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Abstract
Python is a popular language for end-user software devel-
opment in many application domains. End-users want to
harness parallel compute resources effectively, by exploiting
commodity manycore technology including GPUs. However,
existing approaches to parallelism in Python are esoteric, and
generally seem too complex for the typical end-user devel-
oper. We argue that implicit, or automatic, parallelization is
the best way to deliver the benefits of manycore to end-users,
since it avoids domain-specific languages, specialist libraries,
complex annotations or restrictive language subsets. Auto-
parallelization fits the Python philosophy, provides effective
performance, and is convenient for non-expert developers.

Despite being a dynamic language, we show that Python
is a suitable target for auto-parallelization. In an empirical
study of 3000+ open-source Python notebooks, we demon-
strate that typical loop behaviour ‘in the wild’ is amenable to
auto-parallelization. We show that staging the dependence
analysis is an effective way to maximize performance. We
apply classical dependence analysis techniques, then lever-
age the Python runtime’s rich introspection capabilities to
resolve additional loop bounds and variable types in a just-in-
time manner. The parallel loop nest code is then converted
to CUDA kernels for GPU execution. We achieve orders of
magnitude speedup over baseline interpreted execution and
some speedup (up to 50x, although not consistently) over
CPU JIT-compiled execution, across 12 loop-intensive stan-
dard benchmarks.

CCS Concepts • Software and its engineering → Dy-
namic compilers; Scripting languages; Parallel program-
ming languages; • Computer systems organization →
Heterogeneous (hybrid) systems.

Keywords code generation, nested loop parallelization, GPU
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1 Introduction
No matter which programming language popularity index
you consult [9, 37], Python is one of themost widely used lan-
guages at present [3]. Python programmers operate across a
broad spectrum of application domains, from archaeology
[29] to zoology [12] with particular emphasis on data sci-
ence [23] and machine learning [26]. One notable strength
of Python is its accessibility to end-user developers [7, 15]
which in part accounts for its popularity. The growing adop-
tion of the interactive computational notebook as a program-
ming environment also facilitates ease of use [35].
In general, standard Python programs are executed se-

quentially, in the CPython interpreter. The global interpreter
lock [4] means programs run with single-threaded perfor-
mance characteristics. Parallel resources are now available
as commodity hardware, whether in multicore processors or
GPUs. Given the ubiquity of GPUs, it is reasonable to assess
whether we can take advantage of them when executing
Python programs.

1.1 Our Contributions
We show in Section 2.1 that end-user developerswrite Python
code in a style that is amenable to loop dependence analy-
sis. Classical loop parallelism techniques were pioneered by
Allen and Kennedy [18] in their optimizing compilers for
Fortran.

In this work, we advocate implicit parallelization, i.e. auto-
parallelization [31], for end-user programmers. Many devel-
opers don’t use current explicit approaches to parallelism in
their code; we argue that implicit parallelism is more in the
spirit of Python programming, Section 2.2.
The main novelty of our work springs from applying

known dependence analysis and parallelization techniques
in a single platform staged across static and dynamic analysis
phases. Section 3 demonstrates how the dynamic nature of
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Python enables staging dependence analysis, with some hap-
pening ahead-of-time and the remainder happening just-in-
time. We analyze the overheads of this dependence analysis.
Section 4 describes ALPyNA, our parallelization frame-

work which is integrated with the Python runtime; it relies
on introspective features of Python and targets CUDA GPU.
We compare our new framework with the default CPython
interpreter and a state-of-the art CPU JIT code generator
across a range of benchmarks, as explained in Section 5.
Section 6 reports significant speedups in a number of

cases, although this depends heavily on the benchmark loop
structure, its dynamic dependence relationships, and the
input data size.

Finally, Section 8 identifies the need for runtime decision
making, i.e. a cost model that facilitates intelligent selection
of backend code generator based on features of each program
and its input data.

1.2 Relation to Previous Work
We have already published a brief description and prelimi-
nary study of an earlier version of ALPyNA [17]. Since that
report, we have extended the framework to handle a richer
set of loop nest semantics. These include support for con-
trol flow divergence (via synthesized if conditions, Section
4.1.1) and pure (i.e. side effect free) intrinsic functions (like
exp, sin and sqrt, see Section 4.7) which map directly from
Python onto the CUDA Math API. Additionally, we describe
how staged analysis of variable loop bounds and/or loop-
invariant variables in subscripts generates optimal kernels
(Section 3.1).

ALPyNA has been extended to perform runtime evalu-
ation and optimized kernel generation on each individual
loop nest within a function using closures (Section 4.2). In
Section 4.1.2, we describe how ALPyNA partially evaluates
and caches the results of dependence analysis for use in the
hybrid static/dynamic dependence analysis. We also describe
how ALPyNA marshals scalar variables that are targets of
writes in GPU kernels (Section 4.5).

The present paper gives detail regarding the motivation
and implementation, as well as a more extensive empirical
evaluation, using 12 benchmarks (cf. four in [17]); the ma-
jority of extra benchmarks require the richer set of Python
features now supported in ALPyNA.

2 Motivation for Parallelization
2.1 End-Users like Loops
If end-user developers employ loops (and particularly, nested
loops) as common control-flow constructs in their code, then
we can treat these as appropriate targets for optimization.
On the other hand, if there are few loops in end-user code,
then parallel optimizations would not bring noticeable per-
formance benefits.

Figure 1. Histogram showing number of for loops per notebook,
for sample of end-user code

Figure 2. Histogram showing maximum for loop nesting depth
per notebook, for sample of end-user code

We analyse a large corpus of Jupyter notebooks, down-
loaded from github in a recent study [35]. We explore the
sub-corpus which is ‘Component 1 of 13’ in the original
study; it comprises over 6K notebooks, of which our Python
3 parser could parse 3792 (others were written in Python 2).
These code samples are representative of end-user program-
ming style, perhaps skewed to the scientific domain—for
more details, refer to the original study [35].
We examined the number of distinct for loops in each

notebook, and the maximum for loop nesting depth in each
notebook. Figure 1 shows a histogram of the number of for
loops per notebook: over 50% of the notebooks contain at
least one loop. Figure 2 shows the maximum for loop nest
depth per notebook: the median depth is 1, and the maximum
depth is 7.

