithm performance optimization via automatic
parameter tuning. Researchers utilize and extend sequential model-based optimization technique
(SMBO) that uses regression models to capture a relationship between a system’s parameter con-
figuration and a runtime performance. This technique alternates between a regression model fitting
process and a process of selecting new configurations for measuring, what allows to use partially
fitted models to select the most promising configurations. Researchers focus on making this method-
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ology completely automatic and applicable to a wider range of configurable algorithms by allowing
heterogeneous configuration parameters and by allowing optimization based on multiple domain
problems. Authors introduce several improvements to SMBO such as: a modified intensification
algorithm, random forest technique ( , ) as a response surface, and a novel algorithm
for selecting new configurations to be measured. Based on these improvements researchers intro-
duce two SMBO-based optimization techniques: Random Online Aggressive Racing (ROAR) and
Sequential Model-based Algorithm Configuration (SMAC). ROAR is an improved simplistic opti-
mization technique based on a new intensification algorithm that uses uniform random sampling to
select new configurations, while SMAC is improved even further and uses a model instead of random
sampling for configuration selection. Authors selected several different configurable software sys-
tems to test the proposed optimization techniques: a local search SAT solver called SAPS (

, ), a tree search SAT solver called SPEAR ( , ), and an MIP solver
CPLEX ( , ). Researchers evaluate the proposed optimization techniques on the studied
systems and demonstrate that ROAR achieves comparable or better optimization performance than
most of the competing optimizers and systems with exception of CPLEX, while SMAC improved
optimization performance in most of the cases and never performed worse.

Although this cluster of work ( , , , ) mostly concentrates on perfor-
mance optimization of configurable software, performance prediction is also used. However, there
are certain differences with our work. First of all, researchers utilize performance prediction as
an intermediate step in the overall performance optimization process in order to assess what is the
most promising region of a configuration space to look for more performance-optimal configurations.
Secondly, researchers use different regression models for performance prediction: Gaussian process,
projected process, and random forest models.

( , ) performed a comprehensive study of methods for configurable algo-
rithms runtime prediction. The authors propose new methods for performance prediction based on
random forests and approximate Gaussian processes. Moreover, the authors show how methods of
survival analysis can be used for improving random forest technique to better handle incomplete
performance measurements. With respect to the actual domain of algorithms which performance
is predicted, the authors investigated satisfiability (SAT), travelling salesperson (T'SP) and mixed
integer programming (MIP) problems and inferred new probing and timing features for them. Fi-
nally, the authors present a comprehensive evaluation of different performance prediction methods
including ridge regression and it’s variants, neural networks, regression trees, Gaussian processes
and random forests.

2.1.3 Performance prediction in AI domain

We continue our review by analyzing how performance prediction is applied in the domain of
artificial intelligence problems. Research in Al domain, that we found to be the most similar to our
own work, mostly concentrates on performance prediction of general-purpose Al planners in order
to find the most efficient strategy for a particular AI problem solving or in order to come up with
a more efficient general-purpose Al planner.

( ) propose a novel approach based on dynamic programming that
combines fixed-time and online monitoring approaches in order to come up with a balanced planning

11



strategy for Al problem solving. The main focus of the paper is anytime algorithms, that have
the ability to provide valid solutions at any time of their execution process, while providing the
better solution the more time has passed since the start of the execution. This key ability of
anytime algorithms allows practitioners to perform tradeoffs between the algorithm’s execution
time and the provided solution quality, but also requires an effort to predict when the solution
quality is acceptable and the execution can be stopped. Problems in Al domain do not always
exhibit determinism about the solution quality escalation speed and whether the time constraints
will change after the start of the algorithm execution, which makes it impossible to use a classical
fixed-time approach for determining total allowed algorithm running time. An alternative approach
to select the most optimal execution time for an anytime algorithm is online monitoring of the
algorithm’s execution process, which allows higher agility and precision when working with tradeoffs,
but requires a lot of additional continuous effort to perform the monitoring such as: (1) evaluating
the already calculated solution, (2) assessing the probability of solution improvement, and (3)
deciding whether to proceed with the process of solution improvement. In order to address the
problem of high resource consumption by the online monitoring approach, researchers propose a
new methodology that not only allows to find the most optimal time periods at which to monitor
a running algorithm and to decide whether to continue it’s execution or not, but also allows to
answer: (1) how to select between the classical fixed runtime strategy and the online monitoring
strategy depending on the performance variance of a studied algorithm, (2) how the monitoring
periodicity should be correlated with the performance variance, and (3) how should the monitoring
periodicity change with reaching an estimated end of runtime? Researchers address these targets by
utilizing a dynamic programming approach in order to find not only the most optimal termination
time, but also to decide whether to perform the monitoring itself, what allows to come up with
a balanced monitoring strategy. Moreover, the proposed dynamic programming approach allows
to assess tradeoffs between competing metrics, such as, monitoring cost and accuracy of solution
quality estimation.

( ) performed a comprehensive comparative study of general purpose Al planners
which resulted in the development of a meta-planner BUS that provides better performance than
any single planner through analysis and coordination of several planners. The goal of Al planning
research is to implement the overall best-performing general purpose Al planner, however so far not
a single planner has demonstrated a complete dominance not in the number and types of problems
solved nor in solving time. Nevertheless, no comprehensive study had been performed on a wide
range of heterogeneous planning problems and at least several planners in order to verify this ‘no sil-
ver bullet’” theory. Researchers tried to fill this gap by performing a systematical and comprehensive
comparison of six open-source planners on more than 200 different benchmark planning problems.
Empirical results of the study confirmed all major hypotheses that the authors proposed: (1) no
single planner was able to demonstrate the best results for each and every benchmarking problem,
(2) running time of planners depended on success of a particular planner when solving a given
problem, since success and failure times vary greatly, and (3) overall performance of all planners
highly depends on extractable features of a given planning problem and it’s domain. Based on
these observations, researchers developed a meta-planner called BUS that utilizes all six studied
planners in order to achieve higher performance than any single one of them. In order to solve a
given problem, BUS needs to decide in which order to try available planners on the problem. To
do that, BUS builds two linear regression models for each planner based on empirical historical
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data: one for predicting planner’s running time and another for predicting whether a run will be
successful. Based on these two linear models, BUS sets sequential execution order of all planners
to increase probability of fast and successful solution to the given planning problem. Finally, BUS
applies all solvers one-by-one until one of them successfully solves the problem or the time given
to a particular solver elapses. Empirical evaluation showed that BUS completed more problems
from the benchmark set than any other individual planner, while demonstrating smaller average
runtimes than individual planners.

( ) continued the work of ( ) by performing a new study of
planners in order to answer the following main questions: (1) whether it is possible to train high-
quality planners’ performance models using automatic machine learning methods, and (2) whether
it is possible to use a trained performance model to enhance understanding of the respective plan-
ner and to even more improve it’s performance. This new study is a comprehensive comparative
research of general purpose Al planners and their performance that significantly enhances previous
research and covers 28 different planners tested over 4726 various benchmarking planning problems.
Authors demonstrate that it is possible to train highly accurate models of planners’ probability of
success and planners’ running time based on historical data of solved planning problems, containing
success rates and runtimes along with automatically extracted 32 feature values that characterize a
problem and it’s domain. For building success and runtime models, researchers tried and evaluated
many different algorithms from the open-source data analysis software called WEKA: alternat-

ing decision tree (ADTree, see , ), decision table majority classifier (DF,
see , ), Gaussian processes (GP, see , ), nearest-neighbour classifier with
normalized Euclidean distance (IB1, see , ), C4.5 decision tree (J48, see ,

), propositional rule learner RIPPER (JRip, see , ), instance-based classifier with
entropic distance measure K* (see , ), classification trees with leaves formed

by logistic regression function, also called ‘logistic model trees’ (LMT, see , ;
, ), multinomial logistic regression with ridge estimator (Log, see

, ), multi-layer perceptron (MLP), and nearest-neighbor with non-nested gen-
eralized exemplars (NNge, see , ; , ). The authors perform a thorough evaluation
and comparison of aforementioned machine learning models and highlight the ones that achieved
the best results overall. The researchers propose a novel architecture for combining single planners
into a structured portfolio in order to achieve a higher overall performance than any individual
planner, by applying algorithm ranking and algorithm allocation techniques in order to improve
scheduling of different planners and maximize overall efficiency of a portfolio. Through evaluation
the researchers demonstrate that a correctly designed portfolio outperforms any individual general
purpose planner. Finally, the authors discuss perspectives of how the performed comprehensive
study can help to much deeper understand planners’ performance nature and improve it’s analysis
and prediction.

The aforementioned research ( ; : , ) also focuses on runtime
performance prediction of software systems, nevertheless, this research has several major differences
with our work. First of all, the researchers specifically focus on the domain of general purpose Al
planners, while we concentrate on general purpose software, thus trying to cover a larger user
base. Secondly, the researchers perform a systematical comparison of a wide variety of different
classification and regression models in order to engineer a novel scheduler of planners that on
average outperforms any individual planner. On the contrary, we mostly concentrate on building
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and transferring performance prediction models in the most practical and data-efficient way possible.

2.1.4 Performance prediction in supercomputing domain

So far we have discussed software systems that are executed on general-purpose computing hardware.
In the current subsection we focus on high-performance supercomputing hardware platforms and
corresponding software systems.

( ) perform a comprehensive exploratory analysis and performance prediction of
multiple configurable software systems across several hardware platforms. The researchers selected
two configurable and highly parallel software systems: Semicoarsening Multigrid Algorithm (

, ) and High-Performance Linpack Benchmark ( , ); and three high-
performance hardware platforms: BlueGene/L ( , ), ALC ( , ), and
MCR ( , ). To get an insight of the selected systems’ configuration spaces,
the researchers use different machine learning techniques: (1) hierarchical clustering, for filtering out
unnecessary features, (2) association analysis, to test existence of a particular feature-performance
relation, and (3) correlation analysis to evaluate this relation. For building performance prediction
models, the researchers utilize restricted cubic splines ( , ) and multi-
layered fully-connected feedforward artificial neural networks ( , ). This work shares a
lot of similarities with ours. The researchers also utilize model-based machine learning techniques
for predicting runtime performance of configurable software systems. The main difference with
our work is that researchers concentrate on highly parallel configurable software systems for super-
computing hardware platforms, while we focus on classical general purpose configurable software
applications for general purpose computing hardware. Moreover, the researchers utilize different
regression models, splines and artificial neural networks, other than regression trees.

2.2 Cross-platform performance prediction

The performance engineering community has already provided a large body of research dedicated to
cross-platform prediction of software systems. The researchers utilize different methods and tech-
niques to acquire necessary data and implement the performance prediction process. In the current
section we highlight work which is the most related to our method of transferring performance
prediction models of configurable software systems across heterogeneous hardware environments.

( , ) performed a comprehensive study in order to implement and evaluate high-
level libraries that are portable across a wide variety of highly parallel computers, like scalable
multiprocessor systems or computer networks, while keeping near-optimal performance across these
systems. High variability of different costs, such as communication and throughput, leads to a prob-
lem that there is no single data layout or algorithm that is always the most optimal for any parallel
hardware platform. In order to address this problem, the researchers employ high-level libraries
that contain a set of several coordinated parameterized implementations, what increases the proba-
bility of efficient operation across heterogeneous hardware platforms. Each library implementation
has an associated linear model that is used to predict it’s running time on a particular platform
with respect to given parameters, such as problem size. This allows to automatically acquire the
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best implementation and parameter configuration for a specified hardware platform and workload.
The researchers implemented two high-level libraries to evaluate the proposed approach: a library
for solving partial differential equations and another library for selecting the most optimal sort-
ing algorithm for a particular hardware platform. The researchers evaluate the proposed approach

using four different highly parallel systems: CM-5 ( : ), Intel Paragon (
, ), MIT Alewife’s simulator ( , ), and the FORE
ATM-based network of workstations ( , ). Empirical results demonstrate that

the proposed approach selected the best implementation in more than 99% of cases on all studied
platforms. Although the researchers also deal with cross-platform performance prediction of con-
figurable software systems, their whole work and approach is completely different from ours. First
of all, the researchers focus not on general-purpose computing hardware, but on highly parallel
multiprocessor or distributed computing systems. Secondly, since the researchers work with highly
specialized hardware, naturally they need corresponding software systems for their case studies.
Because of that, the researchers did not just select, but completely implemented two high-level li-
braries with multiple internal parameterized implementations. This is completely different from our
approach of selecting general purpose software systems in order to cover a larger user base. Finally,
the researchers use cross-platform performance assessment not to transfer machine-learning-based
performance prediction models, but to select the best-fitting internal implementation for a particular
hardware platform.

( ) proposed an approach for performance prediction of a given software appli-
cation on a set of hardware platforms, to find out which platform provides the best performance for
the given application. The authors use a set of special applications, called a benchmark suite, that
have their microarchitecture-independent characteristics collected and performance values measured
across all studied hardware platforms. Using this analyzed benchmark suite, the authors build a
data transformation matrix that is used to transform applications into points in so-called benchmark
space using their microarchitecture-independent characteristics. The benchmark space is populated
by applications from the benchmark suite and by the target application for which performance
needs to be predicted. Finally, the performance prediction of the target application is carried out
by taking a weighted average of the performance values of neighbouring applications, called proxies,
in the benchmark space. Although the researchers also deal with performance prediction of soft-
ware systems across different hardware platforms, this research is completely different from our own
work. First of all, the researchers do not analyze different configurations of the studied software
systems, what significantly simplifies the overall performance prediction process. Secondly, the pro-
posed approach relies on extensive upfront measurements of platform-independent characteristics
and performance values of multiple benchmark-applications over various hardware environments.
On the contrary, our methodology tries to be as data-efficient as possible and doesn’t require mea-
surements of additional benchmark-applications. Finally, as stated by the researchers themselves,
if a studied software system doesn’t have any neighbours in the benchmark-space, accurate perfor-
mance prediction might not be possible, since there would be no neighbouring performance values
to average upon, while our approach doesn’t have such restrictions.

( ,b) proposed an approach for performance modelling of complex popu-
lar applications such as Microsoft’s Office suite and Visual Studio. All explored applications were
specifically instrumented to export their current state as well as all necessary performance relevant
metrics. Moreover, all explored applications were deployed on multiple machines, thus allowing
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them to monitor how each particular application with different configurations behaves in various
hardware platforms. To predict performance of a system on a particular hardware platform, the
authors (1) select configuration options (both software and hardware) that influences a chosen
performance metric the most, (2) use similarity search to select hardware platforms with similar
hardware configuration, (3) return a distribution of possible performance metric values from a num-
ber of similar configurations as the result. Although the researchers also work on the problem of
performance prediction of configurable software systems across heterogeneous hardware environ-
ments, they approach this problem in a completely different fashion. First of all, the proposed
approach requires a thorough instrumentation of the studied software system in order to collect
performance information for different software configurations and states, which requires additional
development effort and some knowledge about an application’s structure, what makes this approach
not entirely black-box. Secondly, as stated by the researchers themselves, the proposed approach
requires (1) an expensive hardware infrastructure with a cost ranging from several thousands to
more than a hundred thousands of dollars and (2) a team of tens of maintainers to support this in-
frastructure. In general, the proposed approach tries to collect an exhaustive amount of data about
the studied applications including their different configurations and states on a maximum amount
of hardware platforms, while relying on a thorough instrumentation, hardware infrastructure, main-
tenance team, and extensive funding. On the contrary, our approach is black-box, minimalistic,
and doesn’t require additional infrastructure, team or funding.

( ) perform a thorough exploratory analysis of the problem of transfer
learning for performance prediction of configurable software systems across different environmen-
tal conditions, such as heterogeneous hardware, varying workload, and differing software versions.
The authors aim not only to perform an actual transfer learning, but to understand why does the
proposed approach work in principle and in which circumstances does it work. The researchers
formulate four major research questions for their work, and several hypotheses for each question in
order to develop it. First of all, the researchers try to analyze how does the performance behavior
of the studied systems change across different hardware environments. By using Pearson linear cor-
relation ( , ), the authors demonstrate that it is possible to apply linear transformation
between two hardware environments in order to transfer performance models when there are only
minor hardware differences between these environments. By using Kullback-Leibler (KL) diver-
gence ( , ), the authors show that a software system, deployed on hardware
environments with very strong differences, might have very similar distributions on these environ-
ments, what doesn’t guarantee a possibility of a linear transformation between these environments,
but might indicate that a more complex non-linear transformation is applicable. By comparing
the 10th percentile of top and bottom configurations by performance on different hardware envi-
ronments, the authors demonstrate that configurations generally retain their relative performance
positions across varying hardware. Secondly, the researchers try to analyze whether configuration
features of studied software systems retain their performance influence across different hardware
environments. By using a paired t-test ( , ), the authors show that only a subset of con-
figurable features has any impact on the system performance and this impact is generally preserved
across different hardware. By using regression trees ( , ), the authors demonstrate that
the relative strength of influence of configuration features on system performance generally remains
the same across varying hardware. Thirdly, the researchers try to analyze if performance-relevant
feature interactions are retained by configurable software systems across different hardware. By
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using step-wise linear regression models ( , ), the authors demonstrate that al-
though the majority of feature interactions remain across different hardware and retain their impact
on performance, only very few feature interactions actually have any effect on a system performance
in the first place. Fourthly, the researchers try to analyze whether configurations that do not lead
to a successful execution of a benchmark, and are in fact invalid, stay invalid across different
hardware. By calculating a percentage of identical configurations that are invalid across hardware
environments, the authors demonstrate that such configurations are common and generally preserve
their status across platforms. By using multinomial logistic regression ( , ), the authors
show that it is possible to train a model to predict whether a particular configuration is valid or not
and transfer this knowledge across different hardware, which allows to exclude whole regions of the
configuration space from analysis. This work is similar to ours in many ways. We also demonstrate
that: (1) it is possible to employ linear transformation to transfer performance prediction models
across different hardware, (2) by visualizing structure of regression trees across hardware platforms,
that only a subset of configurable features influence performance on all platforms. Moreover, our
work ( : ) was published earlier and is cited by ( ). However, the
researchers perform a more comprehensive analysis in many ways: (1) by performing cross-platform
performance distribution analysis, (2) by comparing relative performance of configurations and rel-
ative performance influence of features across hardware, (3) by analyzing performance influence and
consistency of feature interactions across platforms, (4) and by cross-platform analysis of invalid
configurations.

