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ABSTRACT
A malware signature including behavioral artifacts, namely Indi-
cator of Compromise (IOC) plays an important role in security op-
erations, such as endpoint detection and incident response. While
building IOC enables us to detect malware e�ciently and perform
the incident analysis in a timely manner, it has not been fully-
automated yet. To address this issue, there are two lines of promis-
ing approaches: regular expression-based signature generation and
machine learning. However, each approach has a limitation in ac-
curacy or interpretability, respectively.

In this paper, we propose EIGER, a method to generate inter-
pretable, and yet accurate IOCs from given malware traces. The key
idea of EIGER is enumerate-then-optimize. That is, we enumerate
representations of potential artifacts as candidates of IOCs. Then,
we optimize the combination of these candidates to maximize the
two essential properties, i.e., accuracy and interpretability, towards
the generation of reliable IOCs.

Through the experiment using 162K of malware samples col-
lected over the �ve months, we evaluated the accuracy of EIGER-
generated IOCs. We achieved a high True Positive Rate (TPR) of
91.98% and a very low False Positive Rate (FPR) of 0.97%. Inter-
estingly, EIGER achieved FPR of less than 1% even when we use
completely di�erent dataset. Furthermore, we evaluated the inter-
pretability of the IOCs generated by EIGER through a user study,
in which we recruited 15 of professional security analysts working
at a security operation center. The results allow us to conclude that
our IOCs are as interpretable as manually-generated ones. These
results demonstrate that EIGER is practical and deployable to the
real-world security operations.
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1 INTRODUCTION
Indicator of Compromise (IOC) [11, 12, 19] is a malware signature
representing “artifacts” generated along with its execution. That
includes �le paths, registry keys, process handles, command lines,
IP address, domain name, and etc. IOCs are widely used in the
real-world security operations, such as Security Operation Center
(SOC) or Computer Security Incident Response Team (CSIRT), to
automate a part of analysts’ tasks for endpoint detection and inci-
dent response. The use of IOCs i.e., scanning endpoints with IOCs
and validating false positives is now incorporated into their daily
routine. Since IOCs are mainly used in such a human-in-the-loop
situation, the interpretability of them becomes an important factor
for analysts, as well as the accuracy of detection.

Even though the importance of IOCs becomes larger day by day,
the procedure of generating IOCs has not been well-developed. In
fact, we have to heavily depend on analysts’ experiences and intu-
itions to �nd out the artifacts that can clearly distinguish speci�c
malware from the others. In other words, the procedure entails
manual work and is not fully-automated. As a result, we give at-
tackers a huge advantage over a cat and mouse race. Thus, we are
forced to fall into the situations that we do not have enough IOCs
for protecting our premises from attackers.

To automate the procedure, there are two promising approaches:
regular expression-based and machine learning-based ones. In the
former, we can borrow the idea of generating a signature from
malware tra�c for network-level detection [40, 44, 55], while an
endpoint is their out of scope. In their manner, we �rst extract com-
mon strings appeared in multiple malware tra�c, and then convert
each of the similar part in a common string into a regular expression
to approximate similar malware tra�c. However, when we naively

687

https://doi.org/10.1145/3359789.3359808
https://doi.org/10.1145/3359789.3359808
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3359789.3359808&domain=pdf&date_stamp=2019-12-09


apply this approach for endpoint artifacts, we may generate too-
abstract regular expression patterns. For instance, lets take a look at
a scenario in which we want to generate an IOC for “aareg.exe” and
“install.vbs” under the temporal directory of a Windows operating
system. Widely adopted expression-based approach such as [44]
may generate “C\:\\Users\\.*\\AppData\\Local\\Temp\\.*”. Clearly,
this IOC will cause false positives because it is too generic. An
IOC we expect to generate here is like “C\:\\Users\\.*\\AppData\\Lo-
cal\\Temp\\(aareg\.exe|install\.vbs)”, which is triggered by only spe-
ci�c �les under the temporal directory to suppress false positives.
In summary, while regular expression itself is promising for the
IOC generation, the existing expression-based methods as they are
cannot be diverted to our method. This is because they generate
regular expressions only at a single level of abstraction.

In the latter, we allocate weights to strings contained in either
malware binaries or traces, and then train a model that represents
malware as a (non-)linear transformation of those weights. For
instance, Decision Tree [5] trained over the aforementioned exam-
ple would be as follows: if get_weight(“AppData”) > 0.37 and if
get_weight(“Local”) > 0.48 and if not get_weight(“Local”) > 0.6 and
if get_weight(“Temp”) > 0.53 ... Such an approach could generate
a model for detecting artifacts with high accuracy, but this may
generate a too complex IOCs for human-analysts to understand,
even if the malware can be detected by the simple condition. In
addition, this kind of approach trains a single model on the entire
dataset given, thus it mixes decision boundaries for each family.
This complexity may result in a time loss of triage and analysis
since these process include human-interactions, as we explained
above. In summary, these two approaches are promising as an au-
tomatic IOC generation method, but should not be directly applied
because they generate excessively abstracted and low interpretable
IOCs, respectively. These limitations motivate us to propose a new
method to tackle the challenge, i.e., generating interpretable IOCs
with satisfying the same detection accuracy as machine learning
approaches that pursue only the detection accuracy.

In this paper, we propose Exhaustive IOC Generator, EIGER
for short, a method to automatically generate accurate and inter-
pretable IOCs from given malware analysis results. EIGER consists
of two key steps: Candidate Enumeration and Optimization. The aim
of the Candidate Enumeration step is to generate several regular
expression patterns at di�erent abstraction-level for an artifact,
each of which becomes a candidate for the IOC for a speci�c family.
Speci�cally, EIGER clusters the artifacts created by several malware
samples belonging to a same malware family based on its string sim-
ilarity, and then converts the set of similar strings in a same cluster
to multiple regular expression patterns at di�erent abstraction-level.
The point is that EIGER carefully takes the level of abstraction of
a regular expression into account and handles all of the patterns
as an IOC candidate without discarding any of them at this time.

The aim of the Optimization step is to select accurate and in-
terpretable IOC candidates as IOCs for the malware family from
the ones generated in the previous step. In this step, EIGER op-
timizes a combination of IOC candidates through maximizing an
objective function that takes both accuracy and interpretability
into account. In particular, EIGER favors IOC candidates with high
precision and high recall for accuracy. At the same time, it favors

those with high conciseness, high coverage, and less overlap for in-
terpretability. The point is that we solve this optimization problem
as a non-monotone submodular function maximization problem
where we can e�ciently compute a near-optimal solution. Then,
we convert the selected IOC candidates into the set of IOCs for
the malware family. We iterate this series of the sub-steps for each
malware family. Consequently, we can obtain a set of IOCs with the
appropriate abstraction-level for multiple malware families which
can be used in malware detection.

We implemented EIGER and the other components, such as
Dataset Creation, Format Conversion, and Incremental Learning, in
a prototype system for realizing a fully-automated IOC generation
procedure. The system does not require any human interventions
for generating IOCs from malware binary �les.

We evaluated the performance of IOCs generated with the sys-
tem from the viewpoints of accuracy and interpretability. As the
former, we collected 162K malware samples over the recent �ve
months, generated 1,326 IOCs (our IOCs) for 289 families from the
samples, and compared the detection accuracy of our IOCs to other
methods including machine learning (training and validation set
size 89K, test set size 72K). This experimental results report that
the performance of our IOCs is a True Positive Rate (TPR) of 91.8%
and a False Positive Rate (FPR) of 0.97%. These numbers indicate
that EIGER can produce IOCs whose detection accuracy is almost
equivalent to other methods.

Additionally, we con�rmed that Incremental Learning over �ve
months can improve the TPR of IOCs up to 94.70% and �t the
abstraction-level of the regular expression patterns within IOCs
to new malware samples. From this result, we believe that EIGER
and our IOCs are practical enough for SOC or CSIRT analysts to
use for their daily tasks in order to automate parts of their tasks.
We also con�rmed that the precision and the FPR of our IOCs do
not degrade for a completely di�erent dataset obtained at di�erent
vantage points. The result demonstrates EIGER can complement
commercial IOCs from a di�erent point of view.