This preliminary study confirms that there is potential for
performance gains from loop-based parallelism in end-user
code. The next question is: what should such parallelism
look like, for Python programmers?

2.2 Pythonic Parallelism
The adjective ‘Pythonic’ describes elegant Python code, as
agreed by the community of practice. This philosophy is
encapsulated in the PEP-20 document [27] which is available
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inside the Python interpreter as an ‘easter egg’—simply enter
import this to see the complete list of guidelines.

We draw on these principles to specify our parallelization
system for Python, which targets commodity GPUs to exe-
cute loop nests. This section explains how we interpreted
PEP-20 in our context.

Beautiful is better than ugly. Simple is better than
complex. Readability counts. We advocate implicit, i.e.
automatic, parallelization. Sequential code is analysed and
transformed into GPU code without explicit rewriting by
the user. This ensures code should never become ‘ugly’ or
‘complex’ due to parallel refactoring or library calls.

Explicit is better than implicit.We are doing implicit
parallelism, for sure; however, we only parallelize loop nests
with integer range iteration spaces. In that sense, the user
(who should be aware of this semantic restriction) knows
which regions of code may be appropriate for parallel execu-
tion. Further, the user directly identifies each potential target
for parallelization with a simple call to the framework. We
treat parallelization like memory management, as a runtime
concern that the developer does not need to handle explicitly;
instead the developer devolves responsibility to the Python
execution engine. This is a case where Practicality beats
purity.

Errors should never pass silently. If a loop nest cannot
be parallelized, then the system reports the error. There may
be a dependence violation, or the presence of Python struc-
tures we cannot handle (e.g. function calls in loop bodies).
Another cause of failure is that the dynamic data structure
the loop nest iterates over may be too large to fit into GPU
memory. In each case, at the appropriate stage, the frame-
work should report an error to the user.

Now is better than never. This is the rationale for our
just-in-time resolution of loop bounds and value types.While
there is some runtime overhead to this deferred analysis, it
provides more accurate dependence resolution and more
efficient GPU code.

Namespaces are one honking great idea. We can use
namespaces to manage multiple runtime variants of a sin-
gle loop nest source fragment, perhaps targeting different
backends including GPU.

3 Background
Allen and Kennedy [18] define the existence of a data de-
pendence relationship between two statements in a region
of code iff both statements access the same memory loca-
tion and at least one of the operations is a write. When a
dependence occurs in a loop nest and the source and sink
of the dependence occur on two different instances of the
loop execution, the outermost loop causing the dependence
carries the dependence. True (read-after-write), anti (write-
after-read) and output (write-after-write) dependences are

denoted by δi ,δ−1i and δoi respectively, where imay denote ei-
ther the numeric nesting level or the named iterator variable
of the loop carrying the dependence. A loop independent
dependence is denoted by δ∞.

3.1 Benefits of Deferring to Runtime
Consider the code in Listing 1. Classical dependence analysis
would classify the dependence relationship as a Strong SIV
(Single Index Variable). Equation 1 shows the influence of the
loop-invariant variable k on the distance and direction of
cross-iteration dependences. The cross-iteration dependence
reverses direction depending on whether k is positive or
negative.

Dependence =




|k | ≥ arr_len, no dependence

|k | = 0, δ∞

|k | < arr_len ∧ k > 0, δi

|k | < arr_len ∧ k < 0, δ−1i
(1)

Listing 1. Benefit of runtime parallelization
def function_foo(arg_a ,arg_b ,arr_len ,k) :
for i in range(0,arr_len ,1):

arg_a[i + k] = arg_a[i] + arg_b

Conventional static analysis has to assume conservatively
that a loop-carried dependence exists and execute the loop se-
quentially. For simple loops, sequential and parallel variants
of the code could both be generated and executed subject to
the guard conditions being satisfied dynamically.

For larger loop nests, speculative generation of such vari-
ants becomes increasingly expensive. However, deferring the
analysis until runtime can yield an optimized parallel version
of a loop nest once loop iteration domains are known.

Listing 2. ALPyNA example
def ln_func(arg_a ,arg_b ,constants ,limits) :
im, jm, km, mm = limits
p1, p2, p3 = constants
for i in range(0,im ,1):

for j in range(2,jm ,1):
for k in range(0,km ,1):

for m in range(0,mm ,1):
# Statement - S1
arg_a[i+p1,j,k,m] = arg_a[i,j,k,m] + 4 +

arg_b[i]
# Statement - S2
arg_a[i,j+p2,k,m] = arg_a[i,j+p3,k,m] +

43

To demonstrate the potential optimizations that can be
unlocked due to a dynamic knowledge of loop bounds and/or
loop-invariant subscript values, consider the code in List-
ing 2. The quadruple nested loop has limits (im,jm,km,mm)
and three loop-invariant values (p1,p2,p3) within the sub-
scripts. These unresolved values complicate the discovery of
parallelism within the loop structure.
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Figure 3. Dependence graph
of loop nest in Listing 2 with
iteration domain (i,j,k,m) →
(10,100,100,100) and (p1,p2,p3)
→ (0,1,-2)

Figure 4. Dependence graph
of loop nest in Listing 2 with
iteration domain (i,j,k,m) →
(10,100,100,100) and (p1,p2,p3)
→ (1,1,-1)

At runtime, assuming we resolve (im,jm,km,mm)→ (10,
100,100,100) and the valueswithin the subscripts are (p1,p2,p3)
→ (0,1,-2), we obtain the dependence graph as shown in Fig-
ure 3. The cyclic dependences between statements S1 and S2
require loop j to be executed sequentially while the (i,k,m)
loops may be executed in parallel.
If the iteration domain space remains the same, but the

runtime variable values change to (p1,p2,p3)→ (1,1,-1), the
dependence graph for the loop nest becomes as depicted in
Figure 4. Although the dependence graph has more edges,
we can safely execute statement S1 in parallel along the j,k,m
axes if we run the i-loop sequentially. Statement S2 can be
executed in parallel along two (k,m) dimensions if we execute
the i,j-loops in sequential order to maintain dependence
constraints. Similarly if the values (p1,p2,p3)→ (10,99,-1), we
find that both statements can be executed in parallel along all
four loop dimensions. In summary, there may be significant
benefit in deferring loop dependence resolution decisions
until runtime, when precise dynamic values are known.

