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Effective collaboration in data science can leverage domain expertise from each team member and thus
improve the quality and efficiency of the work. Computational notebooks give data scientists a convenient
interactive solution for sharing and keeping track of the data exploration process through a combination of
code, narrative text, visualizations, and other rich media. In this paper, we report how synchronous editing in
computational notebooks changes the way data scientists work together compared to working on individual
notebooks. We first conducted a formative survey with 195 data scientists to understand their past experience
with collaboration in the context of data science. Next, we carried out an observational study of 24 data
scientists working in pairs remotely to solve a typical data science predictive modeling problem, working on
either notebooks supported by synchronous groupware or individual notebooks in a collaborative setting.
The study showed that working on the synchronous notebooks improves collaboration by creating a shared
context, encouraging more exploration, and reducing communication costs. However, the current synchronous
editing features may lead to unbalanced participation and activity interference without strategic coordination.
The synchronous notebooks may also amplify the tension between quick exploration and clear explanations.
Building on these findings, we propose several design implications aimed at better supporting collaborative
editing in computational notebooks, and thus improving efficiency in teamwork among data scientists.
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1 INTRODUCTION

The complexity of data science work and the demand to adopt data science practices in various
domains has grown rapidly in the last decade. With this increase in adoption, there is a need to
facilitate collaboration among data science workers, domain experts, and consumers. Data scientists
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Fig. 1. An example of a Jupyter notebook. (1) A custom collaborative extension for users to share their
notebook. (2) A notebook cell that contains code to import libraries and load dataset. (3) An output of a
shared data frame. (4) A markdown cell that contains narrative text. (5) An output of a visualization

often create computational narratives, which combine data, code to process those data, and natural
language explanations to form a narrative. Some even consider computational narratives to be the
engine of collaborative data science [32]. Computational notebooks allow data scientists to create
and share computational narratives. Jupyter Notebook!, a computational notebook platform that
supports more than 40 programming languages, has been widely used for writing and sharing
computational narratives in various contexts [59]. For example, data science instructors use Jupyter
notebooks to create interactive lecture notes or textbooks. Data science learners can experiment
with these interactive lecture notes to deepen their understanding or explore alternative solutions
[45]. Researchers use Jupyter notebooks to demonstrate their computational work and share their
data analysis process for open science, which makes it easy for others to reproduce the results [61].
As Figure 1 shows, Jupyter notebooks allow users to weave together source code, narrative text,
visualization, computational outputs, and other rich media using structured cells.

Prior studies have revealed the challenges in constructing and sharing computational narratives
through notebooks. For example, data scientists are reluctant to keep up-to-date explanatory notes,
which impedes sharing and collaboration [63]. Studies have also explored ways to lower the barriers
for writing and sharing computational narratives: folding content selectively [62]; local version
control mechanisms [36]; and managing and reorganizing content [28]. Most of these innovations
are designed and evaluated for sharing the computational narrative after it is finished, leaving data
scientists to work on individual notebooks. Recently, tools like Google Colab? have demonstrated
the possibility for synchronous editing — multiple users are able to edit the same notebook and
changes are updated in real-time, which may revolutionize the ways data scientists collaborate.

Ihttps://jupyter.org
Zhttps://colab.research.google.com
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However, synchronous editing comes with its own challenges and may not always improve
work efficiency. Studies have identified several issues with synchronous editing in other contexts.
For example, in narrative writing, multiple users rarely synchronously edit adjacent content [11],
and programmers can interfere with each others’ work when using synchronous code editors
[21]. While many of these studies are constructed around the context of collaborative writing and
programming, it remains unknown how synchronous editing in computational notebooks might
work for data scientists. More specifically, we are interested in three questions:

(1) What tools and strategies do data scientists currently use for collaboration?

(2) Compared to working on individual notebooks in a collaborative setting, how does syn-
chronous notebook editing change the way data scientists collaborate in computational
notebooks?

(3) What challenges, if any, do data scientists perceive in synchronous notebook editing?

To address these questions, we first conducted a formative survey with 195 data scientists
who were familiar with Jupyter notebooks. Based on the common tools and mechanisms they
use for collaboration and communication, we further conducted an observational study with 24
intermediate data scientists working in pairs remotely to solve a predictive modeling problem.
To understand a broader spectrum of synchronous notebook editing, we assigned participants
with different settings for collaboration, which included: (1) working on synchronized notebooks
— participants worked on notebooks with synchronous editing similar to that in Google Docs,
and could communicate through other tools, (2) working on individual notebooks — participants
were not able to edit the same notebook, but could communicate the intermediate code and output
through other tools. We also provided participants different options for communication which
included: (1) text-based messaging, (2) video chat. Through this observational study we empirically
probed both the benefits and challenges for the different ways of collaborating with computational
notebooks.

Our key finding reveals that working on synchronized notebooks can improve the collaboration
outcomes by reducing communication costs and encouraging more exploration in a shared context.
However, working on synced notebooks requires participants to be more strategic when coordinat-
ing their work. Working on synced notebooks is more likely to lead to unbalanced participation
where one team member does the majority of implementations and ideation. In addition, partic-
ipants found other challenges in using synchronized notebooks such as interference with each
other, lack of awareness, and privacy concerns. These findings suggest ways in which we need to
improve the design of collaborative notebook editing tools to better foster teamwork among data
scientists.

The main contributions of this work are the empirical insights we present on how data scientists
collaborate using computational notebooks. These insights lead to design implications to enhance
collaborative computational notebooks for fostering collaboration among data science learners
and practitioners. This work extends prior work on real-time collaborative systems and is broadly
applicable to understanding collaboration in exploratory and open-ended tasks.

2 RELATED WORK

To contextualize our studies, we draw upon prior research in collaborative data science work
practices, tools and systems that extend the usability of computational notebooks, computer-
mediated collaboration, and its practice in the context of writing and programming.
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2.1 Data Science Applications and Processes

The term data science was first distinguished from pure statistics in 1997, with the notion of
extracting knowledge and insights from data [14]. The field of data science has grown rapidly
over the last decade amidst the rise of big data and breakthroughs in technologies like machine
learning that expand our capabilities for understanding data [12]. According to a survey of the
United States workforce on LinkedIn [1], the demand for data scientists will continue to increase
as more industries (e.g., finance, business, healthcare) adopt big data to make business decisions.

The process of doing data science has been categorized and discussed among statisticians,
computer scientists, HCI researchers, and others (e.g., [22, 34, 40, 52, 55]). O’Neil and Schutt
distinguished the data science process into several iterative phases [55]:

(1) Collecting data from a variety of sources (e.g., emails, logs, and medical records)

(2) Building and using pipelines for data munging (e.g., joining, scraping, and wrangling)

(3) Cleaning data to ensure its validity and accuracy for analysis (e.g., manipulating duplicates,
filtering outliers, and tuning missing values)

(4) Exploring and hypothesizing the relationship between variables using different techniques
(e.g., generating statistical summary, plotting pairwise relationships)

(5) Applying machine learning algorithms or statistical models based on the type of problems
(e.g., k-nearest neighbor, linear regression, and naive Bayes)

(6) Finally interpreting and communicating results to different audiences (e.g., managers, co-
workers, and clients)

Not all stages are required depending on the type of data science task. The exploration process
can be non-sequential, as feedback from later stages may result in additional work in earlier
stages. Kery and Myers [37] considered data science as a practice of exploratory programming
where programmers write code to experiment with ideas in an open-ended task. In particular,
communication can happen back and forth in a collaborative setting, while collaboration patterns
may vary between stages.

2.2 Collaboration in Data Science

Prior research has found that data scientists in software companies often work collaboratively [40].
For example, some data science teams have adopted a triangular structure where they divide the
task into collecting data, cleaning data, and analyzing data. However, collaboration in data science
can be challenging. Transferring findings from data science work to business actions requires
successful communication between data scientists and stakeholders who are usually non-technical
professionals [57]. Kandel et al. [34] revealed that collaboration between data scientists rarely
happens in domains like marketing and finance. One major reason is that the diversity of tools and
programming languages has made it laborious to share intermediate code, especially when it is not
well documented. Correspondingly, Kery and Myers [37] addressed the difficulty of maintaining a
shared understanding of the exploration progress since the intermediate code and data artifacts
can be experimental and messy. Nonetheless, with the growing demand for data analysis, efficient
collaboration between data scientists will become increasingly important and challenging. Building
upon the work of Kandel et al. [34], and Kery and Myers [37], our study further investigates the
benefits and trade-offs of mechanisms that enable real-time collaboration and communication in
data science work.