( ) propose a new approach for improving performance prediction of highly
configurable systems in a self-adaptation context. The researchers investigate the configuration
space of a studied system at a lower cost, by examining not the actual system itself, but a proxy of
the system, e.g., a simulator of a robotic device. Then, it is possible to approximate the relationship
between the proxy and the system by utilizing a regression model based on a small sample taken
from the actual system. Moreover, the researchers introduce a cost model that takes into account
not only the model accuracy, but also the measurement effort needed to acquire necessary learning
data. Thus, a practitioner can select a Pareto-optimal learning strategy, based on the available
measurement budget and required accuracy. Although the researchers also deal with transferring
performance prediction knowledge, they do it in a completely different fashion from ours. First of all,
the researchers transfer knowledge between a simulator, running on a general-purpose hardware, and
an actual hardware robotic system, while we transfer performance prediction models across general-
purpose hardware and cloud-based hardware systems. Secondly, the researchers utilize Gaussian
processes ( , ) for both performance prediction and performance transferring models,
while we use regression trees ( ) and linear models instead.

2.3 Summary

Finally, after analyzing the most relevant work one by one, we summarize our analysis and high-
light the most important differences with our work. We group these differences by several major
topics: (1) hardware environments used for deploying configurable software, (2) studied configurable
software systems, (3) sampling techniques used for investigating a software systems’ configuration
spaces, (4) a metric used for measuring system performance, (5) prediction models used for assess-
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ing a software systems’ performance, and (6) transferring models used for transferring performance
knowledge across different hardware environments.

We specifically selected general purpose computing hardware, based on Intel or AMD central
processing units, for our case studies, in order to make our methodology reproducible, compatible
with a wide variety of software, and thus automatically applicable to a large user base. Nevertheless,
a large body of related research is dedicated to platforms from highly parallel and supercomputing

domains: BlueGene/L, ALC, MCR (used in , ), CM-5, Intel Paragon, MIT Alewife’s
simulator, FORE ATM-based network of workstations (used in , , ). Moreover,
some studies are devoted to robotic hardware systems, such as work by ( ).

As for software itself, we again focus on general-purpose configurable software systems that can
perform on Intel and AMD based hardware, and have a large user base, thus making our approach
more reproducible and practical. However, a large amount of related work analyze highly specialized
software such as: Al planners (see , : , ), different kinds of SAT
solvers (SAPS, SPEAR, see , ), various kinds of MIP solvers (CPLEX, see

: ), SPEC CPU2000 benchmarks (see , ), local search algorithms (CMA-
ES, see , ), or even specifically implemented custom software for solving complex
engineering and scientific problems on highly parallel supercomputing hardware (see , ,

). Moreover, some research, like ( , ), doesn’t consider different system config-
urations, which substantially simplifies the performance prediction problem.

We try to make our methodology as practical as possible, because of that we assume that a
practitioner might not have any kind of control over a sampling process and might be restricted to
previously measured data only. Therefore, we use pseudo-random sampling to sample configuration
spaces of studied software systems, in order to mimic this worst-case practical scenario. However,
the related work does not generally have this assumption and the researchers use a variety of
different techniques to sample the configuration spaces of systems, such as: exhaustive feature-wise,
pair-wise, and triple-wise sampling heuristics (used in , ), random breakdown,
adaptive random breakdown, and adaptive equidistant breakdown algorithms (used in

, ), or generally assume full control by a practitioner of the sampling process (
, ). Moreover, some studies require comprehensive measurements of microarchitecture-
independent characteristics across a collection of hardware platforms in advance ( , ).

We use a total running time to complete a specified benchmark as a metric to assess performance
of a given configurable software system. We chose this metric since we consider it to be more
practically useful, intuitive, and easy-to-implement than other metrics used in the related work
such as immediate CPU execution demand ( : ).

We use regression trees ( , ) as a model for capturing relations between system
configurations and system’s performance metric values, as well as a model for capturing relations
between metric values across different hardware environments. We chose regression tree since: (1)
it can build non-trivial regression models based on a tiny amount of data (at least two non-identical
observations) what is crucial for our research, since we want our methodology to work based on
small training samples, (2) it has a small training time even on large datasets, (3) it has an intuitive
binary tree structure that can be easily visualized and understood by a practitioner, (4) it can be
easily transformed to a set of simple rules and reimplemented in any other programming language
or modelling system, and finally (5) it can successfully capture complex feature interactions that
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might lead to unexpected system performance anomalies. All these qualities make regression tree a
perfect model for our methodology that tries to be minimalistic and practical. However, related work
generally uses different regression models, since their premises and requirements are usually different.
Nevertheless, we plan to investigate the applicability of these models to our problem in future work:

alternating decision tree (ADTree, used in , ), bagging of regression trees (used in
, ), C4.5 decision tree (J48, used in , ), Gaussian Processes (GP,

used in , , : , ; , : ,

), Fourier analysis ( , , ), logistic model trees (LMT, used in

, ), multilayered fully-connected feedforward artificial neural networks (used in ,

), multilayer perceptron (MLP, used in , ), multinomial logistic regression with
ridge estimator (Log, used in , ), multivariate adaptive regression splines (MARS,
used in , : , ), projected process (used in

, ), random forest (used in , : , ), restricted cubic
splines (used in , ), ridge regression (used in , ), and support vector
regression (SVR, used in : ).

We also use linear transformation as a model for transferring performance prediction knowledge
across different hardware environments. We use linear regression because: (1) as well as a regression
tree, a linear regression can build non-trivial models based on at least two measured configurations
with different performance values, what allows to build and transfer a performance prediction
model across two hardware environments by using only four non-identical measurements in total
(two measured configurations on a source hardware platform to build a non-trivial regression tree
and two more measurements of the same configurations on a target hardware platform to build
a linear transformation model), (2) it also performs very fast on a massive amout of data, (3)
it is one of the most studied and intuitive models and can be easily visualized by a practitioner
in order to gain a better understanding of the transferring process. All these properties make
linear transformation a perfect model for our minimalistic and practical approach. Nevertheless,
other researchers use different regression models and techniques to perform knowledge transfer
across hardware platforms like: Gaussian processes (used in , ), and custom
transferring techniques that require either extensive instrumentation of a studied software system,
additional hardware infrastructure, and maintenance team, ( , ,b), or extensive
upfront performance measurements of multiple benchmark software instrances across a variety of
hardware platforms ( , ). In our future work, we also plan to try the Gaussian
processes model ( , ), since it has demonstrated good results for the performance
knowledge transferring problem, and MARS ( , ), since we believe that regression
splines might provide a very good fit for our transferring data.

We try to make our approach for transferring performance prediction models and Pareto frontiers
of optimal configurations across heterogeneous hardware platforms as practical as possible, what
affects each and every aspect of the proposed methodology. We performed our experiments using
generally available hardware platforms and open-source configurable software systems. We used
pseudo-random sampling for software configuration space exploration in order to imitate a scenario,
when a practitioner doesn’t have any control over the sampling process and must rely on previously
collected data only. We use regression trees and linear regression as our prediction and transferring
models respectively, because of their ability to work with a minimal amount of data, simplicity
of visualization, and understandability by a practitioner. Moreover, our approach is completely
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black-box and doesn’t rely in any way on the knowledge about internal structure of the studied
configurable software systems. We are not aware of any other work that combines all these properties
for the problem of building and transferring of performance prediction models and Pareto frontiers.
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Chapter 3

Transferring Prediction Models

Many software systems provide configuration options. These configuration options usually have
a direct influence on the functional behavior of the target software systems. Some configuration
options may impact systems’ non-functional properties, such as response time, memory consumption
and throughput. Configuration options that are relevant to users are usually called features (

) ), and a particular selection of features defines a system configuration.

Performance prediction of configurable software systems is a highly-researched topic (see Chap-
ter 2 for details). For example, ( ) predicted a system configuration’s performance
by using regression trees based on small random samples of measured configurations. However,
the majority of the previous related work analyzed studied configurable software systems based
on measurements from a single hardware environment only and didn’t analyze whether or not it is
possible to transfer performance prediction models for configurable software systems across different
hardware platforms.

The need for transferring performance prediction models occurs in many application scenarios.
For example, a user of a software system performs a thorough performance benchmarking of the
system and builds a performance prediction model for it. However, the prediction model is built
only for the particular benchmarked machine. The performance prediction process on a different
machine may not be able to directly reuse previous benchmarking results and prediction models.
Modern Software as a Service (SaaS), Platform as a Service (PaaS) and other cloud-based industries
face similar challenges. Based on historical performance data collected for their software on one
cluster, users want to know how to tune the performance of their software systems for a new cluster
with a different hardware, or how to select the best hardware platform with which to build their
cluster.

In the current chapter we investigate the problem of performance prediction model transfer
across different hardware environments. We make the following contributions:

e We propose an approach for transferring performance models of configurable software systems
across platforms with different hardware settings. This approach (1) builds a performance
prediction model based on a small random sample of configurations measured on one hardware
platform and (2) transfers this model using linear transformation to other hardware platforms.
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e We implement the proposed approach and demonstrate its generality using three real-world
configurable software systems. Our empirical results show that for the majority of model
transfers our approach achieves a high prediction accuracy (less than 10% mean relative
error). We also observe a decreasing trend of mean relative error with the increase of the
training data for the performance prediction model and for the linear transformation model.

e We carry out a thorough exploratory analysis to understand why our approach works. We
compare performance distributions and structure of performance prediction models across
different hardware platforms and show that the more similar distributions and prediction
models across different platforms, the better transfer results are. Moreover, we carry out a
comparative analysis of our methodology for different configurable systems and assess the
time costs of our method.

Source code and data to reproduce our experiments in the current chapter are available online
at https://bitbucket.org/valovp /icpe2017.

3.1 Motivating Example and Notation

Our objective is to enable the transfer of performance prediction results from one hardware plat-
form to another. Consider purchasing a new hardware platform to encode large amounts of video
using x264, which is a configurable application for encoding video streams in the H.264/MPEG-4
AVC compression format. Media encoding programs such as x264 usually have a large number of
configurable features; tuning them has a significant impact on the quality of the video output and
on the time necessary to encode it. In our example, we have measurements for 11 different config-
uration features, each with 2 individual settings. Obtaining these performance measurements with
a video that takes a modest 15 minutes to encode requires 1536 hours of execution time. Rather
than exhaustively measuring the same configurations on a new unstudied platform, it would be
better to reuse performance data from previous tuning experiments to predict the performance of
configurations on this new platform.

To formalize the problem of performance prediction, we represent features of a configurable
software system as a set of binary decision variables F = { fi, fay .o fo}, where f; represents a
particular variable and Ny represents the total number of features of the configurable software
system. Each configuration ¢ of the system is a set of value assignments to Ny variables f;. We
denote the set of all valid configurations of the system by C. Table 3.1 represents a sample of 10
configurations along with their measured performance values. Each row of the Table 3.1 represents
a particular configuration of x264, while each column represents a particular feature of the system.

We define the performance of a system as the total time required to execute a particular system
benchmark. Performance of each configuration is expected to differ in a heterogeneous collection
of machines that we denote by M = {my, ma, ..., my,, }, where m; represents a particular machine
or hardware platform and N,, represents the total number of machines in the collection. Each
valid configuration, c, of the software system has an actual performance value, ac ,,;, on a machine
m;, a set of configurations, C, has a set of actual performance values, Ac,,,, on machine m;. We
define training machine, my,,, as a machine that is used to build performance prediction models
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for a given configurable software system (e.g., x264). In a practical setting, the training machine is
one on which a particular software system is already well-studied and historical performance data
for the system is acquired. We define target machine, my,, as a machine to which performance
prediction models must be transferred.

For example, we acquire a small random sample of configurations, Cg C C, along with their
actual performance values, Ag,,,,.. C Acm,., together forming sample, S, , on our training
machine my,,,. Our goal is to predict the performance of all other configurations, C\ Cg, on machine
My based on this small random sample S,,,,. , and subsequently to predict the performance of the
whole set of valid configurations C on all other machines in the collection M.

Table 3.1: Sample of 11 randomly-selected configurations of x264 system, along with their actual
performance measurements on Machine Ne75

Conf. Features Perf. (s)
ci fi fo s fa fs Jo fr o fs fo Jio Ju1 Gcims
Ci o o 1 1 1 O 1 O 0 O 1 52.01
Co o 1 0 1 1 1T O O 1 O 0 24.09
C3 1 0 0 0 1 1 0 0 0 O 1 58.13
(o 110 1 1 0 O 1 0 1 0 37.49
cs 0O 0 1 0 1 1 0 0 0 O 1 75.89
Cg 11 0 1 0 O O 1 O O 1 51.05
cr 11 1 0 O 1 O 0O 0 O 1 82.15
Cg 10 o0 1 1 1 0 0 0 0 1 41.40
Cy 1 0 0o 1 0 0 0 1 1 O 0 23.16
cpb 0 0 0O O 1 0 1 0 1 0 O 23.20
ci o o0 1 o0 1 0 1 0 1 0 0 28.95

3.2 Transferring Performance Prediction Models

The overall process of transferring performance prediction models across different hardware plat-
forms is sequential and can be separated into the following main steps: (1) training the performance
prediction model, (2) training the linear transfer model, and (3) transferring the prediction results.

3.2.1 Training the Performance Prediction Model

We used regression trees for building models of the performance effects of software features. We
selected regression trees as our method of model construction as they have been extensively used
for performance prediction of configurable software systems and demonstrated good results (

, ; , ,b; , ; , ). The resulting
prediction models can be graphically represented and readily understood by end users. Regression
trees proved effective for a thorough exploratory analysis for our model transferring problem (see
Section 3.3.5 for more detail).
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We need to choose a method for sampling training data to build regression trees. Previous studies
of feature performance modelling, ( ) and ( ), used small random
samples of measured configurations to build prediction models. The use of random sampling in
those works was motivated by the idea that in practice, available measured configurations of a
system might not follow any particular feature-coverage criteria and would be essentially random.
In our study we also use small random samples for prediction model building.

For the purpose of experiment reproducibility we provide datasets of measured configurations
for each studied software system (for more details see Section 3.3.1). However, measuring the entire
configuration space C of each software system under test was prohibitively expensive and couldn’t
be done in the time budget available (for more details see Section 3.3.1). Therefore, for each system
we measured only a subset of valid configurations C,,, C C.

To choose which configurations should be included in C,,, we used experimental design tech-
niques. Experimental design is an efficient procedure for obtaining experimental data that can be
analysed to produce valid results ( , ). Experimental design techniques can
maximize information obtained by a practitioner for a given experimentation budget. Selection of a
concrete design for a particular experiment depends on the goal of the experiment and the number
of variables involved.

In our study we use “screening” experimental designs, where the goal is to “screen out” or select
the main effects that influence the response variable (in our case system performance), such as
full factorial and fractional factorial experimental designs. This is achieved by selecting the most
“informative” configurations for a given system.

Full factorial design generates all possible combinations of all input variables, i.e., in our case
this design generates all possible configurations of a given software system. This design is suitable
only for systems with a small number of features, since it generates 2"/ configurations for Ny binary
features.

Fractional factorial design is more suitable for systems with a large number of features Ny.
This design selects only a fraction of configurations generated by a full factorial design, thus saving
experimentation effort. However, when using this design some information is inevitably lost, which
causes confounding or inability to capture some higher-order feature interactions. Resolution of
a fractional factorial design defines the level to which main effects or lower-order interactions are
confounded with higher-order interactions, i.e., how well we can assess or model main effects and
lower-order interactions. For example, fractional factorial design of resolution VI provides enough
information to estimate main effects and two-factor feature interactions unconfounded by four-factor
(or less) and three-factor (or less) interactions respectively, what is a very precise assessment.