4 ALPyNA Architecture
Our ALPyNA loop parallelization framework is designed to
generate performant GPU kernels from Python loop nests.
It is not intended as a whole program compiler, but rather
targets linear loop nests as the unit of analysis. Dependence
analysis of the loops reveals opportunities for parallelism
while still maintaining the ordering constraints expressed in
the original computation.
The ultimate aim of ALPyNA is to generate code vari-

ants targeting various accelerators in heterogeneous systems.
While ALPyNA currently targets GPUs and the CPython VM,
it has a device abstraction layer that is modular and can easily
be extended to JIT compilers for other hardware devices.

Instead of speculative generation of variants depending on
a combination of iterator, subscript and hardware properties,
ALPyNA uses a staged approach to parallelization. Figure 5
illustrates ALPyNA’s staged compilation architecture. The
left hand side outlines the static analysis and compilation

while the right hand side outlines the runtime compilation.
We describe each phase in the following sections, and discuss
the underlying Numba compiler [21] (Section 4.6) and the
current restrictions (Section 4.7).

4.1 Static Analysis
The programmer specifically targets a fragment of Python
source code for ALPyNA optimization, by invoking a sim-
ple API call. The target Python code should be a compute-
intensive array-centric nested loop.
Conditional execution of code within the body of a loop

nest creates control dependences between statements within
a loop body. To aid discovery of parallelism in the presence
of control-flow dependence, ALPyNA first executes an if-
conversion pass (Section 4.1.1).
Following common practice, loop iteration domains are

normalized to aid dependence analysis. While parsing the
code during the static analysis phase, any loop bounds ex-
pressions i.e. parameters of the range function) are parsed.
If they cannot be symbolically evaluated, they are marked
for runtime evaluation. If possible, any such expression is
hoisted out of the loop nest.

After these initial passes, the Python Abstract Syntax Tree
(AST) is parsed to generate a simple flat record structure
to aid in loop analysis. This record structure comprises of
information required for dependence analysis of the loop.
These are further parsed to create ‘loop landmarks’, as well
as group variable and subscript pairs.

If all the loop bounds and data dependences can be deter-
mined statically, ALPyNA generates untyped GPU kernels
and caches these in memory to reduce dynamic analysis time
(Figure 5). In such a scenario, only the type information is
required to be patched into the cached untyped kernel, and
this is obtained at runtime by using introspection (Section
4.3). Corresponding GPU kernel driver code that respects the
loop carried dependence constraints is generated and cached.
If any data dependence cannot be determined statically, the
partial evaluation of dependences is cached (Section 4.1.2)
to use during runtime evaluation of loop nest dependences.
Scalar variable writes in loop nests are a special case, re-

quiring runtime analysis and code generation (Section 4.5).
The final stage of ALPyNA’s static compilation phase is

to prepare all data structures that are required for runtime
evaluation, compilation and execution. ALPyNA replaces
each loop nest with a closure (Section 4.2). These closures
are given a unique handle for the ALPyNA runtime to deref-
erence on demand.

ALPyNA generates a Pythonmodule on the fly and returns
a handle to this module as a Python object to any code that
calls the ALPyNA static analysis function. Any in-memory
data structures generated so far within the static analysis
phase and required for runtime evaluation are stored in this
newly generated module within their own namespaces. A
reference to the module is stored within itself to map the
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Figure 5. The ALPyNA system architecture is staged, with an ahead-of-time static analysis and a near-identical structure for
the lazy dynamic analysis; note some information is preserved in memory from the initial stage.

function to its corresponding in-memory partial evaluation
cache. At this point control is handed over to the ALPyNA
runtime.

4.1.1 Conditional Code Execution
Control flow dependences within a loop nest cannot be mod-
elled using conventional data dependence techniques. To
model control flow dependences, all statements within a
loop body are transformed to a predicated execution form
[2].
Control flow divergence typically occurs due to the pres-

ence of if statements. A forward branch is a branch for
which the target of the control flow jumps to a location
within the same loop. A branch transferring control to a tar-
get outside the loop body is classified as an exit branch. This
can typically be mapped onto the Python break statement.

Scalar expansion [25] is performed on compiler generated
conditional variables to increase opportunities for paralleliza-
tion. Predicate variables generated for forward branches are
expanded to the dimensions of the loops enveloping its defi-
nition. As a memory optimization, exit branch predicate vari-
ables are expanded to a vector with the dimensions of size
of the innermost loop that references the exit branch predi-
cation variable. This is due to the existence of a dependence
between the compiler introduced exit branch predication
variable carried by the innermost loop.

Expansion of compiler generated variables is simplified, as
every read from such predicate variables is dominated by a
single definition for forward branches and by two definitions
in the case of exit branches.

4.1.2 Partial Dependence Analysis
To ensure that dependence analysis is safe, static compilers
should make conservative assumptions about dependences
if it cannot accurately resolve a dependence. To determine
dependences in linear subscripts, loop limits must be avail-
able.
Another factor that hinders discovery of parallelism in

linear array accesses is the presence of symbolic constants
within array subscripts. A static optimizing compiler must
conservatively assume loop carried dependences exist in
both directions between two references to the array.
ALPyNA overcomes this hurdle by solving and caching

statically resolvable dependence relationships in-memory
in a partial evaluation cache. This cache is transferred to
the runtime execution context after static analysis. At run-
time, ALPyNA re-executes dependence analysis. Statically
resolved dependence results are extracted from the partial
evaluation cache. The resulting loop is parallelized at runtime
according to the exact evaluation of loop boundaries and
constants within subscripts. The dependence relationships
that emerge at runtime can be optimized by opportunistically
exploiting a loop structure more amenable to parallelization.
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4.2 Closure Generation
ALPyNA replaces loop nests within the body of marked ker-
nels with Python closures. The closure provides a handle
object for the ALPyNA runtime to dynamically query loop
limit expressions and loop-invariant constants within sub-
scripts. In contrast, a purely static compiler would need to
rely on conservative dependence analysis.
The closure marshals all the variables used by the loop

nest into a variant selection function along with a reference
to the closure. The closure also has access to the flat record
structure of the AST and the partial evaluation cache (Section
4.1). ALPyNA uses the closure handle to introspect vectors
and variables for their types and vector dimensions. Variable
types discovered at runtime are patched into the generated
kernels to create typed variants. Each compiled kernel is
then cached by Numba, our backend GPU compiler (Section
4.6). We also introspect the binding of loop limit expression
evaluations to inform runtime dependence analysis.
In general, a cost model is required to facilitate backend

target selection and code variant generation, as discussed in
Section 8.

