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Abstract
With the onset of the fourth industrial revolution, predictive
maintenance using wireless sensing technologies has been
in high demand. This motivates to investigate the potential
of WiFi CSI as a sensor for understanding the operation of
machines. Since rotating motors are one of the fundamental
elements in many complex machines, this paper focuses on
the classification of CSI signals influenced by rotating motors
at different speeds. AsWiFi CSI technology is still not mature,
we focus on data collection and study the sensitivity and
reliability of data for this type of applications. We observe
that CNNs are suitable to classify the speeds of motors and
is also sensitive to speeds close to each other when operated
in ideal network condition. However, in practical network
conditions, unreliability of the data and the inability of CNN
to classify it remains a challenge.
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1 Introduction
With the surge in the fourth generation of industrial revolu-
tion, predictive maintenance has become a hype. Companies
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consider it as a necessity these days [3]. As IoT is also emerg-
ing at the same time, the two technologies merge together
into the so called Industrial IoT (IIoT). With IIoT, it is possible
to have a wireless network connecting IoT sensor devices
to collect data continuously and share it over the network
for the purpose of maintenance [4]. Later, machine learning
techniques can be used to analyze the data from the sensors
to detect any anomaly in the machines.
One of the challenges in predictive maintenance of ma-

chines is installation of sensors. Wireless predictive mainte-
nance provides a solution which is unobtrusive and realtime
compared to thewired andmanual data collectionmethods of
predictive maintenance. Compared to reactive maintenance
(done after the machine is broken down) and preventive
maintenance (done before the machine is broken down), pre-
dictive maintenance is done just in time. Thus it reduces the
downtime of production, thereby saving the costs involved
with it. The existing market solutions for wireless predictive
maintenance cost about a few hundreds to thousand dollars
per sensor, use Bluetooth to communicate wirelessly or are
based on vibration and temperature sensing [1, 5, 6]. AsWiFi
is readily available at most places these days, in this paper
we investigate the potential of channel state information as
a rich and inexpensive source of wireless sensing for predic-
tive maintenance which senses movement of objects and has
a range of a few metres.
In the past decade, a number research papers have been

published on using theWiFi CSI for human activity detection.
These include coarse grain activity recognition like identifi-
cation of people on the basis of their gait [10], classification
of activities like jumping, walking and running [11], and fine
grained activity recognition like keystroke detection [7] and
heart rate detection [9]. These studies prove that WiFi CSI
is sensitive to human activities on a broad scale and could
be successfully used for such applications. To the best of
our knowledge no study exists in the domain of predictive
maintenance using WiFi CSI.
The presence of metals, electronic appliances and large

floor areas are a few challenges which makes it difficult to
study this area of research. Thus, to study this approach, we
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start off with a simple office environment to conduct the
experiments. Industrial machines usually perform activities
like churning, mixing, grinding and transportation [4]. These
motions involve combinations of rotational motion. To imi-
tate this behaviour in a simple way, we use rotating motors
for our experiments. This paper performs experiments to
investigate the WiFi CSI behaviour in terms of complexity,
reliability and sensitivity. To analyze complexity, we use two
different motors which vary in number of moving elements
attached to them. To analyze sensitivity we let motors oper-
ate with different speed ranges and to analyze reliability of
the system we examine consistency of the data sets under
real-life network conditions.

2 Experimental Setup and Data
Acquisition

Experiments were performed in an office environment, keep-
ing the motors in direct line of sight between the transmitter
and receiver at a distance of about 25cm. The motors were
controlled by Arduino board using the software drivers. We
used ’Gigabyte Brix IoT’ miniPC for setting up the WiFi net-
work. One PC was dedicated for the purpose of transmission
while the other for reception throughout the experiments.
These WiFi nodes were kept on carton boxes on an office
table. Two to three people were working on adjacent tables
at a distance of about 2-3 metres while the experiments were
performed. To maintain the height of the motor so as to keep
it in the direct line of sight from the transmitter and receiver,
it was mounted on a stand with PVC and/or cardboard mate-
rial. Figure 1 shows an example of the setup for servo motor.
Experiments were done in the same setup to avoid influence
of other factors.

Figure 1. Experimental setup.