Another question is how many configurations should we sample to build a precise performance
prediction model? ( ) used samples of sizes T'x Ny to evaluate different performance
prediction models, where 7" is a training coefficient which can take values in {1,...,5}, and Ny is
the number of features available in the configurable software system under test. It was demon-
strated ( , ) that measuring 3 x Ny random configurations permitted construction of
models with high performance prediction accuracy using regression trees for the majority of studied
systems. We use the same heuristic 7' x Ny, where T' = {3,4,5}. We found that this provides
sufficient coverage of the feature space for construction of accurate performance prediction models.
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We denote a regression tree model by a function RT trained using a small random sample
of configurations Cg of size T' x Ny and their actual performance values Ag,y,,,,, measured on a
training machine my,,, which predicts the performance value pc,,,,, on the machine my,, for a
specified configuration c:

RT<CS7 AS,mtrn7 C) = pcymtrn (31)

Next, we must select a metric for assessing the prediction accuracy of the trained prediction
model RT, and a validation method to prevent overfitting. We use mean relative error (MRE) as a
metric for evaluating prediction accuracy. Relative error (RE) is the relative difference between an
actual performance value a. and a predicted performance value p. for a particular configuration c:

RE(c) = 222 100% (3.2)

Mean relative error is the average of the relative errors calculated for each individual configu-
ration c; of a particular sample of configurations Cg,

MRE(Cyg) = Zis ]IjE(Cl) (3.3)

where N, is a total number of configurations in the sample Cg.

Finally, we must select a validation method. As mentioned previously, we use random samples
of configurations Cg of a fixed size T' x Ny. These configurations are sampled from the set of
measured configurations C,,,. Since the size of the training sample Cg is fixed, a natural model
validation strategy is holdout validation. This method separates all available data, C,p, into a
training set, Cg, and a testing set, C.,, \ Cs. We train a performance prediction model RT" using
the training set Cg, and assess prediction accuracy of the model using MRE over the testing set:
MRE(Cemp \ CS)

It is worth mentioning that in an industrial setting a different validation method might be
required, i.e., when the cost of performance measuring is extremely high and it is not desirable to
measure all 7'x Ny configurations upfront or simply to have an extra set of measured configurations
available. Practitioners could start with a very small training sample Cg and progressively train
their models until they are satisfied with its accuracy. An effective validation method for these low
sample sizes is leave-one-out cross-validation (LOOCYV). LOOCYV separates all available data Cg
into two sets: a testing set, consisting of only one configuration c;, and a training set, consisting of
all other configurations Cg \ ¢;. A prediction model RT is then trained using Cg \ ¢; and assessed
using relative error over re; = RE(c;). This process is repeated for all possible combinations of
training sets and testing sets. The overall accuracy of the prediction model RT for the sample Cg
can be assessed by averaging all individual relative errors: vazcl re;/Ne.

3.2.2 Training The Transfer Model

To reuse the previously generated performance prediction model built for my,., for performance
prediction on a target machine ny, a practitioner must train a transfer model. We use linear
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regression models as our transfer models since we found that they provide good approximations of
the transfer function (see Section 3.3.5 for more details).

The samples we use for linear models training should contain configurations that are measured
on both the my,,, and m,y hardware platforms. From the steps described in Section 3.2.1, we have
a training sample, Cg, of configurations measured on machine my,, of size 7" x Ny. Instead of
measuring a completely new sample of configurations on both my,, and m,, machines for training
the linear model, we can measure the same configurations from Cg on the target machine my,. In
this way, we acquire a training sample Cg of size T' x N; measured on both my,, and mg.

However, measuring all 7' x N configurations on the target machine m;, may be prohibitively
expensive. Instead, we measure only a subset of Cg on both machines Gy, C Cg. We populate
Cporn by selecting at least five configurations from Cg using Sobol sampling ( ,

) (see Section 3.3.6 for more details).

Using the sample Cp,, we can build a model to transfer performance prediction results from
My to myg. We use a simple linear regression model as a transfer model since it provides good
approximation of transfer functions between different machines in our case study (see Section 3.3.5
for more details). This linear model L, given a performance value pe ., for a configuration ¢ on
the machine my,,, can predict performance value pc ,,, of ¢ on the machine myg:

L(pC,mtrn) = + 6 X pcﬂntrn = pc,mtgt (34)

3.2.3 Transferring Prediction Results

In the previous steps we selected training and target machines (my,, and my, ), built a performance
prediction model RT based on a small sample Cg of configurations measured on my,,,, and built a
linear transfer model L based on a small subsample C;, C Cg of configurations measured on both
My, and myg machines. To transfer the prediction model RT' to myy we just need to transform the
predictions of RT using the linear transfer model L. For example, we have a configuration c that
is not measured neither on my,, nor on m, machines. To compute pe n,,, We can use the following
equations:

pcvmtrn = RT(CS’ Asymﬁ'n? C) (35)

Then we can use L to assess performance of ¢ on my:

pc,mtgt = L(pc,mtm) (36)

3.3 Evaluation

In order to evaluate our approach, we address the following research questions through a set of
experiments:
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RQ1 How accurate are the transferred performance models created using the process described in
Section 3.27 (Section 3.3.2)

RQ2 How does model accuracy vary between different configurable software systems? (Section 3.3.3)
RQ3 How fast is the process of transferring performance prediction models? (Section 3.3.4)
RQ4 Why does the proposed approach work or are the results accidental? (Section 3.3.5)

RQ5 What is an optimal way of building the linear transfer model? (Section 3.3.6)

3.3.1 Experimental Setup
Subject Systems

We measure the performance impact of several different features of 3 different software systems,
XZ ( : ), x264 ( : ), and SQLite ( : ). These systems
represent several common tasks performed by applications: compression of data, transformation of
media, and interaction with a database. XZ is a compression utility for UNIX-like operating systems
which uses LZMA2 compression. x264 is a library and utility for encoding video streams into the
H.264/MPEG-4 AVC compression format. SQLite is a library and application that implements a
file-oriented SQL database and is a popular choice for application file formats due to its flexibility.

Each feature that we varied was chosen either based on previous experiments in feature per-
formance regression ( , ), or system documentation and preliminary experiments.
For XZ, we measure performance effects from features, such as, varying the “extreme” parameter,
varying the “sparse output file” option and applying constraints on memory usage. For x264, we
measure performance effects from turning on and off different assembly optimizations, varying the
“frame-lookahead”, and varying partition search types. For SQLite, we measure performance effects
from varying the “synchronous” option, varying the journalling strategy, and varying the amount
of space available to mmap.

Subject Hardware Platforms

We carried out our system performance measurements on DataMill ( , ), a
distributed heterogeneous performance evaluation platform. Each machine of DataMill was setup
with identical software and executes Gentoo Linux (Kernel version 3.8.13). Only the DataMill
worker software, a kernel, boot manager, and logging daemon were installed on each machine on
top of the base set of Gentoo packages, resulting in a minimal set of software. Table 3.2 summarizes
hardware configurations of DataMill machines used for our experiments.

Although we did have an exclusive access to DataMill machines, we only had a limited time to
use DataMill itself since it is used by many research groups. Therefore we weren’t able to measure
each configurable system on the whole DataMill cluster, but only on a subset of machines. Table 3.2
shows which machines were used for measuring performance of different software systems.
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Table 3.2: Summary of hardware platforms on which configurable software systems were measured;
MID — Machine ID in DataMill cluster; NC — Number of CPUs; IS — Instruction set; CCR — CPU
clock rate (MHz); RAM — RAM memory size (MB)

Systems Machines
X7 x264 SQLite MID NC IS CCR RAM
v 73 2 i686 1733 1771
v v v 75 2 1686 3200 977
v 7 2 1686 2992 2024
v 78 1 1686 1495 755
v 79 4 x86.64 3291 7961
v 80 8 x86.64 3401 7907
v v 81 16 x86.64 2411 32193
v 87 1 1686 1595 249
v 88 1 1686 1700 978
v 90 2 i686 3200 977
v 91 1 i686 2400 1009
v v 97 2 i686 2992 873
v v 98 2 1686 2992 873
v 99 2 1686 2793 880
v 103 2 i686 3200 881
v 104 1 i686 1800 502
v v 105 2 i686 3200 881
v 106 2 1686 3192 494
v 125 4 x86.64 3301 7960
v 128 2 i686 2993 2024
v 130 2 i686 3198 880
v 146 2 i686 2998 872
v 157 36 x86.64 2301 15954

Due to constraints on experiment bandwidth on DataMill, and differing support for features on
certain platforms, some feature-configuration /hardware-platform combinations were not measured.
Moreover, not all experiment trials terminated correctly; thus only a subset of desired configura-
tions were measured across all machines. Table 3.3 provides a summary of available machines and
measured configurations for each configurable system. The scripts used to perform the experiment
trials are available on the DataMill website for the purposes of experiment reproduction.

Table 3.3: Summary of measured systems; N¢ — Number of features; NM — Number of machines
on which systems were measured; NMC — Number of measured configurations

System Ny NM NMC
X7 7 7 154
x264 7 11 165
SQLite 5 10 32
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Table 3.4: Mean Relative Error (%) of transferred performance models of XZ system, built using
different sampling sizes on training and target machines

Training Machines

Target Sall}pling Machine Ne75 Machine Ne78 Machine Ne80 Machine Ne81
Machines  Sizes

Sampling Sizes Sampling Sizes Sampling Sizes Sampling Sizes

3Ny 4Ny OB5Ny 3Ny 4Ny BNy 3Ny 4Ny SNy 3Ny 4Ny 5Ny
75 5 58 20 14 95 54 50 80 52 45 6.8 41 34
75 10 52 21 1.1 72 46 38 81 50 47 69 38 37
75 15 57 23 1.7 68 43 33 88 54 44 73 40 3.1
78 5 85 57 49 66 30 16 99 73 67 87 69 6.1
78 10 66 50 38 65 30 15 81 54 46 7.7 45 36
78 15 73 36 36 84 33 18 79 54 46 72 42 39
80 5 102 69 58 119 96 94 95 48 16 106 3.8 34
80 10 82 63 55 106 68 56 82 20 19 71 34 27
80 15 104 65 51 110 64 56 85 43 23 72 38 26
81 5 90 59 43 115 82 71 97 36 31 79 41 16
81 10 89 51 42 87 52 45 88 34 28 65 42 19
81 15 86 50 40 101 51 45 96 32 26 100 29 15

Measurements and Sampling

For each software system, we analyse the effect of choosing training and target machine pairs and
the effect of varying the size of the performance training sample Cg and the transfer training sample
Chotn, o1 model accuracy. The sample Cg varies in {3 x Ny, 4 x Ny, 5 x N;}, and the sample Cpyp,
varies in {5, 10, 15}.

As mentioned in Section 3.3.1, we measured each studied configurable system on multiple plat-
forms as shown in Table 3.2 and Table 3.3. However, due to space constraints for each system
we present results only for a subset of four different training and target machines. The data we
obtained from these machines is summarized in Tables 3.4, 3.6, and 3.8.

We examine each combination of the training machine my,,, target machine m4, and sampling

sizes for both |Cg| and |Cpepl, in a full-factorial experiment design ( , ; )

). For each configurable system we have 4 training machines, 4 target machines, 3 sizes of Cg,

and 3 sizes of Cpy,, which produces a total of 4 x 4 x 3 x 3 = 144 different test cases. To acquire the

mean prediction relative error for each test case, we follow the model transferring process described
in Section 3.2 for 100 different randomly sampled Cg and Cyy,.

3.3.2 Experiment on Prediction Accuracy

To answer RQ1, we present the results of our transferred performance prediction models across
different hardware platforms (Table 3.4, Table 3.6, Table 3.8). As we can see from the results, the
majority of training and target machine pairs have strong monotonically decreasing trends in their
mean relative error with the increase in training sample size from 3 x Ny to 5 x Ny. This follows
the intuition that more training data results in more accurate performance prediction models.
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Table 3.5: Mean Relative Error (%) of XZ system added by the transferring process

Training Machines

Target Sampling Machine Ne75 Machine Ne78 Machine Ne80 Machine Ne81
Machines  Sizes

Sampling Sizes Sampling Sizes Sampling Sizes Sampling Sizes
3Ny 4Ny OB5Ny 3Ny 4Ny 5Ny 3Ny 4Ny SNy 3Ny 4Ny 5Ny

75 ) 01 00 00 50 45 43 51 40 41 41 30 29
75 10 01 00 00 43 35 34 45 42 41 35 30 30
75 15 01 00 00 38 30 29 47 39 37 38 32 27
78 ) 50 43 41 01 00 00 66 61 62 57 54 53
78 10 41 33 29 00 00 00 44 42 38 37 32 29
78 15 3.7 27 26 01 00 00 45 39 38 37 30 29
80 ) 56 46 47 84 81 80 00 00 00 30 26 23
80 10 52 48 46 72 46 45 01 00 00 28 22 20
80 15 49 44 44 56 45 46 01 00 00 39 20 19
81 ) 51 36 36 72 75 70 36 27 26 01 00 00
81 10 51 43 38 46 38 38 33 23 22 01 00 00
81 15 46 33 34 44 39 38 31 24 21 01 00 00

Table 3.6: Mean Relative Error (%) of transferred performance models of SQLite system, built
using different sampling sizes on training and target machines

Training Machines

Target Sampling Machine Ne75  Machine Ne99  Machine Ne125 Machine Nel57
Machines Sizes

Sampling Sizes Sampling Sizes Sampling Sizes Sampling Sizes

3N; 4N; 5N; 3N; 4N; 5N; 3N; 4N; 5N; 3N; 4N; 5N;

75 5 0.7 05 04 07 06 06 14 13 13 28 26 26
75 10 08 05 04 07 06 06 13 12 12 26 26 24
75 15 0.7 05 04 07 06 06 13 12 11 26 25 24
99 ) 08 07 06 08 06 06 16 14 13 26 26 2.6
99 10 08 06 06 09 06 06 15 13 12 26 24 24
99 15 07 06 06 08 06 06 14 13 12 26 24 24
125 5 15 14 13 16 15 14 19 15 11 26 24 23
125 10 14 13 13 15 14 13 19 15 1.1 27 23 22
125 15 14 13 12 15 14 13 18 15 1.1 24 23 21
157 ) 3.7 35 35 35 34 33 32 29 27 44 41 36
157 10 34 32 32 32 31 30 30 27 25 42 40 37
157 15 33 32 32 31 30 29 30 27 25 43 39 35
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Table 3.7: Mean Relative Error (%) of SQLite system added by the transferring process

Training Machines

Target Sargpling Machine Ne75  Machine Ne99  Machine Ne125 Machine Ne157
Machines Sizes

Sampling Sizes Sampling Sizes Sampling Sizes Sampling Sizes

3N; 4N; 5N; 3N; 4N; 5N; 3N; 4N; 5N; 3N; 4N; 5N;

0] 5 00 00 00 06 05 04 11 11 10 26 25 25
0] 10 00 00 00 05 04 04 12 11 10 24 24 24
75 15 00 00 00 05 05 04 11 10 10 24 23 23
99 ) 06 06 05 00 00 00 13 12 11 26 25 24
99 10 06 05 05 01 00 00 11 11 1.0 24 23 22
99 15 06 05 05 00 00 00 1.2 10 09 22 21 21
125 5 13 11 11 14 14 13 00 00 00 23 21 20

125 10 1.2 12 11 13 13 13 00 00 00 21 20 1.9
125 15 1.3 12 11 14 12 12 00 00 00 22 21 20
157 ) 29 27 27 28 30 28 27 27 24 0.0 00 00
157 10 28 26 25 28 26 26 24 24 23 0.0 00 00
157 15 28 27 25 28 26 25 26 23 22 0.0 0.0 0.0

Table 3.8: Mean £ Standard Deviation [Mean Confidence Interval| of the relative error (%) of
transferred performance models of x264 system, built using different sampling sizes on training and
target machines

Training Machines

'l‘arget, San_lpling Machine Ne75 Machine Ne81 Machine Ne88 Machine Ne103
Machines Sizes

