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Abstract

Relational model finding is a successful technique which has
been used in a wide range of problems during the last decade.
This success is partly due to the fact that many problems
contain relational structures which can be explored using
relational model finders. Although these model finders allow
for the exploration of such structures they often struggle
with incorporating the non-relational elements.

In this paper we introduce AlleAlle, a method and lan-
guage that integrates reasoning on both relational structure
and non-relational elements —the data— of a problem. By
combining first order logic with Codd’s relational algebra,
transitive closure, and optimization criteria, we obtain a rich
input language for expressing constraints on both relational
and scalar values.

We present the semantics of AlleAlle and the translation
of AlleAlle specifications to SMT constraints, and use the
off-the-shelf SMT solver Z3 to find solutions. We evaluate
AlleAlle by comparing its performance with Kodkod, a
state-of-the-art relational model finder, and by encoding a
solution to the optimal package resolution problem. Initial
benchmarking show that although the translation times of
AlleAlle can be improved, the resulting SMT constraints
can efficiently be solved by the underlying solver.

CCS Concepts • Theory of computation → Constraint
and logic programming; • Software and its engineering

→ Specification languages.

Keywords First order logic, relational algebra, SMT solvers,
model finding, constraint problems, constraint optimization
problems
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1 Introduction

In the last decades relational modeling and model finding
has been used to solve problems in a wide range of domains,
from security [8], program verification and testing [14, 16],
to enterprise modeling [3].1 Since many computational prob-
lems have relational structures relational model finding has
shown to be a powerful and useful method. But there is also
a large class of problems that is not purely relational and
requires reasoning over other attributes as well.

Consider for instance, a simple file system. This structure
can be naturally expressed as a relational problem. However,
adding constraints on properties like the depth or the size of
file system nodes is not straightforward, or cannot be solved
efficiently. In this paper we propose AlleAlle, a language
that allows users to model both the relational and the non-
relational elements —the data— of their problem.

AlleAlle combines first order logic, Codd’s relational al-
gebra (projection, restriction, renaming and natural join) [10],
and (reflexive) transitive closure in a single formalism. Alle-
Alle specifications can be translated to SMT formulas which
in turn can be solved by an off-the-shelf SMT solver, such as
Z3 [22]. We implemented these ideas in a prototype tool.2
Next to solving Constraint Satisfaction Problems (CSP),

AlleAlle can be used to solve Constraint Optimization Prob-
lems (COP) (cf. traveling salesman). This is achieved by ex-
tending the syntax of AlleAlle with the ability to express
optimization objectives on relations. These optimization cri-
teria are added to the translated SMT formulas and can be
solved using Z3’s built-in optimization solver νZ [7].

We perform an initial performance benchmark and evalu-
ate AlleAlle’s expressiveness on a well-known problem in
software engineering: optimal package resolution [1]. This

1For a overview of the different areas where relational model finding has
been applied visit http://alloytools.org/citations/case-studies.html.
2https://github.com/cwi-swat/allealle
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problem, faced by software package managers, can be com-
pactly expressed as a relational problem in AlleAlle and
we show that the resulting SMT formula can be efficiently
solved by the underlying SMT solver.
The contributions of this paper can be summarized as

follows:
• AlleAlle, a language combining Codd’s relational
algebra with first order logic, transitive closure, and
optimization objectives (Section 3).
• A translation semantics expressed by compiling Alle-
Alle specifications to SMT constraints (Section 4).
• Initial performance benchmarking of AlleAlle, in-
cluding a realistic benchmark based on the optimal
dependency resolution problem (Section 5).

We conclude the paper with a discussion of related work
(Section 6), and an outlook towards future work (Section 7).

2 AlleAlle

AlleAlle is an intermediate language similar to Kodkod’s [31]
internal model. As such it is aimed at being a target lan-
guage for high-level relational modeling languages such as
Alloy [15, 30]. Instead of using SAT solvers to solve rela-
tional constraints, however, AlleAlle leverages native data
theories built into SMT solvers, such as Z3. Because of this,
AlleAlle can support constraints over unbounded data such
as integers, reals, and strings, without having to encode such
data values into boolean propositions. As a result, relational
specifications employing constraints over data do not suf-
fer from exponential blow-up problems that may occur, for
instance, when using fixed bit-width integers in Alloy or
Kodkod. In other words, the solving power of AlleAlle is
a super-set of that of Kodkod.

AlleAlle is designed to be extensible. Our current imple-
mentation supports native integer constraints, but the design
of the language and the translation to SMT constraints al-
lows support for other theories (e.g., reals, strings, etc.) in
the same way as the current prototype supports integer con-
straints. Below we illustrate how AlleAlle combines Codd’s
relational algebra and unbounded data constraints using the
example of a file system specification.

2.1 Modeling a File System in AlleAlle

Imagine that we would like to model a new kind of file sys-
tem and we want to test our design before building the new
system. Our new simple file system would have the follow-
ing structural constraints: it may contain both directories
and files, it only has one root, there can be no cyclic depen-
dencies and everything must be reachable from the root. The
file system does not allow symbolic links (preventing cyclic
references).
Next to these structural constraints we also have some

non structural constraints namely, every file must have a
positive size; the size of a directory derives from the size

of its contents. Finally, every file and directory has a depth
which encodes the distance from the root in the hierarchy.

To check these constraints we create an AlleAlle spec-
ification that encodes the above constraints, as shown in
Listing 1. In the next paragraphs we will explain the differ-
ent parts of this specification.

Declaring relations The first part, lines 1 to 4, contains
the declarations of the relations. Every relation declaration
has three parts: the name of the relation, its header, and its
tuple bounds. In AlleAlle all relations are boundedmeaning
that all the tuples that are potentially part of the relation are
defined in its upper bound.

For instance, the File relation on line 1 has three attributes
which are defined in its header: oid, depth and size. The at-
tribute oid is of the id domain while depth and size are of the
int domain. The id domain is a bounded domain of arbitrary
chosen labels, or atoms. The domain contains exactly those
values as specified in the relation declarations of the spec-
ification. For instance, for this specification the id domain
consists of f0,f1,f2,d0,d1 and d2.
The right hand side of the relation declaration lists the

tuple bounds. These encode the tuples that can be part of a
relation. The File relation contains both a lower bound (the
tuple set after the >= sign), and an upper bound (the tuple set
after the <= sign). Every relation must have an upper bound.
Lower bounds are optional.
Lower bounds can be used to encode partial solutions.

They encode the tuples that must be part of every satisfying
instance. In our example we see that the lower bound of
the File relation has one tuple, ⟨oid : f0, depth : 2, size : 100⟩.
This means that in every satisfying instance found by the
solver the relation File must at least contain this tuple. In
other words, we specify that our file system always must
have the file (identified by) f0 with a size of 100 and two
steps removed from the root (depth : 2).
The upper bound, on the other hand, contains the tuples

thatmay be part of a satisfying instance. For the File relation
this means that twomore tuples may be part of any satisfying
instance. Both of these tuples contain question marks for
the depth and size attributes. These question marks —or
holes— in the tuple definition indicate that the value can be
freely assigned by the solver as long as the values satisfy
the specification. Holes can only be introduced for non-id
attributes. Attributes of the id domain always need a value
assigned.
The lower and upper bounds of the Root relation (line 3)

are equal to each other and contain a tuple set with only one
tuple, {<d0>}. When the lower and upper bounds of a relation
are equal, the = sign is used to define the exact bound. As
a result, in every possible satisfying instance this relation
must contain exactly these tuples and not more. The Dir

relation only has an upper bound (line 2). This indicates that,
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1 File (oid:id, depth:int, size:int) >= {<f0,2,100>} <= {<f0,2,100>,<f1,?,?>,<f2,?,?>}
2 Dir (oid:id, depth:int, size:int) <= {<d0,?,?>,<d1,?,?>,<d2,?,?>}
3 Root (oid:id) = {<d0>}
4 contents (from:id, to:id) >= {<d0,d1>} <= {<d0,d0>,<d0,d1>..<d2,d2>,<d0,f0>..<d2,f2>}
5

6 // Contents is a relation that goes from Dir -> (Dir+File)
7 contents in (Dir[oid as from][from] x (Dir + File)[oid as to][to])
8 // A dir cannot contain itself
9 forall d : Dir[oid] | no d[oid as to] & (d[oid as from] |x| ^contents)[to]

10 // Root is a Dir
11 Root in Dir[oid]
12 // All files and dirs are (reflexive-transitive) 'content' of the Root dir
13 (File[oid] + Dir[oid])[oid as to] in (Root[oid as from] |x| *contents)[to]
14 // All files and dirs can only be contained by one dir
15 forall f : (File + Dir)[oid] | lone contents |x| f[oid as to]
16

17 // All files have a positive size
18 forall f : File | some f where size > 0
19

20 // The size of a dir is the sum of all files that are transitively part of this directory
21 forall d : Dir |
22 let containedFiles = (d[oid][oid as from] |x| ^contents)[to][to as oid] |x| File |
23 some (d x containedFiles[sum(size) as totalSize]) where size = totalSize
24

25 // The depth of a file or directory is equal to the depth of its parent + 1
26 forall d : Dir[oid,depth], o : (Dir + File)[oid,depth] |
27 o[oid][oid as to] in (d[oid][oid as from] |x| contents)[to] =>
28 some (o[oid as to] x d[depth as parentDepth]) where (depth = parentDepth + 1)
29

30 // The depth of Root is 0
31 some (Root |x| Dir) where depth = 0
32

33 // Get a solution with the least number of files and directories
34 objectives: minimize (File + Dir)[count()]

Listing 1. AlleAlle specification of a small file system, original example comes from [28]. [..] is projection, [.. as ..]

is renaming, x is cartesian product, & is intersection, + is union, * and ^ are (reflexive) transitive closure, |x| is natural join.

according to the relation definition, the empty relation is an
accepted instance.

