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Abstract

Crowd simulation, the study of the movement of multiple
agents in complex environments, presents a unique applica-
tion domain for machine learning. One challenge in crowd
simulation is to imitate the movement of expert agents in
highly dense crowds. An imitation model could substitute
an expert agent if the model behaves as good as the expert.
This will bring many exciting applications. However, we be-
lieve no prior studies have considered the critical question of
how training data and training methods affect imitators when
these models are applied to novel scenarios. In this work, a
general imitation model is represented by applying either the
Behavior Cloning (BC) training method or a more sophis-
ticated Generative Adversarial Imitation Learning (GAIL)
method, on three typical types of data domains: standard
benchmarks for evaluating crowd models, random sampling
of state-action pairs, and egocentric scenarios that capture
local interactions. Simulated results suggest that (i) simpler
training methods are overall better than more complex train-
ing methods, (ii) training samples with diverse agent-agent
and agent-obstacle interactions are beneficial for reducing
collisions when the trained models are applied to new scenar-
ios. We additionally evaluated our models in their ability to
imitate real world crowd trajectories observed from surveil-
lance videos. Our findings indicate that models trained on
representative scenarios generalize to new, unseen situations
observed in real human crowds.

1 Introduction
Imitating the movement of a goal-directed expert agent in a
complex scenario, involving obstacles and other agents, has
recently received attention from machine learning commu-
nity. Researchers aim to create data-driven models to predict
the next movement decision (velocity) of an agent given cur-
rent state (local observation on environment and neighboring
agents), by imitating the demonstrated crowd movement of
an expert. A good imitator could substitute the expert, with
potentialities in some applications. For instance, we may
want to imitate the controlling signals (steering angle, accel-
eration, etc.) demonstrated by a real person steering a vehi-
cle in parallel parking scenarios, whose decisions are based
on the person’s successive local observations, and then re-
place the human efforts with the imitator to provide control-
ling signals given the observations of a camera equipped on
the vehicle in new parallel parking scenarios.

In this paper, the term “scenario” refers to the configu-
ration of environment obstacles as well as the tasks (initial
positions and destination positions) for all involved agents.
Agents may have different destination positions. Existing
works, e.g., (Qiao et al. 2018), train and test models over
the same environment with only initial and goal positions
and the number of agents varied, or over environments with
small obstacle adjustment (Long, Liu, and Pan 2017). To the
best of our knowledge, no prior studies have considered the
critical question of how training data and training paradigms
affect imitation models when these models are generalized
to substantially different scenarios.

The generalization ability of an imitator to new scenarios
is subtly but essentially different from the regular general-
ization ability of a model, in three aspects. (1) For regular
generalization, the model has full knowledge about a sce-
nario such as the initial/destination positions of all agents
and the positions of all obstacles, while in scenario gen-
eralization, each agent assigned with an imitator may only
know its own destination and make a decision based on its
own partial observation, without knowing the destinations
and observations of other agents. (2) For regular generaliza-
tion, test samples are usually isolated: a previous test sample
does not influence the next test sample. In contrast, in sce-
nario generalization all agents (each agent is equipped with
an imitator) move step by step and synchronously, during
which the previous observation and decision of an agent in-
fluence its next observation and decision successively. (3)
Instead of measuring on isolated state-action pairs in regular
generalization, measurement in scenario generalization is on
the overall generated trajectories with multiple metrics, and
some of them might be mutually balanced.

Unlike most previous works that focus on improving a
specific expert model, or imitating an expert model for a spe-
cific behavior/in a specific scenario, our main goal is to in-
vestigate the effect of training paradigm and training data on
the scenario generalization ability of an imitator, by compar-
ing the combinations of representative training paradigms
and representative data domains. Specifically, two training
paradigms are studied: (1) Behavior Cloning (BC): an ap-
proximation of maximum likelihood estimation by fitting a
neural network regressor, capable of representing many clas-
sic regressors (support vector regressor, random forest, etc.)
and (2) Reinforcement Learning (RL): a Markov decision
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process solved by Generative Adversarial Imitation Learn-
ing (GAIL) (Ho and Ermon 2016), leading to a solution that
is theoretically equivalent to any two-step reward estima-
tion followed by policy search procedures. Although only
two paradigms are studied, encompassing two distinct fami-
lies of training approaches, the former focusing on imitating
simple reactive behaviors, while the latter considering the
impact of local actions on accumulated outcomes, they are
generic modeling approaches and represent most data-driven
models in crowd simulation.

In addition to training paradigms, three data domains are
developed: (1) a set of six standard scenarios which serve as
benchmarks for evaluating crowd simulation, (2) a random
sampling of inter-agent interactions at a single time step, and
(3) a set of representative scenarios to capture inter-agent
and agent-obstacle interactions during the overall navigation
procedure. These data domains span the spectrum of a few
but complex and crowded scenarios, to many random dis-
crete snapshots for the immediate response of a model to
inter-agent interactions, and a large number of sampling of
small-scale, but general interaction situations that individu-
als encounter.

Combinations of training paradigms and data domains are
systematically evaluated in the ability to emulate expert tra-
jectories while avoiding collisions with other agents and en-
vironment obstacles in substantially new scenarios. Our em-
pirical results suggest that (i) a simpler training method is
better than a more complex training method, (ii) training
samples with diverse agent-agent and agent-obstacle interac-
tions are beneficial for reducing collisions when the trained
models are applied to new scenarios.

