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A FIRST-ORDER LOGIC FOR REASONING ABOUT

KNOWLEDGE AND PROBABILITY

SINIŠA TOMOVIĆ, ZORAN OGNJANOVIĆ, AND DRAGAN DODER

Abstract. We present a first-order probabilistic epistemic logic, which allows
combining operators of knowledge and probability within a group of possibly
infinitely many agents. The proposed framework is the first order extension
of the logic of Fagin and Halpern from (J.ACM 41:340-367,1994). We define
its syntax and semantics, and prove the strong completeness property of the
corresponding axiomatic system.1

Keywords: probabilistic epistemic logic, strong completeness, probabilis-
tic common knowledge, infinite number of agents

1. Introduction

Reasoning about knowledge is widely used in many applied fields such as com-
puter science, artificial intelligence, economics, game theory etc [2, 11, 3, 17]. A
particular line of research concerns the formalization in terms of multi-agent epis-
temic logics, that speak about knowledge about facts, but also about knowledge of
other agents. One of the central notions is that of common knowledge, which has
been shown as crucial for a variety of applications dealing with reaching agreements
or coordinated actions [14]. Intuitively, ϕ is common knowledge of a group of agents
exactly when everyone knows that everyone knows that everyone knows. . . that ϕ
is true.

However, it has been shown that in many practical systems common knowledge
cannot be attained [14, 10]. This motivated some researchers to consider a weaker
variant that still may be sufficient for carrying out a number of coordinated actions
[30, 17, 24]. One of the approaches proposes a probabilistic variant of common
knowledge [23], which assumes that coordinated actions hold with high probability.
A propositional logical system which formalizes that notion is presented in [8], where
Fagin and Halpern developed a joint framework for reasoning about knowledge and
probability and proposed a complete axiomatization.

We use the paper [8] as a starting point and generalize it in two ways:

First, we extend the propositional formalization from [8] by allowing reasoning
about knowledge and probability of events expressible in a first-order language.
We use the most general approach, allowing arbitrary combination of standard
epistemic operators, probability operators, first-order quantifiers and, in addition,
of probabilistic common knowledge operator. The need for first-order extension
is recognized by epistemic and probability logic communities. Wolter [36] pointed

1This paper is revised and extended version of the conference paper [34] presented at the
Thirteenth European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU 2015), in which we introduced the propositional variant of the logic
presented here, using a similar axiomatization technique.
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out that first-order common knowledge logics are of interest both from the point of
view of applications and of pure logic. He argued that first-order base is necessary
whenever the application domains are infinite (like in epistemic analysis of the
playability of games with mixed strategies), or finite, but with the cardinality of
which is not known in advance, which is a frequent case in in the field of Knowledge
Representation. Bacchus [4] gave the similar argument in the context of probability
logics, arguing that, while a domain may be finite, it is questionable if there is a
fixed upper bound on its size, and he also pointed out that there are many domains,
interesting for AI applications, that are not finite.

Second, we consider infinite number of agents. While this assumption is not of
interest in probability logic, it was studied in epistemic logic. Halpern and Shore
[16] pointed out that economies, when regarded as teams in a game, are often
modeled as having infinitely many agents and that such modeling in epistemic logic
is also convenient in the situations where the group of agents and its upper limit
are not known apriori.

The semantics for our logic consists of Kripke models enriched with probability
spaces. Each possible world contains a first order structure, each agent in each
world is equipped with a set of accessible worlds and a finitely additive probability
on measurable sets of worlds. In this paper we consider the most general semantics,
with independent modalities for knowledge and probability. Nevertheless, in Section
5.2 we show how to modify the definitions and results of our logic, in order to
capture some interesting relationships between the modalities for knowledge and
probability (previously considered in [8]), especially the semantics in which agents
assign probabilities only to the sets of worlds they consider possible.

The main result of this paper is a sound and strongly complete (“every consistent
set of sentences is satisfiable”) axiomatization. The negative result of Wolter [36]
shows that there is no finite way to axiomatize first order common knowledge logics,
and that infinitary axiomatizations are the best we can do (see Section 2.3). We
obtain completeness using infinitary rules of inference. Thus, formulas are finite,
while only proofs are allowed to be (countably) infinite. We use a Henkin-style
construction of saturated extensions of consistent theories. From the technical
point of view, we modify some of our earlier developed methods presented in [7,
22, 27, 28].2 Although we use an alternative axiomatization for the epistemic part
of logic (i.e., different from original axiomatization given in [8, 15]), we prove that
standard axioms are derivable in our system.

There are several papers on completeness of epistemic logics with common knowl-
edge.

In propositional case, a finitary axiomatization, which is weakly complete (“every
consistent formula is satisfiable”), is obtained by Halpern and Moses [15] using a
fixed-point axiom for common knowledge. On the other hand, strong completeness
for any finitary axiomatization is impossible, due to lack of compactness (see Section
2.3). Strongly complete axiomatic systems are proposed in [32, 5]. They contain
an infinitary inference rule, similar to one of our rules3, for capturing semantic
relationship between the operators of group knowledge and common knowledge.

2For the detailed overview of the approach, we refer the reader to [29]. A similar approach is
later used in [37].

3It is easy to check that our inference rule RC from Section 3 generalize the rule from [32, 5],
due to presence of probability operators.
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In first-order case, the set of valid formulas is not recursively enumerable [36] and,
consequently, there is no complete finitary axiomatization. One way to overcome
this problem is by including infinite formulas in the language as in [33]. A logic
with finite formulas, but an infinitary inference rule, is proposed in [21], while a
Genzen-style axiomatization with an inifinitary rule is presented in [32]. On the
other hand, a finitary axiomatization of monadic fragments of the logic, without
function symbols and equality, is proposed in [31].

Fagin and Halpern [8] proposed a joint frame for reasoning about knowledge
and probability. Following the approach from [9], they extended the propositional
epistemic language with formulas which express linear combinations of probabilities,
i.e., the formulas of the form a1p(ϕ1) + ... + akp(ϕk) ≥ b, where a1, .., ak, b ∈ Q,
k ≥ 1. They proposed a finitary axiomatization and proved weak completeness,
using the small model theorem. Our axiomatization technique is different. Since
in the first order case a complete finitary axiomatization is not possible, we use
infinitary rules and we prove strong completeness using Henkin-style method. We
use unary probability operators and we axiomatize the probabilistic part of our
logic following the techniques from [29]. In particular, our logic incorporates the
single-agent probability logic LFOP1 from [28]. However, our approach can be
easily extended to include linear combinations of probabilities, similarly as it was
done in [6, 26].

We point out that all the above mentioned logics do not support infinite group of
agents, so the group knowledge operator is defined as the conjunction of knowledge
of individual agents. A weakly complete axiomatization for common knowledge
with infinite number of agents (in non-probabilistic setting) is presented in [16]. In
our approach, the knowledge operators of groups and individual agents are related
via an infinitary rule (RE from Section 3).

The rest of the paper is organized as follows: In Section 2 we introduce Syntax
and Semantics. Section 3 provides the axiomatization of our logic system, followed
by the proofs of its soundness. In Section 4 we prove several theorems, including
Deduction theorem and Strong necessitation. The completeness result is proven
in Section 5. Section 6 we consider an extension of our logic by incorporating
consistency condition [8]. The concluding remarks are given in Section 7.

2. Syntax and sematics

In this section we present the syntax and semantics of our logic, that we call
PCKfo.4 Since the main goal of this paper is to combine the epistemic first order
logic with reasoning about probability, our language extends a first order language
with both epistemic operators, and the operators for reasoning about probabil-
ity and probabilistic knowledge. We introduce the set of formulas based on this
language and the corresponding possible world semantics, and we define the satis-
fiability relation.

2.1. Syntax. Let [0, 1]Q be the set of rational numbers from the real interval [0, 1],
N the set of non-negative integers, A an at most countable set of agents, and G a
countable set of nonempty subsets of A.

The language LPCKfo of the logic PCKfo contains:

4
PCK stands for “probabilistic common knowledge”, while fo indicates that our logic is a

first-order logic.
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• a countable set of variables V ar = {x1, x2, . . . },
• m-ary relation symbols Rm

0 , R
m
1 , . . . and function symbols fm

0 , f
m
1 , . . . for

every integer m ≥ 0,
• Boolean connectives ∧ and ¬, and the first-order quantifier ∀,
• unary modal knowledge operators Ki, EG, CG, for every i ∈ A and G ∈ G,
• unary probability operator Pi,≥r and the operators for probabilistic knowl-
edge Er

G and Cr
G, where i ∈ A, G ∈ G, r ∈ [0, 1]Q.

By the standard convention, constants are 0−ary function symbols. Terms and
atomic formulas are defined in the same way as in the classical first-order logic.

Definition 2.1 (Formula). The set of formulas ForPCKfo is the least set contain-
ing all atomic formulas such that: if ϕ, ψ ∈ ForPCKfo then ¬ϕ, ϕ∧ψ, Kiϕ, EGϕ,
CGϕ, E

r
Gϕ, C

r
Gϕ, Pi,≥rϕ ∈ ForPCKfo , for every i ∈ A, G ∈ G and r ∈ [0, 1]Q.

We use the standard abbreviations to introduce other Boolean connectives →,
∨ and ↔, the quantifier ∃ and the symbols ⊥,⊤. We also introduce the operator
Kr

i (for i ∈ A and r ∈ [0, 1]Q) in the following way: the formula Kr
i ϕ abbreviates

Ki(Pi,≥rϕ).
The meanings of the operators of our logic are as follows.

• Kiϕ is read as “agent i knows ϕ” and EGϕ as “everyone in the group
G knows ϕ”. The formula CGϕ is read “ϕ is common knowledge among
the agents in G”, which means that everyone (from G) knows ϕ, everyone
knows that everyone knows ϕ, etc.

Example. The sentence “everyone in the group G knows that if agent i
doesn’t know ϕ, then ψ is common knowledge in G”, is written as

EG(¬Kiϕ→ CGψ).

• The probabilistic formula Pi,≥rϕ says that the probability that formula ϕ
holds is at least r according to the agent i.

• Kr
i ϕ abbreviates the formula Ki(Pi,≥rϕ). It means that agent i knows that

the probability of ϕ is at least r.

Example. Suppose that agent i considers two only possible scenarios for
an event ϕ, and that each of these scenarios puts a different probability
space on events. In the first scenario, the probability of ϕ is 1/2, and in
the second one it is 1/4. Therefore, the agent knows that probability of ϕ
is at least 1/4, i.e., Ki(Pi,≥1/4ϕ).

• Er
Gϕ denotes that everyone in the group G knows that the probability of ϕ

is at least r. Once Kr
i ϕ is introduced, Er

G is defined as a straightforward
probabilistic generalization of the operator EG.

• Cr
Gϕ denotes that it is a common knowledge in the group G that the prob-

ability of ϕ is at least r. For a given threshold r ∈ [0, 1]Q, C
r
G represents a

generalization of non-probabilistic operator CG.

Example. The formula

Es
G(Ki(∃x)ϕ(x) ∧ ¬C

r
Gψ)

says that everyone in the group G knows that the probability that both agent
i knows that ϕ(x) holds for some x, and that ψ is not common knowledge
among the agents in G with probability at least r, is at least s.
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Note that the other types of probabilistic operators can also be introduced as
abbreviations: Pi,<rϕ is ¬Pi,≥rϕ, Pi,≤rϕ is Pi,≥1−r¬ϕ, Pi,>rϕ is ¬Pi,≤rϕ and
Pi,=rϕ is Pi,≤rϕ ∧ Pi,≥rϕ.

Now we define what we mean by a sentence and a theory. The following definition
uses the notion free variable, which is defined in the same way as in the classical
first-order logic.

Definition 2.2 (Sentence). A formula with no free variables is called a sentence.
The set of all sentences is denoted by SentPCKfo . A set of sentences is called
theory.