The contents relation (line 4) is a binary relation encoding
which directories and files are contained by some directory.
The .. notation is a short hand notation to define a range of
tuples.3

Declaring constraints The next part of the specification,
lines 6 to 31, describes constraints on the relations. Specifica-
tions have no directionality but for clarity of the example we
artificially split the constraints in two parts. The first part,
lines 6 to 15, defines constraints on the relational shape of the
solution. The second part, lines 17 to 31, defines constraints
on the data.
Line 7 constrains the contents relation to be a subset of

the Dir x (Dir + File) relation. This enforces the contents

relation to only contain tuples of which the id of the from

attribute exists in the Dir relation and the id of the to at-
tribute exists in either the Dir or File relation. Without this
constraint the content relation might contain junk. In other
words, it might contain tuples tying non-existing directories
to other non-existing directories or files. Since the relation
3The range <d0>..<d2> denotes the tuples <d0>,<d1>,<d2>. Likewise,
the range <d0,f0>..<d1,f1> denotes the tuples <d0,f0>,<d0,f1>,<
d1,f0>,<d1,f1>.

definition does not state anything on how different relations
relate to each other these associations must be supplied as
extra constraints.

Union compatibility In Codd’s relational algebra the union
(+), intersection (&), difference (-), subset (in), and equality (=)
operators require relations to be union compatible with each
other. This means that both relations must have the exact
same header (both attribute names and associated domains).
For instance, on line 11 the constraint that enforces that Root
‘is a’ Dir is expressed using the subset (in) operator. The
header of the root operator on the left hand side only con-
tains the single attribute oid of the id domain. The header of
the Dir relation on the other hand has three attributes (oid,
depth and size). Since the subset operator needs the relations
to be union compatible we use the projection ([]) operator
on the Dir relation to project the oid attribute out of the Dir

relation resulting in a new relation with only one attribute
of the same domain.

Transitive closure Line 9 states that no directory can con-
tain itself expressed with the use of the transitive closure
operator. Both the transitive closure (^) and reflexive transi-
tive closure (*) are special operators in AlleAlle. They are
not part of the traditional relational algebra since it is not
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possible to calculate such a transitive closure on relations in
general [2].
Since AlleAlle relations are bounded it is possible to

implement both operators, albeit with restriction: both oper-
ators only operate on binary relations with two attributes of
the id domain. Line 9 applies the transitive closure over the
contents relation.

The other constraints in the first part of the specification
ensure that all directories and files are reachable from the
Root directory (line 13), and that files and directories can
only be contained by one directory or none, as is the case
for the Root directory (line 15).

The used multiplicity constraints lone and some have their
standard semantics: lone means zero or one tuple in the
relation is required, somemeans at least one tuple is required.

Restriction Lines 17 to 31 define data constraints. Line
18 states that all files must have a positive size. To express
this constraint the restrict operator (where) is used. Using
the restrict operator we can formulate constraints on the
attributes of a relation. Applying the restrict operator on
a relation results in another relation. To enforce that this
restriction holds for all files, the multiplicity constraint some
is used. This forces the restricted relation to contain at least
one tuple.

Aggregate functions Lines 21–23 define the value of the
size attribute of directories. The size of a directory in the
file system is the summation of the sizes of the files which
are (transitively) contained by the directory. On line 22 the
containedFiles relation of the current directory d is defined
using the transitive closure of the contents relation which
is (naturally) joined (|x|) with the current directory d. This
relation is then used to calculate the size of the directory by
using the aggregation function sum.
The sum function sums up all the values of the size at-

tributes in the containedFiles relation. The result of applying
an aggregation function is yet another relation containing
zero or one tuples with one attribute (in this case totalSize).
Other available aggregation functions include min, max, avg
and count. Count is the only aggregation function that does
not need an attribute to perform the aggregation on since it
counts the number of tuples in the relation. Note that with
the use of the count aggregation function all other multiplic-
ity constraints (some, one, lone, no) can be expressed.

The remaining constraints describe the value of the depth

attribute (line 26–28) and enforce the depth of the Root di-
rectory to be zero (line 31).

Optimization objectives The last line, line 34, defines a
single optimization objective. This objective states that we

File 7→ {⟨f 0, 100, 2⟩}
Dir 7→ {⟨d0, 100, 0⟩, ⟨d1, 100, 1⟩}
Root 7→ {⟨d0⟩}

contents 7→ {⟨d0,d1⟩, ⟨d1, f 0⟩}

Id size depth
d0 100 0

Id size depth
d1 100 1

Id size depth
f0 100 2

Root

Dir

File

contents

contents

Figure 1. The minimal instance of the small file system
specification

want to optimize on the cardinality of the File and Dir rela-
tions. Only a relation with a single integer attribute can be
used as an optimization criterion.
The optimization criteria are so called “soft constraints”.

This means that, other than the previously described “hard
constraints” (lines 6–31), they do not influence the total num-
ber of satisfying instances of a problem. They do influence
the order in which the model finder returns solutions. In
other words, the instance that is returned first will be the
instance that is optimal considering the optimization objec-
tives.

The found solution Figure 1 shows the minimal solution
of the file system specification. The found solution contains a
binding for all the declared relations. Since the optimization
objective stated that we wanted a minimal number of files
and directories, it returned a solution that contains only
those tuples that were part of our lower bound definition
(in the case of File and Root) and those tuples that were
needed to get a consistent model according to the described
constraints (in case of the Dir and contents relations).

Next to that, the model finder returned a binding for all the
introduced holes. The definition of the File tuple <f0,2,100>

and the constraints on the data determined the values of the
other depth and size attributes.

3 Formal Definition of AlleAlle

Figure 2 shows the abstract syntax of AlleAlle. We define
an AlleAlle problem as follows. A problem P consists of
relation definitions R1 . . .Rn which are bound to a relational
variables r1 . . . rn , formulas F1 . . . Fn and possibly optimiza-
tion criteria O1 . . .On . A formula F is a sentence over an
alphabet of the relational variables r1 . . . rn . A binding b is
an instance of all the problem’s free relational variables to
relational constants. A relational constant of R is a set of
tuples. The binding b is said to be a satisfying instance of P
if it conforms to the relation definitions of P and makes all
the formulas of P true.
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problem ::= relDecl alleForm objective

relDecl ::= x ( relHeader ) relBody

relHeader ::= {x : domain}

relBody ::= = bound | <= bound | >= bound <= bound

bound ::= tupleDecl

tupleDecl ::= ⟨value⟩
value ::= x | n | ?

domain ::= id | int

alleForm ::= not alleForm negation
| no alleExpr empty
| lone alleExpr at most one

| one alleExpr exactly one

| some alleExpr at least one

| alleExpr in alleExpr subset

| alleExpr = alleExpr equal

| alleForm || alleForm disjunction
| alleForm && alleForm conjunction

| alleForm => alleForm implication

| alleForm <=> alleForm equality

| forall x : alleExpr | alleForm universal

| exists x : alleExpr | alleForm existential

| let x = alleExpr | alleForm let

alleExpr ::= x
| alleExpr [x as x] renaming

| alleExpr [x] projection
| alleExpr where condition restriction

| ^alleExpr trans. closure

| *alleExpr refl. trans. clos.

| alleExpr [aддFunc] aggregate
| alleExpr + alleExpr union
| alleExpr & alleExpr intersection

| alleExpr - alleExpr difference

| alleExpr x alleExpr product

| alleExpr |x| alleExpr natural join

condition ::= not condition

| condition && condition

| condition || condition

| conditionExpr ( < | <= | > | >= | = ) conditionExpr

conditionExpr ::= x | n | |conditionExpr| |- conditionExpr

| conditionExpr ( + |- | * | / | % ) conditionExpr

aддFunc ::= count() | sum(x ) | min(x ) | max(x ) | avg(x ) aддr . f unc .

objective ::= maximize alleExpr | minimize alleExpr obj. crit.

Figure 2. Abstract Syntax of AlleAlle

Relations are defined as in the relational model [10, 12]. A
relation R over multiple domains D1 . . .Dn , not necessary
distinct, consists of a header H and a body B. The header
H consists of a fixed set of attribute names, domain pairs
{⟨a1 : D1⟩ . . . ⟨an : Dn⟩}. An attribute name is an arbitrary
label. A domain is a named set of scalar values, all of the
same type. Attribute names in a relation are distinct.

A body B consists of a set of tuples {T1 . . .Tn }. Since the
body is a true set it means that per definition the tuples in the
body must be unique. A tupleT consists of a set of attribute
name, value pairs {⟨a1 : v1⟩ . . . ⟨an : vn⟩}. For each attribute
name and domain pair ⟨an : Dn⟩ inH there exists an attribute
name and value pair ⟨an : vn⟩ in T where vn is drawn from
Dn . Relations can be bound to relational variables which are
arbitrary labels.

3.1 Attribute Domains in AlleAlle

As stated in the definition above, the attribute domains are
named sets of scalar values. Currently AlleAlle supports the
int and id domains. The scalars of the int domain are defined
by the underlying SMT solver which is the unbounded set
of all integer numbers.

The id domain is a bounded domain consisting of arbitrary
chosen labels (atoms). Like mentioned earlier, it contains
exactly those atoms that are defined in a specification. Please
note that the existence of this domain is not strictly essential
(since it could be modeled using int values) but it allows for
a convenient way to model different dependencies between
relations (associations, containment, specialization, etc.).