We additionally evaluated all five models in their abil-
ity to imitate real world crowd trajectories observed from
surveillance videos. Results indicate that models trained on
representative scenarios generalize to new, unseen situations
observed in real human crowds.

2 Prior work
Crowd simulation and analysis are paramount examples of
distributed AI modeling, with application across a variety
of domains including computer graphics, crowd tracking,
crowd trajectory estimation and optimization (Ali et al.
2013; Junior, Musse, and Jung 2010; Kapadia et al. 2015;
Qiao et al. 2018; Liu et al. 2017; Lee, Won, and Lee 2018;
Cheng, Duan, and Gu 2018). We provide a brief summary of
the most related literature below.

2.1 Crowd Simulation Approach
Methods in this approach rely on pre-determined physical,
social or geometric rules or computational procedures to de-
cide a velocity for an agent to execute in the next time du-
ration (Vicsek et al. 1995; Karamouzas, Skinner, and Guy
2014; Knob et al. 2019; Kim et al. 2012; Kim, Guy, and
Manocha 2013; Ren et al. 2017), and hence they are not
data-driven models. In social force method (Helbing and
Molnar 1995), an agent is simultaneously attracted by its
goal and repelled by other agents and obstacles. Each force
obeys the gravitation-like inverse-square law, and the com-

position of all forces of an agent determines the accelera-
tion of that agent. Geometric methods such as velocity ob-
stacles (Fiorini and Shiller 1998) define a geometrical cone
in the relative velocity space, inside which a collision will
occur. Extensions to this work (Van Den Berg et al. 2011)
define the set of collision-avoiding velocities and induce Op-
timal Reciprocal Collision Avoidance (ORCA) that provides
a sufficient condition for collision avoidance if agents are not
densely packed.

2.2 Behavior Cloning (BC) Approach
This approach view state-action (s, a) pairs as indepen-
dent samples and use these samples to fit a regression
model based on maximum likelihood estimation (MLE).
Thus, models (Long, Liu, and Pan 2017; Qiao et al. 2018;
Torabi, Warnell, and Stone 2018) within this approach are
data-driven models. If the regression model is represented
by a neural network (NN), it stands for a general function
and covers many traditional learning models. (Long, Liu,
and Pan 2017) randomly places neighboring agents around
a reference agent and randomly samples the current veloc-
ities for all agents. Given a preferred velocity for the ref-
erence agent, they use ORCA (Van Den Berg et al. 2011)
to produce the corresponding action (velocity) for the ref-
erence agent in that state. Such a uniform sampling over
state space yields a sufficient amount of state-action pairs
to fit an NN model. Similarly, (Qiao et al. 2018) simulates
the social force model to collect expert trajectories, and treat
state-action pairs from the expert trajectories as independent
samples to fit an NN model. However, the trained model is
used to provide a velocity prior used for trajectory interpo-
lation, where the actions of individual agents become seem-
ingly decoupled from each other, leading to a computation-
ally efficient solution.

2.3 Reinforcement Learning (RL) Approach
RL methods (Ziebart et al. 2008; Finn et al. 2016; Arora
and Doshi 2018; Schulman et al. 2015; Pautrat, Chatzilyger-
oudis, and Mouret 2018; Ho and Ermon 2016; Kuefler et
al. 2017) alternate between sampling trajectories with a pol-
icy model in an environment and updating the policy model
based on reward signal. The goal is to maximize the ex-
pected accumulated reward by balancing environment ex-
ploration and reward exploitation. (Torrey 2010) introduces
RL to crowd simulation and proposes several new chal-
lenges when it scales from single-agent to multi-agent set-
ting. A recent work presents an agent-based, RL navigation
method that learns a single unified policy to be applicable
to several scenarios and settings, without considering envi-
ronmental obstacles (Lee, Won, and Lee 2018). Some other
works (Casadiego 2014) also use RL to approach the prob-
lem of data-driven trajectories learning (Cheng, Duan, and
Gu 2018) in crowd simulation.

The reward function in RL is either human-defined
(Long et al. 2018), or learned with inverse-RL (IRL) meth-
ods (Ziebart et al. 2008; Finn et al. 2016; Arora and Doshi
2018). For fair comparison, we consider only data-driven
models and thus the reward function is estimated via IRL
from demonstrated expert trajectories.



Figure 1: Visualization of trajectories of RLA-G and BCA-G generalized to egocentric representative and exocentric standard
scenarios. The lower AO metric of RLA-G than that of BCA-G results from the fact that much fewer RLA-G agents can avoid
obstacles and reach destinations.

(Finn et al. 2016) proposes guided cost learning for IRL,
which alternates between (1) estimating the partition func-
tion (so as to search for the current optimal parameter point)
by sampling the proposal distribution, and (2) optimizing the
proposal distribution to reduce the variance of the partition
function. Given estimated reward function, (Schulman et al.
2015) proposes to optimize the policy by searching at each
iteration within a region centered at previously estimated pa-
rameter point, which could be considered as KL-constrained
natural gradient ascend. Recently, (Ho and Ermon 2016)
proposes generative adversarial imitation learning (GAIL),
an imitator of demonstration. It is model-free, without the
need to estimate the dynamics explicitly. More importantly,
they proved that any two-step reward estimation and policy
optimization procedures (IRL-RL) are equivalent to the one-
step adversarial learning. Thus GAIL covers most traditional
data-driven RL methods, avoiding us the need to develop a
specific RL model. We will describe this training paradigm
in detail in the following section, and apply it within the con-
text of multi-agent goal-directed collision avoidance.