2.3 Computational Narratives, Computational Notebooks, and Innovations

Data science involves a large amount of experimentation and subjective decision making. Thus,
it is important for data scientists to document the story behind the computation of results (e.g.,
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reporting alternative solutions and explaining the limitations for them). A variety of media such as
textual explanations, graphs, forms, interactive visualizations, code segments, and output are used
for narrative and storytelling to document the data analysis process. Extending Knuth’s idea of
literate programming, wherein he argues that making programming sources more understandable
to human beings can be achieved by combining a programming language with a documentation
language [41], computational narratives serve as literature for data scientists and data science
consumers to present work and exchange ideas.

2.3.1 Computational Notebooks. Researchers and practitioners have long explored approaches
for creating and sharing digital documents for data analysis (e.g., [9, 24, 66]). Establishing a com-
mon format for documenting data analysis can make it easier to present, reproduce, share, and
collaborate. One approach is to capture digital assets (e.g., code, output, documentation) and com-
putational environments (e.g., browsing, Ul interaction, file versioning) from the OS level [24].
Another approach integrates digital components (e.g., text-based lab notes, emails, web pages) into
a combined entry [66]. Yet, the most popular tools for data scientists are computational notebooks
— web-based platforms that allow users to write and execute code, inspect output, and integrate
text annotations, figures, interactive visualization, and other rich media (e.g., Apache Zeppelin3,
Spark Notebook?, Observable®, and Jupyter Notebook).

2.3.2  Jupyter Notebook. Project Jupyter evolved from IPython [58], a terminal-based interactive
shell that originally designed for creating interactive visualizations for scientific computing. Wrap-
ping IPython as the kernel, Project Jupyter is designed as a web-based platform for authoring
a single document that combines code cells and intermediate results. The evolution of Project
Jupyter is influenced by the rise of data science. Data science is exploratory and fluid, and the
process benefits from creating reproducible computational narratives for iterative exploration and
interactive inspect of intermediate results. Jupyter Notebook is an open source project that is also
extensible through optional add-ons. As Figure 1 shows, Jupyter notebooks consist of “cells” —
typically small chunks of code or narrative text in the Markdown format. Users can execute cells
(typically, but not necessarily, from top to bottom) and observe their outputs, which can include
visualizations, data frames, or rendered narrative text.

Most other notebook platforms have a very similar user interface to Jupyter but differ in the
programming languages they support (Jupyter uses Python by default but its architecture can
support other languages). Other computational notebook platforms include Observable (which uses
JavaScript), RStudio® (which uses R Markdown), Wolfram Notebooks’ (which uses the Wolfram
Programming Languages), and Zeppelin (which allows multiple programming languages to be
used in the same notebook). Some notebook platforms use a different computational architectures.
For example, some notebook platforms enable reactive notebooks that automatically run cells
when necessary (as opposed to requiring that users run cells manually, as Jupyter does). For
example, Observable notebooks run cells in “topological” order—data dependencies between cells
are tracked and changing a cell automatically re-runs other cells that depend on its result. Compared
to other notebook services, Jupyter has a larger community of users given its’ long history and
prevalence among different contexts. Jupyter also has more customized extensions because of its
large community.

3https://zeppelin.apache.org
*http://spark-notebook.io
Shttps://observablehq.com
Ohttps://www.rstudio.com/
Thttp://www.wolfram.com/notebooks/
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Jupyter has become one of the most popular tools for data related work among academia,
industry, and data science education [59], even earning the 2017 ACM Software System Award [33].
Studies have found that Jupyter is popular in a variety of settings. Kross and Guo [45] interviewed
practitioners who taught data science and found that Jupyter notebooks have been widely used
by instructors to deliver course materials. They also found that Jupyter notebooks allow students
to easily write computational narratives with a low cost for setting up an environment. Kery et
al. studied how professional data scientists used Jupyter notebooks in their daily work to create
computational narratives [39]. Randles et al. [61] investigated how Jupyter notebooks can be used
for open science under the principles of Findable, Accessible, Interoperable, Reusable (FAIR). In
fact, some academic venues encourage paper authors to include notebooks with their submissions
(e.g., the Distill Journal® in the area of machine learning).

However, studies have identified several limitations with computational notebooks [39, 63, 64].
Rule et al. conducted a large scale analysis of over 1 million open-source computational notebooks
and found that only one in four held explanatory text [63]. Kery et al. interviewed 21 data scientists
to study their coding behaviors using computational notebooks and highlighted the challenges
of tracking history of experimentation [39]. Both studies revealed the tension between using
computational notebooks for rapid exploration and instructive explanation. For quick exploration,
data scientists sometimes generate messy and informal notebooks, which can be difficult for
others (or even the author) to read later on [63]. Data scientists have to use strategies like actively
pausing the experiment to curate and clean notebooks into narratives, which may hinder the
exploration process [39]. The tension between quick exploration and instructive explanation can
be contextually sensitive depending on how exploratory and open-ended the task is. Building upon
current computational notebooks, other systems have explored designs to better support non-
linear exploration in notebooks. For instance, Kery et al. integrated a lightweight local versioning
mechanism to help data scientists keep track of their exploration history [35, 36, 38], while Rule
et al. took a different approach to enable data scientists to fold content blocks with annotations
in notebooks [62]. Head et al. explored code gathering extensions for data scientists to manage
and navigate through cluttered and inconsistent notebooks [28], and Zhang and Guo [73] created
DS.js to transform any webpage to a computational notebook, lowering the barrier for novices to
retrieve data for exploration. Companies have also built innovations on the notebook infrastructure
to support various data related tasks in practice. For example, the Netflix data team [5] developed
nteract’, with extra features for data explorations; Papermill’’, which facilitates rapid exploration
by spawning notebooks for different parameter sets; and Commuter!! — a platform for curating
and sharing notebooks.

The tools mentioned above focus on the use of computational notebooks for individual authoring.
Recently, tools like Google Colab'? have further fostered collaborative data science by allowing
multiple users to edit the same notebook in real time. However, prior studies on computational
notebooks have only inspected individuals authoring the notebooks, not yet multiple data scientists
collaboratively authoring the notebooks. Only recently, Koesten et al. [42] interviewed data practi-
tioners about their collaborative practices with structured data. They synthesized collaboration
needs across a wide range of scenarios from co-creation data analysis to reusing others’ data in
a new context. Our work takes a different scope to investigate real-time collaborative editing in

8https://distill.pub/journal
“https://github.com/nteract/nteract
Ohttps://github.com/nteract/papermill
Uhttps://github.com/nteract/commuter
2https://colab.research.google.com
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computational notebooks. We aim to understand whether collaborative editing would help collabo-
rators maintain a shared understanding or rather intensify the tension between exploration and
explanation. In our discussion, we propose suggestions to improve the current design of real-time
collaborative editing features to better support collaborative data science.

2.4 Collaborative Systems

Since the late 1980s, work has explored different forms of computer-mediated collaboration [44,
48, 51], evaluations of collaborative systems [27, 46], and principles for designing computer-based
collaborative tools [18, 43]. One critical aspect for collaborative systems is supporting group
awareness [15, 25, 46]. Presenting awareness information in a group facilitates collaboration by
maintaining a shared mental model among collaborators, by reducing communication costs, and
thus improving the usability of real-time distributed groupware systems [25]. To aid the design
of groupware systems, Gutwin and Greenburg have specifically examined collaboration in small
groups and proposed a conceptual framework to describe various aspects of workplace awareness
[26]. The framework has addressed how people gather and use workplace awareness information for
collaboration and issues around awareness information. Our studies also shed light on the common
awareness mechanisms (e.g., shared cursor information, shared editors) in real-time collaborative
notebooks. Existing real-time collaborative notebooks such as Google Colab migrate these common
awareness mechanisms from collaborative writing systems like Google Docs. However, these
mechanisms may be limited for collaborative data science given the differences between the nature
and complexity of tasks. For example, data scientists may want more awareness information on
whether their collaborators are modifying a data frame — the instance of data in a structured format.
To understand how these mechanisms support collaboration in other contexts, we surveyed studies
on collaborative writing, coding, and visual analytics practice below.

24.1 Collaborative Writing. With the emergence of early collaborative writing systems (e.g., SASSE
[2, 50], ShrEdit [53]), researchers have developed theoretical frameworks and taxonomies for issues
around collaborative writing [49, 60]. Posner and Baecker synthesized common roles, activities,
and writing strategies in collaborative writing [60]. In particular, they have discussed five writing
strategies in the joint writing process:

e Single writer: one team member writes the document with minimal assistance from others

o Scribe strategy: one team member writes the document while the others engage in the
ideation process

e Separate writers: dividing the document into parts and have different individuals writing the
various parts

e Joint writing: group members write the document closely together

o Consulted strategy: a combination of the other writing strategies that involves with a consul-
tant throughout the project

More recent studies have revisited how people write together using modern collaborative writing
tools like Google Docs (e.g., [4, 11, 54, 69, 72]). For example, Yim et al. [72] explored styles of
synchronous writing by analyzing 45 Google Docs documents and found that students tended to
produce higher quality documents when they worked in divide and conquer mode with balanced
participation.