3.2 Semantics

Figure 3 shows the semantics of AlleAlle.We do not include
the semantics of the optimization objectives since they are
orthogonal to the semantics of formulas and expressions,
and defined in terms of the underlying SMT solver, νZ [7].
The meaning of an AlleAlle problem is defined by four
functions, P , R, F and E, which can be recursively applied.
The function R accepts a relation declaration and binding
and returns whether the header of the binding is equal to the
header of the declaration and whether the lower bound of
the declaration is a subset of the body of the binding which in
turn must be a subset of the upper bounds of the declaration.
The function F accepts an AlleAlle formula and a binding
and returns whether the binding satisfies the formula. The
function E accepts an AlleAlle expression and a binding
and returns a relational constant. The function P acts as the
starting point and accepts a Problem and a binding, and calls
the R and F functions.
The semantics of the rename, project, restrict, and ag-

gregate operators on relations are defined in the standard
way [10]. The same goes for union (∪), intersection (∩), dif-
ference (\) and cartesian product (×). Union, intersection
and difference can only be applies on union compatible re-
lations (see 2.1). Cartesian product requires two relations
with disjoint headers. Applying the cartesian product on two
relations with respectively n andm sized tuples flattens both
relations into a new relation of n +m sized tuples.

The semantics of AlleAlle shown in Figure 3 defines the
meaning of an AlleAlle problem given an assignment of
relation constants to all relational variables in the binding
b. In order to find solutions rather than check their truth
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P : problem → bindinд → boolean

R : relDecl → bindinд → boolean

F : alleForm → bindinд → boolean

E : expr → bindinд → constant

bindinд : var → constant

PJr1 . . . rn f1 . . . fmKb = RJr1Kb ∧ . . . ∧ RJrnKb ∧ FJf1Kb ∧ . . . ∧ FJfmKb

RJx (h) [l ,u] Kb = h = b[x]header ∧ l ⊆ b[x]body ⊆ u

FJnot f Kb = ¬FJf Kb
FJno rKb = |EJrKb | = 0
FJlone rKb = |EJrKb | ≤ 1
FJone rKb = |EJrKb | = 1
FJsome rKb = |EJrKb | > 0
FJr in sKb = EJrKb ⊆ EJsKb
FJr = sKb = EJrKb ⊆ EJsKb ∧ EJsKb ⊆ EJrKb
FJf || дKb = FJf Kb ∨ FJдKb
FJf && дKb = FJf Kb ∧ FJдKb
FJf => дKb = ¬FJf Kb ∨ FJдKb
FJf <=> дKb = FJf K ⇐⇒ FJдKb

FJforall v1 : r1 . . .vn : rn | f Kb =∧t∈EJe1Kb
(
FJforall v2 : e2 . . .vn : rn | f K(b ⊕ v1 7→ {t })

)
FJexists v1 : r1 . . .vn : rn | f Kb =∨t∈EJr1Kb

(
FJexists v2 : r2 . . .vn : rn | f K(b ⊕ v1 7→ {t })

)
FJlet v1 : r1 . . .vn : rn | f Kb = FJlet v2 : r2 . . .vn : rn | f K(b ⊕ v1 7→ EJr1Kb)

EJxKb = b[x]
EJr [a1 as aa1, . . . an as aan]Kb = ρ (aa1/a1...aan/an )EJrKb

EJr [a1 . . . an]Kb = Π(a1...an )EJrKb

EJr where cKb = σcEJrKb

EJ^rKb = letm ← EJrKb in
〈
mheader , {(x : idx ,y : idy ) | ∃ id1 . . . idn |

(x : idx ,y : id1), (x : id1,y : id2) . . . (x : idn ,y : idy ) ∈mbody }
〉

EJ*rKb = EJ^rKb ∪ I
EJr [f ()]Kb = f ()EJrKb (where f is count)
EJr [f (a)]Kb = f (a)EJrKb (where f is sum, avg, min or max))
EJr + sKb = EJrKb ∪ EJsKb
EJr & sKb = EJrKb ∩ EJsKb
EJr - sKb = EJrKb \ EJsKb
EJr x sKb = EJrKb × EJsKb
EJr |x| sKb = EJrKb ▷◁ EJsKb

Figure 3. Semantics of AlleAlle. Variables f and д range
over formulas, rn and s over expressions. The ⊕ operator
updates bindings. I represents the binary identity relation on
all values in the id domain. ∪, ∩, \ and × have their standard
relational algebra semantics.

form ::= ⊤ | ⊥ | x | ¬form | form ∧ form | form ∨ form |

expr (< | ≤ | = | ≥ | >) expr
expr ::= literal | x | expr + expr | expr − expr | expr ∗ expr |

expr / expr | expr % expr | form ? expr : expr

Figure 4. Definition of form and expr.

value, however, AlleAlle problems are translated to SMT
formulas.

4 Translating AlleAlle to SMT

Specifications are translated to SMT constraints. Figure 4
describes the definition of the resulting formula (form) that

the translation algorithm produces. Our prototype of Alle-
Alle translates AlleAlle problems to the standard smt-lib
format, which is supported by multiple SMT solvers [6]. As
a result, AlleAlle can potentially be used in combination
with different SMT solvers as backends.4

Apart from the optimization criteria, the translation con-
sists of flattening AlleAlle problems to a single SMT for-
mula within the logic fragment of quantifier-free non-linear
integer arithmetic (QF-NIA). This means that the final SMT
formula is a large, but flat formula made up of negation, con-
junction, disjunction, integer arithmetic, (in)equalities and
if-then-else constructs, as shown in Figure 4.
Before we go into the details of the translation rules we

will give an example of how translation unfolds for a small
problem.

4.1 Translation Example

Assume we have a relation Person with two attributes pId

and age which is defined as follows:
Person (pId: id, age: int) <= {<p1,17>,<p2,?>}

This relation has an upper bound containing two tuples. The
lower bound is omitted and thus empty (i.e. the empty set).
Consequently, a satisfying instance may hold zero, one or
two tuples in the Person relation. The first tuple, <p1,17>,
assigns the value 17 to the age attribute. This means that if
this tuple is present the value of agemust be 17. In the second
tuple, <p2,?>, the value of the age is left open meaning that
the value is left to the underlying solver.

Next we define the following constraint:
some Person where age >= 18

This constraint states that there must be at least one person
who is an adult. Or more precisely, there needs to be at
least one tuple in the Person relation where the value of the
age attribute is equal to or greater than 18. Please note that
the first tuple in the relation, <p1,17>, can never satisfy this
constraint since the value of its age attribute will always be
17.

As a first step in the translation an environment ρ is con-
structed, mapping relation names (e.g., Person) to an internal
relation representation. In the example the created environ-
ment ρ is as follows:

ρ = *.
,
Person 7→

pId age exists attCons
p1 17 b0 ⊤

p2 i0 b1 ⊤

+/
-

The internal representation of the Person relation consists
of a table, with columns for the declared attributes pId and
age, and two additional columns, exists and attCons. The
pId attribute contains the values p1 and p2 both drawn from
the id domain. For the first tuple the age attribute contains
the constant 17. This is a consequence of the given relation
4Currently optimization criteria are not supported by all SMT solvers. At
least Z3 [7] and MathSAT5 [26] have built-in support.
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definition where the age attribute for this tuple was assigned
17. For the second tuple the age attribute contains an integer
variable i0. Since in the relation definition this value was left
open it is converted to a fresh integer variable.
The exists column encodes whether the tuple should be

present in a satisfying instance or not. In this case the value
of the exists column for both tuples contains a fresh boolean
variable, b0 and b1 respectively. This is due to the fact that
both tuples are part of the upper bound of the relation but
not of the lower bound (since the lower bound of this rela-
tion is the empty set). For each satisfying instance the solver
will assign truth values to these variables. For instance, if
b0 = ⊤ and b1 = ⊥ it means that the tuple <p1,17> is in
the Person relation but <p2,?> is not. The attCons column en-
codes constraints formulated on the attribute values. Initially
the attCons attributes have ⊤ assigned.
The next step in the translation is the translation of the

constraints. The translation of constraints consists of the
recursive application of two translation functions TF for the
translation of AlleAlle formulas and TE for the translation
of AlleAlle expressions. Their full definitions are shown
in Figures 8 and 9. The full translation tree for this example
would look like:

TF [some Person where age >= 18]ρ

TE [Person where age >= 18]ρ

TE [Person]ρ

We describe the translation of the example in a bottom-up
fashion. The first expression that is translated is the lookup
of the Person relation from the environment ρ:

TE [Person]ρ = ρ (Person) =
pId age exists attCons
p1 17 b0 ⊤

p2 i0 b1 ⊤

As shown above, the result of the translation function TE is
another relation. Now the outer where expression is trans-
lated as follows:

TE [Person where age >= 18]ρ =
pId age exists attCons
p1 17 b0 ⊥

p2 i0 b1 i0 ≥ 18

The restriction expression (age >= 18) forces additional con-
straints on the age attribute. In case of the first tuple the
age attribute contains the constant 17. Since 17 is less than
18, the value ⊥ is assigned to the to the attCons attribute.
For the second tuple the age attribute was left open which
resulted in the introduction of the i0 variable. For this tuple
the constraint i0 ≥ 18 is added to the attCons column.
The last step is the translation of the outer formula:

TF [some Person where age >= 18]ρ. The TF function flattens
the relation into a flat SMT formula. The translation of the

rel ::= ⟨x : domainheader , tuplebody⟩

tuple ::= ⟨(xname : cellvalue )attr ibutes , formexists , formattCons ⟩

cell ::= atom | expr
domain ::= ID | INT

Figure 5. Definition of rel as used in the translation. expr
and form are defined in Figure 4.

some operator gives the following result:

TF [some Person where age >= 18]ρ

=
∨ *.