As the latter, we posit that manually-generated IOCs are suf-
�ciently interpretable, and then we conducted a user study with
security analysts to measure the di�erence between our IOCs and
manually-generated ones in terms of user perception.We con�rmed
by statistical hypothesis testing that there was no statistically signif-
icant di�erence between the user perceptions of them. This experi-
mental results demonstrate that EIGER can generate as interpretable
IOCs as human-generated ones.
Contributions. Our contributions are as follows:

• We propose EIGER, a method to automatically generate state-
of-the-practice IOCs from givenmalware traces. Thismethod
is built upon enumerate-then-optimize design which can be
applicable to existing signature generation techniques in
general.

• We implemented EIGER as a fully-automated IOC generation
system and evaluated our IOCs using 162K samples show-
ing a False Positive Rate (FPR) of 0.97% and a True Positive
Rate (TPR) of 91.98%, which is comparable to known ma-
chine learning techniques. Additionally, we con�rmed that
EIGER can automatically re�ne the IOC through Incremental
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FileItem/FullPath matches C\:\\Users\\.*\\AppData\\Local\\Temp\\(aareg\.exe|install\.vbs)
OR RegistryItem/Path contains HKCU\\Software\\Microsoft\\Windows\\CurrentVersion\\Run\\WinUpdate64
description This is an IOC to detect artifacts generated by “Remcos” malware. The sources of this IOC are following: 96b799a7 ...

Figure 1: Part of the IOC signature that represents Remcosmalware. Notation of OpenIOC [19] is simpli�ed for easy viewing.

Learning and achieve high precision even for a completely
di�erent dataset.

• We show a �rst user study result on the interpretability of
IOCs, demonstrating that there is no statistically signi�cant
di�erence between our IOCs and manually-generated IOCs.
The result indicates that our IOCs can be seamlessly incor-
porated into the actual security operations.

• We make our IOCs publicly available1 to promote further
research in this area.

The rest of the paper is organized as follows. The background
and goals we encountered are introduced in §2. The overview of
our method and system is explained in §3. The details of Candidate
Enumeration and Optimization are described in §4 and 5, respec-
tively. The overview of our evaluation is introduced in §6. The
experiments on accuracy and interpretability are detailed in §7 and
8, respectively. The limitations and the mitigations are discussed in
§9. §10 reviews related work. Finally, we conclude our work in §11.

2 BACKGROUNDANDMOTIVATION
In this section, we �rst explain the format of IOC and the terms
used in this paper. Then, we de�ne our goals and items outside the
scope of the paper.

2.1 Indicator of Compromise
Format. Known IOC formats such as OpenIOC [19] and STIX
[12] support operators expressing relationships between multiple
artifacts and support multiple matching schemes. They support
“AND” and “OR” operators and following matching schemes: “is”
(completematchwith a certain string), “contains” (whether a certain
string is included in a given match target), “startswith” (whether the
target start with a certain string), and “matches” (whether a regular
expression matches the target). The target is typically a given log
or a list per type of artifacts. In addition, we can �ll in additional in-
formation as “description”. Note that the expressiveness of di�erent
formats is not equivalent. Speci�cally, the AND operator in STIX
can target any kind of artifact while that in OpenIOC has a limited
scope [37]. In other words, STIX is more expressive than OpenIOC.

An example of IOC, generated by EIGER, is shown in Figure 1.
This IOC indicates the infection of Remcos RAT23 when either the
�le “aareg.exe” or “install.vbs” exists in the temporary directory, or
the registry key “HKCU ...” and the value “WinUpdate64” exist in
an endpoint.
Terms. We de�ne the terms regarding IOCs we use throughout
this paper. An IOC is a representation of one or multiple malware
artifacts. We can use a string or regular expression for an IOC.
1https://github.com/malrev/eiger
2MD5: 96b799a78f8d48cb619a5e93b3191304
3MD5: 37d8dbdb9bf04326101a645e8e04da0d

When we use a regular expression as an IOC, we can cover multi-
ple artifacts whose names are matched to the regular expression
with the single IOC. Basically, we use a set of IOCs combined with
the “OR” operator for a speci�c malware family. For example with
Figure 1, “FileItem/FullPath ...” is an IOC, while “RegistryItem/...” is
also an IOC. These IOCs, which are combined with “OR”, are a set
of IOCs for Remcos, a malware family. When we write down the set
of IOCs into a �le with adding the metadata, such as its description,
we call the �le an IOC or an IOC signature.

2.2 Motivation
Goals. To generate IOCs suitable for the use cases in an appro-
priate form, we pay particular attention to the two critical require-
ments: accuracy and interpretability. The mandatory requirement
is that the IOC should contain su�cient amount of information
to distinguish one malware family from benign programs or other
malware families. In addition, the artifact and its logical combina-
tion described in the IOC must be a form that is easy for analysts to
interpret. This is because the IOC use cases inevitably involve hu-
man interventions. For example, when we �nd the artifacts which
are described in an IOC in an endpoint, we usually validate if the
detection is related to malware infections or just a false positive.
To make the veri�cation process practical, the interpretability of
IOCs is crucial because having interpretable IOCs enables us to
quickly check if the items hit in the IOCs and start a further deep
inspection for the identi�ed artifacts.

To satisfy these requirements, we de�ne our goals as follows:

(1) Accurate: An artifact with a high recall and precision is
expressed in the appropriate abstraction-level to classify the
malware family; our goal is basically a multi-class classi�ca-
tion as accurate as known machine learning methods.

(2) Interpretable: Reasonable information for analysts is de-
scribed; there is no inferiority in user perception between
EIGER-generated IOCs and manually-generated ones.

In summary, our goal is to generate interpretable IOCs whose de-
tection accuracy is same as known machine learning methods.

We also have three additional goals to achieve with our system
in which our proposal method and other components are imple-
mented. First, we try to make our IOCs vendor-agnostic. That is, we
can mutually convert our IOCs to equivalent representations for
any IOC-based tool or product. Second, we design our system to
generate IOCs based on coarse-grained behavioral information that
we can collect from endpoints to avoid posing signi�cant workloads
on the endpoints.. Third, we design our system to keep up with
the speed of rapidly emerging new malware variants. We consider
that these additional goals/requirements are necessary to make our
system practical and applicable to real-world use cases.
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§4.1

(b) Clustering results. Colored parts are subject to regular 

expression generation.

(c) Generated regular expression patterns with the multiple 

abstraction-levels. Colored parts are converted from the substrings.

C:¥DOCUME~1¥John¥LOCALS~1¥Temp¥winjrnq.exe
C:¥DOCUME~1¥John¥LOCALS~1¥Temp¥winjtoo.exe
C:¥DOCUME~1¥John¥LOCALS~1¥Temp¥winmpug.exe

C:¥WINDOWS¥system32¥drivers¥sjlgr.sys

¥¥.¥amsint32

HKEY_CURRENT_USER¥Software¥Awdi¥t1_644
HKEY_CURRENT_USER¥Software¥Awdi¥t1_639
HKEY_CURRENT_USER¥Software¥Awdi¥t1_40

C:¥DOCUME~1¥.*¥LOCALS~1¥Temp¥win(jrnq|jtoo|mpug).exe
C:¥DOCUME~1¥.*¥LOCALS~1¥Temp¥[a-z.]{11}

C:¥WINDOWS¥system32¥drivers¥sjlgr.sys

¥¥.¥amsint32

HKEY_CURRENT_USER¥Software¥Awdi¥t1_(644|639|40)
HKEY_CURRENT_USER¥Software¥Awdi¥.*

§4.2

{
'Label': 'sality',
'MD5': 'c560963ff...',
'Indicator': {

'FileWrite':
['C:¥DOCUME~1¥John¥LOCALS~1¥Temp¥winjrnq.exe',
'C:¥DOCUME~1¥John¥LOCALS~1¥Temp¥winjtoo.exe',
'C:¥DOCUME~1¥John¥LOCALS~1¥Temp¥winmpug.exe',
'C:¥WINDOWS¥system32¥drivers¥sjlgr.sys',
'¥¥.¥amsint32'],

'RegistryWrite': 
['HKEY_CURRENT_USER¥Software¥Awdi¥t1_644',
'HKEY_CURRENT_USER¥Software¥Awdi¥t1_639',
'HKEY_CURRENT_USER¥Software¥Awdi¥t1_40']

}
}

(a) Raw dataset. Metadata, e.g., label, is used to manage 

IOC candidates throughout.