A recent analysis of usage patterns in Etherpad (a collaborative editing system) revealed that users
rarely edited near-by document parts simultaneously in practice [11]. For instance, roughly half of
the Etherpad documents retrieved from a public platform only had one author. For the other half,
in most cases, authors took turns editing documents asynchronously. Correspondingly, Wang et al.
interviewed 30 users and surprisingly found that users were reluctant to write together when they
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were collaboratively constructing a document [69]. For example, role structure and concomitant
power differentials may hold users back from writing together; the co-editing environment may
blur the accountability and credit of contribution; there might be a social embarrassment to be
watched by others when typing. These findings triggered our interest in understanding how data
scientists perceived writing a computational narrative in a collaborative setting. Furthermore,
studies on collaborative editing inspired our study design to observe collaboration in a given time
limit (e.g., [72], [4]). Although data scientists may not always need to work in the same notebook
simultaneously in the real world, understanding and supporting synchronous collaboration on
computational notebooks is still valuable and important as a first step to understand other forms of
collaborations.

2.4.2 Collaborative Programming. Collaborative programming among geographically distributed
teams is a broadly studied topic of Software Engineering and HCI research. Built upon discussions
on coordination and management strategies in software engineering process (e.g., [3, 30, 65, 68]),
researchers have explored various technical interventions that enable real-time collaborative
programming (e.g., [7, 8, 13, 16, 21, 23, 47, 56, 70]). For example, the system ATCoPE integrated
version control support in real-time collaborative Integrated Development Environments (IDEs)
[16]; Lee et al. explored the subtasks model for collaborative code editors [47]. Studies also addressed
issues that impeded collaboration. Apart from what is discussed in collaborative writing practice
[11, 69], Goldman addressed a problem that one person’s compilation error may completely block
others’ work [20]. Goldman further examined different roles in collaborative programming [19],
and designed an asymmetric, role-based environment to alleviate conflicts in real-time collaborative
software development [21].

Wilson et al. [71] studied the benefits of pairing for programming tasks and found it led to better
problem-solving. Pair programming—where two programmers work together at one work station
and take turns to write and review code—later became popular in software development practice [6].
Another common scenario for real-time collaborative programming is tutoring, where tutors help
learners with debugging through shared computational environments. Warner and Guo integrated
features like bug reporting and version control management in the real-time collaborative system
CodePilot [70] to help novice programmers. Guo designed Codeopticon [23], which allowed tutors
to monitor the programming environments of multiple learners at scale. Codeon [7, 8] embedded
an on-demand help requests component within an IDE and shared related code contexts to remote
helpers. Oney et al. further introduced a deictic code referencing module that tracks code history
and allows users to make inline references for chat messages [56]. These systems have all been
designed or evaluated in the educational context. Similarly, our study of supporting real-time
collaborative editing in computational notebooks can explicitly benefit data science novices and
students.

2.4.3 Collaborative Visualization. Visual analytics, which uses visual information to support sense-
making, is a powerful tool for data science. Most visual analysis systems (e.g., Tableau'®) are
designed to support code-free exploration through interactive user interfaces. Studies in the area
of information visualization have shed light on the benefits and challenges of collaborative vi-
sualization. As defined by Isenberg et al. [31], collaborative visualization is “the shared use of
visual representations of data by multiple users with the goal of joint information processing”.
Collaborative visualization can be distinguished from collaborative data science as it highlights
the perspective on joint viewing, interacting, discussing and interpreting the data representation.

Bhttps://www.tableau.com

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. CSCW, Article 39. Publication date: November 2019.


https://www.tableau.com

How Data Scientists Use Computational Notebooks for Real-Time Collaboration 39:9

Visualization research has also explored different types of collaboration scenarios: collocated collab-
oration through large displays and shared workspaces, distributed collaboration through real-time
shared displays. In particular, Heer and Agrawala [29] discussed issues for designing asynchronous
collaboration systems for visual analytics (e.g., building common ground and awareness, designing
reference and deixis, maintaining group dynamics, and establishing group consensus).

3 OVERVIEW OF THE METHODOLOGY
This project investigates three research questions:

RQ1 What tools and strategies do data scientists currently use for collaboration?

RQ2 Compared to working on individual notebooks in a collaborative setting, how does syn-
chronous notebook editing change the way data scientists collaborate in computational
notebooks?

RQ3 What challenges, if any, do data scientists perceive in synchronous notebook editing?

To understand tools and strategies data scientists currently used in practice (RQ1), we first con-
ducted a survey with 195 data scientists/data science students who came from diverse backgrounds.
We summarized the tools they used for programming, communication, and project management,
as well as their strategies for collaboration. In particular, we identified two approaches for data
scientists to collaborate: 1) the traditional collaboration setting where team members work on
individual Jupyter Notebook and update each others’ work asynchronously, and 2) the emerging
collaboration setting where team members work closely together on a shared Jupyter Notebook
and all the edits are synchronized in real-time.

To further compare how data scientists’ collaboration styles varied between two approaches
(RQ2), we conducted an observational study with 24 intermediate data scientists working in pairs
remotely to solve a predictive modeling problem. We summarized the common collaboration styles
that emerged in the two collaboration settings. We reported the comparison of communication styles,
performance, and perceptions of the collaboration experience. We also analyzed the challenges
that participants faced in using real-time collaborative editing features (RQ3).

4 STUDY 1: FORMATIVE SURVEY ON COLLABORATIVE DATA SCIENCE

We conducted a formative survey to investigate data scientists’ previous experiences with collabo-
ration. In particular, we aimed to understand the tools they used for programming, communication,
and project management, as well as their strategies for collaboration.

We sent the survey to data science interest groups in a university and to individuals who
completed a specialization course on Coursera that teaches data science using Python. Respondents
had to meet the following criteria to take the survey: (1) be familiar with Python and Jupyter
notebooks, (2) have formal training in data science, and (3) have worked individually on at least one
data science project. To motivate participation, we randomly picked two respondents and rewarded
them each a $25 gift card.

4.1 The Survey Instrument

The online survey consisted of four sections: (1) informed consent, (2) demographics and data
science experience, (3) experience with collaborative data science, and (4) willingness to participate
in the observational study.

In the first section, we explained the purpose of the survey and collected respondents’ consent.
The second section asked about demographics (age, gender, educational background, job role),
experience with data science (e.g., what techniques they have used or learned in the past), and
degrees of identification as the given roles: computer scientists, software engineers, data scientists,
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and statistician analysts. In the third section, we asked respondents to recall their most recent
experience of working with other people on a data science project. If respondents did not have any
experience in collaboration, we provided them a hypothetical scenario:

“Imagine you are participating remotely at a 2-day long data science hackathon with 2
other team members on a predictive modeling problem.”

Respondents were then asked to provide more details about the project, for example, describing
the context of the project (e.g., purpose, problem, and dataset), and selecting activities that are
involved in the project (e.g., collecting data, sampling data, feature selection, data visualization). In
addition, respondents were asked to list the tools they have used when collaborating with others
on data science projects for the purposes of programming, communication, and project management.
Followed by an open-ended question, we asked their strategies for keeping a shared understanding
across the team. In the last section, we asked whether respondents would be willing to participate in
an observational study. We collected the names and e-mail addresses of participants that indicated
they were willing to participate.

4.2 Data Analysis

We first filtered the responses by deleting incomplete entries and merging duplicated entries from
the same respondents. For the open-ended questions, we took an inductive analysis approach
to explore themes for each question. Four coders worked individually on a small sample of the
responses and developed a list of potential codes. After discussing and merging the coding scheme,
we coded the same sample independently. We then compared the result by computing a Fleiss’
Kappa score to measure both the reliability of the coding scheme and the agreement among the
coders. We iterated on the coding scheme until an appropriate level of agreement was achieved
among the four coders (Fleiss’s kappa, k = 0.74).

5 KEY FINDINGS FROM STUDY 1
We reported the key findings from the formative survey study.

5.1 Data Overview

The survey received 195 valid responses in total (23.08% female and 76.92% male). Among 195
responses, 35 are from data science interest groups in a university and 160 are from individuals who
completed a data science specialization course on Coursera. The majority of respondents (73.8%)
were age 20—40. Respondents came from a variety of job roles: students (29.74%), data scientists
(25.13%), software engineers including Information Technology (IT), system architecture (14.87%),
researchers (9.74%), managers including CEOs, VPs, and product managers (9.23%), business analysts
(8.20%) and others (3.09%, e.g., drilling engineer).