2.4 Comparison of Three Approaches
The three categories of approaches have their own character-
istics, which make them complementary to others. (1) Some
methods describe certain movement knowledge of physical
particles, geometric objects, animals or humans, and rep-
resent the knowledge explicitly for making velocity deci-
sions in crowd simulation, rather than focusing on imitat-
ing/learning implicit knowledge from demonstrated data.
(2) Provided with expert trajectories, BC suffers from the
well-known compounding error problem (Ross and Bagnell
2010). That is, when BC’s decision deviates a little from the
expert’s decision, the next state would be less represented in
expert trajectories, leading to further deviation from the ex-
pert decisions. When such error accumulates, it might end up
with invalid situation (e.g., off-road driving). (3) RL meth-
ods are much more sophisticated in training compared with
BC. (4) One can anticipate that the physics-based approach
has the best scenario generalization ability, followed by BC,
while RL have the least scenario generalization ability. This

might be explained by Occam’s razor law: physics-based
methods follow a few rules or computational procedures, BC
learn independently from (s, a) pairs, while RL explore and
learn from the same environment repeatedly.

Despite these insights, it is still not clear to which extent
the data-driven models differ from each other, in the sense
of generalization capacity to new scenarios. Therefore, we
specifically seek to determine what training paradigm / train-
ing data is the most suitable for developing generalizable
models for multi-agent goal-directed collision avoidance.
Considering the above-mentioned characteristics of the three
approaches, we use physics-based methods to generate dif-
ferent types of expert trajectories and utilize these trajecto-
ries for training with BC/RL approaches, followed by com-
paring the scenario generalization capacities of those trained
models.

3 Problem Formulation
Let S and A be the state and the action space, respectively,
of an agent given an environment E . Let st ∈ S denote the
state of an agent at time t, where t is the discrete step index
with t = 0, 1..T and T is the maximal number of steps. An
agent’s state typically includes what the agent locally ob-
serves about the world around itself, and may also incorpo-
rate some guidance signals received from external sources.
Let at ∈ A denote the action of the agent at time t, deter-
mined by the agent’s policy function (decision-making func-
tion) based on st. That is, at = π(st), with π(·) representing
the policy function adopted by the agent. The action could
be high-dimensional controlling signal (steering angle, ac-
celeration, etc.), but in its simplest form, it may represent
the velocity that will take the agent to a new position, lead-
ing to a new local observation of the world. At each step t,
assume the next state st+1 of an agent depends only on its
current state st and current action at. For comparison, we
further assume all agents are homogeneous, i.e., they uti-
lize the same policy π for their execution, however no agent
knows what policies other agents adopt. Therefore, the dy-
namics, st+1 ∼ P (·|st, at), is probabilistic due to partial ob-
servation of the agent and unknowing about other agents’ de-



cisions at step t. Furthermore, a state-action pair (st, π(st))
can be evaluated by a cost function associated with the world
system: c(st, π(st)) = rt, where rt ∈ R is a reward value
for the action the policy decides based on st. For instance,
the cost function may evaluate a lower reward if executing
at incurs agent-agent/agent-obstacle collisions and a higher
reward otherwise.

Given the above definitions, the problem can be formu-
lated as a Markov Decision Process (MDP). For a given cost
function c(·, ·), the goal is to find π∗ that maximizes the ac-
cumulated rewards along the expected trajectory:

π∗ = arg max
π

Eπ

[
T∑
t=1

γtc(st, at)

]
, (1)

where γt ∈ [0, 1) denotes the discount factor.
One issue is that the cost function is usually unknown

or implicit, and the demonstrated expert trajectories also
conceal the reward signals. In other words, the demon-
strated expert trajectories are {(s0, a0, s1, a1, ..., sT , aT )},
not {(s0, a0, r0, s1, a1, r1, ..., sT , aT , rT )}. Another impor-
tant issue is that neither the stochastic dynamics nor the ex-
pert policy πE is known, stemming from the complex nature
of the crowd simulation task. Typically, there are four ways
to handle these challenges: (1) use IRL to estimate a cost
function that favors the expert trajectories with high accu-
mulated rewards (in the following, we denote the cost func-
tion estimated from expert trajectories as c*), (2) estimate
the dynamics from data, (3) use RL to estimate π∗ to mimic
the expert policy πE using the IRL-found cost function c∗,
and (4) use BC to directly estimate π∗ from the expert tra-
jectories. We focus on (3) and (4) in this work.

4 Behavior Cloning Agents
Behavior cloning methods could be viewed as a special case
of the formulation in Eq. 1: a reduction when the cost func-
tion c(st, at) of BC is a differentiable training loss function,
with discount factor γt ≡ 1, and the dynamics of BC de-
pends only on the data distribution, independent from the
current (st, at) pair.

Training a model in BC paradigm is identical to fitting
a supervised regressor. For instance, one can fit a Neurual
Network (NN) regressor with the cost function c(·, ·) set to
L2 loss:

at = fNN (st| θNN ) , (2)
where st is the state of an expert agent, including its local
visibility (e.g., a range map, a velocity map) from the center
point of this agent, as well as a local guidance velocity and a
global guidance velocity – see details on state representation
in the evaluation part. θNN is the model parameter. Such NN
based model can also represent many traditional regressors
including support vector regressor, random forest, etc.