4.3 Runtime Analysis
After ALPyNA has completed the static analysis phase of
compilation, a reference to the generated ALPyNA module
is returned to the caller. When a programmer dereferences
a kernel in the ALPyNA module, the closure correspond-
ing to the loop nest is called. If all the dependence relation-
ships were resolved statically, loop nest variable types are
inspected, patched into the statically generated kernel, com-
piled and executed.
Any loop nest with dependences unresolved at compile

time is re-analyzed. All dependence relationships that were
statically resolved are retrieved from the partial evaluation
cache and augmented with dependence relationships deter-
mined at runtime.

This dependence graph is generated for each instantiation
of a loop nest. GPU kernels are generated with the newly
discovered dependence constraints. Resolution of the expres-
sions which make up the loop domain are used to set the
GPU grid and block sizes with suitable padding (Section 4.4).

4.3.1 Execution Context and Data Management
ALPyNA creates a light-weight kernel for each statement
in the body of the loop nest. Dependence analysis evaluates
ordering constraints between statements and determines
which loops have to be executed sequentially. Kernels repre-
senting each statement are called in the topological order in
which the dependence graph is parsed. The whole set of ker-
nels are executed together on the GPU to avoid inter-kernel
data transfer within the context of a loop nest.
Data transfer to and from the GPU is hoisted outside the

loop nest context that represents the overall computation.

Data transfer is done within the context of the closure (refer
Section 4.2) that represents the loop nest computation.

4.4 GPU Thread Hierarchy
In CUDA terminology, a group of threads on the GPU con-
stitute a block and a group of blocks constitute a grid. These
thread groupings may be spread over one, two or three dimen-
sions. Each GPU has minimum and maximum threads-per-
block and in some cases, the maximum number of threads in
one dimension may not be the same as others.

ALPyNA determines loop bounds statically by parsing the
original code (Section 4.1) or dynamically using introspection
within the context of the closure that represents the loop nest
(Section 4.2). The bounds for each instantiation of a loop nest
is determined by introspecting the evaluation of the bounds
expression at runtime (as demonstrated in previous work
[17]).
Dependence analyis [18] determines which loops should

be executed sequentially for each statement. All other loops
that envelope the original statement in the loop nest are
executed in parallel within a GPU kernel. Each iteration of a
loop executed in parallel is mapped on to a thread that can
be calculated using a GPU’s (blockidaxis ∗ blocksizeaxis +
threadid ) semantics.

ALPyNA matches the number of threads-per-block and
blocks-per-grid based on device specific constraints and the
iteration domain sizes of a loop nest. Loop bounds for each
parallel loop enveloping a statement determine how many
threads are required to execute it in parallel. The loops that
are determined to be safe to execute in parallel are sorted
in descending order of their iteration domain sizes. Each
parallel loop is assigned to one of the GPU’s thread axes, up
to the maximum number of axes (three in modern GPUs)
supported by the device. Sorting the loops in descending
order allows for maximising the parallelizable iteration do-
main space when the number of parallel loops are greater
than the number of thread axes supported by the GPU.

If there are loop nesting levels greater than the number of
axes allowed by the accelerator, any loops that can be run in
parallel and have not been allocated to a GPU axis, are run
sequentially within each kernel. This preserves correctness
as, if we execute outer loops that carry dependences sequen-
tially, all inner loops can be executed in parallel without
causing a dependence violation.

To calculate the CUDA thread hierarchy for each instanti-
ation of a loop nest, an initial block size equal to the iteration
domain sizes of each parallel loop is generated. This allo-
cation is chosen if it fits in the maximum block size of the
GPU device. If the number of threads is greater than the
maximum block size of the GPU, we iteratively halve and
pad the number of threads along the largest of the allocated
parallel axes in a block until the block size is small enough
to fit the GPU’s maximum block size. During each iteration,
the grid size along the corresponding axes is adjusted to
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match the reduction in the block size. We converge on the
grid and block sizes in

⌈
loд2

(∏n
i=1 Di
B

)⌉
iterations where Di is

the the domain size of a loop allocated to execute in parallel,
B the maximum block size supported by the GPU and n is
the number of parallel thread axes allocated; e.g. a 1k × 1k
domain size for gemm (Section 5.2), would converge to a
thread hierarchy of (дrid,block ) → ((32 × 32), (32 × 32))
within 10 iterations.

4.5 GPU Scalar Marshalling
The effect of a write to a scalar variable within a loop body
must be preserved for subsequent reads, which may not be
part of the same loop nest structure. However, GPUs do not
support call-by-reference semantics to support statements
where scalars are the target of a write. Instead, a scalar has to
be transferred as a unit-size vector. Marshalling many such
scalars as a vector incurs a large cost.
To mitigate this overhead, ALPyNA performs runtime

introspection to determine variable types. For scalar values
that are to be offloaded to GPU, we dynamically assemble
one composite array per type. This composite array can be
dereferenced within a runtime generated GPU kernel using
vector + displacement semantics. The closure representing
the loop nest unmarshals each composite array back into the
appropriate original scalar variables upon the completion of
a loop nest execution.

4.6 Numba
ALPyNA uses the Numba [21] high performance Python
compiler to finalize and compile its automatically generated
GPU kernels. Numba is an LLVM based compiler for Python
functions. It is invoked by applying the @jit decorator to
specific functions. Numba also compiles kernels written us-
ing a restricted subset of Python which is very similar to
CUDA-C.
ALPyNA relies on Numba’s CUDA interface to serialise

data and to transfer it to/from the GPU. Numba only supports
Numpy arrays that are already byte aligned in memory for
the array element type. Numba exposes bindings to CUDA
intrinsics that map to the GPU grid, block and synchronize
programming primitives to the programmer.