The respondents were generally well trained in data science. The majority of them (94.36%) held
or were pursuing a bachelor or higher degree. Most of these degrees are in technical fields (e.g.,
computer science, information science, electrical engineering, applied science, or data science).
When asked about their previous experience in applying common techniques in data sciences, the
respondents indicated they were skilled in linear regression (96.92%), decision trees (92.31%), SVMs
(85.64%), neural networks (82.05%), non-linear regression (70.26%), deep learning (65.13%), Bayesian
modeling (62.56%), and other advanced techniques (e.g., XGBoost, reinforcement learning).

The respondents also reported engaging in a variety of data science activities: data cleaning
(67.69%), applying machine learning algorithms (57.95%), data visualization (52.82%), exploratory
data analysis (49.74%), collecting raw data (44.10%), writing a report (38.97%), feature selection
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Purpose Tool Percent
Jupyter Notebooks 88.72%

Programmin IDEs (e.g., RStudio, PyCharm) 51.79%
g g Code Editors (e.g., Atom, Sublime) 46.15%
Google Colab 12.31%

E-mail 79.49%

Face-to-face Communication 68.72%

Communication Instant Messaging 55.90%
Google Docs 40.51%

Video Conferencing 38.46%

Version Control (e.g., Github, Bitbucket) 49.74%

Project Management Task Tracking (e.g., Trello, Jira) 21.03%

Shared Storage Services (e.g., Google Drive, Dropbox) 3.07%

Table 1. The tools that respondents have used for programming, communication and project management
during collaboration.

(38.46%), applying statistical models (31.28%), doing an oral presentation (31.28%), data sampling
(28.20%), hypothesis testing (22.56%), and building data products (21.03%).

5.2 Experience with Collaborative Data Science

When asked about their previous experience in collaborative data science, most respondents (73.3%)
reported that they had prior experience collaborating with other people on a data science project.
Of the respondents who had previous collaboration experience, most (72.72%) collaborated on a
data science project for work, while the others mentioned other purposes such as course projects
(30.07%), competitions or hackathons (18.89%), or personal side projects (13.20%).

5.2.1 Choices of Tools. We asked respondents to list the tools they have used for programming,
communication and project management during collaboration. For respondents who do not have
or can not remember their past collaboration experience (26.7%), we gave them a scenario of
participating in a data hackathon in teams and asked about their choices of tools and collaboration
strategies. For programming purposes, most respondents mentioned Jupyter notebooks (88.72%),
IDEs (51.79%), and code editors (46.15%). In addition, some respondents mentioned Google Colab
(12.31%), a computational narrative environment which is an alternative to, but similar to, Jupyter
notebooks. For communication purposes, e-mails (79.49%) and face-to-face communication (68.72%)
are most mentioned by respondents, followed by instant messaging (55.90%), Google Docs (40.51%)
and video conferencing tools (38.46%). For project management tasks, roughly half of respondents
mentioned version control suites (49.74%) such as Github and Bitbucket for sharing code and
datasets. Several respondents also mentioned using shared storage services such as Google Drive
and Dropbox for managing project assets. Some respondents mentioned task tracking tools (21.03%)
such as Trello and Jira. Respondents also mentioned using Google Calendar, spreadsheets, or
physical whiteboards to keep track of tasks and project progress. Our results are summarized in
Table 1.

5.2.2 Strategies for Keeping a Shared Understanding. When asked about their strategies for keeping
a shared understanding across team members, most respondents mentioned regular discussions
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Strategy Percent Example Response

Discussions and meetings  54.36% There were weekly meeting among team members to keep
track of the progress of each element of the project

Frequently check-ups 51.79% Communicate actively and frequently; check-up on every
hour

Documentation 48.20% Keep notes in Google Docs; ... comments in code;

Organization 28.72% Divide up the work into definable parts, make sure that

everyone knows the progress that everyone else has made
and how it impacts their part of the project

Shared Assets 25.13% Common repository for files; share the same place for stor-
ing project, and name the file clearly
Others 5.01% Code review to ensure code matched intent; all worked in a

friendly manner

Table 2. Strategies for keeping a shared understanding

and project meetings (54.36%). For example, respondents mentioned “weekly meetings with the
team to follow up the stages of deployment”, and also frequently reported that they used check-ups
(51.79%) such as keeping the other team members informed of any changes made to the code.
Some of these respondents reported that they would work closely in a physical space to reduce the
communication cost by talking face-to-face. Documenting (48.20%) is another common strategy used
for collaboration. For example, respondents mentioned that they would keep all the intermediate
findings in shared Google Docs. Some respondents also mentioned coordination strategies such as
planning ahead and being clear about everyone’s responsibility (28.72%). In addition, respondents
mentioned that they would share any intermediate results and code using version control tools
or shared folders (25.13%). The others mentioned strategies such as code reviews to help them
maintain a shared understanding. The results are summarized in Table 2.

5.3 High-Level Summary of Findings

In summary, respondents to our survey were made up of a variety of practitioners and students
who are well trained in data science and are familiar with Python and Jupyter notebooks. Most
respondents had previous experience in collaborating with others on a data science project, and
working in individual Jupyter notebooks with version control tools was the most popular setting for
collaboration. Team members constantly discuss and keep everyone informed about the progress of
the project, as well as maintain shared notes. Although Google Colab was relatively new and was
not be used by many respondents, several respondents mentioned Google Colab as an option for
collaborative editing. With this more holistic understanding of collaboration among data scientists,
we decided to narrow our focus and probe into the differences afforded by traditional collaboration
settings, where team members work on individual Jupyter notebooks and update each others” work
asynchronously, and the emerging real-time synchronized editing collaboration setting, where
team members work closely together on a single Jupyter notebook with shared edits.

6 STUDY 2: OBSERVATIONAL STUDY ON REAL-TIME COLLABORATIVE DATA
SCIENCE

We conducted an observational study with 24 data scientists working remotely in pairs to solve a
predictive modeling problem. We tested two conditions, with users working on either individual

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. CSCW, Article 39. Publication date: November 2019.



How Data Scientists Use Computational Notebooks for Real-Time Collaboration 39:13

PID GID Country Occupation Major
P01 (M) S1 Us. Student Master in Information Science
P02 (F) S1 Us. Student Bachelor in Statistics
P03 (M) N1 Us. Data Scientist Master in Data Science
P04 (M) N1 U.S. Student Master in Computer Science
P05 (F) N2  Canada  Business Analyst Master in Management
P06 (M) N2 Pakistan Software Engineer Bachelor in Computer Science
P07 (M) N3 India Student Bachelor in Information Technology
PO8 (M) N3 India Student Bachelor in Computer Science
P09 (M) N4 USs. Student Bachelor in Computer Science
P10 (M) N4 Brazil Data Scientist Bachelor in Computer Science
P11 (M) S2 Canada Student Master in Computer Science
P12 (M) S2 Canada Student Bachelor in Computer Science
P13 (M) S3 Canada Student Bachelor in Computer Science
P14 (M) S3 Canada Student Bachelor in Computer Science
P15 (M) S4 U.S. Student Bachelor in Economics
P16 (M) S4 Us. Student Master in Information Science
P17 (M) S5 China Software Engineer Bachelor in Computer Science
P18 (F) S5 China Student Ph.D. in Computer Science
P19 (M) S6 Us. Data Scientist Master in Computer Science
P20 (F) S6 US.  Business Analyst Master in Business
P21 (M) N5 India Student Bachelor in Computer Science
P22 (M) N5 India Student Master in Computer Science
P23 (M) N6 India Student Master in Computer Science
P24 (M) N6 India Student Master in Business

Table 3. Demographics of Participants in Study 2

notebooks or notebooks that enable synchronous editing in a collaborative setting. Our goal was to
examine how collaboration styles varied between the two conditions, and to gain empirical insights
on the benefits and trade-offs for each setting.

Groups chose from two communication mechanisms that were commonly used for collaboration:
Slack for text-based messaging and Google Hangouts for video-based communication. In pilot
studies, we found it difficult to control the communication mechanism due to technical limitations
(e.g. participant microphone or network issues). Thus at the beginning of the study, we asked
individual groups to decide which communication mechanisms they wanted to use throughout the
study.

6.1 Participants and Task

We recruited participants who had a sufficiently substantial background in data science: (1) be
familiar with Python and Jupyter notebooks, (2) have formal training in data science, and (3) have
experience with predictive modeling. For reference, we provided an example predictive modeling
task to potential participants for evaluating whether to opt-in to the study. We reached out to 12
initial participants from respondents to our first survey who indicated a willingness to participate
in future research, and used them as seeds to recruit the rest of participants through snowball
sampling. Participants (4 females, 20 males, average age = 24.62) all had basic knowledge in data
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science related fields (e.g., computer science, business analytics, statistics, economics), as listed in
Table 3. Seven participants currently worked as data scientists and analysts, and most (23/24) have
collaborated with others on a data science project before.

