
Detecting organized eCommerce fraud
using scalable categorical clustering

Samuel Marchal
Aalto University

samuel.marchal@aalto.fi

Sebastian Szyller
Aalto University

sebastian.szyller@aalto.fi

ABSTRACT

Online retail, eCommerce, frequently falls victim to fraud conducted
by malicious customers (fraudsters) who obtain goods or services
through deception. Fraud coordinated by groups of professional
fraudsters that place several fraudulent orders to maximize their
gain is referred to as organized fraud. Existing approaches to fraud
detection typically analyze orders in isolation and they are not
effective at identifying groups of fraudulent orders linked to orga-
nized fraud. These also wrongly identify many legitimate orders as
fraud, which hinders their usage for automated fraud cancellation.
We introduce a novel solution to detect organized fraud by analyz-
ing orders in bulk. Our approach is based on clustering and aims
to group together fraudulent orders placed by the same group of
fraudsters. It selectively uses two existing techniques, agglomera-
tive clustering and sampling to recursively group orders into small
clusters in a reasonable amount of time. We assess our clustering
technique on real-world orders placed on the Zalando website, the
largest online apparel retailer in Europe1. Our clustering processes
100,000s of orders in a few hours and groups 35-45% of fraudulent
orders together. We propose a simple technique built on top of our
clustering that detects 26.2% of fraud while raising false alarms for
only 0.1% of legitimate orders.

KEYWORDS

online fraud; fraud detection; eCommerce; categorical clustering

1 INTRODUCTION

Online retail, also known as eCommerce, represents an important
share of the retail business. About 17.5% of all sales made in the
United States consists of eCommerce transactions, which accounts
for several trillions of dollars every year [39]. The expansion of
online retail is driven by its twomain characteristics: 24/7 accessibil-
ity and scalability to a potentially unlimited number of customers.
However, these features also increase the exposure to frauds in
which malicious customers, fraudsters, obtain physical goods or
services through deception. It is estimated that 3 to 5% of online
orders constitute fraud, which accounts for over $50B in value every
year [41]. Fraud represents a direct monetary loss that can signifi-
cantly reduce the business valuation of online retailers [51] and it
must be mitigated.

Cancellation of fraudulent orders in a timely manner prevents
this monetary damage. To be effective, fraud cancellation requires
reliable means of detection. Cancelling legitimate orders decreases
customer loyalty, degrades brand image/reputation and causes a

1Disclaimer: The views and opinions expressed in this article are those of the authors
and do not necessarily reflect the official position of Zalando Payments GmbH.

shortfall in revenue estimated to over $100B every year [12]. Be-
cause of this reliability requirement, current approaches to can-
celing fraud rely on screening which is a manual process done by
human analysts [35]. Thus, screening is a costly process applied
to a limited number of orders and which can prevent only a lim-
ited amount of fraud. Screening can be facilitated using automated
analysis techniques that produce additional fraud indicators [31].
Nevertheless, these techniques are not accurate enough to provide
standalone and automated fraud cancellation [35].

The type of fraud that has been rising is organized fraud [27].
95 professional fraudsters performing organized fraud were ar-
rested in 2018 for committing fraud exceeding e8M in value [14].
In organized fraud, a small group of fraudsters coordinate fraud
campaigns against a chosen online retailer. Fraud campaigns span
a limited period of time during which several fraudulent orders
are placed for goods delivered in a limited geographical area. The
online retailer, Zalando, lost e18.5M to organized fraud in one
quarter of 2015 [51]. Since then, Zalando invested systematically
into their fraud detection systems, which reduced fraud to very
low numbers. Nevertheless, throughout the market, many current
automated techniques for fraud detection analyze orders in isola-
tion [8, 10, 17, 27, 43]. However, detecting organized fraud profits
from a global view of all orders placed in a given period of time.

Goal and contributions.Wewant to design a solution to detect
organized eCommerce fraud. We propose analyzing orders in bulk
rather than in isolation, to identify similarities among fraudulent
orders that belong to the same fraud campaign. Similar fraudulent
orders can be grouped together by applying clustering on relevant
attributes. Orders in the same fraud campaign have common charac-
teristics highlighted by identical categorical attributes, e.g., delivery
address, customer name, payment method, etc. Consequently, we
propose applying unsupervised categorical clustering on these at-
tributes to identify organized eCommerce fraud.

We introduce a novel approach for hierarchical categorical clus-
tering: recursive agglomerative clustering. This approach is specifi-
cally designed to group fraudulent orders placed on online retail
stores. It combines the benefits of (1) agglomerative clustering to
generate small clusters each potentially representing a fraud cam-
paign and (2) sampling to process a large number of orders in a
reasonable amount of time. Clusters obtained using our clustering
approach have two applications:A1 prioritizing orders that must be
analyzed through screening and A2 automatically canceling frauds
by deciding that all orders in a cluster are fraudulent if at least one
order in the cluster is fraudulent (e.g., older known fraud).

We assess the real-world effectiveness of our approach using
6M orders placed on the Zalando website [49], the largest online
apparel retailer in Europe. We claim the following contributions:

ar
X

iv
:1

91
0.