Next we introduce a special kind of formulas in the implicative form, called
k-nested implications, which will have an important role in our axiomatization.

Definition 2.3 (k-nested implication). Let τ ∈ ForPCKfo be a formula and let and
k ∈ N. Let θ = (θ0, . . . , θk) be a sequence of k formulas, and X = (X1, . . . , Xk) a
sequence of knowledge and probability operators from {Ki | i ∈ A} ∪ {Pi,≥1 | i ∈ A}.
The k-nested implication formula Φk,θ,X(τ) is defined inductively, as follows:

Φk,θ,X(τ) =

{

θ0 → τ, k = 0

θk → XkΦk−1(τ, (θ,X)k−1
j=0 ), k ≥ 1.

For example, if X = (Ka, Pb,≥1,Kc), a, b, c ∈ A, then

Φ3,θ,X(τ) = θ3 → Kc(θ2 → Pb,≥1(θ1 → Ka(θ0 → τ))).

The structure of these k-nested implications is shown to be convenient for the
proof of Deduction theorem (Theorem 4.1) and Strong necessitation theorem (The-
orem 4.2).

2.2. Semantics. The semantic approach for PCKfo extends the classical possible-
worlds model for epistemic logics, with probabilistic spaces.

Definition 2.4 (PCKfo model). A PCKfo model is a Kripke structure for knowl-
edge and probability which is represented by a tuple

M = (S,D, I,K,P),

where:

• S is a nonempty set of states (or possible worlds)
• D is a nonempty domain
• I associates an interpretation I(s) with each state s in S such that for all
i ∈ A and all k,m ∈ N:

– I(s)(fm
k ) is a function from Dm to D,

– for each s′ ∈ S, I(s′)(fm
k ) = I(s)(fm

k )
– I(s)(Rm

k ) is a subset of Dm,

• K = {Ki | i ∈ A} is a set of binary relations on S. We denote Ki(s)
def
= {t ∈

s | (s, t) ∈ Ki}, and write sKit if t ∈ Ki(s).
• P associates to every agent i ∈ A and every state s ∈ S a probability space
P(i, s) = (Si,s, χi,s, µi,s), such that

– Si,s is a non-empty subset of S,
– χi,s is an algebra of subsets of Si,s, whose elements are called measur-

able sets, and
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– µi,s : χi,s → [0, 1] is a finitely-additive probability measure ie.
∗ µi,s(Si,s) = 1 and
∗ µi,s(A ∪B) = µi,s(A) + µi,s(B) if A ∩B = ∅, A,B ∈ χi,s.

In the previous definition we assume that the domain is fixed (i.e., the domain
is same in all the worlds) and that the terms are rigid, i.e., for every model their
meanings are the same in all worlds. Intuitively, the first assumption means that it
is common knowledge which objects exist. Note that the second assumption implies
that it is common knowledge which object a constant designates. As it is pointed
out in [31], the first assumption is natural for all those application domains that
deal not with knowledge about the existence of certain objects, but rather with
knowledge about facts. Also, the two assumptions allow us to give semantics of
probabilistic formulas which is similar to the objectual interpretation for first order
modal logics [12].

Note that those standard assumptions for modal logics are essential to ensure
validity of all first-order axioms. For example, if the terms are not rigid, the classical
first order axiom

∀ϕ(x)→ ϕ(t),

where the term t is free for x in ϕ, would not be valid (an example is given in [13]).
Similarly, Barcan formula (axiom FO3 in Section 3) holds only for fixed domain
models.

For a model M = (S,D, I,K,P) be a PCKfo, the notion of variable valuation
is defined in the usual way: a variable valuation v is a function which assigns the
elements of the domain to the variables, ie., v : V ar→ D. If v is a valuation, then
v[d/x] is a valuation identical to v, with exception that v[d/x](x) = d.

Definition 2.5 (Value of a term). The value of a term t in a state s with respect
to v, denoted by I(s)(t)v , is defined in the following way:

• if t ∈ V ar, then I(s)(t)v = v(t),
• if t = F k

j (t1, . . . , tk), then I(s)(t)v = I(s)(F k
j )(I(s)(t1)v, . . . , I(s)(tk)v).

The next definition will use the following knowledge operators, which we intro-
duce in the inductive way:

• (EG)
1ϕ = EGϕ

• (EG)
m+1ϕ = EG((EG)

kϕ), m ∈ N

• (F r
G)

0ϕ = ⊤
• (F r

G)
m+1ϕ = Er

G(ϕ ∧ (F r
G)

mϕ), m ∈ N.

Now we define satisfiability of formulas from in the states of introduced models.

Definition 2.6 (Satisfiability relation). Satisfiability of formula ϕ in a state s ∈ S
of a model M , under a valuation v, denoted by

(M, s, v) |= ϕ,

is defined in the following way:

• (M, s, v) |= P k
j (t1, . . . , tk) iff (I(s)(t1)v, . . . , I(s)(tk)v) ∈ I(s)(P

k
j )

• (M, s, v) |= ¬ϕ iff (M, s, v) 6|= ϕ
• (M, s, v) |= ϕ ∧ ψ iff (M, s, v) |= ϕ and (M, s, v) |= ψ
• (M, s, v) |= (∀x)ϕ iff for every d ∈ D, (M, s, v[d/x]) |= ϕ
• (M, s, v) |= Kiϕ iff (M, t, v) |= ϕ for all t ∈ Ki(s)
• (M, s, v) |= EGϕ iff (M, s, v) |= Kiϕ for all i ∈ G
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• (M, s, v) |= CGϕ iff (M, s, v) |= (EG)
mϕ for every m ∈ N

• (M, s, v) |= Pi,≥rϕ iff µi,s({t ∈ Si,s | (M, t, v) |= ϕ}) ≥ r
• (M, s, v) |= Er

Gϕ iff (M, s, v) |= Kr
i ϕ for all i ∈ G

• (M, s, v) |= Cr
Gϕ iff (M, s, v) |= (F r

G)
mϕ for every m ∈ N

Remark. The semantic definition of the probabilistic common knowledge operator
Cr

G from the last item of Definition 2.6 is first proposed by Fagin and Halpern in
[8], as a generalization of the operator CG regarded as the infinite conjunction of all
degrees of group knowledge. It is important to mention that this is not the only pro-
posal for generalizing the nonprobabilistic case. Monderer and Samet [23] proposed
a more intuitive definition, where probabilistic common knowledge is semantically
equivalent to the infinite conjunction of the formulas Er

Gϕ, (E
r
G)

2ϕ, (Er
G)

3ϕ . . . Al-
though both are legitimate probabilistic generalizations, in this paper we accept
the definition of Fagin and Halpern [8], who argued that their proposal seems
more adequate for the analysis of problems like probabilistic coordinated attack
and Byzantine agreement protocols [17]. As we point out in the Conclusion, our
axiomatization approach can be easily modified in order to capture the definition
of Monderer and Samet.

If (M, s, v) |= ϕ holds for every valuation v we write (M, s) |= ϕ. If (M, s) |= ϕ
for all s ∈ S, we write M |= ϕ.

Definition 2.7 (Satisfiability of sentences). A sentence ϕ is satisfiable if there is
a state s in some model M such that (M, s) |= ϕ. A set of sentences T is satisfiable
if there exists a state s in a model M such that (M, s) |= ϕ for each ϕ ∈ T . A
sentence ϕ is valid, if ¬ϕ is not satisfiable.

Note that in the previous definition the satisfiability of sentences doesn’t depend
on a valuation, since they ton’t contain any free variable.

In order to keep the satisfiability relation well-defined, here we consider only the
models in which all the sets of the form

[ϕ]vi,s = {s ∈ Si,s | (M, s, v) |= ϕ},

are measurable.

Definition 2.8 (Measurable model). A model M = (S,D, I,K,P) is a measurable
models if

[ϕ]vi,s ∈ χi,s,

for every formula ϕ, valuation v, state s and agent i. We denote the class of all
these models as MMEAS

A .

Observe that if ϕ is a sentence then the set [ϕ]vi,s doesn’t depend on v, thus

we relax the notation by denoting it by [ϕ]i,s. Also, we write µi,s([ϕ]) instead of
µi,s([ϕ]i,s).

2.3. Axiomatization issues. At the end of this section we analyze two common
characteristics of epistemic logics and probability logics, which have impacts on
their axiomatizations.

The first one is the non-compactness phenomena – there are unsatisfiable sets of
formulas such that all their finite subsets are satisfiable. The existence of such sets
in epistemic logic is a consequence of the fact that the common knowledge operator
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CG can be semantically seen as an infinite conjunction of all the degrees of the
group knowledge operator EG, which leads to the example

{(EG)
mϕ |m ∈ N} ∪ {¬CGϕ}.

In real-valued probability logics, a standard example of unsatisfiable set whose finite
subsets are all satisfiable is

{Pi,≥1− 1

n
ϕ |m ∈ N} ∪ {¬Pi, 6=1ϕ},

where ϕ is a satisfiable sentence which is not valid. One significant consequence
of non-compactness is that there is no finitary axiomatization which is strongly
complete [35], i.e., simple completeness is the most one can achieve.

In the first order case, situation is even worse. Namely, the set of valid formulas is
not recursively enumerable, neither for first order logic with common knowledge [36]
nor for first order probability logics [1] (moreover, even their monadic fragments
suffer from the same drawback [29, 36]). This means that there is no finitary
axiomatization which could be (even simply) complete. An approach for overcoming
this issue, proposed by Wolter [36], is to consider infinitary logics as the only
interesting alternative.

In this paper, we introduce the axiomatization with ω-rules (inference rules
with countably many premises) [28, 5]. This allows us to keep the object language
countable, and to move infinity to meta language only: the formulas are finite,
while only proofs are allowed to be infinite.

3. The axiomatization AxPCKfo

In this section we introduce the axiomatic system for the logic PCKfo, denoted
by AxPCKfo . It consists of the following axiom schemata and rules of inference:

I First-order axioms and rules

Prop. All instances of tautologies of the propositional calculus

MP.
ϕ, ϕ→ ψ

ψ
(Modus Ponens)

FO1. ∀x(ϕ→ ψ)→ (ϕ→ ∀xψ), where x is not a free variable un ϕ
FO2. ∀ϕ(x) → ϕ(t), where ϕ(t) is the result of substitution of all free

occurences of x in ϕ(x)
by a term t which is free for x in ϕ(x)

FO3. ∀xKiϕ(x)→ Ki∀xϕ(x) (Barcan formula)

FOR.
ϕ

∀xϕ

II Axioms and rules for reasoning about knowledge

AK. (Kiϕ ∧Ki(ϕ→ ψ))→ Kiψ, i ∈ G (Distribution Axiom)

RK.
ϕ

Kiϕ
(Knowledge Necessitation)

AE. EGϕ→ Kiϕ, i ∈ G

RE.
{Φk,θ,X(Kiϕ) | i ∈ G}

Φk,θ,X(EGϕ)
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AC. CGϕ→ (EG)
mϕ,m ∈ N

RC.
{Φk,θ,X((EG)

mϕ) |m ∈ N}

Φk,θ,X(CGϕ)

III Axioms and rule for reasoning about probabilities

P1. Pi,≥0ϕ
P2. Pi,≤rϕ→ Pi,<tϕ, t > r
P3. Pi,<tϕ→ Pi,≤tϕ
P4. (Pi,≥rϕ ∧ Pi,≥tψ ∧ Pi,≥1¬(ϕ ∧ ψ))→ Pi,≥min(1,r+t)(ϕ ∨ ψ)
P5. (Pi,≤rϕ ∧ Pi,<tϕ)→ Pi,<r+t(ϕ ∨ ψ), r + t ≤ 1

RP.
ϕ

Pi,≥1ϕ
(Probabilistic Necessitation)