Participants were randomly assigned to pairs and were instructed to work collaboratively on a
predictive modeling problem. The task given was to predict housing sale prices using 80 features
(e.g., lot size, type of road access, original construction date). The task involved features not relevant
to the prediction, outlier records, and missing values. Pairs were asked to to develop their own
strategies to judge the importance of features, handle pre-processing, and apply predictive models
for sales prices. This task was based on a beginner-level competition on Kaggle!, and indirect
questions were asked in the recruitment process to ensure that participants had not worked on
the same task previously. We chose the predictive modeling problem since it captures the majority
activities in the data science pipeline (e.g., exploratory data analysis, data cleaning, modeling, and
evaluation). In addition, the problem is open-ended, which left space for groups to try advanced
models and improve the prediction result.

6.2 Apparatus

Participants joined the study remotely and their browser screens, webcams, and microphones
were recorded by the research team with consent. Groups could choose to use Slack for sending
text, images, or code snippets, or Google Hangouts for video calling. A JupyterHub!® instance
was made available so that participants could access the computational environment and run
their notebooks from the cloud. Groups were assigned to work in either the shared condition or
non-shared condition as described below.

6.2.1  Non-Shared Condition. In the non-shared condition, participants logged on to the JupyterHub
platform and worked on individual notebooks. They were allowed to exchange the notebook file,
set up a git repository, or send code snippets through chat or any other tool.

6.2.2 Shared Condition. In the shared condition, a Jupyter notebook collaboration extension was
enabled on the server to support synchronous editing in notebooks. Participants logged on to the
JupyterHub platform, created a shared notebook and invited their teammates to join the notebook.

6.3 Collaboration Extension

The collaboration extension allows code to be executed on a single interpreter while the output
and runtime variables are shared among collaborators (Figure 1).

6.3.1  Workflow. To demonstrate the workflow of the extension, consider a data scientist Bob is
working with his colleague Alice remotely on an exploratory data analysis problem. The extension
allows Bob to enable the collaborative editing mode on the existing notebook, and share the session
code with Alice. Alice then joins the notebook using the session code and edits the same notebook
with Bob. The notebook updates changes in real-time, and shares the cursor positions and selections
between Alice and Bob.

6.3.2 Implementation. We use Operational Transformations (OTs) to handle real-time information
exchange among notebooks in the shared session, where OT is a widely-used technology for
supporting consistency maintenance and concurrency control in real-time groupware systems (e.g.,
Google Docs). There are two types of synchronization strategies in our extension. For operations
that do not involve code interpreter (e.g., editing code, adding cells, deleting cells), we use a

https://www.kaggle.com/c/house-prices-advanced-regression-techniques
Bhttps://jupyter.org/hub
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decentralized model to update all notebooks in the shared session with recent edits. For operations
that involve with code interpreter (e.g., execution a code cell, rendering a markdown cell), we first
send the operation to a host notebook. We then execute the cell on the host’s interpreter and update
clients with output and runtime variables after the interpreter finishes execution. The extension is
implemented by a Node.js web server that connects to a Postgres database, and a web-based client
that implemented as a Jupyter Extension.

6.4 Study Procedure

The observational study consisted of four sessions, each of which lasted an hour. We gave partici-
pants goals for every session: to better understand data (session 1), to clean the data (session 2), to
create a basic predictive model for the data (session 3), and to create a more advanced prediction
model to further improve the results (session 4). Although we encouraged participants to meet the
goals we set, we did not enforce these goals or any particular task ordering. Before the first session,
groups were given 15 minute orientation to become familiar with each other and the study setting.
We provided participants with written instructions about the study task. Groups were allowed to
use external resources throughout the study.

At the end of each session, participants were asked to fill out a post-session questionnaire wherein
they were asked to describe the exploration progress, their own contributions, and any difficulties
they encountered in that session. Participants were also asked to evaluate a set of statements on a
seven-point Likert scale. There are three themes in the statements: communication (e.g., being able
to follow the conversation), awareness of others (e.g., being aware of what issues teammates are
struggling with), and group maintenance (e.g., enjoying working with others). Lastly, the first two
groups who completed the study were asked about their feedback on study settings and instructions.

After the final session, groups submitted a final prediction result, together with a merged
notebook report that explained the exploration process. To motivate participants, we rewarded
each participant a $40 base incentive. The group with the best prediction result was awarded an
additional $10 for each member.

In addition, we conducted one-on-one post-task interviews to investigate how participants
perceived the study. We first asked them to reflect on their collaboration experience (e.g., what
was their strategy for coordinating work). Next we used the critical incident technique [17] to
investigate if there was a situation where they could not follow the conversation, they did not feel
aware of others’ work, or they disturbed others’ work. Participants were then prompted to think
about how these incidents could be addressed if they could change the features of the tool.

6.5 Data Analysis

We used an inductive analysis approach with other methods (e.g., affinity diagramming, memoing)
from grounded theory [10] to analyze the data. Screen recordings, open-ended questions from the
post-session survey, and interview transcripts were first observed by the lead author to identify:
(1) common collaboration patterns, (2) activities that are involved in the exploration, and (3) any
challenges that were faced during collaboration. Using an open-coding approach, we first created
a coding scheme based on initial observations. Four coders independently coded two samples to
refine the coding scheme. We then discussed and used affinity diagramming to synthesize emerging
themes. Next, we went through several iterations to check another two samples individually. The
purpose of this step was to confirm the legitimacy of the coding scheme and to check the inter-rater
reliability. After several iterations, four coders reached a suitable level of agreement (Fleiss’s kappa,
Kk = 0.71).
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Group ID Collaboration Style Notebook Ratio Message Ratio Error Score
N1 Competitive Authoring 88% 61% 0.21
N2 Divide and Conquer (datasets) 71% 54% 0.36
N3 Competitive Authoring 84% 61% 0.25
N4 Competitive Authoring 69% 55% 0.48
N5 Divide and Conquer (datasets) 68% 59% 0.23
N6 Competitive Authoring 91% 51% 0.12
S1 Divide and Conquer (tasks) 58% 61% 0.13
S2 Single Authoring 94% N/A 0.15
S3 Divide and Conquer (tasks) 71% 58% 0.21
S4 Divide and Conquer (tasks) 67% N/A 0.16
S5 Single Authoring 83% 75% 0.23
Sé6 Pair Authoring 86% N/A 0.16

Table 4. Collaboration Styles. The notebook ratio is the percentage of cells that one member contributes
in the final notebook. The message ratio is the percentage of messages that one member sends in total
Slack messages; N/A means the team uses video-based communication (Google Hangouts). The error score is
calculated using Root Mean Square Error (RMSE). Lower error scores are better.

7 KEY FINDINGS FROM STUDY 2

We first present the results of the common collaboration styles that emerged in the two collaboration
settings. Based on the framework of collaborative writing developed by Posner and Baecker [60], we
propose four collaboration styles. Then, we present an analysis of our comparison of communication
styles, finding that working in the synchronized notebook can reduce the communication costs by
establishing a shared context. We also report the differences in performance (e.g., final prediction
scores, number of alternative models, notebook lengths) between the two collaboration settings.
Lastly, we present the challenges that participants faced in using real-time collaborative editing
features.

7.1 Collaboration and Communication Styles

Based on what we observed in our study and extending the framework developed by Posner and
Baecker [60] for collaborative writing styles, we refine and propose four collaboration styles for
data science tasks based on team members’ contributions in ideation and implementation.

¢ Single Authoring: The single authoring style is extended from the single writer strategy from
Posner’s framework. In this style, one team member contributed the majority of ideas and did
the majority of implementation, while the other did not provide substantial contributions.

e Pair Authoring: The pair authoring style is extended from the scribe strategy from Posner’s
framework where one team member completed the majority of the implementation while
the other contributed ideas, engaged in discussions and reviewed the results. We chose the
term pair authoring because it is as analogous to the collaboration style in pair programming
where one person writes the code and the other reviews the code. This is different from pair
programming where two programmers frequently switch roles: here, the individuals engaged
in pair authoring stick to their roles from the beginning to the end.

e Divide and Conquer: The divide and conquer style is a combination of the separate writers
strategy and joint writing strategy from Posner’s framework. Here, participants divided the
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task into subgoals and explored the subgoals independently. We observed two types of divide
and conquer strategies — (1) dividing datasets, where participants split the dataset into
half and explore in parallel using the same technique, (2) dividing tasks, where participants
split the task and work on different parts in parallel.

e Competitive Authoring: We proposed this collaboration style based on our observation
of team members going through an idea together and competitively implementing it. It is
different from divide and conquer that team members wrote the code for the same purpose
and reached the consensus to use the code by whoever finished first. There is no equivalent
strategy in Posner’s framework.