04
51

4v
1

 [
st

at
.M

L
]

 1
0

O
ct

 2
01

9

https://www.acsac.org/2019/

• a novel clustering technique for categorical data (Sect. 3.2).
It is a recursive clustering approach combining agglomera-
tive clustering and sampling to generate a large number of
clusters from medium-size datasets (100,000s of samples).
• two strategies for weighting categorical attributes (Sect. 4),
which facilitate the selection of optimal hyperparameters for
categorical clustering (Sect. 6.3).
• the evaluation of our clustering technique showing its effec-
tiveness at grouping fraudulent orders (Sect. 7). It generates
clusters mixing a small number of fraudulent and legitimate
orders (0.8%) while grouping a large portion of fraudulent
orders (42.1%) together. Its computation time is much lower
than existing clustering techniques and is able to process,
e.g., 15,000 orders in 3 minutes.
• the demonstration that generated clusters can be used to
automatically detect 26.2% of real-world fraud perpetrated
against Zalando, while causing only 0.1% false alarms for
legitimate orders incorrectly identified as fraud (Sect. 8).

2 DETECTING ECOMMERCE FRAUD

We focus on the detection of fraudulent orders committed against
online retailers, which we simply name frauds from now on. In
this paper, we tackle the specific use case of detecting fraud perpe-
trated against Zalando [49]. Zalando is an online apparel retailer
operating in 17 markets, having 28 million active customers and
generating over e5B in revenue yearly [52]. We believe this use
case is representative of many large online retailers. We focus on
detecting fraud where fraudsters obtain physical goods through de-
livery with no intent of paying for them. The order can either be in
payment default or paid with illegally acquired means of payment.
In both cases, the retailer suffers monetary losses.

2.1 Fraud detection and cancellation

A typical2 fraud detection pipeline [11, 13, 35] is depicted in Fig. 1.
An order is represented by a set of numerical features and cate-
gorical attributes. This information is automatically validated to
confirm the order which serves as a preliminary step for the fraud
detection process. Features and attributes representing an order are
fed to several scoring functions that automatically produce fraud
indicators. These functions can use additional background infor-
mation (e.g., from customer history) and they typically rely on
human defined heuristics and supervised machine learning (ML)
models [8, 37, 43]. Fraud indicators and raw order information are
provided to a screening process that decides if the order is legiti-
mate and should proceed or if it is a fraud and it should be canceled.
Cancellations are usually performed based on a combination of
machine learning systems and human expert knowledge.

Fraud detection is a time constrained process that must happen
after an order is placed and before it is processed for shipping.
This typically gives only a few hours to detect fraud and only a
small fraction of orders can be inspected by human experts. On the
other hand, many automated scores are computed on each order

2This pipeline is chosen for the sake of generalizability. The particular fraud detection
setup at Zalando is not taken into account in this paper and it does not perfectly match
this typical pipeline.

Numerical
features

Categorical
attributes

Screening

Background
information ML models

Scoring1

Scoring2

Scoringn

cancel

proceed

Our solution:
Unsupervised clustering

cancel

proceed

Processing time < t

Order

Heuristics

(A1)

(A2)

Figure 1: Fraud detection pipeline. Final cancellation is de-

cided byhuman analysts during screening. Our solution sup-

ports screening (A1) and automatically cancel frauds (A2).

independently, which can decrease their efficiency at detecting
organized fraud.

2.2 Preventing organized fraud

Fraud can be either isolated events occasionally performed by in-
dividuals or organized by criminal groups of professional fraud-
sters [27]. Organized fraud relies on coordinated events, fraud cam-
paigns, that target a specific online retailer. During a fraud cam-
paign, several orders are placed over a limited period of time (e.g.,
one month), by a small group of fraudsters having several electronic
identities each. Most orders are fraudulent and all orders are deliv-
ered in a restricted geographical area (e.g., the same city) where
the criminal group operates. Also, fraud campaign typically uses
payment methods that are known to be vulnerable to fraud [51]. We
propose to prevent organized fraud by identifying fraud campaigns.

Following that fraud belonging to a same campaign has similar
characteristics, we propose to group similar orders together in order
to identify fraud campaigns. In this study, we restrict ourselves to
certain categorical attributes, i.e., delivery address, customer name,
payment method, etc. Numerical features have already been exten-
sively used for fraud detection [9, 10, 48] and we want to investigate
the capabilities of categorical attributes in their own right. Since we
do not have a priori knowledge about orders that belong to a fraud
campaign, we propose to take an unsupervised clustering approach
to group similar orders and apply it to categorical attributes of
orders. Ideally it would generate one cluster per fraud campaign,
containing all frauds of this campaign but no legitimate order. Also,
most legitimate orders should have low similarity between each
other and thus, be less likely to be grouped into clusters.

Figure 1 depicts the deployment of our clustering approach in
the fraud detection pipeline. It has two applications.

A1 Prioritizing screening. Clustered orders can be screened
with high priority to detect a large number of frauds with
a minimal effort. We expect frauds to be clustered at a sig-
nificantly higher rate than legitimate orders. Comparing
orders in the same cluster provides human analysts with
new information that may facilitate the cancellation.

2

A2 Automated fraud cancellation. Fraud detection can be
applied to clusters of orders rather than to individual or-
ders. Several orders provide aggregated information that
may depict fraudulent behavior more reliably than isolated
orders. An automated process can decide if the whole cluster
is fraudulent and cancel the orders.

While a significant share of frauds is organized and may be as-
sociated with a fraud campaign, frauds can also be isolated events.
We focus on detecting organized fraud only and our approach is
not designed to detect isolated fraud cases. Our approach is com-
plementary to the extensive prior work addressing the detection of
fraud in isolation [2, 9, 17, 29].