(d) Optimization results. IOCs with good coverage and fewer 

false positives are selected.

C:¥DOCUME~1¥.*¥LOCALS~1¥Temp¥win(jrnq|jtoo|mpug).exe
C:¥DOCUME~1¥.*¥LOCALS~1¥Temp¥[a-z.]{11}

C:¥WINDOWS¥system32¥drivers¥sjlgr.sys

¥¥.¥amsint32

HKEY_CURRENT_USER¥Software¥Awdi¥t1_(644|639|40)
HKEY_CURRENT_USER¥Software¥Awdi¥.*

correct-cover: [42, 57, 69, …]
incorrect-cover: []

correct-cover: [57, 58, 60, …]
incorrect-cover: [] §5.2-3

Figure 2: Overview of steps for generating IOC from malware trace log in (a). Figure 2(d) presents the completed version of
indicator representations.

Items outside the scope of the paper. We note the following
three items are out of scope of this paper. First, we do not aim to
automate the procedure of the analyst analyzing the malware dam-
age using the IOC. Second, we do not focus hash values of malware
binary �les although IOC formats allows us to describe hash values
because the detection based on hash values provides less protection
than static signatures. Third, we do not aim to create a static sig-
nature such as YARA [46], even though it is often mentioned as an
instance of IOC. This is because our focus is on malware behavior.
Yet, our method is potentially applicable to the generation of YARA.

3 OVERVIEW
In this section, we provide an informal overview of our proposal
on an illustrative example. Figure 2 illustrates the steps of EIGER.
Figure 2(a) shows a malware dataset. Only endpoint-obtainable
features such as �le path, registry key, etc. are present in the dataset.
Given the artifacts in the dataset for each malware family, EIGER
generates and selects IOCs shown in Figure 2(d). There, we can
see that similar artifacts are aggregated as regular expression pat-
terns. More interestingly, within the generated IOC, regular expres-
sion patterns matching hard-coded strings and regular expressions
matching wider-range strings are combined in a manner to max-
imize both accuracy and interpretability.

We now explain the components of the system in due course. In
particular, Candidate Enumeration and Optimization are an embod-
iment of the method based on our enumerate-then-optimize design,
that is, EIGER.

Dataset creation. EIGER takes as input a dataset that consists
of the trace log of malware and its label. Here, each attribute value
of the trace needs to be a dictionary composed of the type of ar-
tifact and its entity. To generate a dataset, we �rst put malware
samples into a sandbox and set a label for each sample. We then
shape the analysis result as shown in Figure 2(a). This component
can be incorporated with any sandbox or labeling method. For our
method, the sandbox can be implemented via any operating system,
any instrumentation method, and any network perimeter as long
as it can acquire the artifacts to be IOC candidates. The labels can
be obtained from any antivirus software or any analysts’ decision
as well. The dataset used for our evaluation is described later in §7.
Candidate enumeration. Given a malware dataset, EIGER enu-
merates regular expression patterns with di�erent abstraction-levels
as candidates for IOC. As shown in Figure 2(b), EIGER clusters simi-
lar attribute values for each malware family. Here, EIGER performs
clustering separately for each type of artifact of attribute value. On
top of that, EIGER generates regular expression patterns for each
hierarchy of similar artifacts in each cluster as candidates of the
part of IOC.

As shown in Figure 2(c), patterns are generated with up to three
abstraction-levels: A pattern made from a hard-coded string of
the artifacts i.e., “win(jrnq|jtoo|mpug).exe”, a pattern made from
character type and its range i.e., “[a-z]{11}”, and a pattern matches
arbitrary string i.e., “.*”. If the cluster contains only a single arti-
fact, no regular expression is generated and the artifact becomes
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a candidate directly. Note that artifacts that are clearly variable by
environment such as user name are converted to “.*” in advance.

The generated IOC candidates are associated with each malware
family and thus can be regarded as rules for multi-class classi�ca-
tion. We detail this step later in §4.
Optimization. After the IOC candidates are enumerated, EIGER
derives their subset through optimizing their combination for maxi-
mizing the accuracy and the interpretability. In our example, EIGER
selects the IOCs in Figure 2(d) from the IOC candidates in Figure
2(c). To this end, we introduce an objective function that scores
both accuracy and interpretability, based on Interpretable Decision
Sets (IDS) framework [32].

IDS uses an instantiation of non-normal submodular function
maximization to optimize set of rules for a dataset i.e., rule learn-
ing. This framework is applicable to IOCs, as it supports rules of
any structure if it includes labels and attributes. The key idea of
IDS is to select only concise and accurate rules from a given set of
rules, so as to cover the entire data set with as few rules as possible.
This is based on the insight that concise and high coverage rules
are more “interpretable” than others. Fortunately, in the original
paper, the validity of the insight has been demonstrated by a user
study comparing IDS-derived rules with rules derived from other
machine learning methods. We focus on this point and aim to verify
whether the IOCs optimized by IDS are interpretable to the same ex-
tent as the IOCs optimized by analysts. Although this optimization
task belongs to the NP-hard class, properties of such a submodular
function enable us to guarantee a 2/5 near-optimal solution [18].

We have improved the objective function towards our domain-
speci�c task. Our improvements include the rede�nition of the
metric of conciseness and the solution to a class imbalance problem.
This step and our insight are described in §5.
Format conversion. The IOCs which have been optimized by
EIGER thus far are pseudo-IOC in format. Therefore, they cannot
be deployed as a concrete signature at this point. Thus, through
this component, our system converts the optimized set of IOCs e.g.,
Figure 2(d) to the IOC signatures applicable to real-world products.
Speci�cally, we produce IOCs as OpenIOC [19] and also as STIX
[12]. In order to produce IOC signatures in a vendor-agnostic form,
our system outputs the �nal IOC signature in OpenIOC format
because it is the simplest IOC form. There, IOCs of the same family
are OR-ed together and one IOC signature is output for each family.
During this process, our system adds the hash value of samples and
the search link of external sources to the description of the IOC
signature to facilitate the analysts’ operation.
Incremental learning. This component works as a runner of
the aforementioned components to track the emergence of newmal-
ware. As attackers keep working to improve malware daily, IOCs
that perform well at certain times may not work forever. Therefore,
if there is a change in the malware family, it will be necessary to
make changes to the IOCs corresponding to that family. The same
is true if a new family appears. Conventionally, such an operation
that improve the IOC to track the new malware emerges have been
done in manuals.

We address this problem by optimizing previously-generated
IOC candidates for a most recent dataset. Suppose there are datasets
made over time for a certain time window. Here, when optimizing

IOCs for a most recent dataset, instead of running Optimization
step for only candidates generated from the most recent dataset, we
run the step for all candidates which are cumulatively generated
from the past datasets. This enables us to select near-optimal IOCs
for the current dataset from all previous candidates and to delete
the IOCs that no longer work. The e�cacy of this component is
described in 7.

4 CANDIDATE ENUMERATION
In this section, we describe how Candidate Enumeration step, in-
troduced in §3, enumerates multiple regular expression patterns
with di�erent abstraction-levels. To generate regular expressions,
EIGER executes two sub-steps. First, EIGER clusters the artifacts
included in the dataset for each malware family based on the string
similarities. Second, EIGER converts the artifacts contained in each
cluster into a trie data structure [3] and generates multiple regular
expression patterns. In the remainder of this section, we provide
a description for each sub-step.