,

pId age exists attCons
p1 17 b0 ⊥

p2 i0 b1 i0 ≥ 18

+/
-

= (b0 ∧ ⊥) ∨ (b1 ∧ i0 ≥ 18)
= b1 ∧ i0 ≥ 18

The some formula is satisfied if at least one tuple in the re-
lation exists. This is accomplished by translating it to a dis-
junction of the conjoined exists and attCons columns of
the tuples in the relation (i.e. this is depicted by the big vee
notation in the above translation).
As can be seen, the translation of this formula results in

the SMT formula b1∧ i0 ≥ 18. This means that an instance of
this problem is satisfying iff it contains the second tuple (i.e.
b1 must be true) and the value of its age attribute is greater
than or equal to 18. The presence or absence of the first tuple
does not change the validity of the resulting instance since
it assigned age value of 17 never conforms to the formulated
constraint. This means that a satisfying instance can either
contain or not contain the first tuple as long as the second
tuple is present.

4.2 The Algorithm

The translation of an AlleAlle specification starts with the
translation of a problem using the function TP :

TP : problem→ form

TP [r1 (h1)b1 . . . rn (hn )bn f1 . . . fm] =
m∧
i=1

TF [fi ]ρ

where ρ =
n⋃
j=1

(
r j 7→ TR[(hj ) bj ]

)
This function translates the constraints f1 . . . fm of the

problem to formulas (of type form, see Figure 4). The envi-
ronment is populated using the TR function which converts
relation declarations to the internal tabular representation.
The TP function returns a conjunction of all the translated
constraints.

The Relation data structure Central to the translation
is the internal relation data structure, shown in Figure 5,
which in this paper we visualize using the tabular notation
introduced above. A relation rel consists of a header and
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TR : relHeader → relBody → rel

TR[(h) = b] = add(⟨h,∅⟩,b, λt . ⟨convert(t ),⊤,⊤⟩)
TR[(h) <= ub] = add(⟨h,∅⟩,ub, λt . ⟨convert(t ),x ,⊤⟩)
TR[(h) >= lb <= ub] = add(⟨h,∅⟩,ub, λt . ⟨convert(t ), exists(t , lb),⊤⟩)

add : rel → tupleDecl → (tupleDecl → tuple ) → rel

add[r ,b, f ] = if b = ∅ then r else let t ∈ b in add(addDistinct(r , f (t )),b \ t )

convert : tupleDecl → x : cell

convert[t] = ⟨(atrname :




id when atr = id

i when atr = hole (i as fresh int var)
constant when atr = constant

| atr ∈ t )⟩

exists : tupleDecl → bound → form

exists[t , lb] =



⊤ when t ∈ lb

x otherwise (with x as fresh bool var)

addDistinct : rel → tuple → rel

Figure 6. Definition and construction of relations. The defi-
nition of the addDistinct function is included in Appendix A.
relHeader, relBody, bound, tupleDecl, id and hole are declared
in Figure 2. The other definitions are given in Figure 4 and
Figure 5.

File 7→

oId depth size exists attCons
f0 2 100 ⊤ ⊤

f1 i0 i1 b0 ⊤

f2 i2 i3 b1 ⊤

Figure 7. The visual representation of File rel af-
ter its construction based on the relation declaration:
File (oId:id,depth:int,size:int) >= {<f0,2,100>} <= {<

f0,2,100>,<f1,?,?>,<f2,?,?>}.

a body. The header is defined as a mapping from attribute
names to domains. The body is a set of tuples. Each tuple in
the body contains the declared attributes and two additional
columns, exists and attCons. Whenwe refer to tuplewe refer
to the combination of the attributes and exists and attCons

columns. In the translation rules we will use the subscripts
rheader and rbody for the header and body of a relation r and
tattr ibutes , texists and tattCons for the attributes, exists and
attCons columns of a tuple t to refer to the specific parts of
a relation or tuple (see Figure 5).

4.2.1 Constructing relations

A rel can be constructed in three different ways depending
on how it is declared. Figure 6 shows the definition of the
construction function TR . This function translates the rela-
tion definition (i.e. the header and lower and upper bounds)
to a rel. Which construction function is used depends on
how the bounds are declared and influences the value of the
tuple’s exists field. This value depends on whether the tuple
declaration is part of the lower and upper bound or only of

the upper bound. For instance, in the example of the small
file system (Figure 1) the File relation is declared with both
a lower and an upper bound (e.g. >= {<f0,2,100>} <= {<f0

,2,100>,<f1,?,?>,<f2,?,?>}).
On construction of the rel the value ⊤ is assigned to the

exists field of the tuple <f0,2,100> since there cannot be a
satisfying instance without this tuple present. It is a differ-
ent case for the tuples <f1,?,?> and <f2,?,?>. Since they are
only part of the relation’s upper bound there may be satis-
fying instances where these tuples (or one of these tuples)
are not present. To encode this, fresh boolean variables are
assigned to the exists fields of both tuples. It is then up to
the underlying SMT solver to find a satisfying assignment
for these boolean variables. The full encoding of the File

relation is shown in Figure 7 (with the exists column high-
lighted). The encoding is adapted from the relational model
finder Kodkod, with the difference that it is encoded in our
relation data structure instead of a boolean matrix as used
by Kodkod [31].

Ensuring tuple distinctness The attCons column holds
the constraints that were added on the tuple’s scalar at-
tributes. On construction this column will be populated with
⊤ for most tuples. The only exception to this is when the
added tuples in the relation are potentially non-distinct. Con-
sider for instance the (valid) case that the File relation would
have an upper bound of two possible tuples: <f1,1,10>,<f1
,?,?>. Since they both share the same oid value (namely f1)
these tuples could potentially overlap if the depth and size

attributes of the second tuple would evaluate to 1 and 10
respectively.

Since the relationalmodel dictates true set semantics for its
relational bodies, the translation must enforce that all tuples
in the relation are distinct, or collapsed into each other. To
enforce this the translation algorithm adds a constraint to
the attCons field of the second tuple that forces the value of
either the depth or size attribute to be different, if the first
tuple exists in the relation.
This distinctness rule is added on construction of the re-

lations by applying the addDistinct function (included in
Appendix A). This function checks whether tuples can po-
tentially overlap and adds the necessary constraints to the
attCons field. In the case of the example given in this section
the constructed relation would be as follows:

File 7→

oid depth size exists attCons
f1 1 10 b0 ⊤

f1 i0 i1 b1 ¬b0 ∨ ¬(i0 = 1 ∧ i1 = 10)

4.2.2 Translating AlleAlle constraints

The entry for translating AlleAlle formulas to SMT for-
mulas is the TF function, shown in Figure 8. To translate an
AlleAlle expression the TF function calls the TE function
which is defined in Figure 9.
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env : identifier → rel

TF : alleForm→ env → form

TF [not f ]ρ = ¬TF [f ]ρ
TF [no r ]ρ = ¬TF [some r ]ρ
TF [lone r ]ρ = TF [no r ]ρ ∨TF [one r ]ρ

TF [one r ]ρ = letm ← TE [r ]ρ in∨t∈mbody

(
tg(t ) ∧

(
∧t ′∈mbody ,t

′,t

(
¬tg(t ′)

)) )
TF [some r ]ρ = letm ← TE [p]ρ in∨t∈mbody

(
tg(t )
)

TF [r in s]ρ = letm ← TE [r ]ρ, let n ← TE [s]ρ(
∧t∈mbody ,u∈nbody ,canOverlap(t ,u) (¬tд(t ) ∨ (tд(u) ∧ attEqual(t ,u)))

)
∧(

∧t∈mbody ,t<nbody ¬tд(t )
)

TF [r = s]ρ = TF [r in s]ρ ∧TF [s in r ]ρ
TF [f || д]ρ = TF [f ]ρ ∨TF [д]ρ
TF [f && д]ρ = TF [f ]ρ ∧TF [д]ρ
TF [f => д]ρ = ¬TF [f ]ρ ∨TF [д]ρ
TF [f <=> д]ρ = TF [f => д]ρ ∧TF [д => f ]ρ
TF [forall v1 : ex1 . . .vn : exn | f ]ρ = letm ← TE [ex1]ρ in

∧t∈mbody

(
¬tд(t ) ∨TF [forall v2 : ex2 . . .vn : exn | f ]ρ

[
v1 7→ sing(mheader , t )

] )
TF [exists v1 : ex1 . . .vn : exn | f ]ρ = letm ← TE [ex1]ρ in

∨t∈mbody

(
tд(t ) ∧TF [exists v2 : ex2 . . .vn : exn | f ]ρ

[
v1 7→ sing(mheader , t )

] )
TF [let v1 : ex1 . . .vn : exn | f ]ρ = TF [let v2 : ex2 . . .vn : exn | f ](ρ[v1 7→ TE [ex1]ρ]

tg : tuple→ form

tg[t] = texists ∧ tattCons

sing : x : domain → tuple→ rel

sing[h, t] =
〈
h, {⟨tattr ibutes ,⊤, tattCons ⟩}

〉
Figure 8. Translation rules for AlleAlle formulas. r and s
are alleExpr, f and д are alleForm. Definitions of canOverlap
and attEqual are included in Appendix A. tg is short for
together and sing is short for singleton meaning a relation
with only one tuple.

The TE function translates the expression and returns a
new rel. The TF function flattens the translated rels into
SMT formulas. These in turn get conjoined by theTP function
introduced earlier.

Tuple equality constraints When translating the subset
formula and the union, intersection and difference expres-
sions we again have to account for possible overlapping
tuples described earlier. The difference being that in the case
of translating the above rules we need to enforce equality
instead of preventing it. In this case, the constraints that
need to be added to the attCons field are constraints that
force the value of the attributes to be the same; this is done
using the helper functions canOverlap and attEquals, which
are included in Appendix A.