As mentioned earlier, in crowd simulation agents are goal
directed. To arrive the final destination, it is critical for the
state st of an agent to contain not only the local observation
about where neighboring agents/obstacles exist and what the
relative velocities of neighboring agents/obstacles are wrt
the agent, but also a local guidance direction (or local guid-
ance velocity) that leads the agent to its own nearest sub-goal

location. Such local guidance velocity is agent-specific and
dependent on the current location of the agent. In addition,
due to the existence of environmental obstacles, the local
guidance velocity may not coincide with the global guid-
ance velocity that directly points to the final destination of
the agent.

The local guidance velocity can be either learned from ex-
perience (e.g., from expert trajectories) or planned by an ex-
ternal planner provided with the environment configuration
and the initial/destination positions of an agent. When the
movement of expert agents forms a flow pattern, indicating
that two nearby agents have similar trajectories, the flow can
be learned with a Gaussian Process (GP). With the learned
GP, when an imitator is generalized to that environment, the
prediction of the GP could provide the local guidance veloc-
ity for the imitator in st:

alocal
t ∼ GP ( · |(x, y, t),Xtrain, θGP ) , (3)

where (x, y, t)T ∈ R3 is the spatial-temporal location of
the imitator, Xtrain is the training data, θGP is the hyper-
parameter, and alocal

t is the local guidance velocity at the cur-
rent spatial-temporal location.

On the other hand, when the movement of expert agents
does not form a flow pattern, one may use a path-planning
algorithm to provide the local guidance velocity in st.

5 Reinforcement Learning Agents
Reinforcement learning first estimates c∗ from expert trajec-
tories, then estimates the optimal policy π∗ to approximate
the underlying but unknown expert policy πE . One approach
to recover c∗ is the maximum causal entropy IRL (Ziebart et
al. 2008):

arg max
c∈C

min
π∈Π
−H(π) + Eπ [c(s, a)]− EπE

[c(s, a)] , (4)

where H(π) , Eπ [− log π(a|s)], C is the family of cost
functions, Π is the family of policy functions, and πE de-
notes the expert policy that generates the expert trajectories.
Here c∗ minimizes the expected cost of expert trajectories
while maximizes the cost of the policy trajectories. If such
c∗ is obtained, the optimal policy π∗ satisfies

arg min
π∈Π

−H(π) + Eπ [c(s, a)] , (5)

and can be estimated in a regularized RL procedure.
The two-step IRL-RL are complex. Recently, (Ho and Er-

mon 2016) have proposed GAIL, in which they have shown
that the two-step IRL-RL is identical to a one-step occu-
pancy matching procedure.

To induce GAIL paradigm, they first add a closed, proper
convex cost function regularizer ψ : RS×A → R to alleviate
the overfitting issue stemming from the finite dataset size.
With this regularizer, the IRL objective is given by

argmax
c∈C

− ψ(c) +

(
min
π∈Π

−H(π) + Eπ [c(s, a)]
)
− EπE [c(s, a)] .

(6)

On the other hand, they define an occupancy measure
ρπ : S × A → R of a stochastic policy π as ρπ(s, a) =



π(a|s)
∑
t γtP (st = s|π). ρπ describes the distribution of

(s, a) pairs that an agent encounters when navigation with
policy π. (policy is stochastic in training but deterministic in
testing to trade off exploitation for exploration).

With this definition, they show that RL and IRL solve the
primal and the dual problems of occupancy measure match-
ing, with optimal solutions forming a saddle point. That
means any two-step IRL-RL is equivalent to the following
one-step formulation:

π∗ = arg min
π∈Π

ψ∗(ρπ − ρπE
)− λH(π) (7)

where ψ∗ (the convex conjugate of function ψ) is the con-
vex function measuring the deviation of ρπ from ρπE

. This
suggests that finding π∗ to approach πE can be transformed
to matching the occupancy measure between ρπ and ρπE

.
Here λ is an introduced regularization parameter to control
the entropy term.

They further show that there exists a specific ψ:

ψGA(c) ,

{
EπE

[g(c(s, a))] if c < 0

+∞ otherwise
(8)

where g(x) = −x− log(1− ex) if x < 0, otherwise g(x) =
+∞, such that ψGA(ρπ − ρπE

) can be represented as:

ψ∗GA(ρπ − ρπE ) = max
D

Eπ [log(D(s, a))] + EπE [log(1−D(s, a))]

where D : S × A → (0, 1), which is employed to predict
the probability that a given state-action pair comes from π
rather than πE , with the relation c(s, a) = logD(s, a).

In that case, the one-step formulation in Eq. 7 is reduced
to an adversarial form:

min
π

max
D

Eπ [log(D(s, a))] + EπE [log(1−D(s, a))]− λH(π).

(9)

Therefore, the final objective given by Eq. 9 can be opti-
mized adversarially with gradient descend and policy opti-
mization (e.g., trust region policy optimization (Schulman
et al. 2015)). Eventually, both cost function and policy func-
tion can be obtained simultaneously, capable of representing
a general two-step IRL-RL models.

6 Data Domains
We identify three scenario domains in this work: exocentric
standard scenarios (X), egocentric representative scenarios
(G), and egocentric random scenarios (R). In all domains, an
agent is represented as a circle with the radius of 0.5 meters.