In a real life scenario, a WiFi connection could be inter-
rupted due to a number of factors. This could be when con-
nection is lost due to signal interference or even when the

power is switched off during non working hours. Once the
system is reconnected, system settings could be a bit different
than the previous connection. A reliable system is expected
to work irrespective of such interruptions. To study the reli-
ability of the system to such interruptions, we deliberately
stop the connection and connect it again multiple times
while collecting data. This data is referred to as data with re-
connections or under practical network conditions hereafter
in the paper. We also collect data without any interruption
in the connection and later compare the two types of data.
This study is significant to understand the behaviour of the
system to be used over multiple days, where we expect the
network to have re-connections.

2.1 Connectivity
For setting up the WiFi connection, the mini-PCs were con-
figured with Ubuntu 14.04.4. They had Intel N Ultimate Wifi
Link 5300 as the network interface card and CSI drivers pro-
vided by a 3rd party [2]. Experiments were performed with
802.11n protocol at 5GHz bandwidthwith 64QAMas themul-
tiplexing technique. Two transmitting and three receiving
antennas were used for communication. The communication
was set up in injection mode were the transmitter has con-
trol over number of packets, size of packets, sampling rate,
data rate and the channel number for communication. The
packets were sent in broadcast mode. Any receiver listening
on that channel could receive the packets. For the experi-
ments, channel 64 was used with 100 bytes packet size, 1kHz
sampling rate and 50 mbps data rate. For the experiments
with stable network connection, once the connection was set
up, data was collected for 5 minutes continuously, which was
later separated into samples of 3 seconds each. On the other
hand, for the experiments with network re-connections, data
was collected for 3 seconds, the WiFi was stopped, recon-
nected with the same transmission parameters and the next
sample was collected. This process was done iteratively.

2.2 Motor Details
We used two types of motors, a stepper motor Astrosyn
MY180 and a servo motor Tower Pro MG 90S. The stepper
motor needed 12V power supply, had a torque of 0.53N-m
and was 57×57×91mm in size. And the servo motor weighed
13.4g, needed 4.8-6V power supply, had a torque of 0.17-0.21
N-m was 22.8 × 12.2 × 28.5mm in size and had a gearbox
attached with it. Thus the stepper motor was powerful in
terms of size, torque generation and power supply require-
ments. And the servo motor was complex in terms of moving
elements since it had gears. While working with the Arduino
software drivers, it was noticed that the servo motor could
be configured with a limited range of operating speeds with
fine tuning, thus the experiments were performed on 0, 2.67,
3.26, 4.05, 5.38, 8.02 and 14.45 rpm. On the other hand, step-
per motor was used with speeds of 0, 50, 150, 250, 350 and
450 rpm. The stepper motor could make full rotations, but
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Figure 2. A close view of motors at the experiment.

the servo motor moved alternately 180 degrees clockwise
and then 180 degrees anticlockwise with the same speed.
Figure 2 shows the motors at experiment. Both the motors
had a single shaft rotating along its axis. Rotating motor
without load is like an axis rotating along itself in a single
dimension. This might have different effects when compared
to a load (plastic arm as in Figure 2, servo motor) rotating in
a plane (two dimensional). To study these two scenarios we
performed experiments with and without the plastic arm for
both the motors.

2.3 Experimental Data and Primary Analysis
In total we studied the motors for two load conditions (with
and without arm propeller) and two network conditions.
Thus we had four scenarios for each motor. For each scenario,
motors were experimented on 6-7 different speeds. We used
a classification model which classified these speeds. Hence
each speed was a separate class for the model. For each class,
100 samples of data were collected, each 3sec long with a
sampling frequency of 1kHz. Thus each data sample was
3000 packets of CSI data. The dataset could be found on [8].
To understand the CSI response to different speeds, we

studied the overall stability of data by calculating the statis-
tics of all the classes and compare with each other. One of
the best ways to visualize such a big data is to have box plots
where edges of the box represent 25th and 75th percentiles,
centre of the box is the mean and the red marks are outliers
as in Figure 3. The overall variance, standard deviation and
mean for data(all classes combined) with and without net-
work re-connections is [68.7696, 8.2927, 20.31] and [93.75,
9.68, 21.81] respectively. The overall variance of values for
data with network re-connections is a bit lower than the data
with stable network conditions. The variance and standard
deviation for individual classes for the non-reconnecting net-
work data was [93.97, 92.39, 92.02, 107.66, 75.78, 96.76] and
[9.69, 9.61, 9.59, 10.37, 8.71, 9.83] respectively. Similarly, for
reconnecting network data, it was [65.6835, 68.6108, 72.7494,
71.4834, 70.1162, 75.6701] and [8.1045, 8.2832, 8.5293, 8.4548,
8.3735, 8.6989]. These values for individual classes do not
show any pattern with the speeds of motors and are also very
close to each other which makes it difficult to differentiate

with each other. This motivates the use of noise reduction
techniques to help in the classification process.