2.3 Attributes representing orders

In the following, we represent each order by 37 categorical at-
tributes, which have discrete values with no intrinsic ordering.
These attributes were selected for the sake of generalizability. They
belong to 5 categories of information that is generally provided by
a customer placing an order on any online retailer.
• Customer Acust (9 attributes): related to the electronic iden-
tity of the customer, e.g., email address, IP address, etc.
• Delivery Adel (3 attributes): related to the means used for
order delivery, e.g, pickup point, delivery type, etc.
• ShippingAship (7 attributes): related to identity and location
(address) of the person receiving the order.
• Payment Apay (11 attributes): related to payment method,
e.g., bank transfer, credit card suffix, etc.
• Billing Abill (7 attributes): related to identity and location
(address) of the person paying the order.

Many of our attributes contain Personally Identifiable Informa-
tion (PII) which were anonymized prior to perform any data anal-
ysis. The clustering approach we introduce and the experimental
results we obtain use these anonymized attribute values.

2.4 Challenges in clustering fraud campaigns

Clustering orders that belong to fraud campaigns requires to address
several challenges related to (a) categorical clustering, (b) fraud
detection and (c) the application domain of online retail.

C1 Imbalanced attribute cardinality. Categorical attributes
representing orders take a different number of values (car-
dinality), from two values to millions. High cardinality pre-
vents the numerical encoding of attributes. Imbalance makes
it difficult to quantify the similarity between two orders.

C2 Imbalanced classes. The ratio of fraudulent to legitimate
orders is highly imbalanced, typically around 1/50 [41]. Prob-
ability of clustering legitimate orders is much higher than
that of clustering frauds, which is undesirable.

C3 No ground truth for fraud campaign. There is no infor-
mation which fraud corresponds to which fraud campaign.
Only ground truth for individual orders is available.

C4 Scale of the data. Large online retailers receive 100,000s
of orders per day. Zalando receives 300,000 orders on av-
erage every day [52]. Most existing categorical clustering
methods [15, 20, 50] have a high complexity and they cannot
process data of such a scale in a reasonable amount of time.

2.5 Requirements

We define the following requirements for a clustering approach to
detect fraud campaigns:

R1 Generate small clusters. There are many more legitimate
orders than frauds (C2). Also, a fraud campaign typically
contains a low number (e.g., 10s-100s) of orders. In order
to group frauds, clustering must generate a large number
of small clusters, each potentially corresponding to a single
fraud campaign.

R2 Minimize cluster impurity. The cluster impurity must be
low. Generated clusters must be composed either only of
legitimate orders or only of frauds.

R3 Maximize clustered fraud. Frauds isolated in singletons
(clusters with one component) are not linked to any fraud
campaign and they cannot be detected by our method. We
must maximize the rate of detected fraud.

R4 Minimize execution time. Online retailers receive 100,000s
of orders per day. Our approach must be able to process such
amount of data (C4) in a reasonable amount of time allowing
for cancellation (e.g., a few hours).

Regarding R1, we do not have ground truth for fraud campaigns
(C3) and we cannot evaluate the “goodness” of our clusters with
respect to grouping frauds from the same campaign. We ensure
clustering goodness by requiring a minimum similarity between
elements belonging to the same cluster, which is typical in clus-
tering [30]. This guarantee is provided by enforcing a maximum
distance between elements that compose the same cluster. Keeping
this distance below a threshold is our criterion for cluster goodness.

3 RECURSIVE AGGLOMERATIVE

CLUSTERING

We introduce Recursive Agglomerative Clustering (RecAgglo) a
novel approach for categorical clustering. It combines the benefits
of two existing techniques [30]: agglomerative clustering, which is
able to generate small clusters (R1) and sampling, which reduces the
time complexity of clustering methods (R4). These two techniques
are selectively applied to recursively divide a large set of samples
into small clusters which eventually meet our goodness criterion.
The code for the RecAgglo algorithm is publicly available [33].

3.1 Agglomerative clustering and sampling

Agglomerative clustering is a bottom up hierarchical clustering
approach. Each element is initially placed into a singleton cluster.
Pairs of clusters having the smallest distance to each other are then
sequentially merged into larger clusters until all elements are in a
single cluster. The distance between two clusters is defined using
a linkage method. For instance, single linkage uses the minimum
distance between any two points in each cluster. The algorithm
produces a dendrogram which represents consecutive merges. Us-
ing the dendrogram, a desired clustering (set of clusters) can be
chosen using different criteria, e.g., ’distance’: the maximum dis-
tancedmax between elements in a cluster, ’maxclust’: the maximum
number of clusters cmax to generate. In contrast to many clustering
techniques [5, 22], agglomerative clustering does not generate a
predefined number of clusters. It generates clusters by grouping the

3

most similar singletons first and it can create many small clusters
whichmeet our goodness criterion as defined by the ’distance’ dmax .
Elements that cannot be assigned to any cluster while meeting this
criterion remain isolated in singletons. Agglomerative clustering
requires computing pairwise distances between elements (O(n2)
complexity) and does not scale to large datasets. The AggloClust
algorithm is presented in App. A.1. It takes a set c of elements to
cluster and a distance dmax as inputs.
The sampling algorithm is applied on top of existing clustering
techniques. It selects a random sample of reference elements from
a set of n elements. These reference elements are clustered and the
remaining ones (not sampled) are assigned to the initially formed
clusters. This reduces the number of distance computations between
elements from n×n to the sample size ×n. If the sample size is in the
order of O(loд(n)), the complexity of the base clustering algorithm
is reduced by the same factor.