4.1 Clustering
The aim of this sub-step is to put together similar artifacts into
a cluster. Given a dataset, for each malware family, this sub-step
clusters the artifacts with the single linkage method [26].

Given a data for each family of N artifacts, we �rst create an
initial state with N clusters containing only one artifact. Starting
from this state, the distance between the clusters d(C1,C2), where
C1 and C2 is a cluster, is calculated from the distance d(x1,x2) be-
tween x1 and x2 where xi is an artifact, and the two clusters closest
to this distance are merged sequentially:

d(C1,C2)= min
x1∈C1,x2∈C2

d(x1,x2) (1)

where the function d computes Levenshtein distance, that is, the
distance that takes artifacts as a string.

The reason why we adopted the single linkage method is that
we were able to split clusters with �ner granularity than other
clustering methods i.e., DBSCAN [16] and X -means [43] in pilot
testing. Note that our aim here is to cluster the candidate set to be
put together into a regular expression pattern, therefore the cluster
should be as small as possible.

4.2 Regular Expression Generation
The aim of this sub-step is to generate regular expressions that
become IOC candidates from the clustering result. Given a clus-
ter, this sub-step �rst divides the artifacts contained in the cluster
into each hierarchy and creates a list of substrings that were in
the same hierarchy. The hierarchy referred to here is composed
of substrings of artifacts divided by a backslash in a path of Win-
dows, and substrings of artifacts divided by octets in an IP address.
Then, EIGER converts multiple substrings contained in the list to
a regular expression. Finally, EIGER outputs strings combining reg-
ular expression patterns or substrings for each hierarchy as �nal
candidates. At this time, if there is only one substring in the list of
substrings for each hierarchy, the substring is not converted. Also,
user names are converted to “. *” beforehand.

During this process, EIGER generates regular expression patterns
up to three abstraction-levels: hard-coded pattern, character class
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with range pattern and arbitrary string pattern. Hard-coded pat-
terns are always generated, and character and its range patterns and
arbitrary string patterns are generated as needed. The key insight
here is much malware may create artifacts that contain speci�c
strings, but some of them may create pseudo-random �lenames,
from a return value of a certain API e.g.,GetTempFileName and Get-
PerformanceCounter. Therefore, hard-coded patterns alone are not
su�cient for malware detection (in other words, the generalization
ability is low), while character and its length patterns and arbitrary
string patterns are not suitable for all malware. Thus, EIGER �rst
generates a hard-coded pattern, and only if the artifacts seems to be
pseudo-random �lenames, EIGER tries to generate a character and
its range pattern, otherwise EIGER generates an arbitrary string
pattern. We describe the method of generating each pattern below.
Hard-coded pattern. EIGER �rst generates regular expression
patterns with the coarse abstraction-level. Here EIGER combines
the list of substrings into a single trie structure and regularizes it.
Trie is a tree where each node represents a single character or a
pre�x. The root is an empty string. A node that are k edges of a
distance of the root have an associated pre�x of length k .

For example, let us consider a list containing just two words: “AC-
SAC” and “ACCEPT”. Given the list, “”→ “A”→ “C” would be gener-
ated. The node “C” would have two children: “S” and “C”. Each node
grows “S” → “A” → “C” and “C” → “E” → “P” → “T”, respectively.
Once a trie generated, EIGER converts the branch to a token “|” and
converts the trie to a single pattern. Strings in the di�erent branch
from the same node are enclosed in grouping brackets “()”. In that
way, we generate “AC(SAC|CEPT)” from “ACSAC” and “ACCEPT”.

This is the most concrete pattern that EIGER generates and that
previous works [40, 44, 55] do not generate. In order to avoid de-
grading the interpretability, if the regular expression branch is
likely to be nested, EIGER separates it as a part of another regular
expression pattern. Also, if there is only a single artifact in the
cluster, EIGER will not create a regular expression but will add that
artifact to the candidates directly.
Character class with range pattern. If the length of strings in
the list is, all the same, EIGER generate a regular expression that
represents the type and range of the characters in that string. For
example, EIGER does not generate this pattern from “ACSAC” and
“ACCEPT”, but generates “[A-Z]{5}” from “ACCEPT” and “ACCESS”.
Arbitrary string pattern. If the list contains strings with dif-
ferent length, EIGER generates a regular expression that matches
arbitrary string. For example EIGER generates “.*” from “ACSAC”
and “ACCEPT”, but does not generate this pattern from lists con-
tains two substring “ACCEPT” and “ACCESS”.

EIGER applies these regular expression generation techniques
to each hierarchy of the artifacts in the cluster. Since EIGER per-
forms these regular expressions for each hierarchy of the artifact,
the maximum number of candidates generated for each cluster
is the power of the number of the abstraction-levels (three) and
the hierarchy subject to regular expression for each cluster. Intu-
itively, hard-coded patterns seem to be under-approximation of the
artifacts that the malware family may potentially generate, and ar-
bitrary string patterns are its over-approximation. However, in fact,
it cannot be determined whether a candidate could appropriately

approximate artifacts or not without measuring its coverage for
malware samples. Therefore, in the next step, EIGER will match
the dataset with the IOC candidates and choose IOCs that gives the
appropriate approximation.

5 OPTIMIZATION
This step optimizes a combination of the IOC candidates generated
in the previous step to derive a set of IOCs which approximate po-
tential malware artifacts. That is, the optimized IOCs are the subset
of the candidates. To this end, we adapt IDS [32], a rule learning
framework based on a theoretical foundation called the submodular
function maximization.

Given a dataset D, a set of itemsets S , and a set of possible class
labelsC , IDS can �nd a near-optimal rule set (subset S×C of itemset
and class label pairs) that makes accurate predictions with clearly
described decision boundaries. IDS is applicable to any itemset and
class label pairs, and in our usage, the IOCs and the indicated fam-
ilies corresponds to S×C . The performance of IDS is comparable to
other machine learning techniques and the decision boundary of it
is “interpretable” than others (the user study of the interpretability
aimed at comparison with other machine learning techniques is in-
cluded in the original paper). Therefore, employing this framework
is reasonable to achieve our goals.

In the remainder of this section, we �rst introduce the submod-
ular function maximization, and we then explain IDS. Following
these preliminaries, we describe our extension to the original IDS
and our insight.

5.1 Submodular FunctionMaximization
Formally speaking, a function f : 2D →R de�ned on some set D
is submodular if for any A⊆ B ⊆D and x ∈ (D−B), the following
condition is satis�ed:

f (A∪{x})− f (A)≥ f (B∪{x})− f (B) (2)

To give an example, let us consider a coverage function for mal-
ware analysis results. We assume the function f which receives
a set of IOCs and which returns the proportion of malware that
matches the IOCs in the given set within the dataset. In this case,
the number of malware that can be covered by f when a new IOC
is added to the set is larger if only a few IOCs are already selected.
A function with such property is referred to as submodular.

Although maximizing a submodular function is NP–hard [28],
an approximate solution can be obtained e�ciently. Intuitively,
in the example, what we need to do is greedily adding the item
with the largest coverage at the time for each iteration. If a func-
tion is non-negative, monotone and submodular, a greedy method
gives 0.63–approximation [41]; if a function is non-negative, non-
monotone and submodular, Smooth Local Search (SLS) gives 0.40–
approximation [18]. Both of them accept candidate sets and return
near-optimal subsets.

As a strong bene�t in practical use, a non-negative linear combi-
nation of submodular functions

∑
iλi fi is also submodular where

the weights λi ≥ 0 by de�nition. This means maximization of mul-
tiple submodular functions can be executable at once.
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Table 1: Objective functions of Interpretable Decision Sets [32] and ourmodi�cation.