Figure 3. Box plots for individual classes
of stepper motor under different network
conditions.

In order to have a visualization of the actual signals we
plot the time series and frequency domain data for both the
motors in Figure 4. It shows the data for 30 sub-carriers of
the servo motor at 14.45 rpm and the stepper motor at 50 rpm
after 50-point average smoothening and its corresponding
Short Time Fourier Transform (STFT) spectrograms. The
mean of the variances for individual signals for the servo
and stepper motors are 0.639 and 1.625 respectively. From
the figure also we can see that stepper motor shows more
amplitude changes than the servo motor. This may be due to
the higher power consumption of the stepper motor since it
had higher voltage and current ratings. It is also noted that
the raw time series data seems to be much more distinctive
compared to the respective spectrogram data.

Figure 4. Time series and spectrogram
plots for the stepper and servo motors.

3 Methodology for Data Analysis
Each received CSI packet was a matrix of 30 complex val-
ues (corresponding to the 30 sub-carriers) times the number
of antennas. Since we used 2 transmitting and 3 receiving
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antennas, we got 2*3*30 = 180 channels of information. In-
stead of using the complex numbers, we used its amplitude
information at all times. Each image in the CNN network
was expected to be of the size (Fs × time(sec)) × dimensions
(3000*180). To simplify the the calculations with 180 dimen-
sional data and reduce the noise factors following steps were
performed with the raw data as shown in Figure 5.

Figure 5. Block diagram for the method-
ology of data analysis.

1. Interpolation: Ideally, for each sample of 3 sec at a sam-
pling frequency of 1kHz, 3000 samples are expected
to be received. Due to packet loss this might not be
possible for every sample. This causes uneven number
of packets resulting in irregular image size. To reduce
the bias towards uninformative data, only the samples
having more than 2500 packets were interpolated to
have 3000 equally spaced samples.

2. Normalization: Normalization of a data set could be
helpful to remove redundancy of data which is spread
over different scales. For image data set it could be
performed in two ways.
• Normalization across images: In this method we nor-
malize each image individually.

• Normalization across pixels: If we consider each
pixel of an image to be an individual dimension,
and normalize each dimension, each pixel gets nor-
malized with respect to the corresponding pixels in
other images.

3. Principle component analysis (PCA): PCA is used as a
dimensionality reduction technique to reduce the 180
dimensional data to 20 by taking the first 20 significant
components. It is performed on three inputs of data,
namely, the raw data, data normalized across images
and the data normalized across pixels. The image size
after PCA reduces to 3000 × 20.

4. Spectrogram: Spectrogram is calculated by taking one
dimensional Fast Fourier Transform (FFT) along the
direction of time. The images after FFT are shaped as
3D images of size samples×subcarriers×antennapairs
for faster computations. This stage has two types of
inputs, normalization across pixels and the same data
after PCA with the first 50 significant components.
The image size after this stage is either 3000*30*6 or
3000*50 (in case of PCA).

5. Convolutional neural network (CNN): There are a total
of 7 models each corresponding to the input data. The
input size of each model varies. The models have 6
layers with alternate layers of convolutional layer and
average pooling layer. The convolutional layers have
kernel sizes of [(100,10),(50,5) and (30,3)] with 70, 50
and 30 depth size. The model uses a Gradient Descent
Optimizer with learning rate of 0.001.

4 Results and Discussion
In this section we first discuss the results of stepper motor
and later we move on to servo motor.