We then used these definitions to code each group’s collaboration style. We analyzed the notebook
contribution ratio (the percentage of cells that one member contributes in the final notebook) and
the message ratio (the percentage of messages that one member sends out of the total number of
Slack messages) with the code and notes from screen recordings to inform our judgment. We report
how groups adopted different collaboration styles using a collaborative editing notebook (shared
condition) and using individual notebooks (non-shared condition) in Table 4.

7.1.1  Single Authoring Style. Two groups adopted the single authoring style when working in
the synchronized (shared condition) notebook. We observed an unbalanced contribution in their
final notebooks. Participants who contributed less reported that without strategic coordination
and communication, they did not have a task that fit their level of expertise and ended up walking
through the same task with their teammate. One explanation that arose is that the participants
might feel pressured and off-topic, not knowing how to engage in the task:

... My teammate is better and faster in doing the task. Sometimes I know he is trying
an idea, but it may take me a while to figure it out and he just jumped to the next task...
I wish I could have a separate window to try the code in my own pace... (P12 from S2)

7.1.2  Pair Authoring Style. One group used the pair authoring style when working in the same
notebook. Two members agreed that one person was in charge of implementation while the other
helped with ideation and finding documentation. As opposed to single authoring, where one group
member contributes the majority of code and ideas, in pair authoring, both group members felt
engaged in decision making. They further explained why they found pair authoring useful using
the pair programming metaphor of a driver who writes the code, and a navigator who reviews the
code:

... There is a dynamic in pair programming called “Driving and Navigating”. The idea
is that two people on one keyboard is difficult to do well, so one should primarily be
leading... (P19, the main driver from S6)

... Data science is not just about writing code, you know. My role is as important as
my teammate. I can think about the big picture while my teammate is working on
the details in Python. It is not necessary for me to step into his code... (P20, the main
navigator from S6)

7.1.3  Divide and Conquer. We observed the pattern of “divide and conquer” from five groups, with
three groups from the shared condition and two from the non-shared condition. Participants used
different strategies to decide how to divide the task. Some groups planned ahead to discuss the goal
of the session and used that to guide how to divide the task. These groups often decided whom to
assign the sub-tasks to based on group members’ skills. For example, participants in group S3 used
markdown cells to list things they wanted to explore and put group members’ name aside to track
the tasks. Other groups did not plan ahead and used ad-hoc planning, keeping each other updated
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about what they were doing so that the other group member could find a new task to work on. For
example, P2 in group S1 said to P1, “OK, while you fix the stuff, I'll create one hot encoding for
categorical variables”. However, participants explained their concerns that not knowing enough
about another person’s skill set made it difficult to split the work:

... I wish I had a more personal relationship with my fellow research participant so I
didn’t feel weird about judging who should do what based on skill... (P13 from S3)

... Basically, I don’t like having to make a judgment about the ability of my partner
without having the benefit of knowing our strengths and desires relative to each other.
It makes me self-conscious that 'm not listening to my partner enough... (P16 from S4)

In addition, we identified two types of divide and conquer strategies: dividing datasets and
dividing tasks based on alternative solutions. Both groups from the non-shared condition split
the dataset and had each member walked through half of the features. This strategy can boost
efficiency in exploratory data analysis given that there are roughly 80 features in the dataset. It can
help two members to establish common ground in the general task. However, this might result
in duplicated implementation. For example, both group members wrote their own code to plot
the distribution of certain features. None of the groups in the shared condition used this strategy.
Instead, they divided the task by alternative solutions. For example, in the data modeling stages,
participants came up with different models (e.g., decision trees, elastic nets) and assigned each
person the task to explore one model.

7.1.4  Competitive Authoring. Non-shared groups often used competitive authoring, where group
members would competitively implement the same idea. They would either choose to copy the
code from whomever finishes the implementation first or choose to keep their own version of
implementation. For example, two group members were both working on the implementation of
linear regression, while one member got their code working faster than the other member. The other
member would agree to copy the code to their own notebook and move on to the next task. There
can be an unbalanced distribution in the final work and working efficiency can decrease because
one member is always writing “unnecessary” code. However, from the individuals’ perspective,
they sometimes felt it necessary to explore the code on their own:

... Each would do the same tasks and share the insights ... I don’t think it is wasting time.
When we both wrote the code, at least we were on the same page. When he shared his
code, I can have a better understanding of what was going on... (P24 from N6)

7.2 Communication Channels

Web conferencing is perceived to have high communication bandwidth with synchronous and
immediate information exchange, whereas instant messaging and chat tools have a lower commu-
nication bandwidth and support both synchronous and asynchronous information exchange [67].
The fact that participants chose to use Slack rather than Hangouts in the non-shared condition
(without prompting from the study coordinators) indicates that the affordances of Slack with a
variety of media formats, as well as the ability to represent conversation artifacts (e.g. source code)
in a manner which fit their needs. Data scientists need to constantly share intermediate code or
outcomes with each other. Working in the shared notebook reduces the communication costs by
providing a shared context for discussion. For example, a participant from the non-shared condition
explained that they preferred Slack messaging over Hangouts, and they wished to have the shared
notebook for better communication:

... would be much nicer to work on the same notebook rather than copying code in
Slack but worked much better than Hangouts... (P7 from N3)
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Shared Condition Non-Shared Condition

Session 1 Session 2 Session 3 Session 4 Session 1 Session 2 Session 3 Session 4

[ Preparing: Reading task instructions and setting up environment I Feature Engineering: Exploring the relationship between variables using
different techniques

il
i,
il
i

[ Cleaning: Cleaning data to ensure its validity and accuracy for analysis o . . "
I Submission: Organizing notebooks as final reports and submitting the
[ Modeling: Applying machine learning algorithms or statistical models results

Fig. 2. Overview of how participants iteratively explore the house price prediction task in 15-minute intervals.
Participants in the shared condition tended to switch between phases more frequently. The initial attempts
at modeling occurred earlier in the shared condition.

In addition, we examined the types of messages participants sent in each condition. Overall,
we found that participants in the non-shared condition used Slack more often to send files, code
snippets, and output (e.g., data pieces, error messages, visualization, screenshots of the notebook).
Every group in the non-shared condition exchanged their notebooks at least once during the study
session. Groups in the non-shared condition also sent more execution output such as data pieces and
images in the Slack channel. Moreover, they sent at least four times as many code snippets during
the study, while groups in the shared condition rarely did so. This result suggests that working in
the same notebook can reduce the communication costs by establishing a shared context.

7.3 Working Across Phases

As we describe in section 6.4, we gave participants recommended goals for each of the four
sessions but did not require that they met these goals or worked in any particular order. In order
to understand participants’ exploration patterns and how they differ across both conditions, we
segmented the screen recordings into 15-minute intervals and categorized participants’ activities.
We found that participants typically did any given activity for a minimum of 10-15 minutes so 15
minutes was an appropriate level of granularity. For each 15-minute interval, we categorized their
activity into one of the common data science phases described by O’Neil and Schutt [55]'°:

e Preparing: Reading task instructions and setting up the environment

. Cleaning data to ensure its validity and accuracy for analysis

e Modeling: Applying machine learning algorithms or statistical models for prediction

e Feature Engineering: Exploring the relationship between variables using different techniques
e Submission: Organizing notebooks as final reports and submitting the results

Figure 2 shows the activity classifications for every group across every session. Participants
did not perform tasks in sequence — they frequently backtracked and switched between different
phases of analysis as necessary. Participants in the shared condition tended to switch between
phases more frequently. We calculated how many times participants switched between phases
(when the adjacent tiles have different colors in Figure 2) and ran a two-sample T-test on the
result. We found that participants in the shared condition switched more frequently (avg=38.58,
p=0.000043) than participants in the non-shared condition (avg=5.83). This result indicated that

16We omitted the “data munging” and “data collection” phases because participants were given an existing dataset and did
not need to collect raw data themselves.
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| enjoy working with my teammates.
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Fig. 3. Post-task questionnaire results for participants in both conditions.

working on the same notebook provides collaborators with convenience to branch through tasks.
Perhaps as a result of this convenience, the initial attempts at modeling (green squares in Figure 2)
occurred earlier in the shared condition than in the non-shared condition. As Figure 2 also shows,
in every group in the non-shared condition, one participant bore the responsibility of organizing
the notebooks for submission (brown squares in Figure 2). By contrast, nearly every participant in
the shared condition helped organize the notebook and results for the final report.