Function Description

f1(R)= |S |−size(R) Represent the entire dataset with a few rules.

f2(R)=
∑
r ∈R

( max
r ∈S×C

width(r )−width(r )) Highly evaluate a concise rule i.e., rule with a few representations. We
rede�nedwidth(r ) to the number of regular expression objects in r .

f3(R)=
∑

ri ,r j ∈R
i≤j
ci=c j

(N −|overlap(ri ,r j )|) Reduce the intra-class overlap of rules. N is the number of points in the
dataset.

f4(R)=
∑

ri ,r j ∈R
i≤j
ci,c j

(N −|overlap(ri ,r j )|) Reduce the inter-class overlap of rules. We removed this function from
our objective.

f5(R)= |C |−
∑
c ′∈C

1(∃r = (s,c) ∈R suchthatc=c ′) Have at least one rule for each class. We removed this function from our
objective. The function 1 returns 1 whenever the condition it takes as an
argument is true and 0 otherwise.

f6(R)=N · |S |−
∑
r ∈R

|incorrect-cover (r )| To encourage precision, reduce the size of incorrect-cover sets.

f7(R)=N −
∑

(x,y)∈D

1(|{r |(x,y) ∈correct-cover (r )}| ≥ 1) To encourage recall, have at least one accurate rule describes each data
points.

5.2 Interpretable Decision Sets
Notation. We here introduce the notation of original IDS. Let
D= {(x1,y1),...,(xN ,yN )} be a dataset where each data point xi is a
tuple of attribute values (x1,...,xk ) andyi is the corresponding label.
We denote by S a input set of itemsets s , C a set of class labels c in
D, and R= {(s1,c1),...,(sk ,ck )} a set of rules, respectively. We call an
itemset-class pair (s,c) a rule r . In our usage, a rule corresponds to
each IOC and an itemset corresponds to a representation of artifacts
i.e., an IOC.

Here, we consider size(R) i.e., the number of rules in R ,width(r )
i.e., the number of representations in the itemset s , and cover (r ) i.e.,
the set of data points x in D that matches all the representations of
an itemset s . To measure recall and precision of each rule, we also
consider the following:

overlap(r ,r ′) = cover (r )∩cover (r ′) (3)
correct-cover (r ) = {(x,y) ∈cover (r )|y=c} (4)

incorrect-cover (r ) = cover (r )\correct-cover (r ) (5)

Objective. Following these notations, IDS tries to maximize the
combination of 7 objective functions at once:

argmax
R⊆S×C

7∑
i=1

λi fi (R) (6)

Each function is described in Table 1. The hyperparameters λ1,λ7
are set at initialization of the optimization, and an appropriate value
is tuned by means like gird search. Given a set R containing all rules,
IDS returnsR′which contains only the necessary r through optimiz-
ing the objective. The goal of the objective is to accurately describe
the entire dataset with a simple and concise set of rules. In particu-
lar, the functions f1,...,f4 are for interpretability, the others are for

accuracy. The proof that
∑7
i=1λi fi (R) satis�es non-monotone, non-

negative and submodular is described in a technical report version
of IDS proposal [33]. Because the combination of these objective
functions is non-monotone, IDS employ SLS for its optimization. As
a result, IDS can derive the set of rules which is at least 2/5 optimal
solution (and the derived rules work su�ciently in practice).
Classi�cation. To use IDS-optimized rules for classi�cation, we
follow these steps: Given attribute values x , if x matches exactly
one itemset si , its class label is assigned to the corresponding ci . If
x matches no itemsets then its class label is assigned to a default
label, and if x matches more than one itemset, it is assigned to a
class through a majority vote. In our usage, we can classify malware
by if we �nd the artifacts represented by an IOC.

5.3 Domain-Speci�c Extension
We rede�nedwidth(r ) in f2 and we removed f4 and f5 for our IOC
optimization. We describe each reason and our insight.
Concisenessmetric. As we show in Table 1, the function f2 is
de�ned to minimize the clause numberwidth(r ) of each rule in a
given set. Unfortunately, this metric does not work for our IOC
candidates. In the original IDS design, itemset s is extracted by
frequent itemset mining [1]. Therefore, itemset may contains mul-
tiple artifact representations andwidth(r ) is de�ned as the number
of representations. On the other hand, “itemset” we generate in
Candidate Enumeration contains only one representation. Thus,
width(r ) is identical for any IOC.

For reasons stated, we changed the de�nition ofwidth(r ) from
the number of representations in the itemset s to the number of
regular expression objects in the “itemset” s . In other words, f2
turns into a function that minimizes the total number of regular
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expression objects in each rule in the set of rules. This modi�cation
is based on the insight that IOCs with fewer regular expressions
are more interpretable. We can say that this function satis�es sub-
modularity as before, following in the Appendix proof in [33].
Family-awareness. The function f4 is de�ned to reduce the
inter-class overlap of rules and f5 is a function to have at least one
rule per class. The commonality of them is that they are de�ned
to optimize rule sets that contain multiple classes. Unfortunately,
a class imbalance problem forced us to consider the reason for this
function. This is the problem that a classi�er which ignores minor-
ity classes tend to be trained when the number of one class of data
is far less than the number of another class of data. This problem
is common in the malware domain. For example, in the Drebin
dataset [2], the largest family contains 925 samples, whereas 58%
families consist of fewer than �ve samples. The original IDS did
not consider this problem and if we set the objective function for
the entire dataset, the rule that functions e�ectively for a small
number of families will have a lower evaluation value compared to
the rule for majority families. Hence, except for the rule protected
by f5, rules may be excessively reduced. In other words, rules for
minority families will be understated.

For this reason, we divided the process of Optimization for each
class. In line with this, we removed the function f4 from our objec-
tive and decided to try optimization independently for each class.
As a consequence, the function f5 is no longer needed. This will ne-
glect near-optimality of rules for the entire dataset, but will respect
near-optimality of rules for each family. Note that incorrect-cover
etc. are calculated using the entire dataset because we need to delete
rules that misclassify other families.

6 EVALUATIONOVERVIEW
In this section, we provide an overview of our series of experiments.
Because our goal is to produce accurate and interpretable IOCs,
we evaluate generated those from both perspectives. Especially,
we design and run experiments to answer the following research
questions:

(1) RQ1: Are EIGER-generated IOCs able to reach the same
predictive accuracy as other methods for a labeled dataset?

(2) RQ2: Is EIGER able to improve the accuracy of IOCs when
assuming one-week period to re�ne the IOCs?

(3) RQ3: Are EIGER-generated IOCs able to provide accuracy
comparable to commercial ones?

(4) RQ4: Is EIGER able to generate IOCs that achieve the same
interpretability as manually-generated ones?

As the response to RQ1, we compare an accuracy of our IOCs with
accuracies of classi�ers trained with the existing machine learning
methods. The aim of RQ2 and RQ3 is similar to RQ1 in that they
relate to accuracy, but with more practicability taken into account.
In response to RQ3, by activating Incremental Learning component,
we repeatedly re�ned IOCs from a dataset from the previous week
and repeatedly measured the accuracy for the dataset of the next
week. To answer to RQ4, we deployed a certain commercial EDR
product which accepts IOCs and provides detection scheme, put
the EIGER-generated IOCs into the product, and evaluated the per-
formance with the pre-installed commercial IOCs. We detail this
series of experiments in §7.

Table 2: Dataset.

# classes # samples Date range

Train Malware 289 80,239 Nov 2018 -
Feb 2019Benign 1 9,664

Test Malware 287 63,993 Mar 2019 -
Apr 2019Benign 1 8,130

As the answer to RQ4, as we posit that manually-generated IOCs
are interpretable, we presented our IOCs and manually-generated
ones to SOC analysts and analyzed the di�erence in impressions
from both. We describe this experiment in §8.

For these experiments, we instantiated EIGER in our systemwrit-
ten in Python 3.6.5 built top on an Intel(R) Xeon(R) computer with
an E5-2660 v3 CPU 16 cores and 192 GB RAM. Since our method
can be executable separately for each family, we execute threads
per family in parallel. This enables us to generate IOCs faster than
sequential processing.