6.1 Exocentric Standard Scenarios (X)
This domain provides a few but complex and crowded sce-
narios, including six environment benchmarks used to eval-
uate computational models of crowd movement (Singh et
al. 2009; Yoon et al. 2016; Qiao et al. 2018). The six sce-
narios (with variation in agent density and initial/destination
positions) include:

1. Evacuation 1. Many agents must evacuate a room, with
only one small doorway of width 2.4 m. Agents are head-
ing toward distinct target locations outside the room.

2. Evacuation 2. Similar to Evacuation 1 but the doorway
width is narrowed to 1.4 m. Also agents are heading to-
ward the same target location outside of the room.

3. Bottleneck squeeze. All agents begin on one side of the
area, and enter and traverse a hallway to reach the target.

4. Concentric circles. Agents are symmetrically placed
along a circle and aim to reach antipodal positions.

5. Hallway two-way. Many agents traveling in either di-
rection through a hallway. Agents are expected to form
lanes.

6. Hallway four-way. Many agents arriving from and trav-
eling to any of the four cardinal directions.

Illustrations of the six scenarios are shown in Fig. 2.

6.2 Egocentric Representative Scenarios (G)
Exocentric standard scenarios provide challenging crowd
tasks, but may not be able to sufficiently provide a represen-
tative space of challenging local interactions individuals en-
counter in crowd. Egocentric random scenarios provide ran-
dom samples of state-action pairs, but these samples can not
form complete trajectories, and there are no agent-obstacle
interactions.

In an effort to produce a data domain with a large num-
ber of sampling of small-scale, but general inter-agent and
agent-obstacle interactions that individuals encounter, we re-
fer to (Kapadia et al. 2011), which characterizes the repre-
sentative space of scenarios observed in crowds, and a sam-
pling strategy to generate a finite set of scenarios with suffi-
cient coverage. Specifically, a considerable amount of sim-
ulation scenarios are uniformly sampled from this scenario
space for both training and testing (4000 for training, 100 for
testing). Each scenario contains randomly distributed obsta-
cles and randomly assigned initial/destination positions of
agents, with expert driven by the social force model. Fig. 3
illustrates two samples in this domain.

6.3 Egocentric Random Scenarios (R)
The randomly generated scenarios proposed in (Long, Liu,
and Pan 2017) constitute the second domain, where a suf-
ficient number of samples are collected by uniformly and
independently sampling over the state space. The positions
of neighboring agents, previous velocities of neighboring
agents and the preferred velocity of a reference agent are
randomly set to construct a particular state for the reference
agent at a step, while the expert decision of the reference
agent at this step is queried from ORCA (Van Den Berg et
al. 2011) given the same state. This produces many discrete
and independent snapshots for immediate responses of an
expert to inter-agent interactions. Note that in any sample of
this domain, there are no obstacles, thus no agent-obstacle
interactions involved.

6.4 Summary of Three Data Domains
In the following sections, abbreviations X, G, and R are used
to denote the domain of exocentric standard, egocentric ran-
dom and egocentric representative scenarios respectively.
Tab. 1 summarizes the characteristics of each domain.



(1) (2) (3) (4) (5) (6)

Figure 2: Exocentric standard scenarios (X). (1) Evacuation 1, (2) Evacuation 2, (3) Bottleneck squeeze, (4) Concentric circles,
(5) Hallway two-way, (6) Hallway four-way.

Figure 3: Example scenarios from egocentric representative
(G) domain, shown with expert trajectories. Each agent (de-
noted as a circle) aims to reach its destination (a triangle of
the same color) while avoiding other agents and obstacles.

Table 1: characteristics of three data domains

X
A few challenging obstacle configurations;

with inter-agent interactions

G
Diverse inter-agent and agent-obstacle interactions;

many test scenarios

R
Numerous diverse snapshots on inter-agent

interactions; no complete trajectories; no obstacles

7 Evaluating Scenario Generalization
Capability

Bidirectional experiments are conducted: models trained on
egocentric representative (G) and egocentric random (R) are
tested on exocentric standard scenarios (X); models trained
on exocentric standard (X) and egocentric random (R) are
tested on egocentric representative scenarios (G).

7.1 Trained Models
Given the two training paradigms and three data domains,
five training paradigm – training domain combinations are
studied:

1. BCA-X: BC agents trained on X

2. BCA-G: BC agents trained on G

3. BCA-R: BC agents trained on R

4. RLA-X: RL agents trained on X

5. RLA-G: RL agents trained on G

RL agents are not trained on egocentric random scenarios

as RL require complete trajectories, not independent state-
action pairs.

7.2 State Representation
Similar to (Qiao et al. 2018), we simulate that each agent
observes the world around it using a collection of local mea-
surements. The first local measurement is a range map, a
measure of radial distances from the center of the agent to
the surface of the environment (including surfaces of neigh-
boring agents and surfaces of obstacles), typically at a reso-
lution of one degree over 360 degrees. We also simulate that
an agent can detect the relative movements of neighboring
agents and obstacles, perceiving a radial velocity map. In
addition, an agent receives local and global guidance veloc-
ities. The local guidance velocity is provided by an external
source (either GP or A-star), which is capable of sensing ob-
stacles in the environment but lacks knowledge of the exis-
tence of other moving agents, thus guiding the agent’s move-
ment independent of other agents, like a GPS. The global
signal provides an overall heading direction towards the fi-
nal destination position, much like a compass.