We use sampling to reduce the complexity of agglomerative
clustering to O(n × loд(n)) by using a sample size in the order of
O(loд(n)). Our algorithm for agglomerative clustering with sam-
pling SampleClust is detailed in App. A.2. It takes 3 inputs: a set c
of elements to cluster, ρs a multiplying factor to

√
|c | defining the

sample size and ρmc the maximum number of clusters to generate
(using the ’maxclust’ criterion for cluster generation). ρs and ρmc
are parameters to be defined according to the desired computa-
tion time. Sampling deprives agglomerative clustering of its ability
to generate many small clusters since the number of clusters is
bounded by the sample size. Also, clusters generated using sam-
pling do not meet any goodness criterion defined by the maximum
’distance’ dmax .

3.2 Our RecAgglo algorithm

We introduce a scalable approach to generating clusters that meet
our goodness criterion, i.e., the distance between elements in the
same cluster is lower thandmax . Our solution 1 recursively divides
large clusters into smaller ones using SampleClust. When clusters
are small enough, 2 it runs AggloClust to generate a clustering in
which each cluster meets the ’distance’ criterion dmax . All resulting
clusters are recursively aggregated to form the final clusteringCr es
composed of clusters that meet our goodness criterion.

Our approach RecAgglo is defined in Algorithm 1. It takes
as inputs an initial clustering C and a set of parameters: δa (for
RecAgglo),dmax (for AggloClust), ρs and ρmc (for SampleClust).
δa is a parameter defined according to computation time restric-
tions. RecAgglo loops over clusters c ∈ C to split them into smaller
clusters.

If the size of c is larger than a threshold δa , c is split using Sam-
pleClust. We use the ’maxclust’ criteria to generate clusters small
enough to be eventually processed using AggloClust. The result-
ing clusteringCs does not meet our goodness criterion yet and it is
re-processed using RecAgglo. We observed that SampleClust may
not be able to split an input set c given a specific ’maxclust’ factor
ρmc . We address this in two ways. Firstly, we re-try SampleClust
with a lower value ρmc = 1.01 providing the ability to generate
more clusters. Secondly, we fall back to plain agglomerative cluster-
ing given that the cluster size is still reasonably low (4 × δa). Both
these measures were determined empirically. Alternatively, ρmc

Algorithm 1 Recursive agglomerative clustering

1: Let C = c1, . . . , cn denote a clustering of |C | = n clusters,
2: c = v1, . . . ,vm , a cluster of |c | =m elements v ,
3: δa , the threshold for using AggloClust,
4: dmax , the maximum distance for cluster fusion,
5: ρs , the multiplying factor for the sample size,
6: ρmc , the dividing factor for maxclust number.
7:
8: function RecAgglo(C,δa ,dmax , ρs , ρmc)
9: Cr es ← ∅
10: remain ← ∅
11: maxs ← 4 × δa
12:
13: for c : c ∈ C do ▷ Loop to split existing clusters
14: if |c | > δa then ▷ Cluster sampling
15: Cs ← SampleClust(c, ρs , ρmc)
16: if |Cs | > 1 then ▷ Recursive clustering
17: Cloop ← RecAgglo(Cs ,δa ,dmax , ρs , ρmc)
18: else if ρmc > 1.01 then ▷ Recursive clustering alt.
19: ρmc ← 1.01 ▷ Set higher maxclust
20: Cloop ← RecAgglo(Cs ,δa ,dmax , ρs , ρmc)
21: else if |c | < maxs then ▷ Fall back agglomerative
22: Cloop ← AggloClust(c,dmax)
23: else ▷ No split possible / to re-cluster
24: remain ← remain ∪ c
25: end if

26: else if |c | > 1 then ▷ Agglomerative clustering
27: Cloop ← AggloClust(c,dmax)
28: else ▷ Elements to re-cluster
29: remain ← remain ∪ c
30: end if

31: Cr es ← Cr es ∪Cloop ▷ Add new clusters to result
32: end for

33:
34: # Clustering non-clustered elements (remain)
35: if |remain | > δa then ▷ Cluster sampling
36: Csample ← SampleClust(remain, ρs , ρmc)
37: if |Csample | > 1 then ▷ Recursive clustering
38: Cend ← RecAgglo(Csample ,δa ,dmax , ρs , ρmc
39: else ▷ Elements are singletons
40: Cend ← {remain}
41: end if

42: else if |remain | > 1 then ▷ Agglomerative clustering
43: Cend ← AggloClust(remain,dmax)
44: else ▷ Elements are singletons
45: Cend ← {remain}
46: end if

47: Cr es ← Cr es ∪Cend
48: return Cr es
49: end function

could be progressively decreased or the multiplying factor of δa can
be changed. If both measures fail to split c in clusters, elements in c
are added to the set remain for further processing. Alternatively, we

4

obtain a resulting clusteringCloop from RecAgglo or AggloClust
that meets our goodness criterion.

If the size of c is lower than δa but larger than 1, c is split using
AggloClust with parameter dmax . If c is a singleton, it is added
to the remain set for later processing. During each iteration, we
add the new clustering Cloop to the final clustering Cr es or we
complement the remain set of elements for reprocessing.

The remain set contains clustered elements resulting from Sam-
pleClust and singletons - obtained due to lack of sufficiently simi-
lar elements in the drawn sample. Thus, we try to re-cluster these
remaining elements, following the same steps as previously. We use
SampleClust (if |remain | > δa), AggloClust (if δa ≥ |remain | >
1) or keep a singleton (if |remain | = 1). If SampleClust is suc-
cessful at splitting remain, we recursively run RecAgglo on the
resulting clustering. However, in contrast to the previous process,
we do not apply alternative measures if SampleClust fails and just
keep all elements as singletons.

The resulting clusteringCend is added toCr es which is our final
clustering where all clusters meet our goodness criterion. It is worth
noting that many of these clusters may be singletons.