4.1 Stepper motor
Classification accuracies for the four cases namely, no load
with ideal network conditions, arm propeller load in ideal
network conditions, no load in practical network conditions
and arm propeller load in practical network conditions are
presented in Figure 6. For the stepper motor we have six
classes. This means that for random allocation of any class,
the accuracy could be as low as 16.66%. For the data without
network reconnection, all the methods except normalization
across pixels show low accuracy. For normalization across
pixels accuracies are 54.16% and 70.00%. After applying PCA
these are improved to 73.33% and 81.66%. Data with plas-
tic arm shows higher accuracy than the no load condition.
Results with network reconnections have almost random
prediction for all cases. The highest accuracy achieved in
this case is 32.53% for no load condition when applied nor-
malization across pixels and PCA, which is also very low for
practical use.

Figure 6. Classification accuracies for
stepper motor.
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The best classification accuracy for the stepper motor is
81.66% when the data is normalized across the pixels and
PCA is used for dimensionality reduction. The distribution
of values of an image when compared to images from other
classes is informative. PCA is able to refine this information
by clearing out the noisy part and by reducing the dimen-
sions. PCA also reduces the training time from about 6 hours
to 20 minutes while reducing the computational costs. The
rotating fan in a two dimensional space (a plane) has more
effects on the WiFi CSI when compared to no load condition.
This could be due to the fact that the fan points at different
directions while rotating, making a pattern in the signals.
Comparing these results with the data with multiple recon-
nections, it is observed that data in this case gets stabilized
in a way that the information cannot be gained even after
normalization or by performing PCA. For a system to be
reliable it is important that a model could be used over a
long period of time irrespective of the network conditions
which is not possible with this approach.

4.2 Servo Motor
Classification accuracies for the servo motors for the similar
four cases is presented in Figure 7. The classification model
for the servo motor had 7 classes. For random prediction
of any one class, the model could have a prediction accu-
racy of around 14.28%. For experiments performed under
stable network conditions, normalization across pixels gives
fairly high accuracy of 81.42% and 90.00%. Applying PCA and
performing spectrograms after normalization across pixels
reduces the performance of the model. Motor with the plastic
arm has slightly higher accuracy than the one without the
arm. Experiments performed under the practical network
conditions, show random prediction for all cases except the
case with PCA on normalized data across pixels. For this
case it has accuracies of 29.91% and 25.54% which is a little
improvement over others but still low to be relied on for
classification.

Figure 7. Classification accuracies for
servo motor.

The differences between the speeds of servo motor were
at magnitudes between 0.59 rpm for the slower speeds and
6.43 rpm for the faster ones. WiFi CSI is sensitive enough to

predict motor speeds which are so close to each other. Since
this motor had multiple gears attached to the shaft, received
signal is a combination effect of all the moving elements.
The first 20 components of PCA in the case of normaliza-
tion across pixels might not be informative enough, thereby
reducing the accuracy. The spectrograms provided might
have a lot of noisy components, making the classificaion
difficult. Since we get 90% accuracy for the motor with the
attached arm for speeds as close as 0.59 rpm, CNN models
could be said to be suitable for complex machines with mul-
tiple moving elements to detect change of motion smaller
than one rpm. Whereas the CSI data itself does not seem to
be consistent once the network is reconnected.

5 Challenges in analyzing the data
CSI is very sensitive to small changes. Thus small environ-
mental changes have a lot of influence on the signals and
may add noise. Proper noise reduction techniques, especially
for sensitive data is a big challenge. Spectrograms for such
data are also very alike which makes it very daunting for
classification. Since CSI is 180 channel data, visualizing the
data is difficult. Thus anticipating the important features
and modelling them is impractical using this approach. As
a preliminary approach, we studied the overall data by its
statistical information like variation and standard deviation
to design a simple approach for analysis.

6 Conclusion and Future Work
Classification of motor speeds with CSI data is possible with
CNN models when the images are normalized across the
pixels. Accuracy as high as 82% and 90% could be achieved
for classifying motor speeds as close as 0.59 rpm. Thus CSI
is sensitive to very small changes. But, noise reduction, di-
mensionality reduction and information extraction might be
challenging while using this sensor technique. Since both
the motors have different results with the same model, every
equipment in the industry needs a separate analysis and no
single model could fit all equipments. This system is also
suitable for complex moving elements. But reliability of the
data after the network reconnects still needs detailed investi-
gation. While the possibility of such a technique is validated
in this paper, the application in an actual industrial area
remains open for future work.
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