7 ACCURACY EXPERIMENTS
In this section, we detail the experiments to answer to RQ1, RQ2,
and RQ3, respectively. The experiments were performed in accor-
dance with well-established guideline [50].

7.1 ComparisonwithMachine Learning
Purpose. The purpose of this experiment is to compare the clas-
si�cation performance of EIGER-generated IOCs with that of other
methods. In particular, we set up our rivals in two directions to eval-
uate our design choice. First is the IOCs from EIGER with weaker
settings, that is, the ones optimized in the setting excluding the
family-awareness mentioned in §5 and the ones optimized without
generating regular expression patterns. Second is the other meth-
ods that purely seek accuracy without considering interpretability
i.e.,machine learning.

To these ends, we divided 162K samples with ground-truth labels
into training set and test set and measured the predictive perfor-
mance of each method. This experiment follows a general way to
evaluatemachine learningmethods. Note that our purpose is tomea-
sure the performances on coarse-grained and endpoint-obtainable
artifacts and thus it is not to compete against state-of-the-art which
is hinging on �ne-grained information obtainable through dedi-
cated instrumentation e.g., data �ow analysis [58] and multi-path
execution [10].
Dataset. Table 2 summarizes the dataset used in this experiment.
The malware samples were collected from VirusTotal [35] from
November 2018 to April 2019. All malware samples were Windows
PE �le format, detected by 19 or more but 29 or less anti-viruses in
VirusTotal. The benign samples were collected from public sources
of freeWindows software. To generate the dataset, we adoptedWin-
dows 7 as an operating system, adopted the out-of-the-box taint
analysis i.e., API Chaser [27] as a hook method to stealthy track
successful write events to the �le system or registry and command
line arguments to accompany process creation. We also carefully
�ltered the network communication to prevent from attacking third
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Table 3: Classi�cation results on the test set. The TPR is
slightly inferior to the machine learning methods, but the
FPR and the precision are superior to others.

Method FPR% TPR% Precision% F1 score

EIGER 0.97 91.98 99.87 95.76
EIGERD- 4.76 90.34 99.34 94.62
EIGERR- 6.03 70.20 98.92 82.12
DNN 1.00 93.82 99.87 96.75
XGBoost 2.20 91.31 99.69 95.32
Random Forest 1.19 93.59 99.84 96.61
Decision Tree 1.23 92.73 99.83 96.15

parties. The analysis time of each sample was set to 30 minutes.
Our ground-truth labels i.e., family names for each malware sample
were obtained from AVCLASS [53], a tool which takes as input
VirusTotal reports and returns a label that aggregates scan results
of multiple anti-viruses.
Procedure. We used the �rst three months of the dataset for
IOC generation or model training and the second two months for
their testing. This split ensures that future knowledge about the
testing objects does not enter the training phase [17], that is, we
have properly assessed the accuracies with preventing data leakage.

We generated IOCs from the training set using EIGER, EIGERD-,
and EIGERR-. EIGER is our proposal, EIGERD- is EIGER without
domain-speci�c extension, and EIGERR- is EIGER without creating
regular expression patterns. We also trained Deep Neural Network4,
XGBoost [7], Random Forest [4], and Decision Tree [5] from the
training set.We here used bag-of-words feature extraction, referring
to Rieck et al. [49]. We performed 5-fold cross validation during IOC
generation or training to adjust hyperparameters, such as λ1...λ5
in our method and number of trees in Random Forest, through the
grid search. In other words, we used part of the training set as a
validation set. After the IOC generation and the model training, we
measured multi-class classi�cation performance on the test set.
Results. EIGER successfully generated IOCs in an average of
1,710.53 seconds (28.5 minutes) during the cross validation. The
best TPR of the EIGER-generated IOCs on the training set was
97.53%. Eventually, 1,326 IOCs were generated.

The results on the test set shown in Table 3. From the table, we
observe the following. First, the EIGER-generated IOCs successfully
detected malware as accurate as known machine learning methods.
This implies we can represent most malware with a discrete pattern
which does not lie in multiple artifacts. Second, we can suppress
FPR with the extension considering the class imbalance problem
(see EIGER and EIGERD-). Third, we can improve TPR about 20% by
introducing regular expression to an IOC (see EIGER and EIGERR-).
We consider the reason why FPR of EIGER is lower than other meth-
ods is because malware has reduced to the presence or absence of
a single artifact. The results enables us to conclude that EIGER has
enough capability to generate accurate IOCs.

4The number of the layers was three , the activation function was ReLU [39], and the
optimization method was Adam [30]. 20% dropout.

Table 4: Snipped classi�cation results on top-wanted mal-
ware [20] in the test set. Among them, Mirai is excluded
because it is targeting Linux; Pushdo is excluded because it
did not exist in our dataset.

Family TPR% Precision% F1 score # samples

Emotet 100.00 100.00 100.00 1138
WannaCry 100.00 88.00 93.1 863
Kovter 100.00 100.00 100.00 1305
ZeuS 100.00 97.27 98.50 90
Dridex 100.00 100.00 100.00 131
IcedID 100.00 100.00 100.00 105
Gh0st 100.00 100.00 100.00 812
NanoCore 100.00 94.82 97.51 24

Table 5: Classi�cation results on the �nal week’s part.

Method FPR% TPR% Precision% F1 score

EIGERI+ 0.94 94.70 99.90 97.10
EIGER 0.97 91.98 99.63 95.52

Additionally, for readers who may be interested in how much
EIGER works against the serious threats, Table 4 shows a snipped
classi�cation result on the top-wanted malware [20]. The result
indicates that EIGER has a potential to cope with not only malware
in general but also serious malware.

7.2 E�ectiveness of Incremental Learning
Purpose. The purpose of this experiment is to measure the per-
formance of EIGER in a bit more realistic scenario. The IOC is, after
all, a signature, so we need continuous updates. Therefore, we here
run an experiment in a scenario that incorporates IOC updates with
activating Incremental Learning. Through this experiment, we can
see how Incremental Learning can improve the IOC’s performance.
Procedure. We use the same dataset used in the previous experi-
ment. We compared EIGERI+-generated IOCs and EIGER-generated
ones. The former is IOCs which improved weekly with Incremental
Learning activated and the latter is original IOCs from the �rst three
months of the dataset (the same IOCs generated in the previous ex-
periment). For EIGERI+, we repeated the following: we �rst generate
IOCs from part of the dataset until a certain period and then mea-
sure the performance with next week’s part. We did not re�ne the
EIGER-generated IOCs, but measured the performance repeatedly.
Results. The weekly performance trend is shown in Figure 3,
and the snipped result of the �nal week is shown in Table 5. Unsur-
prisingly, EIGERI+ �nally outperformed EIGER. From the �gure, we
observe the following. First, our Incremental Learning mainly con-
tributes to recall rather than precision. Second, the larger the test
set, the lower the TPR, but the performance will converge without
the degradation if at least new samples are around 5,000 per day.

We also con�rmed how Incremental Learning can automate IOC
re�nement. An example of IOC re�ned by Incremental Learning is
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Figure 3:Weekly results of EIGERwith incremental learning andwithout. Note that the daily sample size is di�erent.

Table 6: Classi�cation results under the adverse condition.

Method FPR% TPR% Precision% F1 score

EIGER 0.18 12.25 98.28 21.59
Product A 4.31 7.24 95.68 13.23

against malware Dofoil5. This malware leaves registry keys includ-
ing GUIDs, pseudo-randomly named �les, and command line argu-
ments containing speci�c strings like “wind.sfx.exe” as artifacts. The
last is the only artifact can truly be used as an IOC, but we �rst chose
a regular expression pattern converted from the registry keys from
its coverage. However, as learning proceed, it turned out that this
pattern falsely detects benign samples. Therefore, EIGER had started
selecting the command line arguments to suppress FPR for benign
sample, willing to drop TPR for Dofoil a bit (from 90% to 88%).

These results suggest that our system frees analysts from the
procedure of maintaining IOCs.