Sampling Sizes Sampling Sizes Sampling Sizes Sampling Sizes
3N 4Ny 5Ny 3N 4Ny 5Ny 3N ANy 5Ny 3Ny ANy 5Ny
75 5 5.3+£9.3 3.2+7.0 2.0+5.1 13.5+£10.2  13.1£9.7 13.0+9.3 5.4+9.4 3.5+6.3 2.4+4.6 5.248.4 3.5+6.3 2.4+4.1
[5.2, 5.5] 3.1, 3.4] 1.9,21] [13.3,13.6] [12.9,13.2] [12.8,13.1] [5.3, 5.5 [3.4, 3.6] [2.3, 2.4] [5.1, 5.4] [3.4, 3.6] [2.3, 2.5]
75 10 5.5+9.8 3.2£7.1 1.7+4.6 12.8£ 9.3  12.3£8.8 12.1+£8.8 5.0£8.5 3.2+6.0 2.3+4.8 4.7£8.2 3.1£5.8 2.1+£4.0
[5.3, 5.6] [3.1, 3.3] [1.7,1.8]  [12.6,12.9] [12.2,12.5] [12.0,12.3] [4.9, 5.1] [3.1, 3.3] [2.2, 2.4] [4.6, 4.9] [3.0, 3.2] [2.1, 2.2)
75 15 5.449.5 3.447.2 2.045.2 12.5+ 9.1 12.148.5 12.04+8.4 5.248.8 3.3+6.4 2.34+4.6 4.848.3 3.04+5.7 2.14+4.0
[5.2, 5.6] (3.2, 3.5] [1.9,2.1] [12.4,12.7) [12.0,12.2] [11.8,12.1] [5.0, 5.3] [3.2, 3.4] [2.3, 2.4] [4.7, 5.0] [3.0, 3.1] [2.0, 2.1]
31 5 14.3+£12.9 1324106  12.849.8 6.0£7.5 4.7£6.0 3.7+£5.3 13.7£11.7 1294101  12.7£10.0 13.6+11.2  12.74+9.9 12.3+9.2
(14.1,14.5) [13.0,13.4] [12.7,13.0)  [5.9,6.1] [4.6, 4.8] [3.6,3.8] [13.5,13.8] [12.7,13.0] [12.6,12.9] [13.4,13.8] [12.6,12.9] [12.2,12.5]
31 10 12.3+£10.1 1144+ 88  11.0+8.4 5.847.1 4.746.2 3.9454 121+ 9.6  11.4+87 11.0+£83 11.9+98  11.2488 10.74+8.2
[12.2,12.5) [11.3,11.5] [10.9,11.2] [5.7,5.9] [4.6, 4.8 [3.8,4.00 [11.9,12.2] [11.2,11.5] [10.9,11.2] [11.7,12.0] [11.0,11.3] [10.6, 10.9]
s1 15 11.7+£ 9.2  11.0+£89  10.6+8.1 6.3+7.7 4.746.1 3.945.5 12.2410.1  11.1+£85 108+ 79  11.6+ 9.1 10.848.0 10.6+8.0
(11.6,11.9] [10.9,11.1] [10.5,10.7) [6.1, 6.4] 4.6, 4.8] [3.8,4.00 [12.0,12.3] [10.9,11.2] [10.6,10.9] [11.5,11.7] [10.6, 10.9] [10.4,10.7]
58 5 4.7£7.9 3.3+5.8 2.3+4.2 13.7£10.1  12.8+9.8 12.4+8.9 5.3+ 9.2 3.8+8.6 2.2+5.6 5.8+8.2 3.9+5.8 3.0+£3.9
[4.6, 4.8] [3.2, 3.4] [2.2,24]  [136,13.9] [12.6,129] [12.2,125] [5.1,5.4] [3.6, 3.9] [2.1, 2.3] [5.6, 5.9] [3.8, 4.0] [2.9, 3.1]
8 10 5.049.0 3.04+5.7 2.244.2 123+ 9.0  12.14£9.1 11.84+8.6 5.8£10.1 3.547.3 2.045.2 5.248.1 3.745.8 2.844.2
[4.9, 5.2] 2.9, 3.1] [2.1,2.2]  [12.2,12.5] [11.9,12.2] [11.7,12.0]  [5.6, 6.0] [3.4, 3.7] [1.9, 2.1] [5.0, 5.3] [3.6, 3.7] [2.7,2.9]
38 15 5.04+8.6 3.346.3 2.244.4 122+ 89  11.748.6 11.7+8.4 5.4+ 9.9 3.547.2 2.145.3 5.148.1 3.445.3 2.7+4.0
4.8, 5.1] 3.2, 3.4] [21,23]  [121,124] [11.6,11.9] [11.6,11.8]  [5.3, 5.6] 3.3, 3.6] 2.0, 2.2] [5.0, 5.2] (3.3, 3.5] (2.7, 2.8]
103 5 5.649.2 3.646.2 2.6+4.4 14.4£11.0  13.4+9.8 13.2+9.4 6.0£8.5 4.5+6.8 3.1+4.1 5.9410.1 3.7+£74 2.1£5.0
: ’ [5.5, 5.7] [3.5, 3.7] [25,2.7  [14.3,14.6] [13.3,13.6] [13.1,13.4] [5.9,6.2] [4.4, 4.6] [3.1, 3.2] [5.7, 6.1] [3.6, 3.8] [2.1, 2.2)
103 10 5.349.1 3.346.3 2.244.1 13.2+£ 9.6  12.6+£9.0 12.849.2 5.949.2 3.845.9 3.14+4.5 6.24+10.6 3.246.6 2.14+4.9
[5.1, 5.4] [3.2, 3.4] [2.2,2.3]  [13.1,13.4] [12.5,12.8] [12.7,13.0] [5.8, 6.1] [3.7, 3.9] [3.0, 3.1] [6.0, 6.4] [3.1, 3.3] [2.0, 2.1]
103 15 5.34+8.9 3.346.0 2.34+4.3 13.44+11.3  12.8+9.2 12.448.8 5.649.0 4.046.5 2.94+4.8 5.8+ 9.6 3.246.9 2.445.7
[5.1, 5.4] 3.2, 3.4] [2.3,24]  [13.2,135] [12.6,12.9] [12.3,12.6] [5.5, 5.8 (3.9, 4.1] 2.9, 3.0] [5.6, 6.0] (3.1, 3.4] [2.3, 2.5]

We can also observe a sharp decrease in the mean relative error when the sampling size increases
from 5 to 15 configurations. This is expected, as again, more training data generally leads to better
model accuracy. However, this trend is not always monotonic and in some special cases doesn’t
hold at all. These observations agree with our analysis of learning curves of linear transformation
models performed in Section 3.3.6. From Figure 3.4 and Figure 3.5 we can see that even samples as
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Table 3.9: Mean + Standard Deviation of the time cost (ms) of building performance prediction and
transferring models of x264 system, using different sampling sizes on training and target machines

Training Machines

Target  Sampling Machine N75 Machine N81 Machine N°88 Machine X103
Machines  Sizes

Sampling Sizes Sampling Sizes Sampling Sizes Sampling Sizes
3Ny 4Ny 5Ny 3Ny 4Ny 5Ny 3Ny 4Ny 5Ny 3Ny 4Ny 5Ny
5 5 5.7+£0.9  54+£0.7 59+0.7 5.5+0.5 6.1+£0.5 6.3+£0.8 5.6+0.5 5.7£0.6 6.1+£0.5 6.5+0.5 6.4+1.1 6.7£0.6
5 10 6.0+£0.6  6.0£0.6 6.0£04 5.34£0.9 5.7+0.5 6.2+04 55+0.5 5.8+04 59407 58+0.6 6.4+£0.8 6.3£0.8
75 15 5.3+0.5 55+0.5 6.1£0.7 5.74+0.6 5.8+0.6 6.3+£0.6 55+0.7 5.8+0.6 5.5+0.5 5.8+09 6.5+£1.1 6.2£0.6
81 5 5.8+0.9 5.6+0.5 6.0£04 5.5+0.5 59+0.8 6.0+£0.6 55+0.7 6.1£0.3 59407 5.7+0.6 6.0£1.0 6.2£0.9
81 10 5.5+1.0 55+0.5 5.9+0.7 5.3+0.6 5.7+0.5 6.1+£0.7 59+0.7 6.0£0.8 5.8+04 59+0.5 7.0£0.8 6.1£0.5
81 15 6.2+0.7 6.1+0.8 6.1£0.7 5.44+0.7 58+04 6.0£0.9 5.6+0.5 59+0.3 59+£0.5 5.2+09 6.3+0.6 6.2+0.7
88 5 6.6+£0.5 5.8+0.6 58+0.6 5.940.5 5.8+0.6 58+04 55+£0.8 5.7£0.8 6.44+09 53+0.5 6.0£04 6.2£0.6
88 10 5.9+0.8 6.2+0.7 6.2+04 5.44+0.7 55+0.5 6.0£04 55+0.5 6.0£0.6 6.1£0.9 5.1+0.7 6.2£0.9 6.4+0.5
88 15 6.0£0.4 5.9+0.5 6.2+£1.0 54408 59+0.3 6.2+0.6 57£1.0 5.8+0.6 58+0.6 5.2+0.7 59+0.7 6.7+14
103 5 5.7+£0.6  5.9+0.7 6.0£0.6 5.5+0.5 6.0£0.4 55+0.7 58+04 5.7£0.5 6.0£04 54%+0.5 55+0.7 6.3£0.8
103 10 5.7+£0.8  5.6+0.7 6.3£0.6 5.7£0.8 6.0£0.0 6.2+1.0 55+0.5 5.8%0.6 6.3£0.8 5.2+09 58+0.7 6.5£0.9
103 15 5.6+0.7 59+0.5 6.2£0.6 5.8+0.7 5.7+0.5 6.4+09 5708 6.0£0.6 6.4+09 5.6+0.8 6.0£0.8 6.2£0.7

small as 5 configurations can provide very good approximations of the linear transfer model due to
the simplicity of linear models. However, when training with small sample sizes (in our experience,
on the interval [5,20]) the linear transfer model may get stuck in a local cost-minimum where the
generated model may be biased. This is the reason for the non-monotonically decreasing error we
observe in Tables 3.4, 3.6, and 3.8.

Table 3.8 shows not only mean values of the relative errors from our models, but also standard
deviations and confidence intervals at the 95% confidence level. From Table 3.8 we can see that
although our mean relative error is often small, the standard deviations we measure are relatively
large and can exceed the mean in absolute value. However, confidence intervals for the mean value,
calculated using bootstrapping ( , ; , ), are narrow and are almost
always less than or equal to 0.5% of the mean relative error.

The data obtained from our experiments C,,,, described in Section 3.2.1, is sufficient to cap-
ture feature interactions up to order three. However, we built prediction models RT using only
small samples Cg C C,,,. Therefore, although sample Cg may permit making a good approxi-
mation of its corresponding performance distribution, it is possible that our performance models,
RTy,RT, ..., RT,, simply cannot capture all feature interactions that are captured by C,,,. This
creates a situation where RT produces precise performance predictions for the majority of tested
configurations C,,, \ Cg (less that 1% relative error), but for some configurations, which contain
uncaptured feature interactions, RT can produce very inaccurate predictions (with more than 50%
relative error). This is why we see low mean relative errors, high standard deviations (because
of the small set of very large outliers), and very narrow confidence intervals (since it is hard for
bootstrapping to capture these outliers).

We can assess accuracy of transferred performance models from a slightly different perspective.
We can evaluate how much worse are transferred models compared to “native” models, generated
specifically for a target hardware platform. To achieve that, for each performance model trained
on My, and transferred to my,, we generate a “native” performance model using the same set of
configurations which were measured on my,. Then we calculate mean relative error of the native
model and subtract it from the mean relative error of the transferred model, thus assessing how much
we lose in accuracy when transferring a model from a different platform. Results of this assessment
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are presented in Table 3.5 and Table 3.7. One can notice that added mean relative error, when
transferring prediction models to the same machine, has a non-zero value. This is caused by the
fact that implementation of CART that we use in our study is not exactly deterministic and in some
special cases it might generate slightly different prediction models from the same training data. This
causes different predictions by these models and thus non-zero difference of mean relative prediction
error.

In summary, prediction accuracy generally improves with increasing sampling sizes on training
and target machines. However, the proposed approach relies on good sampling strategies for gen-
erating the training data Cg such that it captures important feature interactions. This may cause
problems in a practical setting where the training sample Cg might not follow any feature-coverage
criteria. We suggest using experimental design for generating samples of configurations for measure-
ment on target machines as they will maximize the amount of information available in the training
sample Cg.

3.3.3 Experiment on System Comparison

To answer RQ2 we compare Tables 3.6 and 3.8. As we can see from these tables the mean relative
errors for x264 are much higher than those of SQLite. The same process of performance model
transfer produces different prediction accuracy for different configurable systems. This is not unex-
pected as we can generally expect that different systems will have varying levels of predictability in
the performance effects of their features, and in the performance effects of the interactions between
features. In the case of x264, many features, such as the size of the window used for a filter, or the
number of passes used for encoding, have compounding effects with other features. Configurable
features of x264 have many complex interactions that can geometrically increase or decrease its
encoding performance. Furthermore, for special cases like video encoders, many chipsets include
on-board hardware decoding support, further complicating accurate prediction of feature perfor-
mance across different hardware platforms. On the other hand, simpler software systems like SQLite
have far fewer features and many that do not interact significantly, it is much simpler to predict as
a result.

3.3.4 Experiment on Time Cost

Toward answering RQ3, Table 3.9 shows the execution time of building both performance prediction
models RT and performance transfer models L for different training sample sizes |Cg| and |Cpop]-
We can see from this table that the amount of training time necessary for building both prediction
and transfer models is a small fraction of the time necessary to benchmark individual configura-
tions, let alone exhaustively exploring all feature setting combinations in C on even a modest sized
benchmark of a given software system. For comparison, Table 3.1 shows examples of the amount
of time necessary for benchmarking individual configurations of x264.
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3.3.5 Exploratory Analysis

Toward answering RQ4, we conduct a thorough analysis of our methodology. We investigate the
performance distributions of configurable systems deployed on multiple hardware platforms, com-
pare the structure of performance models trained on different hardware platforms, and show that
linear models are effective approximations for performance transfer models. Therefore we show that
the accuracy of our results is not accidental or a result of over-fit, and provide explanations of why
our approach works.

Analysis of Performance Distributions

Machine 75 = Machine 91 = Machine 103 = Machine 106
Machines = Machine 81 = Machine 97 = Machine 104 = Machine 128
= Machine 88 == Machine 98 == Machine 105

—_

a1

o
1

100 -

Measured performance value (s)

0 50 100 150
Configurations

Figure 3.1: Performance distributions of x264 deployed on different machines

To assess the feasibility of transferring performance models of systems between different hard-
ware platforms, we analyzed the similarity of their performance distributions. Studied systems have
many features, thus their feature spaces are highly multidimensional and difficult to represent in a
manner readily interpretable by the human eye. To visualise the performance distributions of our
systems, we take a sample of the configurations that we measure and sort them by the performance
of one of the benchmarked hardware platforms.

Figure 3.1 presents performance distributions of x264 deployed on different hardware platforms.
We can see that almost all distributions have very similar shapes, although different in absolute
values. Though it is only a cursory analysis of the similarity of the performance distributions of our
systems across machines, it does give us confidence that even simple polynomial transformations
between these distributions could give us good predictions between hardware platforms. There is a

34



[ Machine 103 [ Machine 104 I Machine 105 Il Machine 106
Machines [ Machine 128 [l Machine 75 [ Machine 81 [l Machine 88
¥ Machine 91 [ Machine 97 I Machine 98

Features

w

o

o
|

[\

o

o
1

100 -

Frequency of appearance

0_

Figure 3.2: Feature distributions of regression trees trained for performance prediction of x264 on
different machines

clear pattern indicating that configurations retain their relative performance profile across different
hardware platforms, i.e., configuration with low relative performance on one platform will have low
relative performance on another platform.

Comparison Analysis of Regression Trees

Regression trees are built by recursively partitioning training dataset into subsets using dataset
features. Therefore, features used for dataset partitioning play a major part in defining the structure
of a regression tree. Listing all features used in the nodes of a regression tree can be used as a metric
for comparing the structure of two different regression trees. Thus by using this metric we can assess
the similarity of two regression trees built for the same configurable system, but deployed on different
hardware platforms.

Following this logic, we built a feature distribution of regression trees trained for performance
prediction of a system deployed on different platforms. From Figure 3.2, we can see that the
distributions of features used by trees on different hardware platforms are very similar to each
other. From this we can conclude that the structure of the trees themselves are similar across the
different hardware platforms we use in our experiments. Therefore it should be possible for us to
train a regression tree for performance prediction of a configurable system on one platform and
reuse this tree, with small modifications, on another platform.
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Figure 3.3: Transformation between performance distributions of x264 system deployed on Machine
Ne'75 and Machine Ne88

Analysis of Distributions Transformations

To select a method for transferring prediction models across different platforms we investigated
transfer models between training and target machine distributions. We used visualizations of the
relationships between training and target machine performance distributions to guide the selection
of the models used for transfer. An example of the visualizations we used is shown in Figure 3.3.
The x-axis corresponds to a configuration’s performance on the training platform, while the y-axis
corresponds to that same configuration’s performance on the target platform.

By exploring several possible transfer models for all systems in our case study, we found that
a polynomial regression model provides a good approximations of the transfer function between
machines. To evaluate our hypothesis, we fitted three polynomial models to the transformation
data: 1%, 2°d and 3" degree polynomials. For all those software systems and hardware platforms
that we tested, we found that a 15* degree polynomial provides an excellent fit of our transformation
data, while 2"4 and 34 degree polynomials appear to cause overfitting and unnecessary complications
of the transfer model.

Summary
We believe that our proposed process of performance model transfer achieved high prediction accu-

racy as a result of several main factors. Firstly, the studied configurable systems have very similar
performance distributions when deployed on different hardware platforms. Secondly, the transfer
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function between these distributions is simple and can be easily approximated using a linear model.
Finally, the prediction models trained on the studied software systems have very similar structure
when built independently on different platforms. All of these factors together allowed us to use
simple and robust methods for performance prediction and model transfer, which resulted in high
accuracy achieved by our proposed approach.

3.3.6 Building Linear Transfer Models

Sampling: —— Pseudorandom —— Sobol — Stratified
8 -—
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Size of the training sample, size(Cyotn)

Figure 3.4: Learning curves of a linear transformation between performance distributions of x264
system on Machine Ne75 and Machine N°88

To answer RQ5 we performed a thorough analysis of transfer model building process and tried
to answer several important questions. (1) Is it possible to measure only a subset of Cg on both
machines Cy,y, C Cg and build a reliable linear transfer model? (2) Which sampling method to use
for Cpo, to achieve acceptable results faster? (3) Is it possible to figure out a minimum amount of
configurations to measure on both my,,, and m;, machines? (4) What is the amount of measured
configurations after which additional measurements are not necessary? Toward answering these
questions, we decided to analyse the learning curves of the linear transfer models.