As an example consider the following case. Suppose we have
the following specification:

Shape (sid:id, size:int) <= {<s1,?>}

Square (sid:id, size:int) <= {<s1,?>}

Square in Shape

TE : alleExpr→ env→ rel

TE [v]ρ = ρ (v )

TE
[
r [a1 as a′1 . . . an as a′n]

]
ρ = letm ← TE [r ]ρ in

TE
[
⟨mh[a1/a′1],mb [a1/a′1]⟩[a2 as a′2 . . . an as a′n]

]
ρ

TE
[
r [a1 . . . an]

]
ρ = letm ← TE [r ]ρ in

⟨(a : mh[a] | a ∈ a1 . . . an ),merge(mb ,a1 . . . an )⟩

TE [r where c]ρ = letm ← TE [r ]ρ in
〈
mh , {⟨ta , te , ta ∧TC [c]t⟩ | t ∈mb }

〉
TE [^r ]ρ = letm ← TE [r ]ρ in

let sqr← λr .i . if i >= |mbody | then r else joinOnce(r , i ∗ 2) in sqr(m, 1)
TE [*r ]ρ = TE [iden + ^r ]ρ

TE
[
r [f (a) as x]

]
ρ = letm ← TE [r ]ρ in (where f is count, sum, avg)〈

(x : int), ⟨(x : i ),⊤, i = TAд[f (a)]mb ⟩
〉

TE
[
r [f (a) as x]

]
ρ = letm ← TE [r ]ρ in (where f is min, max)〈

(x : int), ⟨(x : i ), if |m | > 0 then ⊤ else ⊥, i = TAд[f (a)]mb ⟩
〉

TE [r +s]ρ = letm ← TE [r ]ρ, let n ← TE [s]ρ in〈
mh , {⟨ta , te ∨ ue , tc ∧ uc ∧ attEqual(t ,u)⟩| t ∈mb ,u ∈ nb , canOverlap(t ,u)

∪ (mb \ nb ) ∪ (nb \mb )}
〉

TE [r & s]ρ = letm ← TE [r ]ρ, let n ← TE [s]ρ in〈
mh , {⟨ta , te ∧ ue , tc ∧ uc ∧ attEqual(t ,u)⟩| t ∈mb ,u ∈ nb , canOverlap(t ,u)}

〉
TE [p- q]e = let m ← TE [p]ρ, let n ← TE [q]ρ in〈

mh , {⟨ta , te ∧ ¬ue , tc ∧ attEqual(t ,u)⟩| t ∈mb ,u ∈ nb , canOverlap(t ,u)

∪ (mb \ nb )}
〉

TE [r x s]ρ = letm ← TE [r ]ρ, let n ← TE [s]ρ in〈
mh ∪ nh , {⟨ta ∪ ua , te ∧ ue , tc ∧ uc ⟩ | t ∈mb ,u ∈ nb , ta ∪ ua = ∅}

〉
TE [p |x| q]ρ = let m ← TE [p]ρ, let n ← TE [q]ρ in〈

mh ∪ nh , {⟨ta ∪ ua , te ∧ ue , tc ∧ uc ⟩ | t ∈mb ,u ∈ nb , ta ∪ ua , ∅}
〉

merge : tuple→ x→ tuple

joinOnce : rel→ x → y → rel

Figure 9. Translation rules for AlleAlle expressions. For ab-
breviation purposes the notation rh means rheader , rb means
rbody , ta means tattr ibutes , te means texists and tc means
tattCons . r and s are alleExpr, c is a condition. Definitions of
canOverlap and attEqual are included in Appendix A. The
definition of merge and joinOnce is not given but sketched
in the text. iden resolves to the binary identity relation on
all values in the id domain.
We define two relations, Shape and Square. Both relations
have an sid field of type id and a size field of type int. The
sid fields contain the same id literal and both size attributes
have been left open. Translating the constraint Square in

Shape would yield the following result:

TE [Shape]ρ =
sid size exists attCons
s1 i0 b0 ⊤

TE [Square]ρ =
sid size exists attCons
s1 i1 b1 ⊤

TF [Square in Shape]ρ = ¬b1 ∨ (b0 ∧ i0 = i1)
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TC : tuple → f orm

TC [!c]t = ¬TC [c]t
TC [c1 && c2]t = TC [c1]t ∧TC [c2]t
TC [c1 || c2]t = TC [c1]t ∨TC [c2]t
TC [e1 ⊙ e2]t = TCe [e1]t ⊙ TCe [e2]t

TCe : tuple → expr

TCe [x]t = tattr ibutes [x]
TCe [n]t = n

TCe [- e]t = −TCe [e]t
TCe [|e|]t = let i ← TCe [e]t in i < 0 ? − i : i
TCe [e1 ⊕ e2]t = TCe [e1] ⊕ TCe [e2]

Figure 10. Translation rules for the restriction conditions.
⊙ depicts the different equality operators (<, <=, =, =>, >), ⊕
depicts the arithmetic operators (+, -, *, /, %).

The outcome is that a Square can only be a Shape if either
the Square relation is empty (by enforcing that b1 = ⊥) or
the value of the size attributes of both relations is equal (by
enforcing that i0 = i1). Otherwise the tuple in Square would
not overlap with the tuple in Shape and thus would not be in
the subset relation.

Translation of the projection expression Projection can
reduce the numbers of the tuples in the relation by truncating
it. This again can potentially cause tuple overlap. Consider
for instance the Person relation introduced in the translation
example (Section 4.1). This relation has two attributes, pId
and age and was defined as follows:
Person (pId:id, age:int) <= {<p1,17>,<p2,?>}.
resulting in the following internal representation:

Person 7→

pId age exists attCons
p1 17 b0 ⊤

p2 i0 b1 ⊤

If we would project the age attribute both tuples could poten-
tially collapse into each other. This would be the case if both
tuples exist and the value of the age attribute of the second
tuple would also be 17. To prevent this the merge function
adds extra constraints to the tuples reusing the addDistinct
function (see Appendix A) enforcing that in all possible eval-
uations of its variables the result would be a relation with
distinct tuples. We would end up with a relation with the
following values and constraints:

Person 7→

age exists attCons
17 b0 ⊤

i0 b1 ¬b0 ∨ ¬(i0 = 17)

Translation of the aggregation expression Aggregation
results in a new relation containing zero or one tuple with a
single attribute. The value of the attCons field of this tuple

TAд : aддFunc → tuple → f orm

TAд[count()]b = let cnt← λb ′.term. if b ′ = ∅ then term else
let t ∈ b ′ in term + cnt(b ′ \ t , tg(t ) ? 1 : 0) in cnt(b, 0)

TAд[sum(a)]b = let sum← λb ′.term. if b ′ = ∅ then term else
let t ∈ b ′ in term + sum(b ′ \ t , tg(t ) ? tattr ibutes [a] : 0) in sum(b, 0)

TAд[avg(a)]b = TAд[sum(a)]b ÷TAд[count()]b
TAд[min(a)]b = let min← λb ′.term. if b ′ = ∅ then term else

let t ∈ b ′ in tattr ibutes [a] < term ∧ tg(t ) ?
min(b ′ \ t , tattr ibutes [a]) : min(b ′ \ t , term) in min(b,findFirst(a,b))

TAд[max(a)]b = let max← λb ′.term. if b ′ = ∅ then term else
let t ∈ b ′ in tattr ibutes [a] > term ∧ tg(t ) ?
max(b ′ \ t , tattr ibutes [a]) : max(b ′ \ t , term) in max(b,findFirst(a,b))

findFirst : x → tuple → expr

findFirst[a, ts] = if ts = ∅ then 0 else let t ∈ ts in tattr ibutes [a]

Figure 11. Translation rules for the aggregation functions

contains the unfolded aggregation expression. The transla-
tion of the different rules are shown in Figure 11.

In case of the application of the count, sum and avg aggrega-
tion the resulting relation will always contain a single tuple,
even if the aggregated relation was empty. The intuition
behind this is that even if the aggregated relation is empty
its cardinality is zero and the sum of one of its attributes will
also result in zero. The resulting relation after applying the
min and max aggregation could be empty since calculating the
max or min of an empty relation is undefined.

Translation of the transitive closure expression Tran-
sitive closure is only defined for binary relations containing
two id attributes. In theory it is possible to define transitive
closure for other data domains but the existence of possible
holes would complicate the generation of the right equality
constraints. Because of this reason we decided to postpone
the calculation of transitive closure for other domain to pos-
sible future work.
In essence, calculating the transitive closure can be per-

formed by recursively joining the relation with itself. To
calculate the transitive closure we apply a variant of iterative
squaring that works on our relation data structure. On every
iteration the same translations are applied to the previously
calculated relation. A single step of this translation is applied
in the declared but not defined joinOnce function.

4.3 Testing the Translation

To gain more confidence in the correctness of the Alle-
Alle translation we compared AlleAlle with Kodkod [28]
and the Choco solver [23] on a number of different Con-
straint Satisfaction Problems (CSP) an Constraint Optimiza-
tion Problems (COP). Kodkod is also a relationalmodel finder
but is not able to solve optimization problems directly. The
Choco solver is able to solve optimization problems but its
formalism and solving strategy is semantically further away
from AlleAlle.
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Table 1. Testing AlleAlle against Kodkod and Choco.

Problem Problem
type

Compare
with

Sat.
AlleAlle?

Sat.
other?

#inst
AlleAlle

#inst
other

Same opt.
solution?