7.3 Comparison with Commercial IOCs
Purpose. The purpose of this experiment is to analyze the dif-
ference between our IOCs and commercial ones. Many commercial
products used for Endpoint Detection and Response (EDR) services
o�ering by SOC attempt to detect malware using pre-installed IOCs
in combination with IOCs added by the user. Thus, we can compare
our IOCs and commercial ones through deploying an EDR product
and adding our IOCs to it. Due to resource constraints (in the previ-
ous evaluations, we could measure the performance if only traces
obtained once, but in this evaluation, we need to actually deploy
the product separately from the analysis environment), we cannot
use the same test set of the dataset in Table 2 in this experiment.
Thus, we set up a completely new test set for this comparison. This
was inevitable, but it is also interesting because malware can be
generated from a completely di�erent distribution from the training
set. Therefore, if the result is good, it is suggested that EIGER will
thrive even under such an adverse condition.

5MD5: d82d84ed60c6b121bfa7d117538c9fcb

Dataset. We collected samples posted to Hybrid Analysis [14],
an online sandbox service which makes a verdict whether a sub-
mitted sample is malicious or not. The sample collection period is
April of 2019, and the total number of samples is 1,747.

We set the label according to the following procedure: Put the
sample into our on-premises Cuckoo Sandbox [21], a malware scor-
ing sandbox instance, make the label malicious if Hybrid Analysis’s
verdict is malicious and Cuckoo’s malicious score 2.5 or more, make
the label benign if Hybrid Analysis’s verdict is others and Cuckoo’s
malicious score 2.5 less. Consequently, we had 808 benign samples
and 939 malicious samples. In other words, the task here is binary
classi�cation.

There are two reasons for this labeling. The �rst reason is that
the samples do not overlap with VirusTotal and we cannot con�g-
ure ground-truth labels. The second reason is that the EDR product
neglects malware classes and the commercial IOCs can only be used
for binary classi�cation. Thus, while our IOC describes malware
families, but this time we ignore the families and conduct binary
classi�cation (malicious or benign).
Procedure. We installed the product on a Windows 7 machine.
The EDR product we used had at least 20 IOCs for generic malware
detection pre-installed (total number is private). Next, we put the
IOCs generated by EIGER from the training set of Table 2 (same
ones used in the previous experiments) into the product (the IOCs
generated from the benign samples were excluded). After that, we
run new daily samples in the environment every day to determine
if the IOCs would react.
Results. Figure 4 and Table 6 shows the results. From the �g-
ure, we observed the following. First, TPR for di�erent data sets
had reduced, unfortunately, but unsurprisingly. Second, our IOCs
maintain high precision and law FPR even on the di�erent test set.

In addition, the number of samples that our IOCs could detect
but the commercial ones could not detect was 113 out of 190 total
detection. Conversely, the commercial ones could be detected, and
the number of samples ours could not detect was 57. Therefore,
regarding this less overlap in the detection, we can say EIGER
complements commercial IOCs.

The experimental results suggest that EIGER is practical in its
precision even under an adverse condition. In combination with the
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Figure 4: Daily results of EIGER and pre-installed commercial IOCs. Note that the daily sample size is di�erent.

previous evaluation results, we consider proper sample collection
can further improve the practicality of EIGER.

8 INTERPRETABILITY EXPERIMENT
In this section, we present the experimental results to answer to
RQ2. To the best of our knowledge, this is the �rst user study that
explores the interpretability in the malware detection �eld.

8.1 User Study
Purpose. The purpose of this experiment is to measure the inter-
pretability of our IOCs in a realistic context. As we discussed in §1,
the IOC plays a vital role in the security measure against malware
threats. Because security analysts need to inspect the validity of
an IOC when it triggers an alert, it is crucial that the generated
IOCs are interpretable for the analysts. Our insight is that existing
IOCs are created by analysts and are hence interpretable to ana-
lysts. Therefore, we can discuss how our IOCs are interpretable by
comparing the IOC signatures created by the analysts with ours.
Thus, we planned a user study in which participants have to answer
the perception from given EIGER-generated or manually-generated
IOC signatures.
Participants. We recruited 15 analysts (14 male, one female)
working for a SOC in Japan, which is providing managed security
service. Their job role includes monitoring, triage, analyzing and
reporting alarms from network devices and endpoints. Since they
have the opportunity to interact with IOCs on a daily basis, they
are suited for evaluation in line with the use case. The author of the
manually-generated IOC signatures belongs to the SOC but was
not included in the participants of this experiment.

Among the group, the median age was 31. The oldest participant
was 50 years old and the youngest was 27 years old. Their experi-
ences in the security �eld were 5.26 years on mean, �ve years on
median. We told them that we wanted to conduct a study on IOC
creation but not mentioned its automation in order to minimize the
risk of bias. To motivate them to join an experiment, we o�er them
to provide our IOCs after the experiment.

Since we cannot reach out the entire SOCs in the world, this
experiment is limited in scope. Even though, we believe that we
can validate the interpretability of IOC signatures for general SOC

analysts in this way because they have a commonality in their
work�ow.
Design. We designed a user study where each participant was
presented with EIGER-generated IOCs and manually-generated
IOCs, through an online platform. Speci�cally, we presented three
EIGER-generated IOC signatures and three manually-generated
ones to the participants as OpenIOC [19] format with its creator
was hidden. For the former, we randomly took the IOC signatures
from the generated set of IOCs and for the latter, we used the ones
given by its author. The author, a SOC analyst, was known to us but
was not involved in the study or the work on the automated IOC
generation. Note that the IOCs used here are IOC signatures. Each
one includes a description, multiple operators, and representations
as shown in Figure 1. As a di�erence from ours, all the descriptions
in the manually-generated those are precisely-written in natural
language.

We showed questions for each IOC signature in which partici-
pants rate their level of agreement about its interpretability. The
presented questions are as follows: (1)Do you think that you correctly
understood what this IOCmeans? (2) Is this IOC easily readable? (3)
Is this IOC well-structured? (4) Is this IOC seamlessly usable in your
daily work? (5) Does this IOC look similar to the way you would create
IOC? (6) Is this IOC high quality? (7) Is this IOC reliable? (8) Is this
IOC su�cient for the operation even without the raw log? These were
inspired by the previous work on a usability-aware decompiler [59].

The ratings are 5-point Likert scales, that is, the choices are:
Strongly Disagree, Disagree, Neutral, Agree, and Strongly Agree. Note
that each IOC signature was presented without being told its creator
(EIGER or the analyst), so we can expect an unbiased evaluation of it.
Participants were allowed to use the Internet during the experiment.

In order to obtain the deep insights into the reasons why partic-
ipants reported in that way, participants were asked What elements
do you want in terms of logic or description of IOC in addition to the
presented ones? as an optional descriptive question after �nishing
the choices.
Results. Figure 5 summarizes the ratings. Both ours and the
manually-generated IOCs scored Agree on mean. In EIGER, 14% of
the agreements was Strongly Agree or Disagree, 31% was Neutral,
56% was Agree or Strongly Agree; In Manual 15% of agreements was
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Figure 5: Participants ratings to the questions. Our IOCs scored slightly higher thanmanually-generated ones in (1), (3), (7), and
(8). In contrast, our IOCs scored slightly lower thanmanually-generated ones in (4) and (5). Even though, there is no statistically
signi�cant di�erence between them (p=0.55).

Strongly Disagree and Disagree, 30% was Neutral, 55% was Agree
and Strongly Agree. According to the di�erence of the timestamp
between GET request and POST request of the online platform, the
response time to the experiment was 42.28 minutes on median and
48.55 minutes on mean.