We evaluated three different methods of sampling Cyp,,: Walker’s alias sampling ( , ),
stratified sampling ( , ) and Sobol sampling ( : ). Walker’s
alias sampling ( , ) is a random sampling method which is the default sampling strategy
in the R programming language. Walker’s alias sampling is an example of a classical pseudo-random
sampling method that generates new samples according to a specified probability distribution. Strat-
ified sampling ( : ) is a random sampling method that exhaustively divides a sampled
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Figure 3.5: Average learning curve of a linear transformation between performance distributions of
x264 system

population into mutually exclusive subsets of observations before performing actual sampling. This
allows to cover the sampled population more evenly, which in some cases significantly improves
representation of the whole population by a sample. Sobol sampling ( , )
is an example of a quasi-random sampling method. Sobol sampling is similar to pseudo-random
sampling, as it generates new samples with respect to a given probability distribution, however
quasi-random methods are specifically designed to cover a sampled population more uniformly than
pseudo random strategies.

To generate a linear transfer model between the performance distributions of machines my,.,, and
Mg, We build a training dataset using all available configurations C,,,. An example of this training
data and the resulting linear transfer model is shown in Figure 3.3.

The algorithm we used for building learning curves for linear transfer models is as follows:

1. Initialize Cpoy, by randomly sampling a configuration from C.,y.

2. Randomly sample another configuration from the set C.,) \ Cporr, and add it to the training
sample Cpyip.

3. Build a linear model L based on the sample Cy,,.

4. Assess how well L approximates the transformation by using mean squared error (MSE) over
the full set of configurations C.,,. '.

! Unfortunately, the proposed methodology represents a classical example of a data leakage, since sets Cposp, and
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5. If the set Ceyp \ Chotn is non-empty go to the Step 2. Otherwise, build the learning curve of
L by combining mean squared errors for different sizes of Cyyy,.

Figure 3.4 represents the learning curve of a linear model approximating the transfer function
between the performance distributions of Machine Ne75 and Machine Ne88 when running the x264
software system. Figure 3.5 shows the average learning curve of a linear transformation between
performance distributions of individual machines running the x264 software system.

We gained several key insights through analysis of our averaged learning curves for all studied
configurable software systems and learning curves for all combinations of training and target ma-
chines. Firstly, it is possible to measure only a small sample of configurations Cy,, C Cg to build a
reliable linear transformation between two performance distributions. Secondly, we noticed that for
all systems, the biggest improvement in the performance of our linear transfer models occurs when
size(Cporn) € [2,10]. However, when size(Cyon) > 20 practically no performance improvement
from additional samples is observed. As a result, we recommend that the size interval for training
linear transfer models be set to size(Cyyp,) € [10, 20].

3.3.7 Threats to Validity

To enhance internal validity, we implemented automated random sampling of configurations Cg on
training machines and Cyy, on target machines. As was mentioned in Section 3.3.1, Cg varies in
{3 X Nf,4 x N¢,5 x N¢}, and Cpoy, varies in {5,10,15}. For each combination of these sampling
sizes, Cg and C,y, were independently and randomly sampled ten times. Thus resulting mean
relative errors presented in Tables 3.4, 3.8, 3.6 are averaged over ten independent transferring
experiments. This allowed us to avoid bias caused by selecting training data for prediction and
transfer models.

An obvious threat to external validity is that the results are derived from experiments on a
limited number of software systems and a limited range of hardware. To reduce the threat we
benchmarked three configurable systems with different sizes, number of features and covering dif-
ferent application domains. All of the studied systems are used in real-world settings. When
benchmarking subject configurable systems we measured each configuration three times. Thus ac-
tual performance values in our study are averages over three independent measurements. This
allowed us to address possible measurement error in our experiment.

To further enhance external validity, we measured each system on multiple hardware platforms
with different number of CPUs, instruction sets, clock rates and memory sizes (see Table 3.2 for more
details). We performed transferring experiments for all possible pairs of machines with differing
hardware configurations and presented a subset of these experiments in Tables 3.4, 3.8, 3.6, 3.9.

However, we acknowledge that our experiments investigated a very limited set of software sys-
tems and hardware platforms and current results might not extrapolate very well to other hardware
and software. We suspect that our approach might not work when transferring performance predic-
tion model of a software system that is specifically designed for a particular hardware configuration.

Cezp overlap. We fixed this problem in the subsequent work and we used leave-one-out cross validation technique
for assessing property transferring models (see Section 4.2.3 for details)
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For example, some software systems might use hardware acceleration, like GPUs, for their tasks.
If such a system is deployed on a hardware that doesn’t have a dedicated GPU, it’s performance
distribution might appear completely distorted. Thus linear transformation might not provide a
good approximation of a transfer model. This hypothesis should be investigated in future work.

3.4 Summary

In the current chapter we proposed an approach for transferring performance prediction models
of configurable software systems across different hardware platforms. We performed a rigorous
exploratory analysis of the proposed methodology, including: (1) performance distributions com-
parison, (2) regression models structure comparison, (3) linear transformation analysis, and (4)
comparison of different sampling strategies. We observed a high correlation between performance
distributions similarity and high prediction accuracy of our method. We showed that similarity
of performance distributions is correlated with structure of performance prediction models. We
demonstrated that linear model provides a good approximation of transformation between perfor-
mance distributions of a system deployed in different hardware environments and showed that it is
possible to build a reliable linear transfer model using a small sample of measured configurations
Choth, where size(Cpo) € [5,10].

We performed a thorough quantitative analysis of our methodology. We showed that our ap-
proach achieves high accuracy (less than 10% mean relative error) for the majority of prediction
model transfers. Moreover, we observe a decreasing tendency of prediction error with increase of
the training data for prediction or linear transfer models. Finally, we demonstrated that the time
required for building both performance prediction and linear transfer models is negligible (less than
10 ms) compared to the time budget required for acquiring configuration measurements.
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Chapter 4

Transferring Pareto Frontiers

Software systems provide configuration options for end users to provide flexibility in meeting their
requirements. Apart from having a direct influence on a system’s functional behavior, configuration
options usually influence non-functional properties, like runtime performance, memory consumption,
and overall computational cost. System’s configuration options that are available for tuning to end
users of the system are called features ( , ). A specific choice of feature values
determines a system configuration. Thus for each system configuration a user can acquire a set
of measured properties values. We regard a configuration as a Pareto optimal one, if no other
configuration improves one or more properties of the Pareto optimal configuration without degrading
at least one other property. All Pareto optimal configurations of a system define a Pareto frontier
of this system. In other words, a Pareto frontier is a set of system configurations, each of which is
optimal in its own specific way.

Identifying the Pareto frontier for a configurable system is challenging. First of all, building the
exact Pareto frontier of a system’s configuration space requires complete knowledge of properties’
values for each configuration. This might be infeasible since: (1) a configuration space usually grows
exponentially with the number of features, (2) benchmarking time for a single configuration might be
high, (3) while a total benchmarking budget available to a user might be relatively low. Secondly, if
a user has to deploy a system across heterogeneous hardware, then benchmarking results previously
acquired on one hardware might be irrelevant for another hardware and new measurements of a
configuration space might be required.

The first problem of incomplete benchmarking information can be solved by approximation
of properties’ values for a particular hardware environment. This topic has been thoroughly in-
vestigated for various use cases (see , : , : , , :

, ,b; , : , : , , for details).
For example, some researchers investigate runtime performance prediction of configurable software
systems based on small random samples of measured configurations, or in another data-efficient
way (see , , : , , for details).

The second problem of heterogeneous hardware environments can be solved by transferring
gained knowledge about system’s properties across hardware platforms. This topic has also gained
attention in research community (see , , ; , ; , ,D;
, for details). For example, researchers employ machine

Y b Y
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learning techniques to transfer knowledge about system performance across a heterogeneous com-
putational cluster or for a simulated robotic system (see , ,b;
for details).

Y Y

In this work we propose a novel approach for transferring Pareto frontiers of optimal configu-
rations of highly configurable software systems across heterogeneous hardware environments. The
main goal of our research is to develop a pragmatic methodology that could be applied in real-world
scenarios. Taking into account all previously described requirements (see Section 1 for details), we
propose a practical black-box approach that uses machine learning methods for approximation and
transferring of Pareto frontiers of configurations across heterogeneous hardware environments. This
approach (1) builds a predictor model for each system property of interest, based on a sample of
configurations measured on a source hardware platform, (2) combines predicted properties values of
all configurations into an approximated Pareto frontier, (3) builds a transfer model for each system
property of interest, based on a sample of configurations measured on both source and destination
hardware, and (4) applies the transfer models to the approximated Pareto frontier to transfer it to
the destination hardware.

To sum up, in this work we make the following contributions:

e We propose an approach for approximation and transferring of Pareto frontiers of optimal
configurations across heterogeneous hardware environments, described previously.

e We comprehensively benchmarked five different configurable software systems across a hetero-
geneous collection of 34 hardware environments based on Microsoft Azure cloud infrastructure,
to acquire the necessary data for our experiments.

e We implement the proposed approach and demonstrate its generality by evaluating it using the
benchmarked software systems. We regard approximated and transferred Pareto frontiers as
binary classifiers that categorize all configurations into Pareto optimal and non-optimal ones
on a specified hardware. Thus we can assess the quality of these frontiers by using classification
evaluation measures (e.g. sensitivity, specificity, and Matthew’s correlation coefficient) and
by analyzing measures’ trends with changes in predictors and transfer models. Our empirical
results demonstrate that it is possible to achieve high accuracy of transferred Pareto frontiers,
according to the classification measures and trends.

Source code and data to reproduce experiments in the current chapter are available online at
https://bitbucket.org/valovp/icpe2020.

4.1 Example and Notation

To formalize the problem of Pareto frontier approximation and transferring, we need to introduce
necessary definitions and notations. A configurable software system is a system that provides con-
figuration options, e.g. compression utilities, video codecs, compilers, etc. Configuration options
influence functional properties (e.g. compression or encoding algorithm, compilation heuristic, etc.)
and non-functional (e.g. performance, memory consumption, scalability, etc.) of the respective
configurable software system. A feature is a configuration option that is pertinent to system con-
sumers, e.g. developers, system administrators, expert users, etc. We denote a particular system
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feature by a binary variable f; € B, where B = {0, 1}, and all system’s features by a set of variables
F = {f1, fa,... fn;}, where Ny € N is a total number of features of the system. Configuration is a
unique set of actually assigned values to all N; features. We denote a configuration by ¢; € B,
and all configurations by a set C = {cy,co,...cn.}, where N, € N is a total number of valid con-
figurations. Each system has a set of functional or non-functional properties that we denote by
P = {p1,ps2,...pn,}, where N, € N is a total number of such properties.

We perform our study on various hardware environments that we denote by h, € N which
together form a heterogeneous hardware cluster H = {hy, ho,..., hy,}, where N, € N is a total
number of hardware environments. Each property p; from the set P is expected to vary when
measured for the same configuration c; across the cluster H. Thus each configuration c; has an actual
measured property value yc, . », for each property p; on each hardware hy. We view properties as
functions that map hardware environments and configurations to actual measured values:

pj BV xH—- R
Dj (Ci7 hk) = Yeipjhe (41)

All actual properties’ values of a configuration c¢; on a hardware h;, form a vector that we denote
by yci7]P’hk :

Yei Py = [ycz',phhk? Yeipashps - - - ’ycmpzvp,hk] (4.2)

Actual properties’ values of all configurations c; of a sample Cg C C and of the whole population
C on a hardware h;, form the corresponding sets Ycg pp, and Yepp,:

Yegpn, = U {yCi,FP’,hk} (43)
c;eCg

Y(C7P7h‘k‘ = U {yci7P7hk} (4'4)
c;eC

Since our primary goal is to transfer a Pareto frontier across hardware environments, we need
to be able to distinguish between them. We call an environment a source hardware environment if
we use it to measure actual property values of configurations, to train predictors for each system
property, and to approximate a Pareto frontier. We call an environment a destination hardware
environment if we use it to train transferrers for each system property, and if we transfer the
approximated frontier to this environment. We denote source and destination environments by hg..
and hgg respectively.

Before we can define what Pareto frontier is, we need to introduce notions of preference and
domination between different configurations. We assume that each property p; has a preferred
direction of values that can be inferred from a system domain, e.g. a compression software has
a property ‘compression rate’ and higher values of this property are preferred to lower ones. For
the sake of the example, let’s pretend that for all properties in P higher values correspond to more
preferred values. Then properties in P are in fact utility functions that describe a level of preference
of a particular configuration. Thus we can denote that a property value ye . n, s preferred to or
improves a property value ye . n, Simply by: yep e > Yo p,n,- We say that a configuration c
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dominates a configuration ¢’ on a hardware hy, or ¢ =" ¢ | if Yepj b > Y/ p; by fOr some p; € P
and Yep: by = Yo p; h, T0T all pj € P

Finally, we can introduce notions of Pareto optimality and Pareto frontier. We call a config-
uration ¢ a Pareto optimal configuration on a hardware hy, if there is no other configuration ¢’
that improves one or more properties values of ¢ without worsening at least one other property
value, i.e. ¢ is not dominated by any other configuration ¢’. More formally, c is a Pareto optimal
configuration on a hardware hy, if there is no other ¢’ such that Ye' pjhy, > Yeps by fOT sSOME p; € P
and Ye' p 1y, = Yep; by, 10T all p; € P. The Pareto frontier of a system on a given hardware hy, is a set
of all Pareto optimal configurations on this hardware that we denote by (C,ff . In other words, the
Pareto frontier is a set of configurations that are not strictly dominated by any other configuration,
or more formally:

C/f={ceC:{ceC:c "¢ #c}=0} (4.5)

Figure 4.1 and Figure 4.2 demonstrate example Pareto frontiers of studied configurable systems.
We utilize these systems for the evaluation of our approach for approximation and transferring of
Pareto frontiers later in this chapter. Each Pareto frontier on these figures shows trade-offs between
compression time and compressed size system properties. Figure 4.1 demonstrates that Pareto
frontiers of studied software systems significantly differ in their structure because of completely
different configuration spaces. Figure 4.2 demonstrates that even Pareto frontiers of the same
software system can vary significantly across heterogeneous hardware environments.

We have introduced all necessary definitions and notations, thus we can summarize the problem
statement in proper terms. We deploy a configurable software system (e.g. XZ) on a hardware plat-
form hg,... We select a random training sample of configurations C,,,, C C and for each configuration
¢; € Gy, we acquire an actual value ye, p. n.,. of each property p; € P thus forming a set of mea-
sured values Yc,,, p.h,,.. Sets Cyp and Y., p 1., together form a sample of measured Conﬁgurations
Sc;yn P here ON @ hardware platform hg,... Our goal is to build an approximated Pareto frontier CP r
based on the sample Sc,,, ... and to transfer this frontier to all other hardware H \ {hg.}. Thus
we can use the Pareto frontier as a binary classifier that separates all configurations into optimal
and non-optimal ones, and based on a small random sample of measured configurations Sc,,, p ...
classify all configurations C on all hardware platforms H.

src”® src

4.2 Transferring Process

The process of transferring Pareto frontiers can be divided into several main steps: (1) training
a predictor for each studied system property (2) building an approximated Pareto frontier using
trained predictors (3) training a transferrer for each studied system property (4) transferring the
approximated Pareto frontier across hardware platforms using transferrers.

4.2.1 Training Property Prediction Models

The process of training a property prediction model can be separated into several steps: (1) selecting
a data sampling method (2) sampling training data (3) selecting a property predictor model (4)
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Figure 4.1: Example Pareto frontiers of studied configurable software systems. Each Pareto frontier
shows trade-offs between compression time and compressed size system properties. Green and red
dots denote Pareto optimal and non-optimal configurations respectively.
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Figure 4.2: Example Pareto frontiers of bzip2 software system across a heterogeneous cluster of
Azure cloud computing environments. Each Pareto frontier shows trade-offs between compression
time and compressed size system properties. Green and red dots denote Pareto optimal and non-

optimal configurations respectively.
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training a property predictor (5) selecting an evaluation metric and a validation strategy for the
trained predictor.

First of all, we need to select a method for sampling training data that will be used for training
properties’ predictors. There are many different ways in which one can generate a sample of training
configurations C,,., from a system’s configuration space: pseudo-random sampling, quasi-random
sampling, experimental design techniques, and custom sampling heuristics. In the current work
we use pseudo-random sampling of configurations in order to mimic the worst-case scenario, when
a practitioner does not have any control over selection of training data and available measured
configurations might appear completely random. The same paradigm was used in the previous work
on performance prediction of configurable software systems by ( ) and
( ). However, in a practical scenario where a practitioner has control over a sampling process,
we would advise to use more sophisticated sampling methods like quasi-random sampling and
experimental design techniques, since they provide a much more even coverage of the configuration
space and should improve quality of a trained predictor. We leave a comparison of different sampling
methods for property prediction models’ training data for a future work.

Secondly, we need to perform actual data sampling. In the previous work ( );

( ) researchers used sampling sizes that are multiples of the number of features Ny

of the respective system. During evaluation of our approach we’ve tried all possible sampling sizes

in range [2, N¢ — 1] in order to provide smoother trends for presenting regression and classification
measures (see Section 4.3 for details).

Thirdly, we need to choose which model to use as property predictors. During preliminary
evaluation of our approach we tried two different regression models: regression trees and random
forest. We selected these models as candidates for our solution since they have already showed
good results for prediction of configurable systems properties (see , ; ,

,b; , ; , , for details). Our preliminary experiments
demonstrated that unpruned regression tree models provided better prediction results than random
forest models. We came to a conclusion that this happens because we work with relatively small
training sample sizes. Although random forest model also generates unpruned regression trees to
average upon, it trains them using observations resampled with replacement from an original sample
provided to the random forest model itself. This approach helps to avoid overfitting when training
samples are relatively large, but when training samples are tiny, each individual tree ends up loosing
a lot of information. Therefore, in our case a single unpruned regression tree (but trained on a full
training sample) will outperform an ensemble of trees that were trained on resampled data.