RA.
{Φk,θ,X(Pi,≥r− 1

m
ϕ) |m ≥ 1

r , m ∈ N }

Φk,θ,X(Pi,≥rϕ)
, r ∈ (0, 1]Q (Archimedean rule)

IV Axioms and rules for reasoning about probabilistic knowledge

APE. Er
Gϕ→ Kr

i ϕ, i ∈ G

RPE.
{Φk,θ,X(Kr

i ϕ) | i ∈ G}

Φk,θ,X(Er
Gϕ)

APC. Cr
Gϕ→ (F r

G)
mϕ, m ∈ N

RPC.
{Φk,θ,X(F r

G)
mϕ) |m ∈ N}

Φk,θ,X(Cr
Gϕ)

The given axioms and rules are divided in four groups, according to the type of
reasoning. The first group contains the standard axiomatization for first-order logic
and, in addition, a variant of the well-known axiom for modal logics, called Barcan
formula. It is proved that Barcan formula holds in the class of all first-order fixed
domain modal models, and that it is independent from the other modal axioms
[20, 19]. The second group contains axioms and rules for epistemic reasoning. AK
and RK are classical Distribution axiom and Necessitation rule for the knowledge
operator. The axiom AE and the rule RE are novel; they properly relate the
knowledge operators and the operator of group knowledge EG, regardless of the
cardinality of the group G. Similarly, AC and RC properly relate the operators EG

and CG. The infinitary rule RC is a generalization of the rule InfC from [5]. The
third group contains multi-agent variant of a standard axiomatization for reasoning
about probability [29]. The infinitary rule RA is a variant of so called Archimedean
rule, generalized by incorporating the k-nested implications, in a similar way as it
has been done in [22] in purely probabilistic settings. This rule informally says that
if probability of a formula is considered by an agent i to be arbitrary close to some
number r, then, according to the agent i, the probability of the fomula must be
equal to r. The last group consist of novel axioms and rules which allow reasoning
about probabilistic knowledge. They properly capture the semantic relationship
between the operators Kr

i , E
r
G, F

r
G and Cr

G, and they are in spirit similar to the
last four axioms and rules from the second group.

Note that we use the structure of these k-nested implications in all of our infini-
tary inference rules. As we have already mentioned, the reason is that this form
allows us to prove Deduction theorem and Strong necessitation theorem. Note that
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by choosing k = 0, θ0 = ⊤ in the inference rules RE, RC, RPE, RPC, we obtain
the intuitive forms of the rules:

{Kiϕ, | i ∈ G}

EGϕ
,
{(EG)

mϕ | ∀m ≥ 1}

CGϕ
,
{Kr

i ϕ | i ∈ G}

Er
Gϕ

,
{(F r

G)
mϕ, | ∀m ≥ 0}

Cr
Gϕ

.

Next we define some basic notions of proof theory.

Definition 3.1. A formula ϕ is a theorem, denoted by ⊢ ϕ, if there is an at most
countable sequence of formulas ϕ0, ϕ1, . . . , ϕλ+1 (λ is a finite or countable ordinal5)
of formulas from ForPCKfo , such that ϕλ+1 = ϕ, and every ϕi is an instance of
some axiom schemata or is obtained from the preceding formulas by an inference
rule.

A formula ϕ is derivable from a set T of formulas (T ⊢ ϕ) if there is an at most
countable sequence of formulas ϕ0, ϕ1, . . . , ϕλ+1 (λ is a finite or countable ordinal)
such that ϕλ+1 = ϕ, and each ϕi is an instance of some axiom schemata or a
formula from the set T , or it is obtained from the previous formulas by an inference
rule, with the exception that the premises of the inference rules RK and RP must
be theorems. The corresponding sequence of formulas is a proof for ϕ from T .

A set of formulas T is deductively closed if it contains all the formulas derivable
from T , i.e., ϕ ∈ T whenever T ⊢ ϕ.

Obviously, a formula is a theorem iff it is derivable from the empty set. Now we
introduce the notions of consistency and maximal consistency.

Definition 3.2. A set T of formulas is inconsistent if T ⊢ ϕ for every formula
ϕ, otherwise it is consistent. A set T of formulas is maximal consistent if it is
consistent, and each proper superset of T is inconsistent.

It is easy to see that T is inconsistent iff T ⊢ ⊥.
In the proof of completeness theorem, we will use a special type of maximal

consistent sets, called saturated sets.

Definition 3.3. A set T of formulas is saturated iff it is maximal consistent and
the following condition holds:

if ¬(∀x)ϕ(x) ∈ T , then there is a term t such that ¬ϕ(t) ∈ T .

Note the notions of deductive closeness, maximal consistency and saturates sets
are defined for formulas, but they can be defined for theories (sets of sentences)
in the same way. We omit the formal definitions here, since they would have the
identical form as the ones above, but we will use the mentioned notions in the
following sections.

The following result shows that the proposed axioms from AxPCKfo are valid,
and the inference rules preserve validity.

Theorem 3.4 (Soundness). The axiomatic system AxPCKfo is sound with respect
to the class of PCKfo models.

Proof. The soundness of the propositional part follows directly from the fact that
interpretation of ∧ and ¬ in the definition of |= relation is the same as in the
propositional calculus. The proofs for FO1. and FOR. are standard.

5Ie. the length of a proof is an at most countable successor ordinal.
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AE. AC. and APC. follow immediately from the semantics of operators EG, CG

and Cr
G.

FO2. Let (M, s) |= (∀x)ϕ(x). Then (M, s, v) |= (∀x)ϕ(x) for every valuation v.
Note that for every v, among all valuations there must be a valuation v′ such that
v′(s)(x) = d = I(s)(t)v and (M, s, v′) |= ϕ(x). From the equivalence (M, s, v′) |=
ϕ(x) iff (M, s, v) |= ϕ(t), we obtain that (M, s, v) |= ϕ(t) holds for every valuation.
Thus, every instance of FO2 is valid.

FO3. (Barcan formula) Suppose that (M, s) |= (∀x)Kiϕ(x), ie. for each eval-
uation v, (M, s, v) |= (∀x)Kiϕ(x). Then for each valuation v and every d ∈ D,
(M, s, v[d/x]) |= Kiϕ(x). Therefore for every v and d and every t ∈ Ki(s), we
have (M, t, v[d/x]) |= ϕ(x). Thus, for every t ∈ Ki(s), and every valuation v,
(M, t, v) |= (∀x)ϕ(x). Finally, since for every t ∈ Ki(s), (M, t) |= (∀x)ϕ(x), we
have (M, s) |= Ki(∀x)ϕ(x).

RC. We will prove by induction on k that if (M, s, v) |= Φk,θ,X((EG)
mϕ), for all

m ∈ N, then also (M, s, v) |= Φk,θ,X(CGϕ), for each state s and valuation v of any
Kripke structure M :

Induction base k = 0. Let (M, s, v) |= θ0 → (EG)
mϕ, for all m ∈ N. Assume

that it is not (M, s, v) |= θ0 → CGϕ, i.e.,

(M, s, v) |= θ0 ∧ ¬CGϕ. (3.0.1)

Then (M, s, v) |= (EG)
mϕ, for all m ∈ N, and therefore (M, s, v) |= CGϕ (by the

definition of the satisfiability relation), which contradicts (3.0.1).
Inductive step. Let (M, s, v) |= Φk+1,θ,X((EG)

mϕ), for all m ∈ N.
SupposeXk+1 = Ki for some i ∈ A ie. (M, s, v) |= θk+1 → KiΦk,θ,X((EG)

mϕ), for all m ∈
N. Assume the opposite, that (M, s, v) 6|= Φk+1,θ,X(CGϕ), ie. (M, s, v) |= θk+1 ∧
¬KiΦk,θ,X(CGϕ). Then also (M, s, v) |= KiΦk,θ,X((EG)

mϕ), for all m ∈ N, so for
every state t ∈ Ki(s) we have that (M, t, v) |= Φk,θ,X((EG)

mϕ), for all m ∈ N,
and by the induction hypothesis (M, t, v) |= Φk,θ,X(CGϕ). Therefore (M, s, v) |=
KiΦk,θ,X(CGϕ), leading to a contradiction.

On the other hand, letXk+1 = Pi,≥1, i ∈ A i.e. (M, s, v) |= θk+1 → Pi,≥1Φk,θ,X((EG)
mϕ), for all m ∈

N. Otherwise, if (M, s, v) 6|= Φk+1,θ,X(CGϕ), then (M, s, v) |= θk+1∧¬Pi,≥1Φk,θ,X(CGϕ),
so (M, s, v) |= Pi,≥1Φk,θ,X((EG)

mϕ) for every m ∈ N, m ≥ 1
r . This implies there

is a subset U ⊆ Si,s such that µi,s(U) = 1 and for all u ∈ U , m ∈ N, m ≥ 1
r :

(M,u, v) |= Φk,θ,X((EG)
mϕ). Then (M,u, v) |= Φk,θ,X(CGϕ) for all u ∈ U by the

induction hypothesis, so (M, s, v) |= Pi,≥1Φk,θ,X(CGϕ), which is a contradiction.

RA. We prove the soundness of this rule by induction on k, ie. if (M, s, v) |=
Φk,θ,X(Pi,≥r− 1

m
ϕ) for every m ∈ N, m ≥ 1

r and r > 0, given some model M , state

s and valuation v, then (M, s, v) |= Φk,θ,X(Pi,≥rϕ).
Induction base k = 0. This case follows by the properties of the real numbers.
Inductive step. Let (M, s, v) |= Φk+1,θ,X(Pi,≥r− 1

m
ϕ) and Xk+1 = Pi,≥1, i ∈ A

ie. (M, s, v) |= θk+1 → Pi,≥1Φk,θ,X(Pi,≥r− 1

m
ϕ) for every m ∈ N, m ≥ 1

r . As-

sume the opposite, that (M, s, v) 6|= Φk+1,θ,X(Pi,≥rϕ). Then (M, s, v) |= θk+1 ∧
¬Pi,≥1Φk,θ,X(Pi,≥rϕ), so (M, s, v) |= Pi,≥1Φk,θ,X(Pi,≥r− 1

m
ϕ) for every m ∈ N,

m ≥ 1
r . Therefore, there exists a subset U ⊆ Si,s such that µi,s(U) = 1 and

for all u ∈ U , m ∈ N, m ≥ 1
r : (M,u, v) |= Φk,θ,X(Pi,≥r− 1

m
ϕ). Then, by

the induction hypothesis, we have (M,u, v) |= Φk,θ,X(Pi,≥r) for all u ∈ U , so
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(M, s, v) |= Pi,≥1Φk,θ,X(Pi,≥rϕ), which is a contradiction. The proof follows simi-
larly as for RC if Xk+1 = Ki, i ∈ A.

RPC. Now we show that rule RPC preserves validity by induction on k.
Let us prove the implication: if (M, s, v) |= Φk,θ,X((F r

G)
mϕ), for all m ∈ N, and

PCKfo
∞ -models M , then also (M, s, v) |= Φk,θ,X(Cr

Gϕ), for each state s in M :
Induction base k = 0. Suppose (M, s, v) |= θ0 → (F r

G)
mϕ for all m ∈ N. If it is

not (M, s, v) |= θ0 → Cr
Gϕ, i.e. (M, s, v) |= θ0 ∧ ¬Cr

Gϕ, then (M, s, v) |= (F r
G)

mϕ,
for all m ∈ N. Therefore (M, s, v) |= Cr

Gϕ, which is a contradiction.
Inductive step. Let (M, s, v) |= Φk+1,θ,X((F r

G)
mϕ), for all m ∈ N .