In order to con�rm the statistical di�erence between the score of
our IOCs and the score of the manually-generated ones, we adopted
the Wilcoxon signed-rank test [57]. The reason why we took this

test is because of the two reasons. First, our subject here is an ordi-
nal scale. Second, the results did not follow the normal distribution6
and thus t-test is not suitable [52]. The p-value was 0.55 which in-
dicates that there is no signi�cant di�erence in user perception
between ours and manually-generated ones. Thus, at least we can
say that the user perception is mostly the same. Note that we cannot

6The test statistic calculated by Shapiro-Wilk test [54], a method to identify whether
given data follows the normal distribution, was 0.867 for our IOCs and 0.89 for the
manually-generated ones.
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Table 7: The requests to an IOC signature from the SOC analysts.

Requests N

A description of the false positives. 3
Information on C&C servers. 2
A description pointer to external information sources. 2
A description of the intention of IOC. 1
A description of the artifact rarity. 1
A description of which stage’s payload the IOC points to for multi-stage malware. 1
A description being self-contained so that analysts don’t need to seek external sources. 1
Exact match between the content of the natural language description and the content covered by the IOC. 1

and do not aim to say that user perception is statistically equiva-
lent just because there is no signi�cant di�erence. Yet, there is no
inferiority in user perception between automatically-generated and
manually-generated IOCs. The results show that EIGER has enough
capability to generate interpretable IOCs while achieving accuracy.

The results of the descriptive question in Table 7. While our
IOCs have achieved enough interpretability, analysts had requested
further features to the IOCs. Interestingly, most of them is about de-
scription. Whereas manually-generated those contain a description
written in natural language, ours do not. Thus, through enhancing
our method to provide it, we may generate more interpretable IOC
even than manually-generated ones. We leave it as a future work.

9 DISCUSSION
While EIGER have reached our goals, it is necessary to discuss its
limitation. Especially, we here assume an adversarial setting, i.e., the
situation when an attacker knows our method. In this section, we
summarize possible attacks against our method and discuss their
mitigations. Speci�cally, we organize the attack to our method into
two types: evasion and denial-of-service (DoS).
Evasion. We here call an attack that avoids IOC-based detection
as an evasion. The basic idea of evasion is to let malware create only
artifacts that cannot be distinguished from other families or benign
programs. For example, if only the Run key [38] is recorded in the
log, themalware cannot be distinguished from other families by IOC.
Similarly, malware that creates only an artifact that is identical to a
benign program is di�cult to classify. Furthermore, it is practically
impossible to detect malware composed only of artifacts consisting
of random character types and string lengths. This is because this
type of malware cannot be distinguished from other malware fam-
ilies or benign programs at the IOC level. Unfortunately, this case
was seen in the family called Ygdata7 and Zlob8 which creates a
�le with a fully-randomized name in a temporary directory and we
could not observe any other artifacts creation. We face di�culty
in detecting them while we rely on the concept of IOC.

In order to detect such malware, it is necessary to make use of
more detailed features regardless of the IOC format. Though, it does
not mean that our method becomes completely useless because
this is a design issue of the IOC, it does not restrict our method
itself. If artifacts such as disassembled code and memory layout that

7MD5: 8903f0def1993bdbe1a05952766c21ee
8MD5: c0e5ec2f7841ba28557c2d49413f0365

cannot be completely randomized are converted into the dataset for-
mat, EIGER can be applied as a signature generation method, even
though the resulting products may deviate from the IOC category.
Denial of service. We discuss an attack surface that leads to a
DoS at each step of EIGER. While this issue was not actualized in
our experiment, it may become apparent in the adversarial setting.

For Candidate Enumeration step, we can assume an attack that
makes it di�cult to generate regular expression patterns by creat-
ing a large number of artifacts. That is, one can create a dedicated
malware which exploits the algorithmic complexity of our clus-
tering i.e.,O(N 2 logN ). We may deal with this problem by using
non-hierarchical clustering [16, 43] or by targeting only artifacts
common to multiple samples.

For Optimization step, as our IOC generation builds on regu-
lar expression, there is a room for ReDoS attacks [13] against the
regular expression engine. To this end, one can create a dedicated
malware which leaves an artifact for ReDoS attack that delays
the IOC coverage measurement. This issue can be addressed by
providing a timeout for computing incorrect-cover etc. If the time
taken to measure the coverage exceeds the required time, we can
determine that this is an artifact created for ReDoS and can delete
corresponding IOC the candidates.

10 RELATEDWORK
Indicators of Compromise. IOCs [11, 12, 19] are common in
sharing information on malware [15, 45] and thus become an in-
tegral part of today’s security operation. Pioneer works [25, 34, 62]
focused on extracting IOCs from human-written online report uti-
lizing natural language processing techniques. Thus, on the automa-
tion of IOC generation for malware detection from non-human-
written traces has not been studied yet.
Malware detection and classi�cation. In this �eld, many be-
havioral features have been long-established e.g., instruction seman-
tics [9], API call sequences [8, 22, 31, 42, 51], call graph [29] and data
�ow [58]. Interested readers can refer to the comprehensive survey
[61]. In contrast, our aim is to detect malware based on only coarse-
grained features, that is, artifacts that can be obtained directly from
most endpoints, rather than their �ne-grained features.

Same as EIGER, Mastino [47] and MARMITE [56] use only a
small piece of information obtainable from an endpoint, however,
they simultaneously require network monitoring and thus they are
not suitable for postmortem analysis of an endpoint alone. There
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is also a case study [6] that detects suspicious programs using only
endpoint-obtainable features, but it is not intended to provide an
interpretable explanation. EIGER and they are complementary to
each other.

Our idea of using regular expressions is inspired by the network
signature generation methods [40, 44, 55], however, there are three
di�erences between EIGER and them. First, whereas they are for a
network, EIGER is for an endpoint. Second, they do not follow our
enumerate-then-optimize design. In particular, they generate regular
expressions with a single abstraction-level and select the generated
expressions with given a threshold. In other words, they do not
generate potentially-enumerable regular expressions and do not
compute (near-)optimal solution, while EIGER does. Third, EIGER is
designed to satisfy the domain-speci�c criteria i.e., interpretability.
In summary, EIGER can be regarded as their systematized variant
for an endpoint.
Interpretability. Interpretability is an active area in a machine
learning research. Amodel lacking this element could not be trusted
by the user (analysts for us). We shall brie�y discuss the two re-
search direction to address this issue, instead of the comprehensive
survey [23]. First is to explain the decision boundary of a black
box model for a certain data point [36, 48]. In a malware domain,
there are interesting works on explaining a Deep Neural Networks’
decision to facilitate manual reverse engineering [24, 60]. However,
they cannot be applicable to the IOC generation because they rely
on �ne-grained features and do only provide an explanation for a
one data point at once. Second is to create a transparent model for
the entire dataset that is easy to interpret. EIGER is positioned to
this category since IDS framework [32, 33] lies in this category. The
authors of the original IDS paper con�rms through a user study that
IDS generates rules that are more interpretable than rules generated
by other machine learning techniques. However, since the original
IDS is not designed to generate IOCs, the results have not been
compared with manually-created IOCs. The di�erence between our
work and them is that we extended IDS for malware detection pur-
pose and compared the products with manually-generated IOCs.

11 CONCLUSION
We presented EIGER, a method to automatically generate accurate
and interpretable IOCs from given malware traces. Our experi-
ments on the accuracy showing a TPR of 91.98% and a FPR of
0.97% demonstrated that our IOCs are as accurate as other machine
learning techniques. We also con�rmed that EIGER can automat-
ically re�ne the IOC and achieve high precision even under an
adverse condition. Our user study with the 15 SOC analysts on
the interpretability demonstrated that our IOCs bear comparison
with manually-generated ones. While EIGER does not supersede
existing malware detection method, but these experimental results
indicate that EIGER is an appealing complement to endpoint mal-
ware detection in the real-world security operations.

The applicability of EIGER goes beyond the endpoint �eld. Our
design, which explicitly introduces the steps of enumerate-then-
optimize, enables us to optimize the combination of signature can-
didates with di�erent abstraction-levels while guaranteeing the
near-optimality. A promising avenue for the future in battle against

malware threats is to apply our method to other �elds which require
the signature generation.
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