FileSystem CSP Kodkod Yes Yes 2184 2184 -
Handshake CSP Kodkod Yes Yes 24 24 -
Pigeonhole CSP Kodkod No No - - -
RingElection CSP Kodkod Yes Yes 2 2 -
RiverCrossing CSP Kodkod Yes Yes 2 2 -
8Queens CSP Choco Yes Yes 92 92 -
Sudoku CSP Choco Yes Yes 1 1 -
SendMoreMoney CSP Choco Yes Yes 1 1 -

Knapsack COP Choco Yes Yes - - Yes
Mariokart COP Choco Yes Yes - - Yes

In the comparison of CSP problems we compare whether
AlleAlle and Kodkod, or AlleAlle and Choco find the
same answer, and whether they produce the same number
of satisfying instances. When comparing COP problems we
check whether both AlleAlle and Choco find the same op-
timal solution. All problems are existing examples or bench-
mark problems from Kodkod or Choco5. The results are
shown in Table 1.6

As can be seen in the results AlleAlle finds the same so-
lutions as Kodkod and Choco for all implemented problems.
Please note that the reported found instances also contain all
symmetric solutions. For instance the 8 queens problem has
92 solutions, but if symmetry is taken into account only 12
distinct solutions remain. Kodkod can detect such symme-
tries by generating so called symmetry breaking predicates
but for this benchmark we configured Kodkod not to do
this [28].

5 Evaluation

We evaluate AlleAlle in terms of performance and expres-
siveness, by comparing the translation and solving times
of AlleAlle with Kodkod [28] on different problems, and
by implementing a real-world use case, optimal dependency
resolution [1], respectively. Finally, we qualitatively compare
AlleAlle to similar systems for solving constraint problems.

5.1 Translation and Solving Time Benchmark

We compare AlleAlle’s translation and solving time perfor-
mance against the translation and solving time performance
of Kodkod by translating and solving six different problems.
Table 2 characterizes the benchmark problems in terms of
the kinds of constraints that are used.

For five of these problems wemeasure the performance for
different configurations of the same problem to get insight
in the effect of the size of a problem specification. Configura-
tion parameters are the number of atoms or tuples that are
allowed to populate the relations, and the allowed bit-width
for the integer encoding used for Kodkod.
5See https://github.com/chocoteam/samples/
6See https://github.com/joukestoel/allealle-benchmark/ for the encoding of
the problems.

Table 2. Overview of the benchmarked problems.

Problem Constraint types

Alloy FileSystem Relational
Halmos handshake Relational, cardinality
Pigeonhole Relational
River crossing puzzle Relational
Square y = x 2 Integer
Account state transition system Relational, integer

The benchmarks are run on a early 2015MacBook Prowith
a 2,7 GHz quad core Intel i5 processor with 8GB of DDR3
RAM. Java 8 (version 1.8.0_131 by Oracle) is used for all
benchmarks. The translation and solving per configuration
per problem was run 30 times with a warmup of 10 runs.
All caches were flushed between each run. We report the
median of the translation and solving times.

AlleAlle is implemented in Rascal [17]. Rascal is a func-
tional programming language designed for the development
and analysis of programming languages. It is an interpreted
language that runs on the JVM. All AlleAlle benchmarks
were run using version 0.12.0.201901101505 of Rascal and
version 4.8.0 of Z3.

Kodkod is implemented in Java and was built and run
using the previously mentioned Java version. Some of the
benchmarked problems contain cardinality and integer con-
straints. To avoid wrap-around semantics for integer con-
straints in Kodkod we use Kodkod∗ [20, 21], which is cur-
rently packaged with Alloy 4.2; the solver is configured with
SAT4J (version 2.3.5.v20130525). As earlier, we configured
Kodkod to not generate symmetry breaking predicates.

Interpreting the results Table 3 contains the results of
benchmarking AlleAlle against Kodkod, comparing trans-
lation times and solving times. As can be seen in the results,
AlleAlle is slower in translating purely relational problems
(e.g., FileSystem, Pigeonhole and Rivercrossing). The reason
for the slow-down is twofold. First, our current implementa-
tion of AlleAlle is a prototype, built as a proof-of-concept
to demonstrate the correctness of the translation algorithm.
Furthermore, AlleAlle is implemented in Rascal, which is
an interpreted language for language prototyping, whereas
Kodkod is implemented in Java. We are currently working
on a Java implementation of AlleAlle which, we expect,
will bring the translation performance up to par with Kod-
kod since AlleAlle translation algorithms are of the same
complexity as Kodkod’s translation.

AlleAlle is also slower in solving purely relational prob-
lems compared to Kodkod. This can be explained from the
fact that AlleAlle generates more clauses than Kodkod.
For instance, for the FileSystem problem in the configura-
tion with 30 atoms AlleAlle generates a total of 5 359 296
clauses while Kodkod merely generates 24 753 clauses. The
reason for this difference is that Kodkod implements a clause
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Table 3. Benchmark comparison between AlleAlle and Kodkod. Comparison shows six problems of which five are shown
with different relation sizes, either in number of atoms or integer bit width used.

AlleAlle Kodkod

Problem #Atoms Bit width
(Kodkod only) Sat? Trans. time

(in ms)
Solve time
(in ms) #Vars #Clauses Trans. time

(in ms)
Solve time
(in ms) #Vars #Clauses

FileSystemr 15 - SAT 725 20 130 21 839 12 4 135 3235
FileSystemr 30 - SAT 14 567 110 460 5 359 296 29 8 470 24 753
HandShaker ,c 10 4 SAT 480 10 184 1633 12 61 200 9292
HandShaker ,c 17 5 UNSAT 2235 69 865 548 6295 23 136 465 578 39 214
Pigeonholer 9 - UNSAT 51 10 20 302 2 1 20 137
Pigeonholer 17 - UNSAT 77 1180 72 1424 1 45 72 565
Rivercrossingr 12 - SAT 327 10 74 1621 7 0 68 749
Squarei 2 4 SAT 5 10 2 6 2 4 36 3025
Squarei 2 10 SAT 5 10 2 6 198 11 883 2052 371 722
Accountr ,i 12 5 SAT 72 10 33 289 21 79 351 19 698
Accountr ,i 12 9 SAT 71 10 33 289 460 34 080 5151 480 198

Problem contains r) relational constraints, c) cardinality constraints, i) integer constraints

rewriting system that is much more aggressive than what is
currently implemented in AlleAlle [28].
The results show, however, that AlleAlle’s native han-

dling of data for problems that contain both relational and
integer constraints, pays off, both in translation times and
solving times. As mentioned before, Kodkod needs to specif-
ically encode the possible integers up to the configured bit-
width. This is needed because it needs to encode integer
constraints as part of the SAT formula so that the underly-
ing SAT-solver can solve the problem. This results in more
clauses in the generated SAT formula and thus higher trans-
lation and solving times. Since AlleAlle does not require
this explicit encoding but can use the solvers built-in reason-
ing power on different theories it does not suffer from the
same performance penalty. Therefore its translation and solv-
ing times is consistent for the same problem even if larger
integer values are required.

For problemswhich encode explicit cardinality constraints
like the HandShake problem we also see better performance
of AlleAlle since relations with higher cardinality require
a larger bit-width in Kodkod.7

5.2 Optimal Dependency Resolution

To evaluate the expressiveness of AlleAlle we have imple-
mented a solution to the optimal package resolution problem,
which is common in package managers like npm, apt, or
maven [1]. Figure 12 shows an example of a package reso-
lution problem taken from Tucker et.al. [32]. The user asks
to install package a; the package resolver needs to compute
which packages to install or uninstall in such a way that all
dependencies are satisfied and no conflicts are violated. This
has been shown to be an NP-complete problem [11].
7Explicit meaning using Kodkod’s integer cast expression sum() on re-
lations and using integer arithmetic expressions to formulate cardinality
constraints.

Legend:a

b c z

y

d e f g

= Installed

= Not installed

= Requested

= Dependency

= Conflict

Figure 12. A package resolution problem (solution: install
{a,b, c,d, f } and uninstall {e})

We ran the experiment on the “paranoid” track of the
MISC 2012 competition; a solver competition for package
managers.8 This track required the contestants to find the
minimal ‘change’ needed to the system to comply to the
package update request.9 Because this problem requires to
reason about the minimal change to the system it can not be
directly encoded in Alloy or Kodkod since these formalisms
do not allow for the encoding of optimization problems.

All benchmarks were run on the same early 2015 MacBook
Pro with a 2,7 GHz quad core Intel i5 processor with 8GB
of DDR3 RAM. We compare our found results against the
reported solutions and solving times from the MISC 2012
competition.

The package resolution problem can be compactly defined
as a relational problem with data. The relevant relations
are summarized in Table 4. The first 9 relations represent
known facts about the package repository, what is installed
on the user’s system, and what the user requests to install,
remove, or upgrade, respectively. These relations have exact
bounds meaning that for every possible solution the tuples
8http://www.mancoosi.org/misc-2012/
9Minimal change meaning, minimal amount of packages that need to be
removed and the minimal amount of packages needed to be installed or
updated.
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1 // All packages that are requested to be installed or upgraded should be part of the installation afterwards

2 let installedAfter = (toBeInstalled + (installed - toBeRemovedVersion)) |

3 (forall ir : installRequest | some (ir |x| version |x| installedAfter)

4 where ((relop = 0) || (relop = 1 && version = nr) || (relop = 2 && version != nr) || (relop = 3 && nr >= version)|| (relop = 4 && nr <= version)))

5 &&

6 (forall ur : upgradeRequest | some (ur |x| version |x| installedAfter)

7 where ((relop = 0) || (relop = 1 && version = nr) || (relop = 2 && version != nr) || (relop = 3 && nr >= version)|| (relop = 4 && nr <= version)))

8

9 forall rr : removeRequest | some (rr |x| version |x| toBeRemovedVersion) // all the removal requests should be scheduled for removal

10 where ((relop = 0) || (relop = 1 && version = nr) || (relop = 2 && version != nr) || (relop = 3 && nr >= version) || (relop = 4 && nr <= version))

11

12 let installedAfter = (toBeInstalled + (installed - toBeRemovedVersion)) | // installing version means installing its dependencies afterwards