SupposeXk+1 = Ki, i ∈ A i.e. (M, s, v) |= θk+1 → KiΦk,θ,X((F r
G)

mϕ), for all m ∈
N. If s 6|= Φk+1,θ,X(Cr

Gϕ), i.e. (M, s, v) |= θk+1 ∧ ¬KiΦk,θ,X(Cr
Gϕ) (*), then

(M, s, v) |= KiΦk,θ,X((F r
G)

mϕ), for all m ∈ N. So for each t ∈ Ki(s) we have
(M, t, v) |= Φk,θ,X((F r

G)
mϕ). By the induction hypothesis on k it follows that

(M, t, v) |= Φk,θ,X(Cr
Gϕ). But then (M, s, v) |= KiΦk,θ,X(Cr

Gϕ) which contradicts
(*).

LetXk+1 = Pi,≥1, i ∈ A i.e. (M, s, v) |= θk+1 → Pi,≥1Φk,θ,X((F r
G)

mϕ), for all m ∈
N. Otherwise, if (M, s, v) 6|= Φk+1,θ,X(CGϕ), then (M, s, v) |= θk+1∧¬Pi,≥1Φk,θ,X(Cr

Gϕ),
so (M, s, v) |= Pi,≥1Φk,θ,X((F r

G)
mϕ) for every m ∈ N, m ≥ 1

r . Therefore, there is

a subset U ⊆ Si,s such that µi,s(U) = 1 and for all u ∈ U , m ∈ N, m ≥ 1
r :

(M,u, v) |= Φk,θ,X((F r
G)

mϕ). Then (M,u, v) |= Φk,θ,X(Cr
Gϕ) for all u ∈ U by

the induction hypothesis, so (M, s, v) |= Pi,≥1Φk,θ,X(Cr
Gϕ) which is a contradic-

tion. �

4. Some theorems of PCKfo

In this section we prove several theorems. Some of them will be useful in proving
the completeness of the axiomatization AxPCKfo . We start with the deduction
theorem. Since we will frequently use this theorem, we will not always explicitly
mention it in the proofs.

Theorem 4.1 (Deduction theorem). If T is a theory and ϕ, ψ are sentences, then
T ∪ {ϕ} ⊢ ψ implies T ⊢ ϕ→ ψ.

Proof. We use the transfinite induction on the length of the proof of ψ from T∪{ϕ}.
The case ψ = ϕ is obvious; if ψ is an axiom, then ⊢ ψ, so T ⊢ ψ, and therefore
T ⊢ ϕ→ ψ. If ψ was obtained by rule RK, ie. ψ = Kiϕ where ϕ is a theorem, then
⊢ Kiϕ (by R2), that is, ⊢ ψ, so T ⊢ ϕ → ψ. The reasoning is analogous for cases
of other inference rules that require a theorem as a premise. Now we consider the
case where ψ was obtained by rule RPC. The proof for the other infinitary rules is
similar.

Let T, ϕ ⊢ {Φk,θ,X((F r
G)

mη) |m ∈ N} ⊢ ψ where ψ = Φk,θ,X(Cr
Gη), k ≥ 1. Then

T ⊢ ϕ→ Φk,θ,X((F r
G)

mη), for all m ∈ N, by the induction hypothesis.

Suppose Xk = Ki, for some i ∈ A .

T ⊢ ϕ→ (θk → KiΦk−1,θ,X((F r
G)

mη)), by the definition of Φk

T ⊢ (ϕ ∧ θk)→ KiΦk−1,θ,X((F r
G)

mη), by the propositional tautology
(p→ (q → r))←→ ((p ∧ q)→ r).

Let θ = (θ0, . . . , θk−1, ϕ ∧ θk). Then we have:

T ⊢ θk → KiΦk−1,θ,X((F r
G)

mη), for all m ∈ N
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T ⊢ Φk,θ,X((F r
G)

mη), for all m ∈ N

T ⊢ Φk,θ,X(Cr
Gη) by RPC

T ⊢ (ϕ ∧ θk)→ KiΦk−1,θ,X(Cr
Gη)

T ⊢ ϕ→ (θk → KiΦk−1,θ,X(Cr
Gη)

T ⊢ ϕ→ Φk,θ,X(Cr
Gη)

T ⊢ ϕ→ ψ.

The case when Xk = Pi,≥1, for some i ∈ A can be proved in the same way, by
replacing Ki with Pi,≥1. The case k = 0 also follows in a similar way. �

Next we prove several results about purely epistemic part of our logic. First we
show that the strong variant of necessitation for knowledge operator is a conse-
quence of the axiomatization AxPCKfo . This theorem will have an important role
in the proof of completeness theorem, in the construction of the canonical model.

First we need to introduce some notation. For a given set of formulas T and
i ∈ A, we define the set KiT as the set of all formulas Kiϕ, where ϕ belongs to T ,
i.e.

KiT = {Kiϕ |ϕ ∈ T }.

Theorem 4.2 (Strong necessitation). If T is a theory and T ⊢ ϕ, then KiT ⊢ Kiϕ,
for all i ∈ A.

Proof. Let T ⊢ ϕ. We will prove KiT ⊢ Kiϕ using the transfinite induction on the
length of proof of T ⊢ ϕ. Here we will only consider the application of rules FOR
and RPC, while the cases when we apply the other infinitary rules are similar as
the proof for RCP.

1) Suppose that T ⊢ ϕ, where ϕ = (∀x)ψ, was obtained from T ⊢ ψ by the
inference rule FOR.

Then:

T ⊢ ψ by the assumption
KiT ⊢ Kiψ by the induction hypothesis
KiT ⊢ (∀x)Kiψ by FOR
KiT ⊢ Ki(∀x)ψ by Barcan formula

2) Suppose that T ⊢ ϕ where ϕ = Φk,θ,X(Cr
Gψ) was derived by application of

RPC. Then:

T ⊢ Φk,θ,X((F r
G)

mψ), for all m ∈ N

KiT ⊢ KiΦk,θ,X((F r
G)

mψ), for all m ∈ N, by induction hypothesis
KiT ⊢ ⊤ → KiΦk,θ,X((F r

G)
mψ), for all m ∈ N

KiT ⊢ Φk+1,θ,X((F r
G)

mψ), where θ = (θ,⊤) and X = (X,Ki).

KiT ⊢ Φk+1,θ,X(Cr
Gψ), by RPC

KiT ⊢ ⊤ → KiΦk,θ,X(Cr
Gψ)

KiT ⊢ ⊤ → Kiϕ
KiT ⊢ Kiϕ. �

As a consequence, we also obtain strong necessitation for the operators of group
knowledge. As we will see later, this result is necessary to prove so-called fixed-point
axiom for common knowledge operator.

Corollary 4.3. If T is a theory and T ⊢ ϕ, then EGT ⊢ EGϕ, for all G ⊆ A.
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Proof. Let T ⊢ ϕ. For every i ∈ G, we have EGT ⊢ KiT by the axiom AE, and
KiT ⊢ Kiϕ, by Theorem 4.2. Since by the rule RE, where we choose k = 0 and
θ0 = ⊤, we have

{Kiϕ | i ∈ G} ⊢ EGϕ,

we obtain EGT ⊢ EGϕ. �

Now we show that some standard properties of epistemic operators can be proved
in AxPCKfo .

Proposition 4.4. Let ϕ, ψ, ϕj , j = 1, . . . ,m be formulas, i ∈ A and G ∈ G. Then:

(1) ⊢ Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)
(2) ⊢ EG(ϕ→ ψ)→ (EGϕ→ EGψ)
(3) ⊢ CG(ϕ→ ψ)→ (CGϕ→ CGψ)

(4) ⊢ Ki(
m
∧

j=1

ϕj) ≡
m
∧

j=1

Kiϕj , ∀i ∈ G,

(5) ⊢ EG(
m
∧

j=1

ϕj) ≡
m
∧

j=1

EGϕj

(6) ⊢ CGϕ→ EG(ϕ ∧ CGϕ)

Proof.

(1) follows directly from AK.
(2) We use the following derivation:

EGϕ ∧ EG(ϕ→ ψ) ⊢ {Kiϕ ∧Ki(ϕ→ ψ) | ∀i ∈ G} (by AE)

⊢ {Kiψ | ∀i ∈ G} (by AK)

⊢ EGψ (by RE)

Therefore, by Deduction theorem ⊢ EGϕ ∧ EG(ϕ → ψ) → EGψ, i.e., ⊢
EG(ϕ→ ψ)→ (EGϕ→ EGψ).

(3) Let us first prove, using the induction on n, that

⊢ (EG)
m(ϕ→ ψ)→ ((EG)

mϕ→ (EG)
mψ) (4.0.1)

holds for every m ∈ N.
Induction base is proved in the previous part of this proposition (2).
Induction step:
⊢ (EG)

m(ϕ→ ψ)→ ((EG)
mϕ→ (EG)

mψ), induction hypothesis
⊢ Ki((EG)

m(ϕ→ ψ)→ ((EG)
mϕ→ (EG)

mψ)), ∀i ∈ G, by RK
⊢ EG((EG)

m(ϕ→ ψ)→ ((EG)
mϕ→ (EG)

mψ)), by RE
⊢ EG((EG)

m(ϕ → ψ) → ((EG)
mϕ → (EG)

mψ)) → (Em+1
G (ϕ → ψ) →

EG((EG)
mϕ→ (EG)

mψ)), by induction base
⊢ (EG)

m+1(ϕ→ ψ)→ EG((EG)
mϕ→ (EG)

mψ), by previous two
⊢ EG((EG)

mϕ→ (EG)
mψ)→ ((EG)

m+1ϕ→ (EG)
m+1ψ), by induction

base
⊢ (EG)

m+1(ϕ→ ψ)→ ((EG)
m+1ϕ→ (EG)

m+1ψ), by previous two.
Thus, (4.0.1) holds. Next,

CGϕ ∧ CG(ϕ→ ψ) ⊢ {(EG)
mϕ ∧ (EG)

m(ϕ→ ψ) | ∀m ∈ N} (by AC)

⊢ {(EG)
mψ | ∀m ∈ N} (by (4.0.1))

⊢ CGψ (by RC)

Then ⊢ CG(ϕ→ ψ)→ (CGϕ→ CGψ), by Deduction theorem.
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(4) This standard result in modal logics follows from Distribution axiom and
propositional reasoning.

(5) First we prove that EG(
m
∧

j=1

ϕj) implies
m
∧

j=1

EGϕj .

EG(

m
∧

j=1

ϕj) ⊢ {Ki(

m
∧

j=1

ϕj) | i ∈ G} (by AE)

⊢ {
m
∧

j=1

Kiϕj | i ∈ G} (by the previous part of the proposition (4))

⊢
m
⋃

j=1

{Kiϕj | i ∈ G} (since
m
∧

j=1

Kiϕj → Kiϕj , ∀j = 1, ...,m)

⊢
m
⋃

j=1

{EGϕj | i ∈ G} (by RE)

⊢
m
∧

j=1

EGϕj (by propositional reasoning)

Conversely,

m
∧

j=1

EGϕj ⊢ {Kiϕ1 | i ∈ G} ∪ {Kiϕ2 | i ∈ G} ∪ ... ∪ {Kiϕm | i ∈ G} (by AE)

⊢ {
m
∧

j=1

Kiϕj | i ∈ G}

⊢ {Ki(

m
∧

j=1

ϕj) | i ∈ G} (by the previous part of the proposition (4))

⊢ EG(

m
∧

j=1

ϕj) (by RE)

Therefore, by Deduction theorem we have that ⊢ EG(
m
∧

j=1

ϕj) ≡
m
∧

j=1

EGϕj .

(6) ⊢ CGϕ→ EG{(EG)
mϕ |m ∈ N}, by AC

EG{(EG)
mϕ |m ∈ N} ⊢ EGCGϕ, by RC and Corollary 4.3

⊢ CGϕ→ EGCGϕ, by previous two
⊢ CGϕ→ EGϕ, by AC
⊢ CGϕ → EG(ϕ ∧ CGϕ), by previous two and the previous part (5) of

the proposition.