Unless the types are provided by the programmer, Numba
applies automatic runtime type inference on every invoca-
tion of a kernel. If a kernel is executed multiple times, this
would cause a compilation overhead which is an order of
magnitude higher. To reduce this overhead, ALPyNA patches
the runtime inferred type information to the kernels once
per loop nest invocation. This allows Numba to cache the
compiled kernel for further use in every invocation within
an instance of a loop nest.

4.7 Restrictions
As ALPyNA uses Numba for GPU compilation and data trans-
fer between RAM and GPU memory, currently only Numpy
arrays and basic scalar types are allowed. Serialization of
other Python objects for GPU execution is future work.
ALPyNA considers each loop nest within a function as

a single unit for dependence analysis. Currently only intra-
procedural dependence analysis is performed on the loop
nest. Function calls within a loop nest allow for a richer rep-
resentation of programs. Although ALPyNA now supports
calls to pure intrinsic functions that are supported by Numba,
these calls are not subject to inter-procedural analysis and
their validity must be guaranteed by the user.
Each variable subscript must be a linear function of loop

iterator values. ALPyNA only supports basic indexing so
array slices are not allowed. All dereferencing of a Numpy
vector read should evaluate to a value which has that vec-
tor’s ‘dtype’ and every write should access the location of a
scalar within a Numpy vector. This precludes Numpy array
broadcasting semantics. Currently only Zero Index Variables
(ZIV) and Single Index Variable (SIV) dependence tests have
been implemented.Multiple Index Variable (MIV) dependence
solvers are planned to be added in the near future to solve
complex linear functions of iterators.

Loop nest domains are currently expressed only using the
range function. Other well understood non-mutable linear
iterators such as enumerate are planned to be added for anal-
ysis. While generic Python statements are allowed within a
computation kernel, these should not be within a loop nest.
Such statements will be executed within the interpreter.

5 Experimental Setup
5.1 System Comparison
To assess the effectiveness of loop parallelization, ALPyNA
is evaluated on 12 widely used array-intensive programs.
The benchmarks are written as nested Python loops in an
array-centric format with variable loop domains, to utilize
ALPyNA’s runtime analysis execution path. We measure the
time taken by ALPyNA for:

• dependence analysis and GPU kernel generation
• GPU kernel compilation
• execution time of generated kernels

We compare total analysis and execution time against the
CPython interpreted version of the same program, as well
as a JIT-compiled version that targets native CPU execution.
The chosen benchmarks range from simple 1d paralleliz-

able loops (vadd, saxpy) all theway to 7d loops (fbcorr). These
benchmarks include those that are are parallelizable along
all their loop domain axes (jacobi, mandelbrot, conway) and
those which have loop-carried dependences (gemm, gemver,
syr2k). The mandelbrot and black-scholes benchmarks use
ALPyNA’s if-conversion pass (Section 4.1.1) and support for
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pure intrinsic functions. All the chosen benchmarks can be
analyzed with ZIV and SIV subscript tests (Section 4.7).

5.2 Benchmarks
black-scholes implements an option pricing model [5] to
calculate prices of derivative financial instruments. It uses
various mathematical pure intrinsic functions on each the
stock price and exhibits control flow divergencewith forward
branches (cf. Section 4.1.1).
conv-2d convolves an N ∗ N matrix with anM ∗M kernel
represented as

y[m,n] =
∞∑

j=−∞

∞∑
i=−∞

x[i, j] × h[m − i,n − j]

This is a quadruple nested loop with an M ∗ M ∗ N ∗ N
iteration domain. The loops with dimensions M ∗M must
be executed sequentially, while the loops along the N ∗ N
domain can be parallelized.
conway is a zero-player game on a 2d board, representing a
cellular automaton. Each element is either alive or dead. At
each turn, elements are born, survive, or die, based on neigh-
bour elements’ state from the previous turn. This benchmark
is the core of the survival calculation, representing a sin-
gle turn in the game. Effectively, it is a stencil computation
across a 2d integer matrix.
gemm is an implementation of the standard O(n3) dense
matrix multiplication algorithm. The loops iterate over the
rows and columns of the 2d matrices. The absence of one
of the iterators in the access pattern of any subscript of the
output matrix generates all three dependence types on the
multiply-accumulate statement. This requires the inner k-
loop to be executed sequentially while allowing the outer i-
and j-loops to be run in parallel.
gemver is a BLAS [6] routine from the Polybench [30] suite.
The mathematical calculation is:

Â = A + u1.v1 + u2.v2
x = βÂTy + z , w = αÂx

where inputs are A (N ∗N matrix), α ,β (scalars) and u1,u2,v1,
v2,y,z (vectors each of size N ). The benchmark consists of
four separate loop nests, each with a single statement. All
the statements have loop-independent dependences between
them. This benchmark has a 1d loop and three 2d loops. One
2d loop can be parallelized across both dimensions. The other
two 2d loops act as a reduction along one axis inducing all
three dependence types along one axis. These loops can be
parallelized across the remaining axis.
hilbert computes a 2d matrix used in linear algebra approx-
imation problems. It is calculated as:

Hi,j =
1

i + j − 1
jacobi is an iterative algorithm to solve a set of linear equa-
tions, expressed as a vector product equation. Initial guesses

for the solution are plugged into a vector representation. The
terms are solved iteratively until the algorithm converges to
a solution. This benchmark is the core of the iteration step, a
doubly nested loop to compute the next value and the error
value for each element in the 2d matrix.
mandelbrot is a kernel that computes zn+1 = z2n + c , where
z,c are complex numbers with the initial value z = 0. The
conditional execution of a statement within the loop body
requires an if-conversion pass.
saxpy is single-precision AX plus Y. This benchmark com-
bines scalarmultiplication and vector addition on two equally
sized arrays of 32-bit floating point values. Mathematically,
the computation is represented by αx⃗ + y⃗
syr2k is a BLAS [6] routine from the Polybench [30] suite.
It computes

Cout = αABT + αBAT + βC

where A,B,C are N ∗N matrices, and α ,β are scalars. Depen-
dence analysis generates one statement that can be paral-
lelized across an N ∗N domain and a second statement with
a loop-carried dependence along one axis (size N ) which
runs sequentially and parallelizable across two axes of size
N × N .
vadd performs element-wise addition of a pair of 1d vectors.
The vector sizes are varied between 8MB to 128MB. The
iteration domain size is proportional to the vector length.
fbcorr is the filterbank correlation, used in signal and im-
age processing to classify features. The implementation has
seven nested loops of which three must be run in sequential
order. The other four loops can be executed in parallel. Cur-
rent GPU hardware only supports three hardware axes. Since
all dependences are carried by the sequentially executing
loops, our optimizations will sort the parallel loops in de-
scending order of iteration domain size at runtime. The loop
with the smallest loop domain size is executed sequentially
within each parallel thread.