13 forall d : depends | (d[vId] in installedAfter) =>

14 let possibleInstalls = ((d |x| dependChoice)[pId,version,relop] |x| (version |x| installedAfter)) |

15 (some (possibleInstalls where ((relop = 0) ||(relop = 1 && nr = version)) || (relop = 2 && nr != version) ||

16 (relop = 3 && nr >= version) ||(relop = 4 && nr <= version))[vId] & installedAfter)

17

18 let installedAfter = (toBeInstalled + (installed - toBeRemovedVersion)) | // when a version is installed, no conflicting version can be installed

19 forall c : conflicts | (c[vId] in installedAfter) =>

20 let possibleConflicts = (c[pId,version,relop] |x| (version |x| installedAfter)) |

21 no (possibleConflicts where ((relop = 0) || (relop = 1 && nr = version) || (relop = 2 && nr != version) ||

22 (relop = 3 && nr >= version) || (relop = 4 && nr <= version))[vId] & installedAfter)

23

24 let installedAfter = (toBeInstalled + (installed - toBeRemovedVersion)) | // all versions to be kept need to be installed afterwards as well

25 forall k : keep | some k |x| installedAfter

26

27 toBeRemovedPackage = (toBeRemovedVersion |x| version)[pId] - (toBeInstalled |x| version)[pId]

28 toBeChanged = (toBeInstalled + toBeRemovedVersion)

29

30 objectives: minimize toBeRemovedPackage[count()], minimize toBeChanged[count()] // the paranoid criteria

Listing 2. Optimal Package Resolution in AlleAlle

Table 4. Relations for the optimal package resolution prob-
lem

Relation Signature Bound

installRequest pId:id, relop:int, version:int Exact
removeRequest pId:id, relop:int, version:int Exact
upgradeRequest pId:id, relop:int, version:int Exact
version vId:id, pId:id, nr: int Exact
installed vId:id Exact
keep kId:id, vId:id Exact
depends vId:id, dcId:id Exact
dependChoice dcId:id, pId:id, version:int, relop:int Exact
conflicts vId:id, pId:id, version:int, relop:int Exact

toBeInstalled vId:id Upper
toBeRemovedVersion vId:id Upper
toBeChanged vId:id Upper
toBeRemovedPackage pId:id Upper

of these relations are exactly those that are defined in the
specification. The other 4 relations have an upper bound
and represent the solution space for the solver to satisfy the
user’s request, given dependency and conflict constraints
between package versions. The rest of the specification is
shown in Listing 2, consisting of a mere 30 source lines of
AlleAlle code.

In total we translated 57 of the competition problems,
and measured the time spent in translating AlleAlle and
running Z3 to solve the constraints. All found solutions by
AlleAlle were correct and optimal, showing that the con-
structed specification is a correct implementation of the
optimal dependency resolution problem according to the
paranoid criteria. The full results can be found in Table 5, in
Appendix B.

The results show that Z3 can efficiently solve the formula
produced by AlleAlle, in the same order of magnitude as

the winning solving times from the 2012 MISC competition.
On the other hand, the time spent by AlleAlle translating
the specification to SMT formula is high, ranging from 47
seconds to 62 minutes. Based on the specific problems ex-
hibiting this behavior, we hypothesize that translation time
correlates with the number of dependencies between the
packages. The more dependencies between packages, the
longer it takes AlleAlle to translate the problem to SMT
formulas.

5.3 Comparing AlleAlle to Similar Systems

AlleAlle is a constraint solving system and language, com-
parable to Kodkod, Alloy, and SMT solvers. AlleAlle is an
intermediate language: it is higher-level than the first-order
logic formulas of SMT solvers like Z3 [22] or CVC4 [5] which
are more general purpose logic solvers, but lower-level than,
e.g., Alloy, which is a end-user, modeling language.

Kodkod is the back-end framework of Alloy, which is at
the same level of abstraction as AlleAlle. Both AlleAlle
and Kodkod support relational constraints, yet AlleAlle
employs Codd’s relational algebra making it possible to con-
straint data attributes directly (using the where operator),
whereas Kodkod is based on Tarski’s relation logic allowing
constraints only to be expressed on the level of relations.

Although in terms of abstraction level, AlleAlle is com-
parable to Kodkod, the latter only exists as a Java library
and does not feature a concrete syntax. AlleAlle’s syntax
allows us to experiment with specifications in a more flexible
way, and thus may function as code generation target for
higher-level languages, – essentially fulfilling the same role
that Kodkod fulfills for Alloy.

58



Onward! ’19, October 23–24, 2019, Athens, Greece Jouke Stoel, Tijs van der Storm, and Jurgen J. Vinju

AlleAlle leverages built-in theories of underlying SMT
solvers, including support for optimization criteria available
in solvers like Z3 [7]. Kodkod (and hence Alloy) require bit-
encoding of integers because of their underlying SAT solvers,
which is an impediment to performance for constraint prob-
lems that require such constraints. Optimization criteria are
not available in either Alloy or Kodkod. For instance, the
optimal dependency resolution problem (Section 5.2) cannot
be expressed in either Alloy or Kodkod.

AlleAlle thus occupies a sweet spot in terms of both ex-
pressiveness (Codd’s algebra) and solving performance (be-
cause of native SMT theories) between high-level languages
like Alloy, and low-level relational solvers like Kodkod.

6 Related Work

SEM- and MACE-style model finders There are several
finite model finding tools for first order logic (FOL). They
can roughly be divided into two different groups: tools that
implement specialized search strategies to find satisfying
models (also known as SEM-style model finders) [27, 34] and
tools that translate FOL formulas to SAT or SMT formulas
and use an off-the-shelf solver to find satisfying instances
(also known as MACE-style model finder) [9, 18, 25, 31].
AlleAlle falls in the MACE-style category.

Although all of these model finders accept FOL formulas
as input not many of them accept relational logic. SEM [34]
and FINDER [27] for instance accept a many-sorted logic
of uninterpreted functions but no quantifiers. MACE2 [18],
PARADOX [9], Fortress [33] and Razor [25] do allow for
quantifiers but do not offer direct support for relational ex-
pressions.

Razor opts for a slightly different angle where it focuses on
model exploration by searching for a minimal model first and
allowing for model exploration using a predefined preorder
relation. To achieve this Razor also exploits the SMT solver
Z3 [25].

Fortress [33] also exploits an SMT solver by mapping FOL
formulas to the logic of equality with uninterpreted functions
(EUF). To make the model finite Vakilie et al. introduce so-
called range functions to force restriction on the number of
elements assigned to the different sorts [33].

Kodkod [31], the model finding engine used by Alloy [15,
30], accepts relational logic and transitive closure but offers
no support for optimization criteria or first-class reasoning
over data. As shown in the evaluation (see Section 5) Kod-
kod and Alloy do support integers but require the user to
specify a fixed bit-width. Kodkod uses an explicit integer
encoding which results in the introduction of more variables
and ultimately into more CNF clauses in the generated SAT
formula.
The other main difference with Kodkod is the interpre-

tation of relational logic: Kodkod uses Tarski’s definition
of relational logic, AlleAlle uses Codd’s relational algebra.

The switch from Tarski to Codd prevents the need for an ex-
plicit encoding of data variables (i.e. integers) in the problem
domain. E.g. in AlleAlle it is not needed to explicitly define
the set of integers to be used in the relational expressions, it
can directly encode constraints on the data attributes (using
the where operator).

Relational reasoning with SMT El Ghazi et al. translate
Alloy specifications to unbounded SMT constraints using an
axiomatization of Alloy’s relational logic in SMT, a so called
shallow embedding of a relational theory [13]. Although this
allows for proving someAlloy specifications it also struggles
with many specifications, as is shown in later work [19].

Meng et al. define a relational calculus based on the the-
ory of finite sets with cardinality constraints [4, 19]. This
calculus is created explicitly to be implemented as a new
theory in SMT solvers, a so called deep embedding, and con-
tains many of the relational expressions that are also part
of Kodkod (like join, transpose, product and transitive clo-
sure). The calculus does not require that bounds are set on
the relations but uses earlier work by the authors on finite
model finding [24]. The authors implement the calculus as
a new theory in the SMT solver CVC4 [5] and evaluate its
performance on existing benchmarks. Contrary to AlleAlle,
the new theory is able to prove when a relational problem is
unsatisfiable. Like Alloy and Kodkod, AlleAlle requires
bounds on the relations with the result that any reported
unsat only means that it is unsatisfiable with respect to the
given bounds. The work by Meng et al. is based on the same
calculus as Kodkod (Tarski’s relational logic) meaning that
reasoning on values of other theories (like integers) is lim-
ited in the same way as it is limited in Kodkod. Next to that,
this work is implemented in CVC4 which currently does not
support optimization objectives.

7 Conclusion

Relational model finding is a powerful technique that can be
applied to a wide range of problems. In this paper we have
introduced AlleAlle, a new language for describing such
problems with first-class support for data attributes. Alle-
Alle specifications combine first-order logic with Codd’s
relational algebra, transitive closure, and optimization objec-
tives. We have presented the formal semantics of AlleAlle
and a detailed exposition of a novel algorithm to translate
AlleAlle specifications to SMT constraints, to be solved by
standard SMT solvers such as Z3.
Initial evaluation of our prototype implementation has

shown that the performance leaves room for improvement.
Both the translation speed and the generated formula effi-
ciency can be improved. Theoretically it should be possible
to improve the translation and solving time of pure rela-
tional problems to the level of Kodkod’s performance since
the translation algorithm of both model finders is compara-
ble in terms of complexity. Early performance experiments
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with a pure Java version of AlleAlle indeed hint into this
direction.