7.4 Overall Effectiveness — Accuracy and Questionnaire Results

We found an improvement in the exploration process across two conditions. As shown in Table
5, we run a two sample T-test to compare the outcomes from the final notebooks and prediction
results across two conditions. Groups working in the same notebook (avg error score!’ = 0.17)
achieved a better prediction result compared to groups working in individual notebooks (avg
error score=0.27, p=0.09). Groups working in the same notebook explored more alternative models
(avg=6.17) compared to groups working in individual notebooks (avg=3.00, p=0.05). In addition, we
compared the post-session survey results across all sessions, as illustrated in Figure 3. Participants’
rating of their enjoyment working with teammates was significantly improved when working in
the shared condition after the first session (p=0.04). We also compared the total lines of code in
the final notebook and found a significant difference in the shared condition (avg=186.67) and the
non-shared condition (avg=90.33, p=0.04). This result suggests that working in the same notebook
encourages groups to explore more solutions and leads to a better result. For example, P2 noted:

... Overall, I think the tool is amazing! This tech can really increase productivity in data
science teams!... (P2 from S1)

When we compared the ratio of annotation cells and total cells from the final submission, we
did not see differences across two conditions. Moreover, the average ratio of annotation cells to
total cells was lower in the shared condition (avg=0.19) compared to the non-shared condition

7The error score is calculated using Root Mean Square Error (RMSE)
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Shared Non-shared

Error Score X 0.17 027

o 0.04 0.13

X 617 3.00

Number of Models z 299 210
x 186.67 90.33

Li in th k

ines in the Noteboo o 82.10 64.50

. ¥ 019 0.20

Percentage of Annotation Cells - 011 013

Table 5. Comparing the outcomes from prediction results and final notebooks (mean: X, standard deviation:
o). Working in the same notebook encourages groups to explore more solutions and leads to a better result.

(avg=0.20). This result indicates that when working in groups, participants would not pay extra
attention to add annotations into the notebook compared to working in a private notebook.

7.5 Challenges in Using the Collaborative Notebooks

Despite all benefits that collaborative editing features offer with respect to sharing context and
improving productivity, we discovered several challenges in using the collaborative notebooks. We
present the key findings below.

7.5.1 Interference with Each Other. Over half of the participants in the shared condition (7/12)
raised concerns about interference with each other in the post-task interviews. Participants would
take ownership of the code cells they created. They would expect others not to edit “their” cells.
Some participants even took actions such as inserting blank cells between each others’ editing
areas to prevent interference. Participants also reported that different naming styles could cause
trouble, especially changing a variable name halfway through the exploration:

... When using Jupyter notebooks together, it’s hard to keep track of variable names.
Everyone might use a different name and may cause issues. For example, my teammate
used train_df as name, and later changed it to something else, but I wanted him to
keep using the original name... (P2 from S1)

In addition, we observed that during exploration, some participants directly modified the shared
data frame (Figure 1.3) without making copies or notifying their teammates. For example, P14 from
S3 spent a long time debugging the error score for the basic linear regression model and finally
realized that his teammate had transformed the scale of the shared data frame for other purposes.

7.5.2  Lack of Awareness. Although the collaborative Jupyter notebook shares cursor positions
and selections with collaborators, participants reported that this mechanism was not enough to
understand what their teammates’ activities. First, participants would have to scroll the notebook
frequently to check their teammates’ edits, which can be difficult when the notebook grows rapidly
during quick exploration. Second, if the participant only wants to know the high-level task his
teammate is working on, it takes time for him to read and understand the code when it is not well
annotated. Lastly, the cursor information may not reflect their teammates’ activities, especially
when doing data science needs reasoning and decision making. For example, participants reported:

... I want it to be easier for my research partner to show me what they’re working on.

I felt it was difficult to do something quickly on the side without affecting what my

partner was working on... (P17 from S5)
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Pre-processing and cleaning

Steps

1. Replace discrete values with indices

2. Remove data samples with too many missing features

3. Normalize continuous variables

4. Compute correlation, or use other techniques to select features

In [24]: def count_nans(data):
for name in data:
count_nan = len(data[name]) - data[name].count()
print(name, 'num of nans:', count_nan)
In [74]: def label encoding(data):
for name in data:
if data[name].dtype == 'object':
data[name] = data[name].astype('category"')
data[name + '_cat'] = data[name].cat.codes

Fig. 4. Group S3 coordinated the work well by planning subgoals in the notebook

... It’s hard to keep track of what my teammate is doing while he’s not writing code on
notebook because I don’t see him physically... (P12 from S2)

7.5.3  Problems with the Linear Structure. Cells are displayed linearly in Jupyter notebooks but
the actual execution order may not follow a linear structure. As mentioned, participants may
divide notebook cells into regions based on a sense of ownership. Participants may also iterate and
jump through the code cells for ad-hoc divide and conquer. Our analysis of the final notebooks
indicates that although the amount of code grew significantly faster in shared notebooks than
in individual notebooks, the percentage of annotation cells in the shared notebooks was smaller
than in individual notebooks. Such ill-organized cells made it difficult for collaborators to navigate
the notebook. In fact, we were not able to run the cells sequentially to reproduce the results in
two of the six notebooks submitted by groups in the shared condition. One participant suggested
separating the preliminary exploration with the main notebook:

... I want to distribute and segment work more easily, but notebooks fundamentally
struggle with this due to the restrictive UL The cells are stacked top to bottom. There
is no concept of a “scratch cell” or “main script”. This makes it difficult to say, “here is
the main section of code, and we’re writing exploratory code on the side to prototype
improvements”. I appreciate that kind of paradigm ... (P19 from S6)

Participants also referred to different ways to support non-linear structures. For example, one
participant proposed to track the execution order in a file which is similar to the example of
“Makefiles” in C programming. Another participant suggested to break down the structure of
notebook cells into parallel branches. He offered an example:

... I'd love to see cells as nodes and edges to their dependencies. Imagine LR (logistic
regression) and RF (random forest) models. LR needs data to be scaled and preprocessed.
RF does not need it. You could set up cells with explicit dependencies to the appropriate
preprocessing steps. You can imagine this as data flowing through containers of code...
(P15 from S4)
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[ = e P14 and P15 were looking at the scatterplots of independent
A e 5 a0 variables together

I 2:18 PM
In my opinion there are outliers in all of our features
there are 1 or 2 points that outlies
| 2:19 PM

B which ones?

P14 downloaded the graph, opened Paint, annotated the graph
and sent it back to P15

Fig. 5. An example of participants manually annotating a graph for discussion: P14 circled the outlier point
in a scatter plot using MS Paint and sent it back to P15 using Slack.

7.5.4  Privacy Concerns. Two groups in the shared condition wrote using the single authoring
style—one participant in both groups contributed the majority of ideas and implementation. Both
participants who shied away from the task mentioned that they felt pressured to edit the code cells
despite knowing that their teammates were better than them. These participants also mentioned
that they only wanted to share the code when it was done. Such concern was also reported by an
experienced participant:

... At the beginning I was hesitant to edit the notebook. It was much better later on

because I knew he was busy with something else so that he wouldn’t pay attention to

my code... (P2 from S1)

These concerns are analagous to the finding of Wang et al. that some writers are concerned with
being judged or distracted in the context of collaborative writing [69].

7.5.5 Lack of Strategic Coordination. Lack of strategic coordination also resulted in unbalanced
contributions. After the last session, participants reported a lower agreement on “I have enough
work to do in this session” in the shared condition than in the non-shared condition (p=0.08, Figure
3). The participant who contributed more in the single authoring group acknowledged that the
work was not divided equally because they did not plan ahead:

... I feel I am not splitting work well enough. I was thinking about how to get the work
done and just tried the ideas on myself.... (if doing it again) I will probably ask him to
help with data cleaning... (P11 from S2)

Another group (S3) demonstrated successful coordination. They listed subgoals in the notebook
and assigned tasks based on preferences (Figure 4). This planning and negotiation also helped them
to divide the code cell regions with nested headings. While some groups also discussed the subgoals
verbally or in Slack, we did not see a clear notebook structure. Retrieving such information can be
useful to automatically help collaborators to manage their shared notebook. We will elaborate on
this in the discussion.

7.5.6 Contextual Chatting. As we describe in section 7.2, participants in the shared notebook
condition sent fewer code snippets, images, execution results, and screenshots on average — likely
because all of these elements were automatically synchronized across all team members, which
eliminates the need for users to share them manually. As a result, we expected participants in
the shared condition to believe their teams communicated more effectively than participants in
the non-shared condition. However, we found the opposite—participants in the shared condition
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reported that they felt their groups communicated worse than participants in the non-shared
condition (as measured by participants’ agreement with “my team communicated effectively during
the session” after session 2, p=0.08, Figure 3). One possible reason for this is that participants in the
shared condition switched between phases more frequently (as Figure 2 illustrates), which could
make communication more challenging.