5.3 Hardware Platform
All the benchmarks described in Section 5.2 are evaluated on
a commodity desktop computer. The CPU is an Intel Core i7-
6700 quad-core system, with Simultaneous Multithreading
(SMT) enabled, L3 cache size 8MB, and a maximum clock
frequency of 3.4 GHz. The machine has 16GB (2 ∗ 8 GB)
DRAM with a bus clock speed of 2133 MHz.
The GPU is an Nvidia GeForce GTX-1060 with 3GB of

GDDR5 RAM, nine Streaming Multiprocessors, each with
four partitioned Single Instruction Multiple Threads (SIMT)
cores. A SIMT parallel core simultaneously executes a warp
comprising 32 threads. Each SIMT core on the GTX-1060 has
its own warp scheduler. The GPU runs at 1.5 GHz and can
be boosted to a maximum 1.7 GHz. The GPU is connected to
the CPU on a PCI-Express (PCI-E 3.0) bus.
All experiments are conducted on a native x86_64 Linux

kernel (version 4.9). ALPyNA is evaluated on the CPython
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Figure 6. Execution times (lower is better) with CPython Interpreter, NUMBA JIT-compiler and ALPyNA for Python benchmarks at
different input sizes. Logarithmic y-scale is used due to the orders of magnitude difference in execution times. When time for code analysis
and kernel compilation are factored into consideration, GPU offload becomes profitable vs CPython at relatively small iteration sizes. In
comparison with the CPU, GPU execution is profitable only at larger iteration domain spaces of kernels where the computation workload is
heavy (towards right hand side on each graph).

interpreter (version 3.5.3) along with Numpy version 1.13.3.
Numba (version 0.33.0) is used as the JIT compiler for both
CPU and GPU variants of each benchmark. Numba uses a
CUDA compiler to convert typed GPU kernels into binary
format. Our setup has Nvidia CUDA compute version 8.0.44.

5.4 Methodology
Python generates a new object from a sub-slice of the origi-
nal vector for every subscript dereference. This additional
overhead skews the results in favour of both CPU and GPU
compiled versions. To prevent this, all multi-dimensional

subscripts use tuple notation in a single subscript; tuples in
for Numpy arrays prevent temporary object creation.
Each reported execution time is the arithmetic mean of

10 runs. Each benchmark is executed with (i) CPython, (ii)
a Numba generated CPU variant of the same code, and (iii)
code generated by ALPyNA for the GPU. All benchmark
executions are set to timeout after 1.5 hours; hence the in-
terpreted versions of gemm, gemver, syr2k and fbcorr could
not be measured for larger problem sizes (see Figure 6).
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Figure 7. ALPyNA static analysis times for each benchmark.

ALPyNA’s warm-up phase for each benchmark is mea-
sured to demonstrate the low overhead of static analysis.
Figure 7 shows an overhead of around 0.1s for all bench-
marks. The black-scholes analysis takes longest—there are a
total of 66 subscript pairs (49 cross and 17 output variable
subscript pairs) to analyze amongst 13 lines of code in the tar-
get loop nest. Conditional code within the loop body creates
compiler generated predicate variables due to if-conversion
which increase the time to do static analysis.

6 Evaluation
Figure 6 shows ALPyNA, CPython interpreted, and NUMBA
JIT-compiled execution times for different input sizes over
the 12 benchmarks. The plots use a logarithmic time scale due
to the orders of magnitude difference between the CPython
interpreter and the other versions of the code. Reported GPU
performance with ALPyNA takes into account the overhead
of analysis, JIT compilation and execution. This execution
time includes the overhead of transferring data back and
forth between host and GPU. A breakdown of analysis, com-
pilation and execution times for four benchmarks is given
in prior work [17] and shows that execution time for large
domain sizes quickly dominates.

6.1 Comparison with CPython on CPU
Columns 2–4 of Table 1 report minimum, maximum, and
geometric mean speedup achieved by ALPyNA over the
CPython interpreter. The lowest speedups (1.25x min, 71x
max) are achieved for hilbert. The largest maximum speedups
(8955x) are obtained for syr2k. We have not included results
for the two largest iteration domains due to our experimental
set-up (Section 5.4) timing out. These speedups will keep
increasing exponentially, until performance levels off when
all GPU SIMT execution units are saturated.

6.2 Comparison with JIT compiled CPU code
Columns 5–7 of Table 1 report minimum, maximum and
geometric mean speedup achieved by ALPyNA over sequen-
tial JIT-compiled code produced by the NUMBA compiler.
The results are classified into three groups, based on relative
execution speedups observed.

Table 1. Relative performance of ALPyNA (higher is better) sorted
by maximum speedup over Numba CPU across all iteration sizes.
Iteration sizes corresponding to each execution time shown in
brackets.