�

Note that (3) and (6) (the fixed-point axiom) are two standard axioms of epis-
temic logic with common knowledge [8, 15]. The axiom (3) is often written in an
equivalent form

(CGϕ ∧ CG(ϕ→ ψ))→ CGψ.

The previous result shows that they are provable in our axiomatic system AxPCKfo .
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The standard axiomatization for epistemic logics (with finitely many agents)
[8, 15] also includes one axiom for group knowledge operator, which states that
group knowledge EGϕ is equivalent to the conjunction of Kiϕ, where all the agents
i from the group are considered. The next result shows that both that axiom and
its probabilistic variant hold in our logic.

Proposition 4.5. Let ϕ be a formula, r ∈ [0, 1]Q, and let G ∈ G be a finite set of
agents. Then the following hold.

(1) ⊢ EGϕ ≡
∧

i∈GKiϕ
(2) ⊢ Er

Gϕ ≡
∧

i∈GK
r
i ϕ

Proof.

(1) From the axiom AE, using propositional reasoning, we can obtain ⊢ EGϕ→
∧

i∈GKiϕ. On the other hand, from the inference rule RE, choosing k = 0
and θ0 = ⊤, we obtain {Kiϕ | i ∈ G} ⊢ EGϕ, i.e.,

∧

i∈GKiϕ ⊢ EGϕ, so
⊢
∧

i∈GKiϕ→ EGϕ follows from Deduction theorem.
(2) This result can be proved in the same way as the first statement, using the

obvious analogies between the axioms AE and APE, and the rules RE and
RPE.

�

Note that the distribution properties of the epistemic operators Ki, EG and CG,
proved in Proposition 4.4 (1)-(3), cannot be directly transferred to the properties
of the corresponding operators of probabilistic knowledge. For example, it is easy
to see that Er

G(ϕ→ ψ)→ (Er
Gϕ→ Er

Gψ) is not a valid formula.6 Nevertheless, we
can prove that probabilistic versions of knowledge, group knowledge and common
knowledge are closed under consequences.

Proposition 4.6. Let ϕ and ψ be formulas such that ⊢ ϕ → ψ. Let r ∈ [0, 1]Q,
i ∈ A and G ∈ G. Then:

(1) ⊢ Kr
i ϕ→ Kr

i ψ
(2) ⊢ Er

Gϕ→ Er
Gψ

(3) ⊢ Cr
Gϕ→ Cr

Gψ

Proof.

(1) Note that

⊢ Ki(Pi,≥1(ϕ→ ψ)→ (Pi,≥rϕ→ Pi,≥rψ))→ (KiPi,≥1(ϕ→ ψ)→ Ki(Pi,≥rϕ→ Pi,≥rψ))
(4.0.2)

by Proposition 4.4(1). From the assumption ⊢ ϕ → ψ, applying the rule
RP and then the rule RK, we obtain

⊢ K1
i (ϕ→ ψ). (4.0.3)

Note that ⊢ ¬ϕ ∨ ¬⊥ (a propositional tautology), so

⊢ Pi,≥1(¬ϕ ∨ ¬⊥), by RP (4.0.4)

Also, ⊢ ¬(ϕ ∧ ¬⊥) ∨ ¬¬ϕ, so

⊢ Pi,≥1(¬(ϕ ∧ ¬⊥) ∨ ¬¬ϕ), by RP (4.0.5)

6On the other hand, it can be shown that the formula E1

G
(ϕ → ψ) → (Er

G
ϕ → Er

G
ψ) is valid

and it is a theorem of our logic (see (4.0.13)).
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By P4 we have ⊢ (Pi,≥rϕ∧Pi,≥0¬⊥∧Pi,≥1(¬ϕ ∨ ¬⊥))→ Pi,≥1(ϕ ∨⊥),
so

⊢ Pi,≥rϕ→ Pi,≥r(ϕ ∨ ⊥), by (4.0.4) using the instance Pi,≥0¬⊥ of P1 (4.0.6)

The formula Pi,≥r(ϕ ∨ ⊥) denotes Pi,≥r¬(¬ϕ ∧ ¬⊥), which is the same
as Pi,≥1−(1−r)¬(¬ϕ ∧ ¬⊥), and can be abbreviated as Pi,≤1−r(¬ϕ ∧ ¬⊥).
Similarly, ¬Pi,≥r¬¬ϕ denotes Pi,<r¬¬ϕ. From P5 we obtain ⊢ (Pi,≤1−r(¬ϕ ∧ ¬⊥)∧
Pi,<r¬¬ϕ)→ Pi,<1((¬ϕ ∧ ¬⊥) ∨ ¬¬ϕ).

Since Pi,≥1(¬(ϕ ∧ ¬⊥) ∨ ¬¬ϕ) denotes ¬Pi,<1((¬ϕ ∧ ¬⊥) ∨ ¬¬ϕ), from
(4.0.5) we have
⊢ (Pi,≤1−r(¬ϕ ∧ ¬⊥)∧Pi,<r¬¬ϕ)→ Pi,<1((¬ϕ ∧ ¬⊥) ∨ ¬¬ϕ)∧¬Pi,<1((¬ϕ ∧ ¬⊥) ∨ ¬¬ϕ)),

by P5, and therefore ⊢ Pi,≤1−r(¬ϕ ∧ ¬⊥)→ Pi,<r¬¬ϕ, i.e.,

⊢ Pi,≥r(ϕ ∨⊥)→ Pi,≥r¬¬ϕ (4.0.7)

From (4.0.6) and (4.0.7) we obtain ⊢ Pi,≥r(ϕ) → Pi,≥r¬¬ϕ. The nega-
tion of the formula

Pi,≥1(ϕ→ ψ)→ (Pi,≥rϕ→ Pi,≥rψ) (4.0.8)

is equivalent to Pi,≥1(¬ϕ∨ψ)∧Pi,≥rϕ∧Pi,<rψ. Since Pi,≥rϕ→ Pi,≥r¬¬ϕ,
then Pi,≥1(¬ϕ∨ψ)∧Pi,≥r¬¬ϕ∧Pi,<rψ, which can be written as Pi,≥1(¬ϕ∨
ψ) ∧ Pi,≤1−r¬ϕ ∧ Pi,<rψ. Then ⊢ Pi,≤1−r¬ϕ ∧ Pi,<rψ → Pi,<r(¬ϕ ∨
ψ), by P5, and since Pi,<1ϕ is an abbreviation for ¬Pi,≥1ϕ, we have ⊢
¬(Pi,≥1(ϕ→ ψ)→ (Pi,≥rϕ→ Pi,≥rψ))→ Pi,≥1(¬ϕ∨ψ)∧¬Pi,≥1(¬ϕ∨ψ),
a contradiction. Thus, the formula (4.0.8) is a theorem of our axiomatiza-
tion. By applying the rule RK to the theorem, we obtain

⊢ Ki(Pi,≥1(ϕ→ ψ)→ (Pi,≥rϕ→ Pi,≥rψ)) (4.0.9)

From (4.0.2) and (4.0.9) we obtain

⊢ KiPi,≥1(ϕ→ ψ)→ Ki(Pi,≥rϕ→ Pi,≥rψ). (4.0.10)

By Proposition 4.4(1), we have

⊢ Ki(Pi,≥rϕ→ Pi,≥rψ)→ (KiPi,≥rϕ→ KiPi,≥rψ). (4.0.11)

From (4.0.10) and (4.0.11), we obtain ⊢ KiPi,≥1(ϕ→ ψ) → (KiPi,≥rϕ →
KiPi,≥rψ), i.e.,

⊢ K1
i (ϕ→ ψ)→ (Kr

i ϕ→ Kr
i ψ). (4.0.12)

Finally, from (4.0.3) and (4.0.12) we obtain ⊢ Kr
i ϕ→ Kr

i ψ.
(2) We start with the following derivation:

Er
Gϕ ∧ E

1
G(ϕ→ ψ) ⊢ {Kr

i ϕ ∧K
1
i (ϕ→ ψ) | ∀i ∈ G}, by APE

⊢ {Kr
i ψ | ∀i ∈ G}, by (4.0.12)

⊢ Er
Gψ, by RPE

Therefore,

⊢ E1
G(ϕ→ ψ)→ (Er

Gϕ→ Er
Gψ) (4.0.13)

by Deduction theorem. From (4.0.4), using the rule RPE we obtain

⊢ E1
G(ϕ→ ψ). (4.0.14)

Finally, from (4.0.13) and (4.0.14) we obtain ⊢ Er
Gϕ→ Er

Gψ.
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(3) First we prove that

⊢ (F r
G)

mϕ→ (F r
G)

mψ (4.0.15)

holds for every m. We prove the claim by induction.
Induction base follows trivially since (F r

G)
0ϕ = ⊤.

Suppose that ⊢ (F r
G)

mϕ→ (F r
G)

mψ (induction hypothesis).
⊢ (ϕ ∧ (F r

G)
mϕ)→ (ϕ ∧ (F r

G)
mψ)

⊢ Pi,≥1((ϕ ∧ (F r
G)

mϕ)→ (ϕ ∧ (F r
G)

mψ)), ∀i ∈ G, by RP
⊢ KiPi,≥1((ϕ ∧ (F r

G)
mϕ)→ (ϕ ∧ (F r

G)
mψ)), ∀i ∈ G, by RK

⊢ E1
G((ϕ ∧ (F r

G)
mϕ)→ (ϕ ∧ (F r

G)
mψ)), by RPE

⊢ E1
G((ϕ ∧ (F r

G)
mϕ) → (ϕ ∧ (F r

G)
mψ)) → (Er

G(ϕ ∧ (F r
G)

mϕ) → Er
G(ϕ ∧

(F r
G)

mψ)), by (4.0.13)
⊢ Er

G(ϕ ∧ (F r
G)

mϕ)→ Er
G(ϕ ∧ (F r

G)
mψ) by previous two, ie.

⊢ (F r
G)

m+1ϕ→ (F r
G)

m+1ψ.
Thus, (4.0.15) holds.

Cr
Gϕ ⊢ {(F

r
G)

mϕ | ∀m ∈ N0} (by APC)

⊢ {(F r
G)

mψ | ∀m ∈ N0} , by (4.0.15)

⊢ Cr
Gψ , by RPC

Now ⊢ Cr
Gϕ→ Cr

Gψ follows from Deduction theorem.

�

At the end of this section, we prove several results about maximal consistent
sets with respect to our axiomatic system. Those results will be useful in proving
the Truth lemma.

Lemma 4.7. Let T be a maximal consistent set of formulas for AxPCKfo . Then
T satisfies the following properties:

(1) for every formula ϕ, exactly one of ϕ and ¬ϕ is in T ,
(2) T is deductively closed,
(3) ϕ ∧ ψ ∈ T iff ϕ ∈ T and ψ ∈ T ,
(4) if {ϕ, ϕ→ ψ} ⊆ T , then ψ ∈ T ,
(5) if r = sup {q ∈ [0, 1]Q |Pi,≥qϕ ∈ T } and r ∈ [0, 1]Q, then Pi,≥rϕ ∈ T .

Proof.

(1) If both formulas ϕ,¬ϕ ∈ T , T would be inconsistent. Suppose ϕ 6∈ T .
Since T is maximal, T ∪{ϕ} is inconsistent, and by the Deduction theorem
T ⊢ ¬ϕ. Similarly, if ¬ϕ 6∈ T , then T ⊢ ϕ. Therefore, if both formulas
ϕ,¬ϕ 6∈ T , set T would be inconsistent, so exactly one of them is in T .

(2) Otherwise, if there is some ϕ such that T ⊢ ϕ and ϕ 6∈ T then, by the
previous part of this lemma, ¬ϕ ∈ T , so T would be inconsistent.