In the post-task interview, we specifically asked about the difficulties participants had with
communication. Most participants (9/12) mentioned that constantly switching between Slack and
Jupyter notebook was distracting. Several participants did not enable notifications of Slack messages
and were not able to respond to their teammates immediately. Participants also felt the need to refer
to some output (e.g., a specific column of a table, an area in visualization) during discussion but
current tools do not support deictic references. Figure 5 shows an example of participants manually
annotating a visualization for discussion: P15 was not clear where the outlier points were in the
scatter plot so P14 had to download the graph from notebook, opened Microsoft Paint to circle the
point and sent it back to P15 through Slack.

8 DISCUSSION

Our main findings indicate that synchronous editing helps data scientists maintain a shared
understanding while reducing communication costs, thus improving the overall efficiency of
collaboration. However, current synchronous editing features can be challenging to use and require
collaborators to be strategic with respect to coordination. Below, we contextualize our findings
with existing frameworks and findings on collaborative editing in other contexts, and highlight the
needs for a human-centered approach to study different collaboration scenarios in data science. We
discuss future directions to improve the current design of synchronous notebook editing features
to better support teamwork among data scientists.

8.1 Extending Our Understanding of Collaborative Editing Across Contexts

Some of the challenges we identified with real-time notebook editing are related to prior studies on
collaborative writing systems and collaborative coding systems. For example, the privacy concern of
being watched by others while working has been observed in other contexts [11, 69]. This issue may
be more pronounced for collaborative data science, because data science requires a large amount of
experimentation with code and collaborators may hold different programming backgrounds and
domain knowledge, something noted by others (e.g. [40]) and observed by ourselves in this work.
In addition, there is an opportunity for future human-centered studies to explore different roles in
collaborative data science. Additional surveys and ethnographic work can aid the understanding of
the whole spectrum of human-centered data science work. It is also worth exploring novel designs
in this space. For example, folding code blocks [63] and implementation details might allow domain
experts (e.g., marketing specialists) to be able to understand and experiment with model parameters
in a notebook. Another challenge for data scientists working on the same notebook is interference
of work, which is also a challenge for collaborative code editors [20]. However, it is less likely for
compilation errors to impede collaboration in shared notebooks than in collaborative code editors,
as the design of Jupyter notebooks allows users to run individual cells. If one user writes a code
cell with compilation error, other users can simply skip this cell and run other codes. We found the
interference happened in shared notebooks mainly due to conflicts in shared data frames.

In addition to findings consistent with other studies of collaborative editing, collaborative
editing in computational notebooks has its unique aspects. The mixed form of code and other
types of media has distinguished computational notebooks from textual documents and pure code
scripts. For instance, collaborative writing systems usually share static text synchronously whereas
programming typically share their codebase through asynchronous Version Control Systems
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(VCSs)'8. In shared notebooks, however, it remains unknown what the level of synchronicity should
be (e.g., sharing static text and code, sharing the output, sharing the code interpreter), in part
because of the emphasis on the sensemaking and experimentation processes.

Further, whereas it is common for programmers to segment code into modules based on their
functions and eventually work on different files, data scientists rarely split their work into multiple
notebooks. Thus, integrating version control locally [35] can be one potential solution to help
collaborators track each others’ edits.

8.2 Opportunities and Challenges of Collaboration in Computational Notebooks

Despite all the benefits of working in shared notebooks—encouraging more exploration and reducing
communication costs—it is not easy to judge whether working in collaborative notebooks as
currently designed is better than working on individual notebooks. For example, data science
learners may find it more useful to work on a private notebook and to explore a task privately first
before discussing the results with their collaborators. Reflecting on the context of collaborative
writing, the common collaborative editing features for writing include tracking changes for review,
adding comments, adding access control for the whole document. Tools like Google Docs are
designed to support more than real-time editing, and studies have found that users rarely edit the
same piece simultaneously in practice [11]. How teams choose to use collaborative writing tools
will depend on their goals and work preferences. For example, the “track changes” and comments
features may be more useful when collaborators engage in the same document asynchronously.
Thus, designers should take a user-centered design approach and reflect on different purposes of
collaboration when extending the collaborative editing features to the context of notebook editing.
Our observational study explored one specific scenario where data scientists who did not know
each other worked simultaneously over four hours to solve a predictive modeling problem. It may
not be representative of all of all data science collaboration scenarios. Nonetheless, it is important
as a first step to understand the challenges in current collaborative notebook editing features. We
believe that some challenges can transfer to other collaboration scenarios. For instance, when
collaborators edit the same notebook in a different time, they may still want more awareness
information on what their partner is working on. Future work should explore how to generalize the
design to serve the needs for various collaboration scenarios in real-world data science practice.

8.3 Design Implications

Studies have explored approaches to improve the infrastructure of computational notebooks for
individual authoring and sharing (e.g., enabling content folding [62] and tracking exploration
history [38]). Our study explicitly examined the benefits and challenges for multiple users to edit
the same notebook collaboratively. The results suggest to the needs for a better collaborative
notebook infrastructure. Below we discuss several design opportunities.

8.3.1 Improve Awareness of Collaborators’ Activity. Our current synchronous notebook editor
design tracks and displays the locations of cursors of collaborators. However, sharing cursor
information did not seem to be enough for users to perceive changes from others given a shared
interpreter (back-end python process) state. Further, it is challenging to track the shared cursor
when the notebook gets long. It would be valuable to explore what information requires high
awareness and how to present the awareness information—particularly for large and complex
notebooks. For example, we may infer the context of the code that one person is working on
from the nearest narrative text or headings and share the heading with other users. We may also

8Code editors that synchronize text content in real-time are more useful for learning and tutoring purposes where there
are few lines of code and the cost of potential conflicts are minimal.
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broadcast important changes made to certain cells (e.g., cells that initiate variable names, or import
libraries), or more explicitly share changes to the shared interpreter state..

8.3.2  Provide Access Control. We observed a strong tendency for participants to take ownership
of the cells they worked on. Although the notebook and execution environment were shared,
participants did not want others to edit their cells without permission. On the other hand, some
participants did not want others to see their edits on a cell until they deemed it as “finished”.
These findings suggest that access control mechanisms may be appropriate to integrate into the
collaborative notebook infrastructure. We propose that there are at least two types of access control,
which we called either editing control or visibility control. For editing control, we could imagine
integrating the local versioning design [38] to protect a cell so that collaborators can submit
their edits for approving. For visibility control, users could instead choose to disable the real-time
synchronicity for certain cells or choose to fold the implementation details (e.g., [62]), thus hiding
the work until it was ready.

8.3.3  Enable Discussions within Notebooks. Frequent communication is important for data scientists
to stay updated on progress, reason about decisions, and coordinate work. Participants found it
difficult to use third-party instant messaging tools because they had to constantly switch between
applications. In addition, we observed that participants referred back to the shared notebook content
often. This suggests that there is value in exploring the design of an in-notebook chat window. One
potential benefit of such design is to support deictic references to a specific part of the notebook
(e.g., [56]).

Moreover, there is rich information in chat messages; users report their progress, make plans,
or explain parts of code. Investigating how to utilize the chat history to help users annotate the
notebook may help moderate the tension between quick exploration and clear explanation [63].

8.4 Limitations

Since we only looked at one specific scenario of collaboration, our results and design implications
may not effectively represent the needs for a better collaboration tool for other collaboration sce-
narios in data science. For example, the type of data science problems, the expertise of collaborators,
team size, the synchronicity of the collaboration, and whether a final narrative is the end goal may
all affect how users perceive the synchronous editing features. In addition, we scheduled the study
sessions with remote participants at their convenience, which resulted in pairs more likely from the
same region. Future work should explore broader collaboration settings and broader demographics.

9 CONCLUSION

We probed into how synchronous editing in computational notebooks might change the way
data scientists collaborate on a predictive modeling task. Our survey findings highlight the tools
and strategies that data scientists currently used in collaboration practice. Based on the design
of current synchronous editing features in computational notebooks, our empirical observation
reveals that working on the same notebook results in different collaboration styles compared to
working on individual notebooks. The key findings suggest that synchronous editing tools improve
collaboration by helping data scientists maintain a shared context and improve work efficiency.
However, the current real-time collaborative editing features may lead to several problems (e.g.,
interference with each others’ work, unbalanced contributions). The challenges in using the current
real-time collaboration features suggest that we need better collaborative editing features for
computational notebooks. We discuss how our results extend prior work on collaborative editing
and how the HCI community can play a vital role in broadening the understanding of collaborative
data science with a human-centered approach. Finally, we propose design implications to enhance

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. CSCW, Article 39. Publication date: November 2019.



How Data Scientists Use Computational Notebooks for Real-Time Collaboration 39:27

synchronous editing in computational notebooks and to improve collaboration among data science
workers.
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