Following (Qiao et al. 2018; Long, Liu, and Pan 2017),
GP provides the local guidance velocity in exocentric stan-
dard scenarios, while the sampled preferred velocity acts as
the local guidance in egocentric random scenarios. How-
ever, in egocentric representative scenarios, the movement
of agents does not form a flow pattern. Therefore, we use A-
star to plan a route for each agent from its initial to its des-
tination position. Influenced by neighboring moving agents,
an agent does not follow strictly with its A-star way points.
Instead, at each step it aims at its furthest A-star way point
it sees without visual occlusion as the current local goal.

7.3 Main Training Configuration
For the size of the training data, the amount of state-action
pairs for training in three domains are nearly the same, about
1.6M.

All BCA-X, BCA-G, BCA-R adopt a six-layer fully con-
nected network, with each layer containing 100 neurons.
They are trained by RMSprop (Tieleman and Hinton 2012)
with L2 loss and learning rate 0.0001.

For training reinforcement learning (RL) agent, both pol-
icy and reward functions adopt the same architecture as
BCA-X, BCA-G, BCA-R to ensure that all policies share
the same model complexity. The policy learning rate for RL
agent is set to 0.01. During sampling model trajectories in
the training phase, a zero-mean Gaussian random noise with



standard deviation 0.5 is added to the output trading off for
exploration. The policy entropy regularizer λ is set to be 0.
The network is trained at 10K iterations for exocentric stan-
dard scenarios and 6K iterations for egocentric representa-
tive scenarios.

7.4 Metrics
The five models are evaluated on three metrics, following
(Qiao et al. 2018). All metrics are the lower, the better.

1. DTW metric: Dynamic Time Warping distance (Sal-
vador and Chan 2007) measures the spatial deviation of a
model trajectory from an expert trajectory averaged over
agents. To eliminate the influence of different number of
steps in model trajectories, a min-match version of DTW
is adopted, by registering each of the nodes (positions) of
a model trajectory to its closest node of the correspond-
ing expert trajectory using dynamic programming, and
accumulating the minimal distance of registered pairs of
each node along the expert trajectory.

2. AA metric: AA stands for agent-agent collisions, the to-
tal number of collisions for all pairs of agents accumu-
lated over all steps. During one-step movement, a colli-
sion between one pair of agents occurs if their distance
is less than the sum of their radii at any real-valued time
point within that time duration, which could be verified
by solving a distance-related quadratic equation.

3. AO metric: AO denotes agent-obstacle collisions, the to-
tal number of collisions between all pairs of an agent and
an edge of an obstacle during a simulation, also accumu-
lated over timesteps. An agent-obstacle collision can be
detected based on (1) the intersection of two line seg-
ments (one for an edge of an obstacle, the other for the
trace of an agent’s center during a one-step movement)
and (2) the distance between a point (the center of an
agent) and a line segment (an edge of an obstacle).

Note that within one step if an agent collides with more
than one edge of an obstacle, only one AO collision is
counted. Two agents keep overlapping or an agent moving
within an obstacle is only counted once for the first contact-
ing of their edges until they depart from each other. Also
for simplicity, if an agent-agent or agent-obstacle collision
occurs, it does not change the velocity of involved agents
within that temporal duration.

7.5 Generalization to Test Scenarios
Based on the above experimental setup, bidirectional exper-
iments are conducted to test scenario generalization ability
of the training paradigm-training domain combinations on
test domains.

Test on Exocentric Standard Scenarios
In this test domain, models are evaluated on the six types of
standard scenarios, varying in agent density from 10 to 50
and initial/destination positions. Fig. 4 left shows the aver-
aged rankings for the three metrics.

For DTW, BCA-G, BCA-R, RLA-G ranks first, second
and third respectively. This indicates that BCA paradigm is

better at inferring a route than RLA when the testing sce-
narios are widely divergent from the training scenarios. For
AA, BCA-G, BCA-R, RLA-G ranks first, second and third
respectively. For AO, surprisingly, RLA-G is the best while
BCA-G, BCA-R ranks second and third respectively. There-
fore. one can see that, under the same training paradigm
(BCA), training on egocentric representative scenarios (G)
incurs less AA and AO collisions than training on egocen-
tric random scenarios (R), when applied to exocentric stan-
dard scenarios (X). This evidence that egocentric representa-
tive scenarios (G) provide a suite of challenging local agent-
agent interactions and sufficient samples on avoiding colli-
sions in a myriad of obstacle configurations. It also implies
that when applying a model to a few challenging unseen en-
vironments (e.g., X), it might be better to train a model with
a sufficient number of environment configurations (training
on egocentric representative scenarios (G) enables the model
to learn from 4000 different environments), than applying a
model without environment knowledge (BCA-R learns from
snapshots of surrounding neighboring agents, not from any
specific environment).

To understand why RLA-G incurs less AO collisions than
BCA-G, we further list Tab. 2 to show detailed comparisons
along agent densities. We notice that the DTW metric
of RLA-G is much higher than those of BCA-G. From
simulation videos and trajectories illustrated in Fig. 1, we
observe that only a few RLA-G agents can go through the
doorway with slow speed, while other RLA-G agents have
to wander near the doorway until the maximum number of
simulation steps. The cautious behaviors of RLA-G agents
bring benefits in terms of lower AO. This explains the
outlier RLA-G in AO metric.