(3) Suppose ϕ ∈ T and ψ ∈ T . Then T ⊢ ϕ, T ⊢ ψ, T ⊢ ϕ ∧ ψ and ϕ ∧ ψ ∈ T ,
because T is deductively closed by Lemma 4.7(2). For the other direction,
let ϕ ∧ ψ ∈ T . Then T ⊢ ϕ ∧ ψ, T ⊢ (ϕ ∧ ψ)→ ϕ, T ⊢ (ϕ ∧ ψ)→ ψ, T ⊢ ϕ
and T ⊢ ψ. Therefore ϕ, ψ ∈ T , by Lemma 4.7(2).

(4) If {ϕ, ϕ → ψ} ⊆ T , then T ⊢ ϕ, T ⊢ ϕ → ψ and T ⊢ ψ, so ψ ∈ T by
Lemma 4.7(2).

(5) Let r = sup {q |Pi,≥qϕ ∈ T }, thus T ⊢ Pi,≥qϕ for every q < r, q ∈ [0, 1]Q.
Then by the Archimedean rule RA, we have that T ⊢ Pi,≥rϕ. Therefore
Pi,≥rϕ ∈ T by Lemma 4.7(2).
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�

Lemma 4.8. Let V be a maximal consistent set of formulas.

(1) EGϕ ∈ V iff ( Kiϕ ∈ V for all i ∈ G )

(2) Er
Gϕ ∈ V iff ( Kr

i ϕ ∈ V for all i ∈ G )

(3) CGϕ ∈ V iff ( (EG)
mϕ ∈ V for all m ∈ N )

(4) Cr
Gϕ ∈ V iff ((F r

G)
mϕ ∈ V for all m ∈ N)

Proof. For the proof of (1), suppose that EGϕ ∈ V . SinceEGϕ→ Kiϕ, for all i ∈ G
is the axiom AE, then also EGϕ → Kiϕ ∈ V for all i ∈ G. Therefore Kiϕ ∈ V
for all i ∈ G by Lemma 4.7(4) because V is maximal consistent. For the other
direction, if Kiϕ ∈ V for all i ∈ G, and since {Kiϕ | i ∈ G} ⊢ EGϕ (by the rule
RE, where k = 0 and θ0 = ⊤), we have that EGϕ ∈ V , by Lemma 4.7(2).

The cases (2), (3) and (4) can be proved in a similar way, by replacing EGϕ, Kiϕ,
for all i ∈ G, axiom AE and rule RE with Er

Gϕ,K
r
i ϕ, for all i ∈ G, APE, RPE (case

(2)), CGϕ, (EG)
mϕ, for all m ∈ N, AC, RC (case (3)), and Cr

Gϕ, (F
r
G)

mϕ for all m ∈
N, APC, RPC (case (4)), respectively. �

5. Completeness

In this section we prove that the axiomatic system AxPCKfo is strongly complete
for the class of measurableMMEAS

A models, using a Henkin-style construction [18].
We prove completeness in three steps. First, we extend a theory T to a saturated
theory T ∗ step by step, in an infinite process, considering in each step one sentence
and checking its consistency with the considered theory in that step. Due to the
presence of infinitary rules, we modify the standard completion technique in the
case that the considered sentence can be derived by an infinitary rules, by adding
the negation of one of the premisses of the rule. Second, we use the saturated
theories to construct a special PCKfo model, that we will call canonical model,
and we show that it belongs to the classMMEAS

A . Finally, using the saturation T ∗

of the considered theory T , we show that T is satisfiable in the corresponding state
sT∗ of the canonical model.

5.1. Lindenbaum’s theorem. We start with the Henkin construction of satu-
rated extensions of theories. For that purpose, we consider a broader language,
obtained by adding countably many novel constant symbols.

Theorem 5.1 (Lindenbaum’s theorem). Let T be a consistent theory in the lan-
guage LPCKfo , and C an infinite enumerable set of new constant symbols (i.e.
C∩LPCKfo = ∅). Then T can be extended to a saturated theory T ∗ in the language
L∗ = LPCKfo ∪ C.

Proof. Let {ϕi | i ∈ N} be an enumeration of all sentences in SentPCKfo . Let C
be an infinite enumerable set of constant symbols such that C ∩ LPCKfo = ∅. We
define the family of theories (Ti)i∈N, and the set T ∗ in the following way:

1. T0 = T .
2. For every i ∈ N:

a. if Ti ∪ {ϕi} is consistent, then Ti+1 = Ti ∪ {ϕi}

b. if Ti ∪ {ϕi} is inconsistent, and
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b1. ϕi = Φk,θ,X(EGϕ), then Ti+1 = Ti ∪ {¬ϕi,¬Φk,θ,X(Kjϕ)},
for some j ∈ G such that Ti+1 is consistent

b2. ϕi = Φk,θ,X(CGϕ), then Ti+1 = Ti ∪ {¬ϕi,¬Φk,θ,X((EG)
mϕ)},

for some m ∈ N such that Ti+1 is consistent
b3. ϕi = Φk,θ,X(Er

Gϕ), then Ti+1 = Ti ∪ {¬ϕi,¬Φk,θ,X(Kr
jϕ)},

for some j ∈ G such that Ti+1 is consistent
b4. ϕi = Φk,θ,X(Cr

Gϕ), then Ti+1 = Ti ∪ {¬ϕi,¬Φk,θ,X((F r
G)

mϕ)}, for some
m ∈ N such that Ti+1 is consistent

b5. ϕi = Φk,θ,X(Pi,≥rϕ), then Ti+1 = Ti ∪ {¬ϕi,¬Φk,θ,X(Pi,≥r− 1

m
ϕ)}, for

some m ∈ N such that Ti+1 is consistent
b6. ϕi = (∀x)ϕ(x), then Ti+1 = Ti ∪ {¬ϕi,¬ϕ(c)} for some constant symbol

c ∈ C which doesn’t occur in any of the formulas from Ti such that Ti+1 remains
consistent

c. Otherwise, Ti+1 = Ti ∪ {¬ϕi}.

3. T ∗ =
∞
⋃

i=0

Ti.

First we need to prove that the set T ∗ is well defined, i.e. we need to show that
the agents j ∈ G used the steps b1. and b3. exist, that the numbers m ∈ N used
in the steps b2., b4. and b5. exist, and that the constant c ∈ C from the step b6.
exists. Let us prove correctness in step b4. exists, i.e., that if Ti ∪ {Φk,θ,X(Cr

Gϕ)}
is inconsistent, then there exists m ≥ 1 such that Ti ∪ {¬Φk,θ,X((F r

G)
mϕ)} is con-

sistent. Otherwise, if Ti ∪ {¬Φk,θ,X((F b
G)

mϕ)} would be inconsistent for every
m, then Ti ⊢ Φk,θ,X((F r

G)
mϕ) for each m by Deduction theorem, and therefore

Ti ⊢ Φk,θ,X(Cr
Gϕ) by the inference rule RPC. But since Ti ∪ {Φk,θ,X(Cr

Gϕ)} is
inconsistent, we have Ti ⊢ ¬Φk,θ,X(Cr

Gϕ), which is in a contradiction with consis-
tency of Ti. In a similar way we can prove existence of j and m in the steps b1-b5.,
where the other infinitary rules are considered. Let us now consider the case b6.
It is obvious that the formula ¬(∀x)ϕ(x) can be consistently added to Ti, and if
there is already some c ∈ C such that ¬ϕ(c) ∈ Ti, the proof is finished. If there is
no such c, observe that Ti is constructed by adding finitely many formulas to T , so
there is a constant symbol c ∈ C which does not appear in Ti. Let us show that
we can choose that c in b6. If we suppose that Ti ∪ {¬(∀x)ϕ(x),¬β(c)} ⊢ ⊥, then
by Deduction theorem we have Ti,¬(∀x)ϕ(x) ⊢ ϕ(c). Note that c does not appear
in Ti ∪ {¬(∀x)ϕ(x)}, and therefore Ti,¬(∀x)ϕ(x) ⊢ (∀x)ϕ(x), which is impossible.
Thus, the sets Ti are well defined. Note that they are consistent by construction.

Next we prove that T ∗ is deductively closed, using the induction on the length of
proof. The proof is straightforward in the case of finitary rules. Here we will only
prove that T ∗ is closed under the rule RPC, since the cases when other infinitary
rules are considered can be treated in a similar way.

Suppose T ∗ ⊢ φ was obtained by RPC, where Φk,θ,X((F r
G)

nϕ) ∈ T ∗ for all n ∈ N,
and φ = Φk,θ,X(Cr

Gϕ). Assume that Φk,θ,X(Cr
Gϕ) 6∈ T ∗. Let i be the positive

integer such that ϕi = Φk,θ,X(Cr
Gϕ). Then Ti∪{ϕi} is inconsistent, since otherwise

Φk,θ,X(Cr
Gϕ) = ϕi ∈ Ti+1 ⊂ T ∗. Therefore Ti+1 = Ti ∪ {¬Φk,θ,X((F r

G)
mϕ)} for

some m, so ¬Φk,θ,X((F r
G)

mϕ) ∈ T ∗, which contradicts the consistency of Tj .
If we would suppose T is inconsistent, i.e. T ∗ ⊢ ⊥, then we would have ⊥ ∈ T ∗

since T ∗ is deductively closed. Therefore, there would be some i such that ⊥ ∈ Ti,
which is impossible. Thus, T ∗ is consistent.
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Finally, the step b6. of the construction guaranties that the theory T ∗ is satu-
rated in the language L∗. �

5.2. Canonical model. Now we construct a special Kripke structure, whose set
of states consists of saturated theories. First we need to introduce some notation.
For a given set of formulas T and i ∈ A, we define the set T/Ki as the set of all
formulas ϕ, such Kiϕ belongs to T , i.e.

T/Ki = {ϕ |Kiϕ ∈ T }.

Definition 5.2 (Canonical model). The canonical model is the structure M∗ =
(S,D, I,K,P), such that

• S = {sV | V is a saturated theory}
• D is the set of all variable-free terms
• Ki = {(sV , sU ) | V/Ki ⊆ U}, K = {Ki | i ∈ A}
• I(s) is an interpretation such that:

– for each function symbol fk
j , I(s)(f

k
j ) is a function from Dk to D

such that for all variable-free terms t1, · · · , tk, I(s)(fk
j ) :(t1, · · · , tk)→

fk
j (t1, · · · , tk)

– for each relational symbol Rk
j ,

I(s)(Rk
j ) = {(t1, · · · , tk) | t1, · · · , tk are variable-free terms in Rk

j (t1, · · · , tk) ∈
V, where s = sV }

• P(i, s) = (Si,s, χi,s, µi,s), where
– Si,s = S
– χi,s = {[ϕ]i,s |ϕ ∈ SentPCK}, where [ϕ]i,s = {sV ∈ Si,s |ϕ ∈ V }
– if [ϕ]i,s ∈ χi,s then µi,s([ϕ]i,s) = sup {r |Pi,≥rϕ ∈ V , where s = sV }

Note that the sets [ϕ]i,s in the definition of the canonical mode actually don’t
depend on i and s, so in the rest o this section we will sometimes relax the notation
by omitting the subscript.

Also, since there is a bijection between saturated theories and states of canonical
model, we will often write just s when we denote either a state of the corresponding
saturated theory. For example, we can write the last item of the definition above
as µi,s([ϕ]i,s) = sup {r |Pi,≥rϕ ∈ s}.

Now we will show that M∗ is a PCKfo model. First we need show that each
P(i, s) defines a is a probability space. In specific, we prove that the definition of
µi,s is correct, i.e., that µi,s([ϕ]i,s) doesn’t depend on the way we choose a sentence
from the class [ϕ]i,s.

Lemma 5.3. LetM∗ = (S,D, I,K,P) be the canonical model. Then for each agent
i ∈ A and s ∈ S the following hold.7

(1) If ϕ and ψ are two sentences such that [ϕ]i,s = [ψ]i,s, then sup {r |Pi,≥rψ ∈
s} = sup {r |Pi,≥rϕ ∈ s}

(2) P(i, s) is a is a probability space.