AlleAlle supports compact encodings of relational prob-
lems with data. One example is optimal dependency res-
olution, as used in package managers. We have used this
problem to assess expressiveness of AlleAlle. Although
currently the translation times are high for these problems,
the resulting SMT formulas can be solved efficiently by off-
the-shelf solvers. The specification itself is concise, taking
only half a page, which shows the expressiveness of combin-
ing relational logic, data, and optimization criteria.

There are multiple directions for future work. The current
prototype of AlleAlle only supports integer domains; we
will extend AlleAlle with support for reals, strings, and
bit vectors since most SMT solves have built-in theories for
these types. Another direction for further work is to include
symmetry breaking predicates [9] to the generated SMT for-
mulas, since this is well-known to have a positive effect on
solver performance. Torlak et al. introduce amethod to create
these symmetry breaking predicates for relational logic [31],
but it is an open question how this should be done in the
presence of AlleAlle’s data attributes. A final direction for
further research is to investigate how unsatisfiability core ex-
traction [29] can be used to explain reasons for unsat results.
A particular challenge is how to map such explanations back
to the level of AlleAlle.

A Algorithms

addDistinct The function addDistinct adds a tuple to a relation, en-
suring that it will be distinct from other tuples in the relation by adding
constraints to the attCons column:
1: function addDistinct(r : rel, t : tuple)
2: for t ′ ← rbody , t , t ′, canOverlap(t ,t ′) do
3: tattCons ← tattCons ∧ (¬t ′exists ∨ ¬attEqual(t, t

′))
4: end for

5: rbody ← rbody ∪ {t }
6: return r
7: end function

canOverlap The function canOverlap returns ⊤ when two tuples are
indistinguishable with respect to their attribute values:
1: function canOverlap(t : tuple, t ′: tuple)
2: for a ← tattr ibutes , a′ ← t ′attr ibutes , aname = a′name do

3: if avalue , ? ∧ a′value , ? ∧ avalue , a
′
value then

4: return ⊥ ▷ non-’holes’, different values, overlap impossible
5: end if

6: end for

7: return ⊤

8: end function

attEqual The function attEqal constructs a constraint to ensure that
two tuples will be equal.
1: function attEqal(t : tuple, t ′: tuple)
2: δ ←⊤
3: for a ← tattr ibutes , a′ ← t ′attr ibutes , aname = a′name do

4: δ ← δ ∧ avalue = a′value ▷ force atts to have same values
5: end for

6: return δ
7: end function

B Optimal Package Dependency

Resolution

Table 5. “MISC paranoid” AlleAlle results. Problem names
refer to the problems as they were named in the original com-
petition. See http://www.mancoosi.org/misc-2012/results/
paranoid/ for an overview.
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adf7b774-9af8-11df-bc37-00163e46d37a upgrade 47203 22721 554.93 2.88 1.30 yes yes
e0bd67a6-56d0-11df-b11f-00163e7a6f5e upgrade 28333 14170 343.96 2.29 0.63 yes yes
e2f6303a-4fe9-11e0-aa4f-00163e1e087d install 41913 29726 1077.47 1.72 2.57 yes yes
29180036-5408-11df-9f57-00163e7a6f5e upgrade 28753 17490 403.31 1.22 0.99 yes yes
7bf50d1c-9b1b-11df-8b50-00163e46d37a upgrade 47210 17934 459.80 3.35 1.32 yes yes
8b0e7c16-bab4-11e0-a883-00163e1e087d install 59100 57811 2879.15 4.20 2.60 yes yes
5698a62c-c731-11df-9bb9-00163e3d3b7c install 54474 62705 3463.34 4.71 2.80 yes yes
6b0d1da0-c730-11df-a7c5-00163e3d3b7c install 54474 62792 3609.27 5.86 1.62 yes yes
19890cfe-db9f-11df-9e6c-00163e3d3b7c upgrade 33615 23979 743.49 3.24 1.15 yes yes
978532fa-c730-11df-b070-00163e3d3b7c install 54474 62792 3425.55 4.50 2.80 yes yes
dd08e73e-d489-11df-b9cf-00163e3d3b7c install 49561 48746 2230.60 3.20 1.78 yes yes
d1583bd8-d489-11df-9a24-00163e3d3b7c install 49561 48746 2327.53 3.68 1.44 yes yes
dba3a3fe-3477-11e0-9e6c-00163e3d3b7c upgrade 36310 17891 189.83 1.18 0.79 yes yes
f4ebf9e0-360e-11e0-9e6c-00163e3d3b7c upgrade 36213 18015 464.63 1.21 1.80 yes yes
4ede8d96-c17a-11df-a7c5-00163e3d3b7c install 51849 40000 1630.78 2.45 1.47 yes yes
33bb2fbc-9512-11e0-9181-00163e1e087d install 51134 15370 336.95 0.73 1.51 yes yes
ab9005be-bacc-11e0-b0f6-00163e1e087d install 59100 57811 2914.14 4.15 2.47 yes yes
ff4a1d84-d490-11df-9e6c-00163e3d3b7c install 53540 53307 2519.30 2.40 2.26 yes yes
fa3d0fb2-db9e-11df-a0ec-00163e3d3b7c upgrade 33615 23979 726.63 3.14 0.89 yes yes
80e3fda2-9501-11e0-8001-00163e1e087d install 51134 15370 342.71 0.74 1.57 yes yes
d023d256-3477-11e0-bdb2-00163e3d3b7c upgrade 36310 17891 445.69 2.57 1.10 yes yes
103c9978-5408-11df-9bc1-00163e7a6f5e upgrade 28753 17490 440.41 1.21 0.76 yes yes
4a69cf16-c731-11df-9182-00163e3d3b7c install 54474 62705 3761.11 4.74 1.62 yes yes
26f3d4cc-d470-11df-9e6c-00163e3d3b7c install 49561 48746 2272.93 3.28 1.65 yes yes
ec32fc68-7254-11e0-8436-00163e1e087d upgrade 39025 21410 575.76 1.33 1.50 yes yes
cff22854-9512-11e0-8001-00163e1e087d install 51134 15370 337.73 0.67 1.20 yes yes
8680dd8a-8600-11e0-b285-00163e1e087d install 53360 51425 2427.60 3.92 1.92 yes yes
caefdef6-3477-11e0-84ef-00163e3d3b7c upgrade 36310 17891 429.89 1.25 1.26 yes yes
e381ba7e-a192-11e0-8647-00163e1e087d install 51134 15370 349.90 0.79 1.54 yes yes
deb285a6-db9e-11df-8f4f-00163e3d3b7c upgrade 33615 23979 696.62 2.81 0.93 yes yes
ca8f656c-db9e-11df-b9cf-00163e3d3b7c upgrade 33615 23979 860.79 2.81 0.82 yes yes
e599f3fc-360e-11e0-986e-00163e3d3b7c upgrade 36213 18015 466.59 1.26 1.14 yes yes
d0cc7514-c730-11df-a040-00163e3d3b7c install 54474 62705 3392.81 4.50 2.90 yes yes
bccf69ae-db9e-11df-9a24-00163e3d3b7c upgrade 33615 23979 682.21 2.81 0.96 yes yes
27000e82-c5c4-11df-a7c5-00163e3d3b7c install 54485 62817 3393.98 4.14 1.34 yes yes
d5026b8e-3477-11e0-986e-00163e3d3b7c upgrade 36310 17891 448.12 1.20 0.94 yes yes
e69a0e36-9ef1-11df-9d4a-00163e46d37a install 50726 63860 3582.47 4.58 1.68 yes yes
56e31304-c17a-11df-b070-00163e3d3b7c install 51849 40000 1559.44 2.21 1.26 yes yes
ed1cc19e-51b7-11e0-8436-00163e1e087d install 42104 29996 948.50 1.32 1.66 yes yes
a754ac72-95cc-11e0-9181-00163e1e087d install 51134 15370 322.43 0.64 1.12 yes yes
56ae4afa-0b33-11df-8a2b-00163e1d94dc install 66940 4085 47.15 0.23 1.91 yes yes
4e539b28-d46c-11df-8f4f-00163e3d3b7c install 49561 48746 2309.19 3.20 1.50 yes yes
fe523ea6-9b1b-11df-bc37-00163e46d37a upgrade 47210 22707 573.45 3.40 0.95 yes yes
b2540c52-51b7-11e0-aa4f-00163e1e087d install 42104 29996 894.50 1.39 1.72 yes yes
eeee44ce-5407-11df-b11f-00163e7a6f5e upgrade 28753 17490 410.22 1.22 0.63 yes yes
80cfe9a6-9b1b-11df-965e-00163e46d37a upgrade 47210 17934 420.83 1.74 1.32 yes yes
1aabfc32-d491-11df-9a24-00163e3d3b7c install 53540 53307 2685.60 2.88 2.14 yes yes
8222799a-9af8-11df-8b50-00163e46d37a upgrade 47203 17933 422.87 1.70 1.22 yes yes
301cbe92-a79c-11e0-9181-00163e1e087d install 56865 55542 2798.53 0.00 0.00 yes yes
7c834c0e-51b8-11e0-a49e-00163e1e087d install 42104 29996 951.58 1.46 2.58 yes yes
3e4f8550-0b33-11df-942d-00163e1d94dc install 66940 4085 60.48 0.68 1.27 yes yes
8afdd89e-51b8-11e0-acd7-00163e1e087d install 42104 29996 897.15 1.31 1.66 yes yes
4f84e9c6-a79c-11e0-9eb7-00163e1e087d install 56865 55542 2785.50 0.00 0.00 yes yes
7f80e4f0-4fe9-11e0-acd7-00163e1e087d install 41913 29720 897.63 1.55 1.79 yes yes
c2164c84-b015-11df-8b50-00163e46d37a upgrade 32938 11545 236.60 0.33 1.11 yes yes
0207e19a-9b1c-11df-af69-00163e46d37a upgrade 47210 22707 571.12 2.67 1.30 yes yes
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