Fourthly, we have to train property predictors. The only thing left to do, is to select a parameter
tuning strategy. We work with unpruned regression trees, i.e. we ‘grow’ our tree models to a
maximal possible size, when each tree has only one observation in each leaf and all available features
are used in construction of the tree. We can regard the regression tree predictor as a function RT,
that is generated by a fitting function fitRT. A fitting function, given a small random training
sample of configurations Cy,, and their measured values Yc,,, p. n, of a property p; on a hardware
hi, produces corresponding predictors for the property p; on the hardware hy:

ﬁtRT((CtT‘nv Y(Ctrnvpjahk7 Ci) = RTCtrnvpjvhk (46)

Predictor RT'c,,, p, n,, given a sample of configurations Cg, can predict their values for the property
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p; on the hardware hy;: R
RT(Ctrnapjvhk (CS) = Y(Cs,pphk <4'7)

Finally, we need to select an evaluation metric and a validation strategy for trained predictors.
We have selected mean absolute percentage error (MAPE ) as a metric for evaluation of RT models
since it provides a simple and intuitive measure that is robust to outliers. MAPE can be thought
of as a mean of multiple absolute percentage errors (APE ). If APE can be expressed as a function
that consumes actual yc, ;. n, and predicted ge, p; n, property values:

o ’yci,pj,hk - yci,pj,hk’

APE<yCi7pj7hk7gCi7pjyhk) -

x 100% (4.8)
Yeipj i

then MAPE can be expressed as a function that consumes sets of actual Y¢g,, n, and predicted

Ycgp;,n, Property values:

N, .
leﬁs APE(?ch-,pth ycz‘»Pjvhk) (4.9)

MAPE(Y(C&pj,hk;?Cs,p]‘,hk) = N(C

S
where Ng, is a number of configurations in the set Cg.

We have selected leave-one-out cross-validation (LOOCYV ) as a validation strategy for predictors,
since it is especially suitable in a scenario, when the cost of measuring properties for a single
configuration is very high and a practitioner wants to minimize the measurement effort. Imagine
that a practitioner acquired a sample of configurations Cg of size N¢, along with their measured
values Ycg p;.n, Of @ property p; on a hardware hy. LOOCYV is going to generate out of Cg sample:
N¢, testing samples Ci, = {c;} that consist of a single configuration and N¢, training samples
Ci. = Cs\ {c;} that consist of all other configurations. Thus LOOCV generates N¢, pairs of

trn
N, N, . .
CL.), ..., (Cyrf,Cpt®)}. Then by training a predictor, e.g. a
regression tree RT, on each training sample C¢_ and by testing the predictor on the corresponding
i

testing sample Cj,,, we can acquire a column vector of predicted property values:

training and testing samples {(C} .

RT(CtIT,n,pj,hk (C%st)
~ RT(C%Tn,pj,hk ((Cl%st)
YCSvijlk - E (4.10)

Neg

RTCZ(ZS Py (Ctst )

We can use Ycgp, n, and ?@S,pj,hk to calculate MAPE in order to assess the predictor quality.

4.2.2 Building an Approximated Frontier

The process of building an approximated Pareto frontier consists of the following main steps: (1)
approximating all system properties P’ for all configurations C using trained predictors from Sec-
tion 4.2.1, (2) calculating a Pareto frontier Cf:: . based on the approximated configurations’ prop-
erties.
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First of all, we need to acquire all properties’ values P for all configurations C, i.e. ?Cvpvhm,
to assess which configurations are in fact Pareto optimal on a hardware hg,.., and thus to generate
a Pareto frontier. However, we know properties’ values only for a small training sample of con-
figurations Cy,,,, i.e. Yg,,, Ph... Lherefore, we need to approximate the properties’ values for the
remaining unmeasured configurations C,.,, = C\ Cy.,, i.e. acquire ?C We can obtain
?Crem7p7h5m by systematically predicting all properties in P for C,.,, using corresponding predictors

and combining the resulting column vectors into a matrix:

rem 7Pahsrc °

Y(CTema[P)»hSTC =

(4.11)
[RTCtrnypl ,hsrc (Crem>7 ) RTCt’I"ﬂ7pr7hSTC (Crem)}

We can obtain -?(Q]Rh by combining matrices of measured and approximated properties’ values:

src

S Yc,..ph
Yephe. =g, 7 (4.12)
C?"em7]P>7hs7"C

Finally, based on the resulting matrix of all properties’ values ?C,P,hm we can build the approx-
imated Pareto frontier C} 5 _ using any of the known algorithms for exact frontier construction:

CP* = PF(C,Yepn,,.) (4.13)

src

4.2.3 Training Property Transferring Models

The process of training a property transferring model can be separated into the following steps:
(1) sampling training data, (2) selecting a property transferrer model, (3) training a property
transferrer, (4) selecting an evaluation metric and validation strategy for the trained transferrer.

First of all, to train a property transferrer we need a training sample of configurations Cy,, that
are measured on both source h,.. and destination hgy hardware. In Section 4.2.1 we’ve already
defined a procedure for acquiring a training sample C.,, measured on hg.. Naturally, we can
measure configuration from C,., on hgs as well, thus forming the necessary sample Cypy, € Cyyy.

Secondly, we have to select a model to be used as a property transferrer. During our preliminary
evaluation, we have tested multiple machine learning models as property transferrers, and two
of them provided the best results overall: simple linear regression model (SLR) and unpruned
regression tree model (RT), discussed previously. We used SLR, since it has been already studied
in the previous work (see , : , , for details) and has demonstrated
good results. However, during preliminary evaluation we noticed that SLR underperforms for some
studied systems, and especially multithreaded ones. On the contrary, RT demonstrated better
performance overall and significantly better performance for parallel systems. Therefore, unlike
previous work ( , ; , ) we recommend using RT' as transferrers,
especially when working with multithreaded software.

Thirdly, we have to train the selected transferring models using the measured training sample
Cpotn- In the SLR model, a line is fit to the training data using classical ordinary least squares
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(OLS) methodology. OLS performs fitting by minimizing the sum of squared differences between
configurations in Gy, and the linear model. Thus, for each system property p; we can acquire
a corresponding linear transferrer that given property values on a source hardware will produce
corresponding property values on a destination hardware:

SLRpj (Y(C»pjahsrc) = + /8 X Y(Capjvhsrc
= Y(C7pj7hdst (4'14)

The SLR training process is completely automatic and doesn’t require any parameter tuning. The
training process for unpruned regression trees was discussed previously (see Section 4.2.1).

Finally, we need to select an evaluation metric and a validation strategy for the trained property
transferring models. Since transferrers might be built using even smaller samples than property
prediction models, the most practical validation strategy would still be leave-one-out cross-validation

(LOOCYV). As for an evaluation metric, we again recommend using mean absolute relative error
(MAPE).

4.2.4 Transferring a Pareto Frontier

During the previous steps of the process (see Section 4.2.1 — Section 4.2.3) we have: (1) selected
a source hg.. and a destination hgs hardware environments, (2) sampled training configurations
Ci, and measured all their properties’ values Yc,,, pa,,. O Rgre, (3) trained predictors RT, p,; for

each property p; € P on hg., (4) predicted all properties’ values on hy,. and acquired ?@,P,hm, (5)

src

built an approximated Pareto frontier CF’ Ij _ based on ?C,Rhma (6) sampled configurations Cyuy, and
measured all their properties’ values on both h,. and hgs, (7) trained transferrers for each property
p; € IP to transfer properties’ values from Ay, to hgs.

To transfer the Pareto frontier from hg,. to hgs we need to perform two steps: (1) approximate all
properties P for all configurations C on hdst, i.e. acquire Y@ Phy., and (2) calculate the transferred
Pareto frontier CP F . on hgst based on YC Pohgas-

First of all, we obtain Y@,Rh ... by systematically transferring column vectors of properties’ values
from hg.. to hgs, using previously trained property transferrers:

Ycphg, =

~ ~ (4.15)
RTm (Yﬂpl,hdst)? T RTPNP (Y(C,PNp,hdst>

Then, we can calculate the approximated Pareto frontier @,fi , using any known algorithm for
exact Pareto frontier construction:

Chd . PF(C>?(C,JP’,hdst) (4.16)

4.3 Process Evaluation

To comprehensively evaluate the proposed process of Pareto frontier approximation and transferring,
we have formulated the following research questions:
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Table 4.1: Summary of all Azure-based virtual machines; CRS — number of CPU cores that are
specifically allocated to the virtual machine, RAM — amount of RAM allocated to the VM (GiB),
RPC — amount of RAM allocated per CPU core of the VM (GiB), STR — amount of storage allocated
to the VM (GiB), STP — storage type allocated to the VM

General Server Info Server Architecture Benchmarked Systems

Name Azure Type Deployment Region CPU Model Name CRS RAM RPC STR STP BZIP2 GZIP XZ FLAC X264
BscA0-4171HE  BasicA0 South Brazil AMD Opteron 4171 HE 1 0.75 0.7 20 HDD v v
BscA0-2660 BasicA0 East Japan Intel Xeon E5-2660 1 0.75  0.75 20 HDD v v v v
BscA0-2673v3 BasicAO West US Intel Xeon E5-2673 v3 1 0.75  0.75 20 HDD v v v v
BscA1-4171HE ~ BasicAl South Brazil AMD Opteron 4171 HE 1 1.75  1.75 40 HDD v v v v
BscA1-2660 BasicAl East Japan Intel Xeon E5-2660 1 1.75 175 40 HDD v v v v v
BscA1-2673v3 BasicAl West US Intel Xeon E5-2673 v3 1 1.75  1.75 40 HDD v v v v v
BscA2-4171HE  BasicA2 South Brazil AMD Opteron 4171 HE 2 3.5 1.75 60 HDD v v v v
BscA2-2660 BasicA2 East Japan Intel Xeon E5-2660 2 35 175 60 HDD v v v v v
BscA2-2673v3 BasicA2 West US Intel Xeon E5-2673 v3 2 35 175 60 HDD v v v v v
StdA0-2673v3 Standard A0 Central Canada Intel Xeon E5-2673 v3 1 0.75  0.75 20 SSD v v v v
StdA0-2660 Standard A0 East Japan Intel Xeon E5-2660 1 0.75  0.75 20  SSD v v v v
StdA1-2673v3 StandardA1l Central Canada Intel Xeon E5-2673 v3 1 1.75 175 70  SSD v v v v v
StdA1-2660 StandardA1 East Japan Intel Xeon E5-2660 1 1.75 1.75 70 SSD v v v v
StdA1v2-2660 StandardA1l v2  South Central US Intel Xeon E5-2660 1 2 2 10 SSD v v v v
StdA1v2-2673v3  StandardAl v2 West Central US Intel Xeon E5-2673 v3 1 2 2 10 SSD v v v v v
StdA2-2673v3 Standard A2 Central Canada Intel Xeon E5-2673 v3 2 35 175 135 SSD v v v v v
StdA2-2660 StandardA2 East Japan Intel Xeon E5-2660 2 3.5 1.75 135 SSD v v v v v
StdA2v2-2660 StandardA2 v2  South Central US Intel Xeon E5-2673 v3 2 4 2 20 SSD v v v v
StdA2v2-2673v3  StandardA2 v2  West Central US Intel Xeon E5-2673 v3 2 4 2 20 SSD v v v v v
StdD1-2660 StandardD1 South East Australia  Intel Xeon E5-2660 1 3.5 3.5 50 SSD v v v v v
StdD1v2-2673v3  StandardD1 v2  Central US Intel Xeon E5-2673 v3 1 3.5 3.5 50 SSD v v v v v
StdD1v2-2673v4  StandardD1 v2  South India Intel Xeon E5-2673 v4 1 3.5 3.5 50 SSD v

StdD2-2660 StandardD2 South East Australia  Intel Xeon E5-2660 2 7 3.5 100 SSD v v v v v
StdD2v2-2673v3  StandardD2 v2  Central US Intel Xeon E5-2673 v3 2 7 3.5 100 SSD v v v v v
StdD2v2-2673v4  StandardD2 v2  South India Intel Xeon E5-2673 v4 2 7 3.5 100 SSD v

StdD2v3-2673v4  StandardD2 v3  South East Australia  Intel Xeon E5-2673 v4 2 8 4 50 SSD v v v v v
StdD2v3-2673v3  StandardD2 v3  South East Asia Intel Xeon E5-2673 v3 2 8 4 50 SSD v v v v v
StdE2v3-2673v4  StandardE2 v3  West Europe Intel Xeon E5-2673 v4 2 16 8 50 SSD v v v v v
StdF1-2673v3 StandardF1 East US Intel Xeon E5-2673 v3 1 2 2 16  SSD v v v v v
StdF1-2673v4 StandardF1 South India Intel Xeon E5-2673 v4 1 2 2 16 SSD v

StdF2-2673v3 StandardF2 East US Intel Xeon E5-2673 v3 2 4 2 32 SSD v v v v v
StdF2-2673v4 StandardF2 South India Intel Xeon E5-2673 v4 2 4 2 32 SSD v

StdF2sv2-8168  StandardF2 v2  West US 2 Intel Xeon Platinum 8168 2 4 2 16 SSD v v v v v
StdG1-2698Bv3  StandardG1 East US 2 Intel Xeon E5-2698B v3 2 28 14 384 SSD v v v v v

RQ1 How accurate are properties’ prediction models? (Section 4.3.2)
RQ2 How accurate are properties’ transferring models? (Section 4.3.2)

RQ3 How accurate are approximated Pareto frontiers @f}: _ compared to actual Pareto frontiers
CLT on h.? (Section 4.3.2)

RQ4 How accurate are transferred Pareto frontiers ((A:f d}; , compared to actual Pareto frontiers cP f; .
on hgs? (Section 4.3.2)

4.3.1 Experimental Setup
Subject Hardware Environments

To enhance external validity of our work, we had to perform our experiments on a wide variety
of hardware environments. Moreover, we wanted to run our experiments on real-world production
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Table 4.2: Summary of all CPUs used in the experiment; TCH — technology node (nm), FRQ —
CPU core frequency (MHz), FBS — front-side bus frequency (MHz), CM — clock multiplier, CRS —
number of CPU cores, TRD — number of threads, L1i — Level 1 instruction cache size (KB), L1d —
Level 1 data cache size (KB), L2 — Level 2 cache size, L3 — Level 3 cache size, PMC — PassMark
CPU benchmark score (higher is better), PMT — PassMark single thread benchmark score (higher
is better), PMR — PassMark overall CPU rank in PassMark database (lower is better)

General Architecture Caches per CPU Caches per core PassMark Scores
CPU Model Name First Seen Type TCH FRQ FBS CM CRS TRD L1i Lid L2 L3 L1li Lid L2 PMC PMT PMR
AMD Opteron 4171 HE Q4 2010 K10 45 2100 3200 6 6 384 384 3072 6144 64 64 512 3664' 732! 1147'
Intel Xeon E5-2660 Q22012 Sandy Bridge 322200 4000 22 8 16 256 256 2048 20480 32 32 256 11048 1387 265
Intel Xeon E5-2673 v3 Q2 2015 Haswell 22 2400 4800 24 12 24 384 384 3072 30720 32 32 256 16383 1666 116
Intel Xeon E5-2698B v3 Q2 2014 Haswell 222000 4800 20 16 32 512 512 4096 40960 32 32 256 210422 18462 512
Intel Xeon E5-2673 v4 Q4 2016 Broadwell 14 2300 4800 23 20 40 640 640 5120 51200 32 32 256 21474 1792 46
Intel Xeon Platinum 8168 Q4 2017 Skylake 14 2700 5200 27 24 48 768 768 24576 33792 32 32 1024 29131 2073 3

! PassMark Scores are provided for AMD Opteron 4170 HE
2 PassMark Scores are provided for Intel Xeon E5-2698 v3

Table 4.3: Summary of benchmarked configurable software systems; N¢ — Number of varied system
features; NC — Number of benchmarked system configurations; NS — Number of servers on which
systems were benchmarked.

Name Ny NC NS

BZIP2 2 18 33
GZIP 3 36 28
XZ 4 160 27
FLAC 5 144 29
x264 8 256 30

hardware environments that could be used by other research or development teams, what would
make our research even more applicable to other practitioners. We came to a conclusion that
the best hardware choice for our experiments would be a public enterprise-level cloud computing
solution that provides server infrastructure as a service (IaaS). Because of that, we acquired access
to the Microsoft Azure cloud computing service.

Microsoft Azure is a cloud computing service that provides infrastructure as a service (IaaS),
platform as a service (PaaS), and software as a service (SaaS). Microsoft provided Azure Sponsorship
for our team, thus allowing us to use the Azure infrastructure to run our experiments. Azure provides
cloud infrastructure through a set of dedicated international data centers. After performing a
thorough analysis of all virtual machines on all data centers that were available for our sponsorship,
we selected 34 virtual machines that had different CPU models, RAM size, etc. We provide a
summary of all selected virtual machines in Table 4.1 and a detailed summary of unique CPUs
available on these machines in Table 4.2. All virtual machines ran the Linux Ubuntu Xenial 16.04
LTS operating system.