Test on Egocentric Representative Scenarios
In this evaluation, models are tested over 100 scenarios from
the egocentric representative scenarios (G) domain. Fig. 4
right shows averaged ranking results over three metrics.
For DTW, BCA-X, RLA-X, BCA-R ranks first, second and
third respectively. For AA, BCA-R, BCA-X, RLA-X ranks
first, second and third respectively. For AO, again, BCA-R,
BCA-X, RLA-X ranks first, second and third.

On the one hand, given the same training domain (exo-
centric standard scenarios (X)), training with BCA paradigm
is better than training with RLA paradigm for all metrics of
DTW, AA, and AO. On the other hand, the training domain
egocentric random scenarios (R) is better than exocentric
standard scenarios (X), in term of reducing AA and AO
collisions when generalized to many new scenarios. This
implies an even more interesting insight: when a model
needs to be applied to many new environments (testset
of egocentric representative scenarios (G) comprises of
100 new environments), having no knowledge about any
environment (BCA-R) is more advantageous than having
a little knowledge about a few environments (BCA-X and
RLA-X are trained only on six different environments).

Overall Summary on Bidirectional Experiments
According to the above bidirectional results and analysis,
it is clear that BCA training paradigm is overall better than



Table 1: Rankings of models over test domains. Each color ring represents a model, and each axis
indicates averaged rankings over test scenarios for a metric. For all three metrics, the smaller the
better. Numbers in legend denote averaged ranking over three metrics.
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Table 2: Rankings of all models over the real test domain. Each color ring represents a model, and
each axis indicates averaged rankings over test scenarios for a metric. For all three metrics, the smaller
the better. Numbers in legend denote averaged ranking over three metrics.
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Figure 4: Rankings of models over test domains. Each color represents a model, and each axis indicates averaged rankings over
test scenarios for a metric. For all three metrics, the smaller the better. Number in legend denote averaged ranking over three
metrics.

RLA training paradigm, and the data domain egocentric rep-
resentative scenarios (G) and egocentric random scenarios
(R) are better than exocentric standard scenarios (X) in re-
ducing AA and AO collisions. Considering the coverage of
these paradigms and domains, we conclude that (i) a simpler
training paradigm is better than a more sophisticated training
paradigm, (ii) training samples with diverse agent-agent and
agent-obstacle interactions are beneficial for reducing colli-
sions when the trained models are applied to new scenarios.

7.6 Discussion
Results (Fig. 4) suggest that while RLA-based training meth-
ods have a potentially powerful paradigm of aggregate be-
havior imitation through a combination of IRL and RL, it
may not possess the desired cross-domain generalization ob-
served in a simpler BCA paradigm, provided that all models
have the same architecture and the same number of parame-
ters. One reason for this may stem from the underlying mod-
eling assumptions.

As evident from the expression of occupancy measure,
RLA relies on matching the occupancy measures between
the estimated policy π∗ and the expert policy πE . (Puter-
man 2014) shows that a valid set of occupancy measures
D , {ρπ|π ∈ Π} satisfies a set of affine constraints:∑
a ρ(s, a) = p0(s) + γ

∑
(s′,a) P (s|s′, a)ρ(s′, a),∀s ∈ S,

where p0(s) denotes the distribution of initial states. More-
over, there is a one-to-one correspondence between D and
Π: πρ(a|s) , ρ(s,a)∑

a′ ρ(s,a′)
, with πρ the unique policy whose

occupancy measure is ρ, Thm.2 of (Syed, Bowling, and
Schapire 2008). Taking this into account, we obtain:

πρ(a|s) =
ρ(s, a)

p0(s) + γ
∑

(s′,a) P (s|s′, a)ρ(s′, a)
,∀s ∈ S.

Thus, when modeling the movement of agents in an envi-
ronment, the dynamics P (s|s′, a) encodes complex scenario

information, including positions of other moving agents and
the obstacles in the environment, occlusions, etc. These dy-
namics are, as noted, implicitly encoded in the policy. There-
fore, an RLA model trained on a particular training domain
implicitly learns its environments. Transferring this model
directly to a new, test scenario with significantly different
dynamics is bound to result in a weaker match, thus reduced
generalization capacity. On the other hand, less biased BCA
models will have the ability to surmount those differences
more easily, and generalize better.

8 Generalization to Real Domain

In this section, we apply the above five combinations of
training paradigms and training domains to a real test do-
main to visualize their scenario generalization abilities and
verify the conclusion in a real world domain.

8.1 Real Domain Description

The real domain we considered is Stanford crowd trajectory
dataset, introduced in (Alahi et al. 2016). It consists of a
large set of real pedestrian trajectories collected at a train
station of size 25m× 100m for 12× 2 hours by a set of dis-
tributed cameras. Identity numbers, position histories with
timestamps of the pedestrians are extracted from the im-
age sequences with detection and tracking algorithms. The
dataset is challenging since (1) The agent density is quite
high. In a time duration of 4 minutes, there are about 500
pedestrians moving in the train station. (2) Pedestrians are
highly asynchronous. They enter into and exit from the train
station at different timestamps, without a unified time con-
troller. (3) the data is noisy, due to the detection, tracking and
localization error, and the difficulty to measure the accurate
positions of the obstacles (infeasible areas).