3.3 RecAgglo properties

Achieving cluster goodness: RecAgglo uses agglomerative clus-
tering to generate the final clusteringCr es . Consequently, any clus-
ter in Cr es of two or more elements meets our goodness criterion
defined by the maximum distance dmax . These clusters are smaller
than δa and meet R1 for a sensible choice of δa .
Computational complexity: The complexity of RecAgglo de-
pends on its recursive nature and SampleClust complexity. Ag-
gloClust runs on sets of size with the static upper bound δa . Its
running time is bounded by a constant. Themaximum complexity of
SampleClust during the initial run isO(n×loд(n)) and it decreases
during subsequent recursions. In the worst-case scenario, we re-
quire at most n recursions to obtain the final clustering. This makes
the worst-case complexity of O((n × loд(n))n) for RecAgglo. This
theoretical complexity is completely untractable and RecAgglo can-
not scale to large datasets in theory. However, we show in Sect. 7.3
that its actual complexity is sub-quadratic when clustering sets
containing up to 100,000s orders. In this setting, RecAgglo is faster
than most categorical clustering algorithms.
Non-optimal solution: RecAgglo is non-deterministic and it
does not produce a globally optimal clustering. This is due to the
stochastic nature of the sampling process used SampleClust. We
show in Sect. 7.3 that clusters that we obtain during different runs
are consistent. Also, their goodness is close to the one of clusters
generated using plain agglomerative clustering, while improving
on the basic sampling method for clustering.
Hybrid clustering (using numerical features): Numerical fea-
tures can be input to a clustering algorithm for continuous data (e.g.,
K-means, DBScan, etc.) in order to generate clusters in a standalone
manner. The resulting clustering (cluster indexes) can be used as
an additional categorical attribute that is input to RecAgglo in a
cluster aggregation fashion [16].

4 ATTRIBUTE WEIGHTING STRATEGIES

Hamming distance and Jaccard Index are the most widely used
metrics for computing the distance between two elements u and
v represented using categorical attributes [30]. We use Hamming
distance in our clustering algorithms since it is fast to compute.
It counts the number of different attribute values between two
elements:

Hamminд(u,v) = 1
d

d∑
i=1

wi × (ui , vi) (1)

By default, Hamming like many other metrics gives the same
weight to every attribute (wi = 1). However, different attributes
might not contribute equally to quantifying the similarity between
u and v , or to produce “good” clusters. For instance, if attributes
having high cardinality are matching, this may indicate a higher
similarity than if attributes having low cardinality are matching.
We propose two novel strategies for weighting attributes which
capture these aspects and help addressing C1. The first strategy
is based on feature cardinality while the second uses labels from
known frauds and legitimate orders.

4.1 Cardinality driven attribute weight

We define a function to compute the weightwi for an attribute ai
based on its cardinality. The cardinality cardi is the total number of
values attribute ai can take. The rationale for weighting attributes
based on cardinality is the following: the probability of two ele-
ments u and v having equal value for an attribute i is inversely
proportional to the attribute cardinality cardi for uniformly dis-
tributed attribute values. The goal of this weighting strategy is to
give larger weights to attributes having high cardinality.

Cardinality of the attributes in our dataset is not bounded since
values may be added as new orders are made, e.g., new customers
signing up. Thus, we use the inverse normalized richness index [24]
as the basis for weight computation: R−1i =

ni
cardi

. ni is the number
of instances in a given set of size N for which ai is not null . R−1i is
a positive decreasing function of the attribute cardinality.

We use a sigmoid function (x
|1+x |) to scale R−1i to [0, 1]. We

normalize its value over this range using the median value of R−1i
computed over all 37 attributes:median(R−1). Finally, we scale our
weight to an intended range that controls the maximum difference
between attribute weights. We chose the range [1, 3] - we do not
discard any attributes and a given attribute can have at most 3
times higher weight than any other. We compute cardinality driven
weights as follows:

w#
i = 1 + 2 ×

(
1 −

R−1i
median(R−1i) + R

−1
i

)
,w#

i ∈ [1, 3] (2)

4.2 Label driven attribute weight

We define the second function to compute weights using ground
truth fraud labels of past orders. These weights are computed in
order to satisfy two requirements for our method: R3 maximizing
clustered fraud and R2 minimizing cluster impurity.

5

We start by clustering a set of orders using default attribute
weights (wi = 1) using Hamming distance. We obtain clusters of
three types: (a) pure clusters cf containing only frauds, (b) pure
clusters cl containing only legitimate orders and (c) mixed cluster
cm . cm clusters violate R2 and their number must be minimized.
cf clusters contribute to R3 and their number must be maximized.

We aim to emphasize the importance of attributes that help gen-
erating cf clusters and de-emphasize the importance of attributes
that do not by scaling their weight accordingly. The higher the
weight, the more important the attribute. We compute the contri-
bution of an attribute ai towards generating a cluster c using the
Simpson index [45]. It is defined as λi (c) =

∑cardi
j=1 p2j , where pj

is the probability of encountering the attribute value vj in c: the
ratio of elements having vj for ai . High Simpson index indicates
that a low number of different values v is present in the cluster.
This means ai has significantly contributed towards generating this
cluster.