Subject Software Systems

We build, approximate, and transfer Pareto frontiers for five different software systems: BZIP2 (

) ), GZIP ( : ), XZ ( ) );
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Figure 4.3: Distributions of averaged benchmarking observations of compression time metric for all
studied software systems and hardware environments. Each subplot represents the averaged metric
distributions for a particular software. Each line represents the averaged metric distribution for a
particular hardware.
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Figure 4.4: Distributions of benchmarking observations of compression time metric for bzip2 soft-
ware system. Each subplot represents the metric distributions on a particular hardware. Each
boxplot represents the metric distribution for a particular software configuration.
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Figure 4.5: Distributions of benchmarking observations of compression time metric for flac software
system. Each subplot represents the metric distributions on a particular hardware. Each boxplot
represents the metric distribution for a particular software configuration.
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Figure 4.6: Distributions of benchmarking observations of compression time metric for gzip software
system. FEach subplot represents the metric distributions on a particular hardware. Each boxplot
represents the metric distribution for a particular software configuration.
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Figure 4.7: Distributions of benchmarking observations of compression time metric for 264 software
system. Each subplot represents the metric distributions on a particular hardware. Each boxplot
represents the metric distribution for a particular software configuration.
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Figure 4.8: Distributions of benchmarking observations of compression time metric for zz software
system. Each subplot represents the metric distributions on a particular hardware. Each boxplot
represents the metric distribution for a particular software configuration.
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FLAC ( , ), x264 ( , ). BZIP2
is a general-purpose data compression program which utilizes the Burrows-Wheeler algorithm. GZIP
is a general-purpose data compression utility which employs the DEFLATE lossless compression al-
gorithm. X7 is a multi-threaded general-purpose data compression software which uses the LZMA2
lossless compression algorithm. FLAC (Free Lossless Audio Codec) is an audio compression soft-
ware that uses homonymous lossless audio coding format. x264 is a video encoding software that
uses lossy H.264/MPEG-4 AVC format. We focus on systems from compression and multimedia
transformation domains, since these systems are intuitive, have a large userbase, and provide a
variety of features. Moreover, these systems share common properties, what allows straightforward
comparison of how well our approach works for different use cases.

We performed comprehensive benchmarking of each selected software system. For each software
system we selected a benchmark in order to test the generated configurations upon. We bench-
marked BZIP2, GZIP, and XZ using the large text compression benchmark ( , ),
which represents first 10° bytes of the Wikipedia XML archive. We benchmarked FLAC using
Ghosts I-1V ( , ), a music album of a band ‘Nine Inch Nails’, that contains
36 tracks of improvisation music, released under the Creative Commons license. We benchmarked
x264 using a trailer of Sintel ( , ), an open-content film created and released under the
Creative Commons license by Blender Foundation.

For each software system we selected a set of configurable features that had demonstrated
the strongest influence on studied systems’ metrics during our preliminary experiments. We vary

two different BZIP2 features: n and small (see , , for description).
We vary three different GZIP features: n, rsyncable, and synchronous (
, ). We vary four different XZ features: n, no-sparse, extreme, check ( , ).

We vary five different FLAC features: n, verify, lax, replay-gain, and p (
, ). We analyze eight different X264 features: b-adapt, me, no-mbtree, no-scenecut,
re-lookahead, ref, subme, and trellis ( , ).

Using the selected features, we generated a set of all possible valid configurations for each system.
To improve internal validity, we measured each configuration on all hardware environments 10 times,
which was the largest number that our Azure budget allowed.

For each configuration we measured two properties: compression time and compressed size.
We selected these properties because they are intuitive, easy to measure, and are universal to all
studied systems. It is worth to notice that the compressed size property doesn’t change it’s value for
a single configuration across hardware. Nevertheless, since our approach works using small samples
of measured configurations, it has to approximate this property for the whole configuration space.
Therefore, the compressed size property still has a strong influence on approximated and transferred
Pareto frontiers. We leave analysis of multiple varying properties for future work.

We present distributions of benchmarked observations of the compression time property for all
configurations of the studied configurable software systems on Figures 4.3-4.8. Figure 4.3 presents
averaged compression time property values for all configurations (ordered by their values), studied
configurable software systems, and hardware environments. We can observe a similar increasing pat-
tern for all software systems across different hardware, indicating that higher values of this property
on one hardware correspond to higher values of this property on another hardware, meaning that
cross-platform transferring of this property should be possible with high accuracy. Figures 4.4-4.8
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present the compression time property distributions for each configuration of different configurable
software systems. Figure 4.3 demonstrated that different system configurations can have property
values that differ by an order of magnitude on the same hardware, therefore, in order to save space,
we performed data normalization by median deduction for Figures 4.4-4.8. We can observe that
the configuration distributions are generally symmetric with minimal amount of outliers, therefore,
we can use an arithmetical mean for averaging the configuration distribution for further analysis.

Comprehensive benchmarking allowed us to perform and analyze the overall Pareto transferring
process for each software system across all possible pairs of source and destination environments.
Moreover, we exhaustively analyzed all possible training sample Cg sizes [2, Nc — 1] (see Sec-
tion 4.2.1) and transferring sample Cpuy, sizes [2, Ng,,,, — 1] (see Section 4.2.3). However, since
the internal Azure infrastructure is being constantly updated, not all hardware environments were
available for benchmarking of all software systems. Table 4.1 highlights which hardware environ-
ments we used for benchmarking of each particular software system. Table 4.2 shows specifications
for each unique CPU that appeared in different hardware environments. Finally, Table 4.3 provides
general information about the system benchmarking process.

4.3.2 Experimental Results
Predictors and Transferrers Accuracy

In order to answer RQ1, we performed a comprehensive evaluation of properties’ predictors for all
configurable software systems and hardware environments. As mentioned in Section 4.2.1, after
preliminary evaluation we selected regression trees RT as our property prediction models, and we
assessed the quality of predictors using MAPE, acquired using LOOCYV validation. Figure 4.9
presents evaluation results by displaying distributions of property predictors’ MAPE with increase
of predictors’ training sample size. For all software and hardware we observe a strong decreasing
trend of MAPFE with increase of training sample size. For all software and hardware regression
trees could achieve a MAPE of less than 10%, and for majority of combinations less than 5%. This
observation agrees with previous research and demonstrates that regression trees are well fit for
predicting properties of configurable software systems.

Figures 4.10-4.14 present MAPE distributions when predicting the compression time metric
using regression trees, trained using different sampling sizes. Each figure represents MAPFE dis-
tributions for a particular software system. Each observation of a distribution corresponds to a
particular experimental replication. Figure 4.9 showed that MAPFE can have values that differ by
an order of magnitude for the same software and hardware systems, therefore, in order to save space
for all Figures 4.10-4.14 we performed data transformation by median deduction. We observe that
MAPE distributions are generally symmetrical and have a minimal amount of outliers, therefore,
we can use arithmetical mean for averaging MAPFE results across different experiment replications.
Moreover, we observe a strong decreasing trend in variability of MAPE with increase of a training
sample size for all configurable software systems and hardware environments, meaning that MAPE
becomes much more stable across different experimental replications.

In order to answer RQ2, we performed a comprehensive evaluation of properties’ transferrers
for all configurable software systems and hardware environments. Despite the fact that we selected
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Figure 4.9: Distributions of averaged MAPE error of regression-tree-based predictors, when ap-
proximating the compression time metric for all studied software on heterogeneous hardware, using
all possible training sample sizes. Each subplot represents MAPE distributions for a particular
software. Each line represents MAPE distribution for a particular hardware.
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Figure 4.10: Distributions of MAPE error of regression-tree-based predictors, when approximating
the compression time metric for bzip2 software on heterogeneous hardware, using different training
sample sizes. Each subplot represents MAPE distributions for a particular hardware. Each box
represents MAPE distribution for a particular training size. All boxes are normalized by median
deduction. Each observation represents a MAPE value for a single experiment replication.
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Figure 4.11: Distributions of MAPE error of regression-tree-based predictors, when approximating
the compression time metric for flac software on heterogeneous hardware, using different training
sample sizes. Each subplot represents MAPE distributions for a particular hardware. Each box
represents MAPE distribution for a particular training size. All boxes are normalized by median
deduction. Each observation represents a MAPE value for a single experiment replication.
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Figure 4.12: Distributions of MAPE error of regression-tree-based predictors, when approximating
the compression time metric for gzip software on heterogeneous hardware, using different training
sample sizes. Each subplot represents MAPE distributions for a particular hardware. Each box
represents MAPE distribution for a particular training size. All boxes are normalized by median
deduction. Each observation represents a MAPE value for a single experiment replication.
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Figure 4.13: Distributions of MAPE error of regression-tree-based predictors, when approximating
the compression time metric for 264 software on heterogeneous hardware, using different training
sample sizes. Each subplot represents MAPE distributions for a particular hardware. Each box
represents MAPE distribution for a particular training size. All boxes are normalized by median
deduction. Each observation represents a MAPE value for a single experiment replication.
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Figure 4.14: Distributions of MAPE error of regression-tree-based predictors, when approximating
the compression time metric for xz software on heterogeneous hardware, using different training
sample sizes. Each subplot represents MAPE distributions for a particular hardware. Each box
represents MAPE distribution for a particular training size. All boxes are normalized by median
deduction. Each observation represents a MAPE value for a single experiment replication.
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Figure 4.15: Distributions of averaged MAPE error of linear-based transferrers, when transferring
the compression time metric across heterogeneous hardware, using all possible training sample sizes.
Each subplot represents MAPE distributions for a particular software. Each line represents MAPE
distribution for a particular hardware.
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Figure 4.16: Distributions of MAPE error of linear-based transferrers, when transferring the com-
pression time metric for bzip2 software on heterogeneous hardware, using different training sample
sizes. Each subplot represents MAPE distributions for a particular hardware. Each box represents
MAPE distribution for a particular training size. All boxes are normalized by median deduction.
Each observation represents a MAPE value for a single experiment replication.
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Figure 4.17: Distributions of MAPE error of linear-based transferrers, when transferring the com-
pression time metric for flac software on heterogeneous hardware, using different training sample
sizes. Each subplot represents MAPE distributions for a particular hardware. Each box represents
MAPE distribution for a particular training size. All boxes are normalized by median deduction.
Each observation represents a MAPE value for a single experiment replication.
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Figure 4.18: Distributions of MAPE error of linear-based transferrers, when transferring the com-
pression time metric for gzip software on heterogeneous hardware, using different training sample
sizes. Each subplot represents MAPE distributions for a particular hardware. Each box represents
MAPE distribution for a particular training size. All boxes are normalized by median deduction.
Each observation represents a MAPE value for a single experiment replication.
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Figure 4.19: Distributions of MAPE error of linear-based transferrers, when transferring the com-
pression time metric for 26/ software on heterogeneous hardware, using different training sample
sizes. Each subplot represents MAPE distributions for a particular hardware. Each box represents
MAPE distribution for a particular training size. All boxes are normalized by median deduction.
Each observation represents a MAPE value for a single experiment replication.

Analyzing property transferer for x264 system

Property transferer distributions from server BasicAl-japaneast to server StandardF2sv2-westus2

T T T T T T T T T
Size: 51/256 Size: 77/256 Size: 102/256  Size: 128/256  Size: 154/256  Size: 179/256  Size: 205/256  Size: 230/256  Size: 256/256
=~20% =30% =~40% =50% ~60% =70% ~80% =~90% ~100%

Property transferer distributions from server BasicAl-westus2 to server StandardF2sv2-westus2

+

O“g == % :%: ———— = = — _

MAPE (%)

-8 T T T T T T T T T
Size: 51/256 Size: 77/256 Size: 102/256  Size: 128/256  Size: 154/256  Size: 179/256  Size: 205/256  Size: 230/256  Size: 256/256
=~20% =30% =~40% =50% ~60% =70% ~80% ~90% ~100%

Property transferer distributions from server StandardD2v3-australiasoutheast to server StandardF2sv2-westus2

-8 T T T T T T T T T
Size: 51/256 Size: 77/256 Size: 102/256  Size: 128/256  Size: 154/256  Size: 179/256  Size: 205/256  Size: 230/256  Size: 256/256
=20% =30% =40% =50% ~60% =70% ~80% =90% =100%

Training size (% of a system's configuration space size)

71



Figure 4.20: Distributions of MAPE error of linear-based transferrers, when transferring the com-
pression time metric for xz software on heterogeneous hardware, using different training sample
sizes. Each subplot represents MAPE distributions for a particular hardware. Each box represents
MAPE distribution for a particular training size. All boxes are normalized by median deduction.
Each observation represents a MAPE value for a single experiment replication.
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Figure 4.21: Distributions of averaged MAPE error of regression-tree-based transferrers, when trans-
ferring the compression time metric across heterogeneous hardware, using all possible training sam-
ple sizes. Each subplot represents MAPE distributions for a particular software. Each line represents

MAPE distribution for a particular hardware.
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Figure 4.22: Distributions of MAPE error of regression-trees-based transferrers, when transferring
the compression time metric for bzip2 software on heterogeneous hardware, using different training
sample sizes. Each subplot represents MAPE distributions for a particular hardware. Each box
represents MAPE distribution for a particular training size. All boxes are normalized by median
deduction. Each observation represents a MAPE value for a single experiment replication.
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Figure 4.23: Distributions of MAPE error of regression-trees-based transferrers, when transferring
the compression time metric for flac software on heterogeneous hardware, using different training
sample sizes. Each subplot represents MAPE distributions for a particular hardware. Each box
represents MAPE distribution for a particular training size. All boxes are normalized by median
deduction. Each observation represents a MAPE value for a single experiment replication.
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Figure 4.24: Distributions of MAPE error of regression-trees-based transferrers, when transferring
the compression time metric for gzip software on heterogeneous hardware, using different training
sample sizes. Each subplot represents MAPE distributions for a particular hardware. Each box
represents MAPE distribution for a particular training size. All boxes are normalized by median
deduction. Each observation represents a MAPE value for a single experiment replication.
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Figure 4.25: Distributions of MAPE error of regression-trees-based transferrers, when transferring
the compression time metric for 264 software on heterogeneous hardware, using different training
sample sizes. Each subplot represents MAPE distributions for a particular hardware. Each box
represents MAPE distribution for a particular training size. All boxes are normalized by median
deduction. Each observation represents a MAPE value for a single experiment replication.
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Figure 4.26: Distributions of MAPE error of regression-trees-based transferrers, when transferring
the compression time metric for xz software on heterogeneous hardware, using different training
sample sizes. Each subplot represents MAPE distributions for a particular hardware. Each box
represents MAPE distribution for a particular training size. All boxes are normalized by median
deduction. Each observation represents a MAPE value for a single experiment replication.
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regression trees RT as our property transferring models (see Section 4.2.3 for details), we also

performed a comprehensive evaluation of simple linear regression models SLR, since linear regression

displayed high transferring performance in previous research ( ; ,
). We assessed the quality of transferrers using MAPE and LOOCV Vahdatlon

Evaluation shows that performance of linear transferrers highly varies from one system to an-
other. Figure 4.15 presents evaluation results by displaying distributions of linear-based transferrers’
MAPE with increase of transferrers’ training sample size. While for some systems, e.g. BZIP2 and
GZIP, linear transferrers achieve MAPE smaller than 5%, for FLAC linear transferrers can barely
achieve 20% for the majority of hardware platforms. Linear transferrers also exhibit poor perfor-
mance for XZ parallel compression software.

)

Figure 4.21 presents evaluation results by displaying distributions of tree-based transferrers
averaged MAPE with increase of transferrers’ training sample size. Regression trees provide signifi-
cantly better results for transferring FLAC, x264, and XZ software systems, and comparable results
for BZIP2. Although regression trees provide slightly worse results for GZIP than linear models
when assessing them using LOOCYV on a training sample, regression trees still outperform linear
models when assessing actually transferred Pareto frontiers for GZIP systems.

Figures 4.16 — 4.20 and Figures 4.22 — 4.26 present MAPFE distributions of linear-based and tree-
based transferrers respectively, that are specifically trained for transferring compression time metric
values. Each figure displays distributions for a specific software system, while each distribution
consists of corresponding experimental replications. All of the distributions are normalized by
median deduction. Symmetry of distributions and minimal amount of outliers allows to utilize
the arithmetic mean for linear transferrers quality approximation. MAPFE distributions also exhibit
variability reduction with increase of a training sample size, meaning that the mean of experimental
replications becomes even more reliable for assessing transferrers quality with increase of training
data size.

Assessing Pareto Frontiers Accuracy

Before we can compare actual, approximated, and transferred Pareto frontiers, we have to select
a way of assessing their prediction quality. We regard a Pareto frontier as a binary classifier
that separates all system’s configurations into optimal and non-optimal ones on a given hardware.
Therefore, to assess the quality of a Pareto frontier we can use any of the classical statistical
measures for binary classifiers.

Researchers use different statistical measures when assessing binary classifiers in their works.
We decided to include several basic measures in order to provide a comprehensive and intuitive
description of how well do approximated and transferred Pareto frontiers classify configurations.
Table 4.4 presents all statistical measures used in our work in a form of a confusion matriz. We
selected matrix representation since it shows all measures in a concise and structured way. To make
statistical measures more intuitive, we indicate their preferred values using special symbols. (7)
indicates that higher values of a respective measure are preferred to lower ones, while (/) indicates
that lower values are preferred instead.