Table 2: Comparison of RLA-G (blue), BCA-G (red) and BCA-R (yellow), using the three metrics with different agent densities
increasing from left to right. Each axis in a plot denotes one type of the six scenarios: A, B, C, D, E and F denotes evacuation
1, evacuation 2, bottleneck squeeze, concentric circles, hallway two-way, and hallway four-way, respectively. Line thickness in
plots indicates each metric’s standard deviation. Polygons closer to the origin imply a better (lower) metric value.

Density 10 20 30 40 50
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8.2 Dataset Preprocessing
First, the positions of the obstacles in the environment layout
are determined by drawing the provided pedestrians’ trajec-
tories on the layout, and manually finding out the obstacle
positions based on the occupancy areas of the drawn trajec-
tories. Second, the long-lasting trajectories are aligned with
timestamps and further split with a temporal sliding win-
dow of 4-minute length and 2-minute stride. Within each
time window, all pedestrians are retrieved, including those
emerge after the starting time and/or exit before the ending
time of the window, and those whose destinations have to
be retrieved in the next time window. Third, to reduce the
noise in the data, pedestrians whose initial position or des-
tination position are within the obstacles are removed. Last
but not the least, a Gaussian convolution operation is applied
to the binary representation of the environment layout (ob-
stacle pixels are represented as 1, other feasible pixels are
0), to yield an obstacle-probability map. Based on the map,
the cost from a node to its child node in A-star is modified
according to the obstacle probability, so as to prevent the
planned A-star nodes from being too close to the obstacles,
to reduce the risk of agent-obstacle collisions.

8.3 Visualization of Model Trajectories
Fig. 5 illustrates trajectories of the above five combinations
of training methods and training domains on the Stanford
real dataset. The obstacles (infeasible areas) are in blue
color, and the trajectories are also colored. According to our
experiment setting, we know that for agents even slightly

entering into an obstacle, they will not perceive the obstacle
wherein. However, in this specific test domain, some agents
slightly entering into the obstacle may see their far-away
planned nodes (e.g., the final destination node), and thus
would be guided to directly approach to their final destina-
tions, leading to visually obvious agent-obstacle collisions.
We can see that even under such challenging scenarios,
with high agent density and easy-to-cause obstacle crossing,
BCA-R and BCA-G are still visually generalized better than
other combinations. Thus the visualization strengthens our
conclusion.

8.4 Quantitative Results
Fig. 6 presents the averaged rankings of all models when
generalized to the real domain on the three metrics. We can
see that for DTW, BCA-R and RLA-G ranks first and sec-
ond respectively. For AA, RLA-X and BCA-X ranks first and
second respectively. For AO, BCA-R and RLA-G ranks first
and second respectively. Overall, RLA-G and BCA-R mod-
els are better than others.

From the rankings we have three observations. (1) Train-
ing domain egocentric random (R) and training domain ego-
centric representative (G) are beneficial for reducing AO col-
lisions, which accords with the simulated bidirectional ex-
periments. (2) Training domain exocentric standard (X) is
better at reducing AA collisions. This suggests that even
though the exocentric standard (X) domain is not suggested
by the simulated bidirectional experiments, it contains a few
challenging obstacle configurations and can still benefit a



(1) RLA-X in a time window

(2) RLA-G in a time window

(3) BCA-X in a time window

(4) BCA-G in a time window

(5) BCA-R in a time window

Figure 5: Visualization of different combinations of training
methods and training domains generalized to real dataset.
The obstacles (infeasible areas) are in blue color.

model when applied to real challenging scenarios with high
agent density. (3) For the training paradigm, both RLA and
BCA are involved in the first and second ranked models in
each of the three metrics and in the overall ranking. The lack
of a dominant training paradigm implies the need to trade off
when choosing a training paradigm for generalizing to real
challenging domains.

9 Conclusion
In this study, our main goal is to analyze the effect of differ-
ent training paradigms and training domain characteristics
on scenario generalization capacities of data-driven imita-
tion models in crowd modeling settings. Our empirical re-
sults and analysis indicate that for training method, the sim-
pler behavior cloning method is overall better than the more
complex reinforcement learning method. According to our

Table 1: Rankings of models over test domains. Each color ring represents a model, and each axis
indicates averaged rankings over test scenarios for a metric. For all three metrics, the smaller the
better. Numbers in legend denote averaged ranking over three metrics.
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Table 2: Rankings of all models over the real test domain. Each color ring represents a model, and
each axis indicates averaged rankings over test scenarios for a metric. For all three metrics, the smaller
the better. Numbers in legend denote averaged ranking over three metrics.
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Figure 6: Rankings of all models over real test domain. Each color
represents a model. Each axis indicates averaged rankings over test
scenarios for a metric. All metrics are the smaller the better. Num-
bers in legend denote averaged ranking over three metrics.

experiment results, it is also noticeable that the training do-
mains have substantial impact on the generalization ability
of models to new scenarios. In particular, training samples
with diverse agent-agent and agent-obstacle interactions are
beneficial for reducing collisions when models are applied
to new scenarios.

Future work includes: (1) a comparison to scenario
generalization capacities of RL agents whose reward
functions are pre-defined, for example, as a combination
of the three metrics (DTW, AA, AO); (2) the improvement
of scenario generalization capacity. For instance, train a
model in a training domain and then adopt it in a testing
domain using limited testing samples (Zhao et al. 2018;
Le, Nguyen, and Phung 2018), where a domain is the
dynamics belonging to a specific type of scenarios.
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