Using the Simpson index we define two metricsAdvf /l in Eq. (3)
and Advp/m (ai) in Eq. (4). Advf /l (ai) measures the advantage of
the attribute ai in generating pure fraudulent clusters cf rather than
pure legitimate clusters cl . Advp/m (ai) quantifies the advantage
of the attribute ai in generating pure clusters cf and cl instead
of mixed clusters cm . High Advf /l helps achieving R3 and a high
Advp/m helps achieving R2. The normalization term normadv (ai)
ensures that Advf /l (ai) +Advp/m (ai) ∈ [0, 2] which allows us to
keep the final weight in the range [1, 3]

Advf /l (ai) =
λi (cf) − λi (cl)
normadv (ai)

(3)

Advp/m (ai) =
λi (cf) + λi (cl) − 2 × λi (cm)

2 × normadv (ai)
(4)

We compute our label driven weights using both these advan-
tages as follows:

w∗i = 1 +Advf /l (ai) +Advp/m (ai),w∗i ∈ [1, 3] (5)

5 PERFORMANCE METRICS AND DATASETS

We discussed that RecAgglo meets R1 by design. We empirically
evaluate the remaining requirements R2 (minimize cluster impu-
rity), R3 (maximize clustered fraud) and R4 (minimize execution
time).

5.1 Performance metrics

We evaluateR2 by computing the cluster impuritymeasure I , which
is used to evaluate the quality of a clustering [16]. We give the label
of the majority class to each cluster and all samples that do not
belong to this class are counted as the impurity. For a clustering
containing k clusters of sizes s1, . . . , sk and the sizes of the majority
class in each clustersm1, . . . ,mk , the impurity index is defined as:

I =

∑k
i=1(si −mi)∑k

i=1 si
=

∑k
i=1(si −mi)

n
(6)

We evaluate R3 by calculating the clustered fraud rate (CFR)
which is the ratio of clustered frauds to the total number of frauds.

For the count of frauds in each cluster f1, . . . , fk and the total
number of frauds F , CFR is defined as:

CFR =

∑k
i=1(fi)
F

(7)

We evaluate R4 by measuring the computation time t of the
clustering for the given dataset.

Our objectives are to minimize the impurity I and computation
time t while maximizing the CFR.

5.2 Datasets

We use several datasets composed of real fraud and legitimate
orders placed on the Zalando website in 2017 and 2018. Zalando
receives on average 29 million orders per quarter [52]. Our ground
truth fraud labels are obtained based on actual payment status of
the order 12 weeks after it is placed. Orders without a label are
considered legitimate.

The datasets presented in the following are sampled from the
original order data. They differ in size and ratio of legitimate to
fraudulent orders. We use them for different experiments that we
describe as follows.
Small datasetswith artificial distribution.We sample two small
datasets TrainF-15K and TestF-15K that are used for selecting hy-
perparamters of agglomerative clustering (Sect. 6) and for compar-
ing the performance of several categorical clustering techniques
(Sect. 7.3) respectively. These sets are small enough for most cate-
gorical clustering techniques to run in a reasonable amount of time
(<10 hours). Also, they contain enough frauds to generate many
fraudulent clusters that we can use to compute sensible impurity
I and CFR metrics. Frauds are artificially over-sampled (1 fraud /
2 legitimate) compared to a real-world distribution. Each dataset
consists of 10 disjoint subsets, each composed of 10,000 legitimate
orders and 5,000 frauds.
Large datasetswith artificial distribution.We sample two larger
datasets TrainG-30K and TrainG-100K that are used for selecting
hyperparamters of RecAgglo (Sect. 7.1). These also have an artifi-
cial distribution where frauds are over-sampled compared to the
real-world distribution. The imbalance is larger and more realistic
in these datasets though (1 fraud / 5 legitimate and 1 fraud / 19 legit-
imate). TrainG-30K consists of 10 disjoint subsets, each composed
of 25,000 legitimate orders and 5,000 frauds. TrainG-100K consists
of 5 disjoint subsets, each composed of 95,000 legitimate and 5,000
fraud. The composition of datasets with artificial distribution is
presented in detail in App. B.
Real-world datasets. Finally, we select real-world datasets that
will be used to evaluate the actual effectiveness of RecAgglo at clus-
tering fraud in Sect. 8. These datasets consist of all Zalando Fashion
Store orders placed between April 1st and May 5th 2018 (35 days)
in Germany (DE-real), Switzerland (CH-real), the Netherlands (NL-
real), Belgium (BE-real) and France (FR-real). These datasets contain
more than 6 million orders in total, with a realistic fraud/legitimate
order ratio (well below 1% before fraud cancellation).

Each of these datasets is complemented with a background
dataset containing only frauds placed between January 1st and
March 31st 2018 (90 days). These datasets are respectively named
DE-bg, CH-bg, NL-bg, FR-bg BE-bg.

6

Figure 2: Average weights of five at-

tribute categories using cardinality and

label driven weights. Shipping and

billing attributes are the most impor-

tant in generating clusters.

Figure 3: Simpson index λ for 13 at-

tributes providing the best advantage

in generating fraudulent and pure clus-

ters. Billing, shipping and payment at-

tributes provide the best advantage.

Figure 4: Increase in Impurity and CFR
with dmax for three attribute weight-

ing strategies. A fine-grained choice of

Impurity/CFR tradeoff is possible using

cardinality and label driven weights.

6 WEIGHTING STRATEGIES EVALUATION

Agglomerative clustering is the basis for RecAgglo. It uses three
hyperparameters: a distance metric, a linkage method and the max-
imum distance for cluster fusion dmax . Recall that we selected
Hamming as a distance metric because of its low computation cost.
We selected the single linkagemethod based on evaluation described
in App. C.1. We want to select the optimal weighting strategy and
a distance dmax which minimize the impurity I and maximize the
CFR. We compare the default weighting strategy (wi = 1) to the
cardinalityw#

i and label driven weightsw∗i we introduced in Sect. 4.