A core of a confusion matrix is formed by a contingency table, showing frequency distributions
of optimal and non-optimal configurations. These are the most basic classification metrics, from
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Table 4.4: Statistical measures for assessing a Pareto frontier, represented as a confusion matrix

Condition Condition
Positive: Negative:
P=TP+ FN N=FP+TN

Predicted True False Positive Predictive False Discovery
Condition Positive: Positive: Positive: Value: Rate:
PCP=TP+FP TP? FPy PPV =TP/PCP  FDRJ)=FP/PCP

Predicted False True False Omission Negative Predictive
Condition Negative: Negative: Negative: Rate: Value:
PCN=FN+TN FNy TN? FORy=FN/PCN NPV?=TN/PCN

True Positive False Positive I score:
Rate: Rate: 1 Seore:

TPRI —TP/P FPRy—pp/N 1} =2X(PPVXTPR)/(PPV +TPR)

False Negative True Negative Matthews correlation coeflicient:
Rate: Rate: MCC?t =+/PPV x NPV x TPRx TNR—
FNRy=FN/P TNRr=TN/N —VFDR x FOR x FPR x FNR

which all other metrics can be derived. True positive TP7 (negative TN 7 ) is an amount of actually
optimal (non-optimal) configurations correctly classified as such by a Pareto frontier. False positive
FPy (negative FN () is an amount of actually non-optimal (optimal) configurations misclassified
as optimal (non-optimal) by a frontier.

The following measures allows a practitioner to answer specific questions about efficiency of
a frontier in general. True positive rate (I'PR7 ) shows a probability that a frontier contains all
actually optimal configurations. True negative rate (IT'NR7 ) shows how likely will a frontier leave
out all actually non-optimal configurations.

The next block of measures allows a practitioner to answer questions about classification results
by a Pareto frontier. Positive predictive value (PPV 7 ) represents a probability that a configuration,
classified as optimal by a Pareto frontier, is truly optimal. Negative predictive value (N PV 1) shows
how likely a configuration, classified as non-optimal by a Pareto frontier, is truly non-optimal.

Although previously presented statistical measures provide information about a Pareto frontier
quality, these measures are best regarded together in groups, since this way they provide a more
comprehensive understanding of a frontier’s performance. Therefore, we also included an ‘integral’
measure of a binary classification behavior. Matthews correlation coefficient (M CC') is considered to
be one of the best measures for working with data that has strong quantitative differences between
classes of observations. MCC' takes values in [—1,+1], where —1 corresponds to a completely
misclassifying frontier, 0 to a random frontier, and +1 to a perfect frontier.

Approximated Frontiers Accuracy

To answer RQ3 we assess the accuracy of Pareto frontiers, approximated using our methodology.
We calculate an approximated Pareto frontier ij: _ based on system properties P approximated
for all configurations C using tree-based predictors that we train using samples of measured con-
figurations Cy,., (see Section 4.2.2). We regard approximated Pareto frontiers as binary classifiers

80



Figure 4.27: Distributions of statistical classification measures, characterizing Pareto frontiers ap-

prozimated using regression trees on BasicAl-japaneast Azure server.

Each subplot represents

distributions for a particular software. Each line represents a particular measure: TPR (green),

TNR (red), PPV (blue), NPV (orange), MCC (violet).
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Figure 4.28: Distributions of MCC measure, characterizing Pareto frontiers approzimated using
regression trees on BasicAl-japaneast Azure server. Each subplot represents distributions for a
particular software. Each box represents a distribution for a particular training sample size. Each
observation represents an MCC value for a single experiment replication.
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Figure 4.29: Distributions of statistical classification measures, characterizing Pareto frontiers ap-
proximated using regression trees on StandardD2v3-australiasoutheast Azure server. Each subplot
represents distributions for a particular software. Fach line represents a particular measure: TPR

(green), TNR (red), PPV (blue), NPV (orange), MCC (violet).
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Figure 4.30: Distributions of MCC measure, characterizing Pareto frontiers approzimated using
regression trees on StandardD2v3-australiasoutheast Azure server. Each subplot represents distri-
butions for a particular software. Each box represents a distribution for a particular training sample
size. Each observation represents an MCC value for a single experiment replication.
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and evaluate them using presented statistical measures (see Section 4.3.2). Figure 4.27 and Fig-
ure 4.29 show evaluation results of Pareto frontiers of all software systems for ‘BasicAl-japaneast’
and ‘StandardD2v3-australiasoutheast’ hardware environments respectively (see Table 4.1), approx-
imated using tree-based predictors that are trained using samples C,,., of different sizes.

First of all, we observe that TNR and NPV demonstrate high values almost instantly, and
provide almost perfect results for FLAC, x264, and XZ systems. This means that a frontier can
very efficiently and with high certainty catch non-optimal configurations. However, this happens
because classification categories are highly unbalanced in our case, since a number of optimal con-
figurations in a system configuration space is generally much smaller than a number of non-optimal
ones. Because of that, even if a frontier classifies all configurations as non-optimal, TNR and NPV
might demonstrate high values in some cases. This effect becomes more apparent with a larger
system’s configuration space. Therefore, we cannot claim that approximated frontiers exhibit high
classification accuracy based on TNR and NPV values only.

Secondly, we observe that TPR and PPV exhibit a gradual growth with increasing predictors’
training sample sizes. This means that the ability of a frontier to capture optimal configurations
and certainty that an optimally-classified configuration is truly optimal, both highly depend on
the training sample size. We can explain this behavior by several major factors. First of all,
classes of optimal and non-optimal configurations are highly unbalanced in our case. Since our
approach cannot impose any restrictions on a sampling process and has to work with randomly-
sampled data, truly optimal configurations on average become significantly underrepresented in the
predictors’ training samples. Thus, TPR and PPV gradually improve with the availability of new
truly optimal configurations. Secondly, the inability to accurately capture optimal configurations
by an approximated frontier based on small random samples of measured configurations lies in the
structure of regression trees. Regression trees are limited by sampled property values and cannot
output any value that is smaller than a minimal or larger than a maximal sampled value. Therefore,
when regression trees are limited by a min-max interval of a random sample, they will be limited
to a subinterval of possible values and consequently only to a part of an actual frontier, making
accurate approximation of the whole frontier not possible.

Finally, we observe that MCC demonstrates almost linear growth approximately from 0 to 1,
while avoiding negative values. This means that the presented Pareto frontier overall starts as
a nearly-random classifier, but with the increase of predictors’ training samples improves into an
almost-perfect classifier, while avoiding complete misclassification of configurations. Figures 4.28
and 4.30 show distributions of the MCC measure across different experiment replications, charac-
terizing approximated Pareto frontiers on BasicA 1-japaneast and StandardD2v3-australiasoutheast
hardware environments respectively. Symmetry of these distributions and minimal amount of out-
liers allow to use the arithmetic mean for approximation of MCC values.

To sum up, we evaluated our approach for approximating frontiers that works by individually
predicting system’s properties using general-purpose machine-learning models trained using random
samples of measured configurations. We demonstrated that in general our approach works, but its
overall quality is linearly dependent on the training sample’s size. In order to improve accuracy of
our approach in future work, we might need to relax some initial assumptions like the ability to
control the sampling process.
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Figure 4.32: Distributions of statistical classification measures, characterizing Pareto frontiers trans-
ferred from StandardD2v3-australiasoutheast to StandardF2sv2-westus?2 Azure servers, using differ-
ent transferring models. Each subplot represents distributions for a particular transferrer. Each
line represents a particular measure: TPR (green), TNR (red), PPV (blue), NPV (orange), MCC
(violet).
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Figure 4.33: Distributions of MCC measure, characterizing Pareto frontiers approzimated using
regression trees on StandardD2v3-australiasoutheast Azure server. Each subplot represents distri-
butions for a particular software. Each box represents a distribution for a particular training sample
size. Each observation represents an MCC value for a single experiment replication.
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Figure 4.34: Distributions of statistical classification measures, characterizing Pareto frontiers ap-
prozimated using regression trees on BasicAl-japaneast Azure server. Each subplot represents
distributions for a particular software. Each line represents a particular measure: TPR (green),

TNR (red), PPV (blue), NPV (orange), MCC (violet).

Measures of frontiers, approximated using regression trees on StandardD2v3-australiasoutheast
and transferred using regression trees to StandardF2sv2-westus2
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Transferred Frontiers Accuracy

To answer RQ4 we assess the accuracy of Pareto frontiers transferred using our approach. We ac-
quire a transferred Pareto frontier C} f . by transferring approximated values of all properties P using
transferrers that we train using samples of configurations C,., measured on both source and desti-
nation hardware (see Section 4.2.4). Figures 4.31 and 4.32 present evaluation results of transferred
Pareto frontiers of all studied software systems for linear-based and tree-based transferrers. Fig-
ure 4.31 presents frontiers transferred from ‘BasicAl-japaneast’ to ‘StandardG1l-eastus2’ hardware
environments, while Figure 4.32 presents frontiers transferred from ‘StandardD2v3-australiasoutheast’
to ‘StandardF2sv2-westus2’ hardware environments (see Table 4.1 for comparison).

Although linear regression demonstrated strong results for transferring prediction models across
heterogeneous hardware previously ( , ; , ), Figures 4.31 and 4.32
clearly demonstrate that regression trees completely outperform linear models for the majority of
studied software systems. This difference is especially strong for FLAC and XZ software systems
where MCC for linear-based transferring barely reaches 0.5 and 0.3 respectively.

To visually represent how much distortion to the approximated frontier the transferring pro-
cess adds, we calculate the difference between the approximated and transferred frontiers for all
statistical measures and present them on Figures 4.31 and 4.32. Thus, we can observe that the
transferring process using regression trees has a very limited impact on distortion of an approxi-
mated frontier even for small training samples sizes, while transferring using linear models might
significantly degrade the quality of a transferred Pareto frontier especially for large training sample
sizes.

To sum up, we have demonstrated that transferring of approximated Pareto frontiers across
heterogeneous hardware environments using unpruned regression trees is possible and doesn’t sig-
nificantly affect the resulting frontier’s accuracy. However, a transferred frontier cannot demonstrate
a high quality if an original approximated frontier doesn’t show high classification results. There-
fore, in future work we plan to improve our approach for minimalistic practical approximation of
Pareto frontiers.

4.4 Threats to Validity

To increase internal validity of our research, during evaluation of our methodology, we trained
properties’ predictors and transferrers using random samples of measured configurations, and for
each training size we generated 10 different random samples. Thus, all statistical measures that
describe predictors, transferrers, and frontiers, are averaged over 10 different instances. Therefore,
we avoid bias caused by random variations in models’ training samples.

To increase external validity of our research, we performed an evaluation of our approach using
five configurable software systems with different code bases, features, configuration space sizes,
parallelization capabilities, and application domains. We benchmarked the selected software systems
on 34 heterogeneous hardware platforms with different CPU models, available CPU cores, RAM
sizes, and storage types. When benchmarking software systems, we measured each configuration
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10 times and averaged over these measurements to get final properties’ values. This allowed us to
avoid bias induced by random aberrations during the benchmarking process.

We tried to address the most obvious threats to internal and external validity of our work, but we
acknowledge that this might not be enough. Although we explored a variety of general-purpose soft-
ware systems including parallelized ones, we suspect that there might be other configurable systems
with different features, architectures, or application domains, whose properties might exhibit com-
pletely different unsystematic behavior across variable hardware. Moreover, we expect this behavior
to occur when a practitioner redeploys a particular software system that is optimized for a specific
hardware architecture. For example, when a system that supports GPU-acceleration is redeployed
to a hardware without a dedicated graphical unit. We plan to investigate such software-hardware
interaction in future work.

4.5 Summary

In the current chapter we proposed and evaluated a practical, easy-to-use, and black-box approach
based on general-purpose machine-learning models for approximation and transferring of Pareto
frontiers of optimal configurations. We perform approximation of a frontier by (1) building an
unpruned regression tree model for each property to act as a predictor, and then (2) combining
properties’ predictions into an approximated frontier. Our evaluation shows a strong decreasing
trend in predictors’ error and a linearly increasing trend of an overall classification accuracy of
a resulting approximated frontier, with increase of predictors’ training sample sizes. We perform
transferring of a frontier by (1) building an unpruned regression tree model for each property to
act as a transferrer, and then (2) combining transferred values of the approximated frontier. Our
evaluation shows a strong decreasing trend in transferrers’ error and a linearly increasing trend
of a transferred frontier accuracy, with increase of transferrers’ training sample sizes. Moreover,
the overall accuracy of a transferred Pareto frontier mostly depends on the approximated Pareto
frontier’s accuracy than on the transferring process itself.
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Chapter 5

Conclusion and Future Work

In this work, we proposed and evaluated approaches for transferring property prediction of config-
urable software systems across a collection of heterogeneous hardware environments. Both of these
approaches are practical and minimalistic. They regard software systems as black-boxes and train
property prediction and transferring models using small random samples of measured configurations.

The first method addresses the problem of configurable system performance prediction transfer
across a heterogeneous hardware cluster. This method (1) builds a performance prediction model
on source hardware and (2) transforms predictions of this model to a destination hardware by using
a separate transferring model. Analysis of the method demonstrated that cross-platform similarity
of performance distributions directly correlates with the structure of performance prediction mod-
els and overall quality of performance prediction and transferring. Experiments on three different
configurable software systems demonstrate that it is possible to build a reliable linear transferrer
using a small sample of configurations Cpuy, @ size(Cpon) € [5,10] measured on both source and
destination hardware environments. Analysis of different sampling techniques demonstrated that
the best way to generate Cyyy, is by resampling from configurations measured on source hardware
environment using a quasi-random technique (Sobol sampling). Our experiments show strong de-
creasing trends of MAPE for both predictors and transferrers with increase of a training sample
size, while achieving high accuracy (less than 10% MAPE) for the majority of transfers.

The second method addresses the problem of transferring prediction about relative configuration
optimality of a software system across a heterogeneous hardware cluster, by extrapolating the
first method on multiple system properties. This method (1) trains a prediction model (e.g. a
regression tree) for each analyzed software system property (e.g. compression time, compressed
size) by using configurations measured on the source hardware environment, (2) approximates
properties of all unmeasured configurations using trained predictors and builds an approximated
Pareto frontier on the source hardware, (3) trains a transferrer model (e.g. a linear model or
a regression tree) for each analyzed system property, by using configurations measured on both
source and destination hardware environments, and (4) transfers the approximated Pareto frontier
from source to destination hardware, by individually transferring approximated properties using
the trained transferrers, thus acquiring a transferred Pareto frontier on destination hardware.

We evaluate the proposed methodology by regarding approximated and transferred Pareto fron-
tiers as binary classifiers, and assessing them using classical statistical measures like Matthews
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Correlation Coefficient (MCC). Experiments on five different configurable software systems demon-
strate a strong linearly increasing trend in average MCC values and a strong decreasing trend in
MCC’s variability with increase of the training sample size for both approximated and transferred
frontiers. Experiments demonstrate that the classification accuracy of a transferred frontier mostly
depends on the approximation process, while the transferring process only adds a minor error to
the classification even for small training sample sizes.

Nevertheless, our research has some limitations. First of all, the studied configurable software
systems are relatively small in terms of the number of features and the number of valid system
configurations. This might simplify the problem of Pareto frontier approximation and transferring.
To check this assumption in the future work we plan to analyze much more complex configurable
software, such as, FreeBSD and Linux kernels ( : ).

Secondly, we analyzed only two differing properties for all studied configurable software systems.
A larger number of analyzed properties might reduce the quality of the Pareto frontier approximation
and transferring process. In the future work we plan to analyze our approach for approximation
and transferring of frontiers that are based on three or more configuration properties.

Thirdly, when building property prediction and transferring models, we only take into account
software features and do not analyze any hardware features. Analysis of hardware features might
be beneficial when transferring a frontier across a heterogeneous hardware cluster, because this
information might help to even further save benchmarking effort by more efficient transferring of
property values across hardware with similar configurations. Moreover, we assume that all hardware
platforms in the cluster use the same operating system and compiler, which might not be the case in
a real-world scenario. Therefore, in the future work we plan not only to use hardware features, but
also perform transferring across different combinations of hardware platforms and system software.

Fourthly, when benchmarking the studied software systems across heterogeneous hardware, we
measured a single software on a single hardware with a fixed workload. However, in a real-world
scenario multiple software systems might be deployed on a single platform and these systems might
experience different workloads ( , ). Thus, in the future work we plan
to experiment with deploying multiple software systems on a single platform and experimenting
with varying software workloads.

Fifthly, we used pseudo-random sampling when exploring the configuration spaces of the studied
software in order to mimic the worst case scenario of impossibility to make any sampling choices by
the end user of our approach. We selected pseudo-random sampling as a simple method, which may
not provide a high quality configurations diversity. We understand that in a real-world scenario a
user might have an extremely biased sample that cannot be simulated by the pseudo-random sam-
pling, however, the analysis of this scenario was out of scope of the current research. Nevertheless,
in the future work we plan to further explore different sampling techniques in order to provide a
better assessment of the worst-case behavior of our methodology.

Finally, in our approach we focused on approximation and transferring of exact Pareto frontiers.
However, a user might be interested not only in Pareto optimal configurations, but in near-optimal
configurations as well. Inclusion of near-optimal configuration would allow to use additional methods
for approximation and transferring of Pareto frontiers. Therefore, in the future work we plan to
analyze and compare different methods for approximate Pareto frontier generation ( ,

).
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