Proof.

7The proof of Lemma 5.3 is essentially the same as the proofs of corresponding statements in
single-agent probability logics [29]. We present it here for the completeness of the paper, and also
because some steps in the proof will be useful for the proof of Theorem 6.3.
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(1) If [ϕ]i,s = [ψ]i,s, then ϕ and ψ belong to the same saturated theories,
so ⊢ ϕ ≡ ψ. From ⊢ ϕ → ψ we obtain ⊢ Pi,≥1(ϕ → ψ) by RA, and
therefore for every r we have ⊢ Pi,≥rϕ→ Pi,≥rψ by (4.0.8). Consequently,
Pi,≥rϕ→ Pi,≥rψ ∈ s. If Pi,≥rϕ ∈ s then, by Lemma 4.7(4), also Pi,≥rψ ∈ s.
Therefore, sup {r |Pi,≥rψ ∈ s} ≥ sup {r |Pi,≥rϕ ∈ s}. In the same way we
can prove sup {r |Pi,≥rψ ∈ s} ≤ sup {r |Pi,≥rϕ ∈ s} using ⊢ ψ → ϕ.

(2) First we show that for each agent i ∈ A and s ∈ S, the class χi,s =
{[ϕ] |ϕ ∈ SentPCK∞

} is an algebra of subsets of Si,s. Obviously, we have
that Si,s = [ϕ ∨ ¬ϕ], for every formula ϕ. Also, if [ϕ] ∈ χi,s, then [¬ϕ] is a
complement of the set [ϕ], and it belongs to χi,s Finally, if [ϕ1], [ϕ2] ∈ χi,s,
then [ϕ1] ∪ [ϕ2] ∈ χi,s because [ϕ1] ∪ [ϕ2] = [ϕ1 ∨ ϕ2]. Therefore, each χi,s

is an algebra of subsets of Si,s.
Note that from the axiom Pi,≥oϕ we can obtain µi,s([ϕ]) ≥ 0. Next we

show µi,s([ϕ]) = 1 − µi,s([¬ϕ]). Suppose q = µi,s([ϕ]) = sup {r |Pi,≥rϕ ∈
s}. If q = 1, then Pi,≥rϕ = Pi,≤0¬ϕ = ¬Pi,>0¬ϕ and ¬Pi,>0¬ϕ ∈ s. If
for some l > 0, Pi,≥l¬ϕ ∈ s then Pi,>0¬ϕ ∈ s, by axiom P2, which is a
contradiction. Therefore, µi,s([ϕ]) = 1. Suppose q < 1. Then for every
rational number q′ ∈ (q, 1], ¬Pi,≥q′ϕ = Pi,<q′ϕ, so Pi,<q′ϕ ∈ s. Then
by P2, Pi,≤q′ϕ and Pi,≥1−q′¬ϕ ∈ s. On the other hand, if there is a
rational q′′ ∈ [0, r) such that Pi,≥1−q′′¬ϕ ∈ s, then ¬Pi,>q′′ ∈ s, which is a
contradiction. Therefore, sup {r |Pi,≥r¬ϕ ∈ s} = 1 − sup {r |Pi,≥rϕ ∈ s}.
Thus, µi,s([ϕ]) = 1 − µi,s([¬ϕ]). Let [ϕ]i,s ∩ [ψ]i,s = ∅, µi,s([ϕ]) = q,
µi,s([ψ]) = l. Since [ψ]i,s ⊂ [¬ϕ]i,s, it follows that q + l ≤ q + (1 − q) = 1.
Suppose that q, l > 0. Because of supremum and monotonicity properties,
for all rational numbers q′ ∈ [0, q) and l′ ∈ [0, l): Pi,≥q′ϕ, Pi,≥l′ψ ∈ s. Then
Pi,≥q′+l′(ϕ ∨ ψ) ∈ s by P4. Therefore, q + l ≤ sup {r |Pi,≥r(ϕ ∨ ψ) ∈ s}.
If q + l = 1, the statement is obviously valid. Suppose q + l < 1. If
q + l < r0 =≤ sup {r |Pi,≥r(ϕ ∨ ψ) ∈ s}, then for each rational r′ ∈ (q +
l, r0), Pi,≥r′(ϕ ∨ ψ) ∈ s . Let us choose rational q′′ > q and s′′ > s such
that ¬Pi,≥q′′ϕ, Pi,<q′′ϕ ∈ s, ¬Pi,≥l′′ψ, Pi,<l′′ψ ∈ s and q′′ + l′′ = r′ ≤ 1.
Then Pi,≤q′′ϕ ∈ s by the axiom P3. And by P5 we have Pi,≤q′′+′l′′(ϕ ∨ψ),
¬Pi,≥q′′+′l′′(ϕ∨ψ) and ¬Pi,≥r′(ϕ∨ψ), which is a contradiction. Therefore
µi,s([ϕ] ∪ [ψ]) = µi,s([ϕ]) + µi,s([ψ]). Finally, let us assume that q = 0 or
l = 0. In that case we can repeat the previous reasoning, by taking either
q′ = 0 or l′ = 0.

�

The previous result still doesn’t ensure that M∗ belongs to the classMMEAS
A .

Indeed, in Definition 5.2 the sets [ϕ] from χi,s are defined using ϕ ∈ T , and not
(M∗, sT ) |= ϕ. However, the following lemma shows that the former and later
coincide.

Lemma 5.4 (Truth lemma). Let T be a saturated theory. Then

ϕ ∈ T iff (M∗, sT ) |= ϕ.

Proof. We prove the equivalence by induction on complexity of ϕ:

- If the formula ϕ is atomic, then ϕ ∈ T iff (M∗, sT ) |= ϕ, by the definition of
I(s) in M∗.

- Let ϕ = ¬ψ. Then (M∗, sT ) |= ¬ψ iff (M∗, sT ) 6|= ψ iff ψ 6∈ T (induction
hypothesis) iff ¬ψ ∈ T .
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- Let ϕ = ψ ∧ η. Then (M∗, sT ) |= ψ ∧ η iff (M∗, sT ) |= ψ and (M∗, sT ) |= η iff
ψ ∈ T and η ∈ T (induction hypothesis) iff ψ ∧ η ∈ T by Lemma 4.7(3).

- Let ϕ = (∀x)ψ and ϕ ∈ T . Then ψ(t/x) for all t ∈ D by FO2. It follows that
(M∗, sT ) |= ψ(t/x) for all t ∈ D by induction hypothesis, and therefore (M∗, sT ) |=
(∀x)ψ. In other direction, let (M∗, sT ) |= (∀x)ψ and assume the opposite ie.
ϕ = (∀x)ψ 6∈ T . Then there exists some term t ∈ D such that (M∗, sT ) |= ¬ψ(t/x)
( T is saturated), leading to a contradiction (M∗, sT ) 6|= (∀x)ψ.

-Let ϕ = Pi,≥rψ. If ϕ ∈ T then sup {q |Pi,≥qψ ∈ T } = µi,sT ([ψ]) ≥ r and
(M∗, sT ) |= Pi,≥rψ. In other direction, let (M∗, sT ) |= Pi,≥rψ, i.e., sup {q |Pi,≥qψ ∈
T } ≥ r. If µi,sT ([ψ]) > r, then Pi,≥rψ ∈ T because of the properties of supremum
and monotonicity of the probability measure µi,sT . If µi,sT ([ψ]) = r then Pi,≥rψ ∈
T by Lemma 4.7(5).

- Suppose ϕ = Kiψ. Let Kiψ ∈ T . Since ψ ∈ T/Ki, then ψ ∈ U for every U
such that sTKisU (by the definition of Ki). Therefore (M∗, sU ) |= ψ by induction
hypothesis (ψ is subformula of Kiψ), and then (M∗, sT ) |= Kiψ.

Let (M∗, sT ) |= Kiψ. Assume the opposite, that Kiψ 6∈ T . Then T/Ki ∪ {¬ψ}
must be consistent. If it wouldn’t be consistent, then T/Ki ⊢ ψ by Deduction theorem
and T ⊃ Ki(T/Ki) ⊢ Kiψ by Theorem 4.3, ie. Kiψ ∈ T , which is a contradiction.
Therefore T/Ki ∪ {¬ψ} can be extended to a maximal consistent U , so sTKisU .
Since ¬ψ ∈ U , then (M∗, sU ) |= ¬ψ by induction hypothesis, so we get the contra-
diction (M∗, sT ) 6|=M∗ Kiψ.

- Observe that ϕ = EGψ ∈ T iff Kiψ ∈ T for all i ∈ G (by Lemma 4.8(1))
iff (M∗, sT ) |= Kiψ for all i ∈ G (by previous case) ie. (M∗, sT ) |= EGψ (by the
definition of |= relation).

- ϕ = CGψ ∈ T iff (EG)
mψ ∈ T for all m ∈ N (by Lemma 4.8(3)) iff (M∗, sT ) |=

(EG)
mψ for all m ∈ N (by previous case) ie. (M∗, sT ) |= CGψ.

- ϕ = Er
Gψ ∈ T iff Kr

i ψ = Ki(Pi,≥rψ) ∈ T for all i ∈ G (by Lemma 4.8(2)) iff
(M∗, sT ) |= Ki(Pi,≥rψ) (by the previous case ϕ = Kiψ), i.e., (M

∗, sT ) |= Er
Gψ.

- Let ϕ = (F r
G)

mψ. Since (F r
G)

0ψ = ⊤, the claim holds trivially. Also ϕ =
(F r

G)
m+1ψ = Er

G(ψ∧(F
r
G)

mψ) ∈ T iff (M∗, sT ) |= Er
G(ψ∧(F

r
G)

mψ) (by the previous
case) ie. (M∗, sT ) |= (F r

G)
m+1ψ, m ∈ N.

- ϕ = Cr
Gψ ∈ T iff (F r

G)
mψ ∈ T for all m ∈ N (by Lemma 4.8(4)) iff (M∗, sT ) |=

(F r
G)

mψ for all m ∈ N (by the previous case), i.e., (M∗, sT ) |= CGψ.
�

From Lemma 5.3 and Lemma 5.4 we immediately obtain the following corollary.

Theorem 5.5. M∗ ∈MMEAS
A .

5.3. Completeness theorem. Now we state the main result of this paper. In the
following theorem, we summarize the results obtained above in order to prove the
strong completeness of our axiomatic system for the class of measurable models.

Theorem 5.6 (Strong completeness theorem). A theory T is consistent if and only
if it is satisfiable in an MMEAS

A −model.

Proof. The direction from right to left is a consequence of Soundness theorem. For
the other direction, suppose that T is a consistent theory. We will show that T is
satisfiable in the canonical model M∗, which belongs toMMEAS

A , by Theorem 5.5.
By Theorem 5.1, T can be extended to a saturated theory T ∗. From Lemma 5.4
we have that ϕ ∈ V iff (M∗, sV ) |= ϕ, for every saturated theory V . Consequently,
(M∗, sT∗) |= ϕ, for every ϕ ∈ T ∗, and therefore (M∗, sT∗) |= T . �
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6. Adding the consistency condition

In the logic PCKfo presented in this paper, we proposed the most general case,
where no relationship is posed between the modalities for knowledge and probabil-
ity. Indeed, in the definition of the probability spaces P(i, s) = (Si,s, χi,s, µi,s) the
sample space of possible events Si,s is an arbitrary nonempty subset of the set of
all states S.

Now we consider a natural additional assumption, called consistency condition
in [8], which forbids an agent to place a positive probability to the event she knows
to be false. This assumption can be semantically captured by adding the condi-
tion Si,s ⊆ Ki(s) to Definition 2.4. In the following definition we introduce the

corresponding subclass of measurable modelsMMEAS,CON
A .