Benchmark
Relative speedup

ALPyNA vs CPython ALPyNA vs Numba
CPU

Min Max Mean Min Max Mean
vadd 8.26 36.15 19.13 0.31 0.43 0.37

(8M) (128M) (128M) (16M)
saxpy 121.09 564.39 293.59 0.32 0.44 0.38

(16M) (256M) (256M) (16M)
conway 10.89 488.69 99.74 0.4 0.55 0.49

(1kx1k) (16kx16k) (16kx16k) (1kx1k)
hilbert 1.25 70.89 12.62 0.7 0.77 0.72

(1kx1k) (16kx16k) (1kx1k) (16kx16k)
jacobi 2.12 217.35 26.13 0.53 0.82 0.72

(512x512) (8kx8k) (8kx8k) (512x512)
gemver 13.94 260.60 63.61 0.41 0.95 0.54

(1kx1k) (8kx8k) (2kx2k) (16kx16k)
black-scholes 6.38 54.05 20.02 0.35 1.15 0.62

(1M) (16M) (1M) (16M)
fbcorr 605.23 1052.35 810.72 1.37 1.85 1.59

(16x8x (16x8x (16x8x (16x8x
256x256) 1kx1k) 256x256) 1kx1k)

conv-2d 67.39 1329.74 438.45 0.8 2.54 1.52
(1kx1k ) (16kx16k) (1kx1k) (16kx16k)

gemm 209.23 1398.95 630.21 1.15 2.64 2.05
(512x512) (2kx2k) (512x512) (4kx4k)

mandelbrot 13.22 134.44 40.56 0.33 3.08 0.85
(256x256) (4kx4k) (256x256) (4kx4k)

syr2k 39.69 8955.88 697.24 0.68 51.48 6.05
(128x128) (1kx1k) (128x128) (4kx4k)

Light parallel workloads are kernels with small amounts
of work to be done within the body of the parallelizable
loop. Benchmarks such as saxpy, conway , hilbert, jacobi and
vadd fall into this category. The analysis, compilation and
GPU data transfer overhead incurred by ALPyNA to execute
on the GPU is greater than compiling and executing the
benchmark on the CPU. Figure 6 shows that the relative
speedup remains constant for increasing iteration sizes. The
analysis time was between 0.84ms–3.7ms and ranged from
0.12–1.2% of total execution time. Kernel compilation took
0.16s–0.3s and 17.5–99.4% respectively.

Medium parallel workloads are workloads that have a
higher amount of work per parallel instance of a loop nest
than a light parallel workload. For these workloads (such as
black-scholes and gemver), it becomes profitable to offload
to the GPU at higher iteration domain sizes. In the case of
gemver, while there is enough work to be done in parallel, its
four separate loops have loop independent dependences be-
tween statements. This forces them to be run as four separate
kernels with repeated data transfer between them. ALPyNA
does not analyze dependences between loop nests to allow
for standard Python statements between loop nests which
are potentially side-effecting. The analysis time was between
4.7ms–10.7ms and ranged from 0.13–1.1% of total execution
time. Kernel compilation took 0.37s–0.92s and 10.7–94.7%
respectively.

Heavy parallel workloads are workloads where the per-
loop work is substantial. The performance boost that can
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be obtained from these kernels is substantial despite the
data communication overhead of the GPU. Kernels such as
conv-2d, gemm, mandelbrot, fbcorr and syr2k show signifi-
cant speedup at much lower iteration domain sizes. fbcorr is
classified as a heavy parallel workload, due to the consistent
speedups obtained over the JIT-compiled CPU variant. This
is due to the kernel being able to run four out of seven loops
in parallel and execute these faster than the CPU for a range
of data sizes. For these benchmarks, speedups continue to
increase with iteration domain size until GPU memory is
exhausted. The analysis time was between 1.5ms–22ms and
ranged from 0.001–10.5% of total execution time). Kernel
compilation took 0.2s–0.37s and 1.3–93% respectively.

6.3 Future Performance Optimizations
ALPyNA helps developers to accelerate Python code written
in a nested loop style. We show performance improvements
of 1.25x–8955x over the CPython interpreter on the CPU and
0.3x–50x over Numba JIT on CPU. Below we identify future
optimizations to improve ALPyNA’s performance.

Cross-iteration dependences Many benchmarks (gemm,
gemver, conv-2d, syr2k, fbcorr) have cross-iteration depen-
denceswhen represented as loop nests. This forces sequential
execution of kernels with reduced parallel work, incurring a
kernel invocation penalty. Kernel fusionmay help to mitigate
this issue, when safe to do so.

Sub-optimal GPU axes mapping ALPyNA currently dis-
tributes parallel loops along each GPU axis to maximise par-
allelism (Section 4.4). Depending on memory access patterns,
this may result in poor memory bandwidth utilization. For in-
stance, gemm performance improved by 13x by reversing the
nesting of its parallel loops. Improving performance through
better axis allocation is application-specific. We intend to
use heuristics for this problem.

Data transfer overheads ALPyNA has higher data trans-
fer costs in gemver and syr2k due to repeated data transfer
between separate loop nests (Section 4.2). and scalar expan-
sion of compiler generated variables during if-conversion
(Section 4.1.1). This impacts benchmarks like black-scholes
and mandelbrot. To reduce data transfer, we propose data-
flow analysis to enable on-device data caching. Data transfer
overheads can be eliminated on System-on-Chip devices
with integrated GPUs (such as AMD APUs). We intend to
investigate performance improvements on such devices by
adding an OpenCL compiler backend target.

7 Related Work
Accelerators like GPUs and FPGAs are now widely available.
Many techniques to leverage performance for these systems
have been proposed. In this section we review various ap-
proaches that are integrated with high-level languages.

GPU kernel bindings: Klöckner et al [20] initially de-
veloped Python bindings to CUDA (PyCUDA) and OpenCL
(PyOpenCL). While these provide direct access to the un-
derlying GPU hardware, code must be written in low-level
C-like syntax and must contain data-types. Type informa-
tion can be patched in manually into the C-like code strings.
However, this is left for the programmer to do.

Parallelizing higher order functions: Computational
patterns expressed in functional idioms like map and filter
are attractive candidates for acceleration as the semantics of
these operations guarantee safe parallel execution. Copper-
head [10] and Parakeet [34] compile and accelerate higher
order functions in Python code on GPUs. Fumero et al [14]
use the same idea to accelerate Ruby and R.