6.1 Weight computation

We select a random sample of 2M orders placed in France in 2017
to compute our cardinality driven weights using Eq. (2). In this
subset, we obtain a minimum inverse normalized richness index
min(R−1i) = 1.606 for one of the attributes in the Acust category.
It means that the same value repeats less than twice (on average)
for over 2M samples. On the other hand, we obtainedmax(R−1i) =
1, 000, 000 for one of the attributes in Adel meaning it has only
two possible values. These statistics highlight the imbalance in the
cardinality of attributes representing orders (C1), which justifies
cardinality based weighting strategy. We computed the value for
median(R−1i) = 149 that we use to calculate the weights of all 37
attributes.

w#i = 1 + 2 × (1 −
R−1i

149 + R−1i
)

We start by clustering each set TrainF-15K-i using agglomerative
clustering and default weightswi = 1 to compute our label driven
weights. We select the maximum distance for cluster fusion dmax =

0.56, which generates a clustering with impurity I = 0.095 and
CFR = 0.719 (App. C.1). The majority of fraud is clustered (72%)
and there is a significant number of mixed clusters as depicted by
the high impurity (9.5%). We compute the Simpson index λi for
each attribute ai in each generated cluster. We aggregate these
results to compute the mean λi for pure fraudulent clusters (cf),
pure legitimate clusters (cf) and mixed clusters (cm). Using these

statistics we compute our advantage metrics (Eq. (3) and (4)) and
by extension our final label driven weights.

6.2 Attribute importance

Figure 2 depicts the average cardinality and label driven weights
of attributes in each category: Acust , Adel , Apay , Aship and Abill .
Despite the different rationale and implementation for our two
weighting strategies, we see they give similar high and low weights
to the same attributes. Attributes inAship andAbill have the largest
weights according to both strategies. These attributes differ between
customers (Aship) and between orders (Abill), which explains their
high cardinality and their large cardinality driven weights.

Figure 3 depicts the averaged Simpson index for the 13 attributes
providing the highest advantage. We observe that Abill attributes
give the best advantage for generating fraudulent rather than legit-
imate clusters (higher Simpson index in pure fraudulent clusters).
Aship attributes also provide a small advantage towards that goal,
whileApay andAcust do not. Different values of the Simpson index
depict the advantage of each attribute and are captured by our label
driven features. It can be seen that Aship and Abill attributes have
the highest weights (Fig. 2). On the other hand, all 13 attributes con-
tribute to generating pure clusters (lower Simpson index for mixed
clusters).Acust andAdel contribute the least to our advantages and
they have the lowest weight in Fig. 2.

High Simpson index values for Abill and Aship attributes indi-
cate that fraudulent orders have more similar billing and shipping
information than legitimate orders. On the other hand, there is no
significant difference for Acust and Apay attributes. These results
might indicate that fraudsters tend to use several user accounts and
payment methods with similar billing and shipping information.
Consequently, our generated clusters have characteristics that are
typically associated with fraud campaigns as presented in Sect. 2.2.

6.3 Weighting strategies performance

We clustered the 10 TrainF-15K-i datasets using default attribute
weights, cardinality and label driven weights. Each weighting strat-
egy provides a similar I /CFR tradeoff that is detailed in App. C.2.

7

Nevertheless, label driven weights provide a slightly better CFR
than other strategies for the same impurity value and we select
it for the remaining experiments. A more interesting property of
cardinality and label driven weights can be observed in Fig. 4. Both
these strategies offer a smoother increase of impurity and CFRwhile
varying dmax . In contrast, default weights have abrupt changes
and long plateaus providing the same performance. In this setting
it is difficult to select an optimal dmax that provides desired im-
purity and CFR values. Cardinality and label driven weights can
be used to effectively fine-tune dmax in order to achieve desired
performance characteristics. Using Fig. 4, we select dmax = 0.5
with label driven weights, which results in an average impurity
I = 0.012 for a CFR = 0.52. With this value, impurity remains low
(about 1%) while more than half of the frauds are clustered.

Hamming distance with label driven weights, single linkage
and distance dmax = 0.5 are used in RecAgglo in all following
experiments.

7 RECAGGLO PERFORMANCE EVALUATION

We evaluate the performance of RecAgglo in terms of impurity,
CFR and computation time when clustering real online orders. We
compare this performance to several state-of-the-art categorical
clustering techniques to show RecAgglo is best suited for this task.

7.1 Hyperparameter setting

RecAgglo requires defining δa and SampleClust requires defin-
ing ρs and ρmc (cf. Sect. 3). We compute optimal hyperparameter
values with the primary goal of minimizing computation time and
the secondary goals of minimizing impurity I and maximizingCFR.
We set δa = 1, 000 with computation time being the only consider-
ation in mind. Agglomerative clustering takes 25s to process 1,000
samples. Consequently, this is an upper bound for the computation
time of AggloClust in RecAgglo. The upper bound for the fall
back agglomerative clustering is given for 4, 000 (4 × δa) elements
to cluster and takes 388s.

We perform a grid search over ρs = {0.25, 0.5, 1, 2} and ρmc =

{1.01, 1.5, 2, 3, 4, 6, 10} to select hyperparameter values for Sam-
pleClust. We run RecAgglo with every hyperparameter combina-
tion on TrainG-30K (10 runs) and TrainG-100K (5 runs) computing I ,
CFR and computation time t . A detailed analysis of the grid search
results on TrainG-30K is presented in App.C.3. It shows that a too
low ρmc value (e.g., 1.01) or a high ρs value significantly increases
the computation time of RecAgglo. We selected ρs = 0.5 and
ρmc = 6 as these hyperparamters provide the best tradeoff with
t = 4, 110s ,CFR = 34.0% and I = 3.0% on TrainG-100K. The sample
size for sampling is 0.5 ×

√
n and the maximum number of clusters

to generate is maxclust = n/6.