Definition 6.1. MMEAS,CON
A is the class of all measurable modelsM = (S,D, I,K,P) ∈

MMEAS
A , such that

Si,s ⊆ Ki(s)

for all i and s, where P(i, s) = (Si,s, χi,s, µi,s).

We will prove that adding the axiom8

CON. Kiϕ→ Pi,≥1ϕ

to our axiomatization results with a system which is complete for the class of models

MMEAS,CON
A . Note that in that case we can remove Probabilistic Necessitation

from the list of inference rules since, in presence of CON, it is derivable from
Knowledge Necessitation. Indeed, the applications of the rules RK and RP are
restricted to theorems only, so if ⊢ ϕ, then ⊢ Kiϕ by RK, and ⊢ Pi,≥1ϕ by CON.

Thus,
ϕ

Pi,≥1ϕ
is derivable rule in the axiomatic system that we propose in the

following definition.

Definition 6.2. The axiomatization AxCON
PCKfo consists of all the axiom schemata

and inference rules from AxPCKfo except RP and, in addition, it contains the axiom
CON.

The proposed axiomatic system is complete for the class of modelsMMEAS,CON
A .

Theorem 6.3. The axiomatization AxCON
PCKfo is strongly complete for the class of

models MMEAS,CON
A .

Proof. The proof follows the idea of the proof of completeness of AxPCKfo for
the class of models MMEAS

A presented above. Similarly as it is done in Section
5.1, we can show that any consistent theory T can be extended to a saturated
theory in AxCON

PCKfo (not that the saturated theories in AxCON
PCKfo and AxPCKfo

don’t coincide; for example, the formula Kiϕ ∧ Pi,<1ϕ is consistent for the former
axiomatization, but it is inconsistent for the later one). Then we can construct
the canonical model M∗ = (S,D, I,K,P) using the saturated theories, and prove
Truth lemma as in Section 5.2, and prove that (M∗, sT∗) |= T in the same way as
in the proof of Theorem 5.6.

8This type of axiom is standard in logics in which probability is seen as an approximation
of other modalities; for example, in probabilistic temporal logic, the axiom Gϕ → P≥1ϕ (“if ϕ

always holds, then its probability is equal to 1”) is a part of axiomatization [25].
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The problem is that M∗ doesn’t belong to the class MMEAS,CON
A , since the

condition Si,s ⊆ Ki(s) is not ensured. Nevertheless, we can use M∗ to obtain

a model M∗′

from MMEAS,CON
A , in which T is also satisfied. We define M∗′

by modifying only the probability spaces P(i, s) = (Si,s, χi,s, µi,s) from M∗ (i.e.,
S,D, I and K are the same in both structures), in the following way:

M∗′

= (S,D, I,K,P ′), such that

• P ′(i, s) = (S′
i,s, χ

′
i,s, µ

′
i,s), where

– S′
i,s = S ∩ Ki(s)

– χ′
i,s = {[ϕ]

′
i,s |ϕ ∈ SentPCK}, where [ϕ]′ = [ϕ]i,s ∩ Ki(s)

– if [ϕ]′i,s ∈ χ
′
i,s then µ′

i,s([ϕ]
′
i,s) = µi,s([ϕ]i,s) = sup {r |Pi,≥rϕ ∈ s}.

Now it only remains to prove that M∗′

is a model, i.e., that each P ′(i, s) is a
probability space, since the rest of proof is trivial: Si,s ⊆ Ki(s) obviously holds, and

(M∗′

, sT∗) |= T is ensured by the construction of P ′, and the fact that (M∗, sT∗) |=
T .

First we show that every χ′
i,s is an algebra of sets, using the corresponding results

from the proof of Lemma 5.3(2)

• [ϕ]′i,s ∪ [ψ]
′
i,s = ([ϕ]i,s ∩Ki(s)) ∪ ([ψ]i,s ∩Ki(s)) = ([ϕ]i,s ∪ [ψ]i,s)∩Ki(s) =

[ϕ ∨ ψ]i,s ∩ Ki(s) = [ϕ ∨ ψ]′i,s ∈ χ
′
i,s

• S′
i,s\[ϕ]

′
i,s = S′

i,s\([ϕ]i,s∩Ki(s)), so from S′
i,s = Ki(s) and [ϕ]i,s = S\[¬ϕ]i,s

we obtain S′
i,s \ [ϕ]

′
i,s = [¬ϕ]i,s ∩Ki(s) = [¬ϕ]′i,s ∈ χ

′
i,s

Finally, we prove that µ′
i,s is a finitely additive probability measure, for every i and

s.

• µ′
i,s(S

′
i,s) = ([⊤]′i,s) = µi,s([⊤]i,s) = 1

• In order to prove finite additivity of µ′
i,s, we need to prove that

µ′
i,s([ϕ ∨ ψ]

′
i,s) = µ′

i,s([ϕ]
′
i,s) + µ′

i,s([ψ]
′
i,s) (6.0.1)

whenever

[ϕ]′i,s ∩ [ψ]′i,s = ∅. (6.0.2)

The possible problem is that (6.0.2) does not necessarily imply [ϕ]i,s ∩
[ψ]i,s = ∅, so we cannot directly use finite additivity of µi,s. On the other
hand, we know that µi,s([ϕ∨ψ]i,s) = µi,s([ϕ]i,s)+µi,s([ψ]i,s)−µi,s([ϕ∧ψ]i,s).
Since µ′

i,s([φ]
′
i,s) = µi,s([φ]i,s) for every φ, in order to prove (6.0.1) it is

sufficient to show that

([ϕ ∧ ψ]i,s) = 0. (6.0.3)

From (6.0.2) we obtain [ϕ]i,s ∩ [ψ]i,s ∩Ki(s) = ∅, i.e., [ϕ∧ψ]i,s ∩Ki(s) = ∅.
Consequently, [¬(ϕ ∧ ψ)]i,s ⊆ Ki(s), so (M∗, t) |= ¬(ϕ ∧ ψ) for every t ∈
Ki(s), and (M∗, s) |= Ki¬(ϕ∧ψ). Since s is a saturated theory, from Truth
lemma we have Ki¬(ϕ ∧ ψ) ∈ s, and consequently Pi,≥1¬(ϕ ∧ ψ) ∈ s, by
CON. Then µi,s([ϕ]i,s) = sup {r |Pi,≥rϕ ∈ s} = 1, which implies (6.0.3).

�

Remark. Apart from consistency condition, Fagin and Halpern, [8] consider other
relations between the sample space Si,s and possible worlds Ki(s), which model
some typical situations in the multi-agent systems. They also provide their char-
acterization by the corresponding axioms.
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First they analyze the situations in which the probabilities of the events are
common knowledge, i.e, there is a unique, collective and objective view on the
probability of the events. Then the agents in the same state share the same known
probability spaces, which is captured by the condition of objectivity: P(i, s) =
P(j, s) for all i, j and s.

Second, they model the situation where an agent uses the same probability space
in all the worlds he considers possible. This situation occurs when no nonproba-
bilistic choices are made to cause different probability distributions in the possible
worlds. The corresponding condition, called state determined property, says that if
t ∈ Ki(s), then P(i, s) = P(i, t).

Third, sometimes the nonprobabilistic choices happen and induce varied proba-
bility spaces. Then the possible worlds could be divided to partitions which share
the same probability distributions, after such choice has been made. This case is
specified by the condition of uniformity: if P(i, s) = (Si,s, χi,s, µi,s) and t ∈ Si,s,
then P(i, s) = P(i, t).

Similarly as we have done with consistency condition, we can also characterize
the three above mentioned conditions by adding corresponding axioms to our ax-
iomatic system. It is straightforward to check that the following axioms, which
are similar to the ones proposed in [8], capture the mentioned relations between
modalities of knowledge and probability:

Pi,≥rϕ→ Pj,≥rϕ (objectivity),
Pi,≥rϕ→ KiPi,≥rϕ (state determined property),
Pi,≥rϕ→ Pi,≥1Pi,≥rϕ (uniformity).

7. Conclusion

The starting points for our research were the papers [8, 16] where weakly com-
plete axiomatizations for a propositional logic combining knowledge and probabil-
ity, and a non-probabilistic propositional logic for knowledge with infinitely many
agents (respectively), are presented. We combine those two approaches and extend
both of them to the logic PCKfo with an expressive first-order language.

We provide a sound and strongly complete axiomatization AxPCKfo for the
corresponding semantics of PCKfo. Since any reasonable, semantically defined
first-order epistemic logic with common knowledge is not recursively axiomatizable
[36], we propose the axiomatization with infinitary rules of inference, and we obtain
completeness modifying the standard Henkin construction of saturated extensions
of consistent theories. In the logic PCKfo we consider the most general semantics,
with independent modalities for knowledge and probability. We also show how
to extend the set of axioms and modify the axiomatization technique in order to
capture models in which agents assign probabilities only to the sets of worlds they
consider possible. We also give hints how to extend our axiomatization in several
different ways, to capture other interesting relationships between the modalities for
knowledge and probability, considered in [8].

In this paper, we use the semantic definition of the probabilistic common knowl-
edge operator Cr

G proposed by Fagin and Halpern [8]. As we have mentioned in
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Section 2.2, Monderer and Samet [23] proposed a different definition, where prob-
abilistic common knowledge is equivalent to the infinite conjunction of the formu-
las Er

Gϕ, (E
r
G)

2ϕ, (Er
G)

3ϕ . . . It is easy to check that our axiomatization AxPCKfo

can be easily modified in order to capture the definition of Monderer and Samet.
Namely, the axiom APC and rule RPC should be replaced with the axiom Cr

Gϕ→

(Er
G)

mϕ, m ∈ N and the inference rule
{Φk,θ,X(Er

G)
mϕ) |m ∈ N}

Φk,θ,X(Cr
Gϕ)

.
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[22] Miloš Milošević and Zoran Ognjanović. 2012. A first-order conditional probability logic. Logic
Journal of the IGPL 20, 1 (2012), 235–253.

[23] Dov Monderer and Dov Samet. 1989. Approximating common knowledge with common be-
liefs. Games and Economic Behavior 1, 2 (1989), 170–190.

[24] Stephen Morris and Hyun Song Shin. 1997. Approximate Common Knowledge and Co-
ordination: Recent Lessons from Game Theory. Journal of Logic, Language and Information
6, 2 (1997), 171–190. https://doi.org/10.1023/A:1008270519000

[25] Zoran Ognjanovic. 2006. Discrete Linear-time Probabilistic Logics: Complete-
ness, Decidability and Complexity. J. Log. Comput. 16, 2 (2006), 257–285.
https://doi.org/10.1093/logcom/exi077

[26] Zoran Ognjanovic, Zoran Markovic, Miodrag Raskovic, Dragan Doder, and Alek-
sandar Perovic. 2012. A propositional probabilistic logic with discrete linear time
for reasoning about evidence. Ann. Math. Artif. Intell. 65, 2-3 (2012), 217–243.
https://doi.org/10.1007/s10472-012-9307-9

[27] Zoran Ognjanovic and Miodrag Raskovic. 1999. Some probability logics with new types of
probability operators. Journal of logic and Computation 9, 2 (1999), 181–195.
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Université Paul Sabatier – CNRS, IRIT, France

E-mail address: dragan.doder@irit.fr

sinisatom@turing.mi.sanu.ac.rs
zorano@mi.sanu.ac.rs
dragan.doder@irit.fr

	1. Introduction
	2. Syntax and sematics
	2.1. Syntax
	2.2. Semantics
	2.3. Axiomatization issues

	3. The axiomatization AxPCKfo
	4. Some theorems of PCKfo
	5. Completeness
	5.1. Lindenbaum's theorem
	5.2. Canonical model
	5.3. Completeness theorem

	6. Adding the consistency condition
	7. Conclusion
	Acknowledgment
	References