Code annotation: Tornado [11, 13] uses a set of code
annotations for Java. Loops are specifically annotated with
primitives such as @parallel and @reduce along with the
number of dimensions. A task graph is created by the de-
veloper to generate a valid schedule for code execution.
ALPyNA discovers scheduling constraints by doing loop
dependence analysis rather than requiring the programmer
to describe the schedule.
Numba [21] uses @decorator syntactic sugar to selec-

tively compile functions for CPU and GPU. Python byte-
code for decorated functions is analyzed and compiled using
the LLVM infrastructure. Numba also exposes GPU com-
piler primitives to the developer. This allows programmers
to compile a limited subset of Python code written in the
CUDA paradigm to target Nvidia GPUs. We rely on Numba
to compile ALPyNA’s auto-generated GPU kernels. However,
ALPyNA’s loop dependence analysis maintains scheduling
constraints that occur due to loop carried dependences.
Pydron [24] uses annotations to build a task graph that

decomposes a program into parallel sections for cloud-based
parallel execution. Pure functions are annotated to inform
the compiler about their suitability for parallelization.

Speculative code variants: Apollo [8] is a runtime op-
timizing polyhedral compiler. Polyhedral transformations
are performed on small windows of LLVM-IR and variants
for each transformation are generated with guard condi-
tions. These variants are speculatively executed. When a
mis-prediction occurs, execution falls back to a known cor-
rect point.

Embedded Domain Specific Languages: Some embed-
ded languages (eDSLs) can succinctly express parallelism
within a host language. Loo.py [19], allows a developer to
specify loop iteration sequences. The eDSL is embedded
into Python code and is transformed into parallel kernels.
These kernels are invoked programmatically from within
the host VM. While this approach gives maximal control to
the programmer, it also requires careful consideration of all
the underlying hardware parameters, like thread counts and
dimensions. However, no dependence analysis is done.
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Library parallelism: Many Python libraries support GPU
execution, e.g. the TensorFlow framework [1]. In such cases,
all parallelism occurs inside a black box; ‘below the API’. The
dependences are however constrained by the definition of
the API itself and hence can be specialized. Dandelion [33]
generates parallel code for C# by parallelizing overloaded
functions of specialized array-like objects for each hardware
type. The hardware devices may be selected by the developer
or left to be decided by the framework. The same approach is
used by Ikra [22] for Ruby, River Trail [16] for JavaScript and
ASDP [28] for ActionScript. Library parallelism is also im-
plemented by overloading operators calling into specialized
accelerator APIs. Python acts as a coordination language,
with all parallelism devolved to the library code.

Loop parallelism: Three Fingered Jack (TFJ) [36] uses
loop dependence analysis to parallelize linear Python for
loops and generate code for FPGAs. TFJ builds on Copper-
head [10] to statically compile nested loops with known loop
bounds and fixed types. ALPyNA uses its hybrid static/dy-
namic dependence solvers to discover an optimized parallel
execution order and also uses runtime type inference to dy-
namically create parallel kernels.

MEGAGUARDS [32] uses a polyhedral framework to solve
dependences and executes loop bodies in parallel. Loop de-
pendences are computed dynamically and guard conditions
are generated at runtime for a speculatively generated paral-
lel OpenCL kernel. The speculative kernel is optimized by
hoisting guard conditions outside the loop body.

MEGAGUARDS and ALPyNA both attempt to parallelize
nested loops and execute them on parallel hardware. How-
ever there are some differences in the approaches used. (i)
MEGAGUARDS generates kernels only for perfectly nested
loops1 while ALPyNA can create parallel kernels for imper-
fectly nested loops. (ii) MEGAGUARDS generates a parallel
kernel for perfect loop nests and uses complex guard con-
ditions to evaluate the safety of executing this kernel in
parallel. If these guard conditions are violated, execution
falls back to the interpreter. ALPyNA computes dependences
dynamically (if required) and generates kernels at runtime
tailored to the dependence relationships that emerge for each
instantiation of a loop nest. This allows for a richer set of
optimizations to be discovered. (iii) MEGAGUARDS does not
parallelize loop nests with cross-iteration true, anti or output
dependences. MEGAGUARDS falls back to the interpreter in
the presence of cross-iteration dependences. ALPyNA on the
other hand dynamically determines which loops carry cross-
iteration dependences and executes these loops sequentially
to maintain ordering constraints. This allows us to safely
execute all other inner loops in parallel. (iv) MEGAGUARDS
is designed to be a whole program compiler while ALPyNA

1A perfectly nested loop is where each loop body either contains or is con-
tained by all other loop bodies in the nest; all assignment statements are
located in the innermost loop [18].

is designed to be an optional accelerating compiler that can
be used with subsets of the overall program.

8 Conclusions
This paper describes the ALPyNA framework, which en-
ables end-user developers to exploit the performance capa-
bilities of manycore accelerators such as GPUs. The frame-
work allows a programmer to optimize Python nested loops,
achieving good performance on modern parallel hardware.
ALPyNA kernel code can co-exist with standard Python code
allowing interoperability. We show that ALPyNA overcomes
the limitations of conservative assumptions made by ahead-
of-time parallelizing compilers, since it augments statically
extracted loop nest features with runtime introspection of
loop limits and subscript values. This means exact scheduling
constraints can be extracted for parallel execution. ALPyNA
demonstrates that the loop nest is a viable syntactic target
for a runtime parallelizing JIT compiler to optimize.
Experimental evaluation of our framework shows dra-

matic performance increases, compared to the CPython in-
terpreter. These speedups are observed for workloads large
enough to amortize the costs arising from ALPyNA’s analy-
sis, kernel compilation and data transfer.
Analysis of the relative performance of the JIT-compiled

GPU kernels vis-à-vis a state-of-the-art JIT-compiled CPU
version shows a speedup ranging from 0.3x for light work-
loads (i.e. a slowdown) up to 50x for heavy workloads. We
cannot naïvely always expect a speedup from a GPU JIT
compiler, even when all the loops may be run in parallel.
Therefore, we identify the need for a dynamic cost model to
guide the selection of the most appropriate generated code
variant of a loop nest in a heterogeneous manycore environ-
ment. This remains as future work. We also intend to expand
the capabilities of ALPyNA by adding alternative target back-
ends (e.g. FPGA, system-on-chips with an integrated GPU)
to the compiler, which will require a more sophisticated cost
model for code variant selection.
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