7.2 Experimental setup

We use four categorical clustering algorithms to compare the per-
formance of RecAgglo: AggloClust, SampleClust, Kmodes and
ROCK. We ran experiments on a consumer grade laptop with 8GB
of RAM and Intel Core i5 (2.7GHz) processor. We already presented
AggloClust and SampleClust in Sect. 3.1.

Kmodes [22] is an extension of the Kmeans algorithm for cat-
egorical data. It starts by selecting k random points as starting

Table 1: Impurity,CFR, and computation time for 4 categori-

cal clustering algorithms. Results are averaged over 10 runs

on TestF-15K (15,000 samples). *: results for ROCK are com-

puted on 5,000 randomly picked samples. RecAgglo gener-

ates the clusters with the lowest impurity in a short time.

Algorithm I (%) CFR (%) time
RecAggloδmax=0.5 0.8 42.1 185s
AggloClustδmax=0.5 1.2 51.9 1h31
SampleClustδmax=0.5,ρs=0.5 1.1 1.2 38s
SampleClustδmax=0.6,ρs=0.5 3.3 2.2 38s
SampleClustδmax=0.6,ρs=2 2.4 7.7 158s
Kmodesk=1,000 20.5 99.8 20m
Kmodesk=5,000 14.1 91.6 1h31
Kmodesk=12,000 10.5 39.2 7h44
*ROCKθ=0.55,t=0.45 7.1 51.4 3h08
*ROCKθ=0.45,t=0.40 0.9 30.3 1h48

“modes” and calculates the distance between each element-mode
pair. It assigns each element to the cluster that has the closest pair-
wise distance to its mode. Modes and clusters are updated over
several iterations. Kmodes uses Hamming as distance metric and
its time complexity isO(n × k). We use the PyPi implementation of
Kmodes [42].

ROCK [20] is a clustering algorithm that uses a concept of “neigh-
bor”. Two elements are neighbors if the distance between them is
lower than a threshold θ . Then, if two elements have enough com-
mon neighbors they are placed in the same cluster. ROCK uses
the Jaccard index as distance metric and its time complexity is
O(n2 × loд(n)+n2). We adjust the ROCK implementation from [38]
to accommodate for categorical data.

7.3 Performance analysis

We cluster the 10 TestF-15K subsets (15,000 orders each) and aver-
age I , CFR and t over the 10 runs. ROCK was not able to cluster
15,000 elements in a reasonable amount of time and its results are
computed on a random sample of 5,000 elements from TestF-15K.
These results are summarized in Tab. 1 Kmodes is not able to gen-
erate a clustering with low impurity (I > 0.1) despite the high
number of clusters we try to generate (up to k =12,000 as generated
by AggloClust). SampleClust generates a clustering with low
impurity in short time. However, it clusters only a very small num-
ber of frauds (CFR < 0.08). ROCK produces a clustering with low
impurity I = 0.009 and higher CFR = 0.303 but its computation
time on 5,000 samples is prohibitive (>1h30). AggloClust is the
algorithm providing the best trade-off between impurity and CFR.
It clusters over half of the frauds with an impurity close to 1%. Its
computation time of 1h31 is prohibitive for a fairly small dataset.

RecAgglo has the second lowest computation time (3 minutes)
and the clusters it generates have the lowest impurity of all algo-
rithms (I = 0.008). RecAgglo achieves high CFR = 0.421, which
is only 10 percentage points lower than the CFR of AggloClust.
RecAgglomeetsR2with its low impurity andR3with its relatively
high CFR.

8

0 50K 100K 150K 200K 250K 300K
Samples

0

1

2

3

4

5

Co
m

pu
ta

tio
n

tim
e

(h
ou

rs
) RecAgglo

AggloClust
SampleClust
Kmodes
ROCK

Figure 5: Computation time (averaged over 5 runs) vs. sam-

ple size for 5 clustering algorithms. Only SampleClust and

RecAgglo can scale to large datasets.

We timed the clustering of an increasing set of orders from DE-
real (up to n = 300, 000) to assess the scalability of these algorithms.
We report the running time averaged over 5 runs in Fig. 5. We use
settings from Tab. 1 providing the lowest computation time: Sam-
pleClust (δmax = 0.5, ρs = 0.5) and ROCK (θ = 0.45, t = 0.40). For
Kmodes, we use k =min(n/2, 5000), bounding k to 5,000 to limit
the complexity of Kmodes (function of k).

ROCK, AggloClust and Kmodes cannot process 50,000 orders
in less than 5 hours. Their complexity is at least quadratic, which
prevent scaling to large datasets. SampleClust is the fastest al-
gorithm, it clusters 300,000 samples in less than one hour. Finally,
we see that RecAgglo scales to medium-size datasets despite its
high worst-case complexity (cf. Sect. 3.3). In our specific use case of
clustering orders, RecAgglo is much faster than algorithms with
quadratic complexity because it requires only 2-5 recursions (in-
stead of n in the worst case) to obtain a final clustering that meets
our goodness criterion. It is able to cluster 100,000 orders in one
hour and its computation time increases almost linearly with the
set size: one hour more per additional 50,000 orders. RecAgglo
processes 300,000 samples in 5 hours, which is the number of orders
received by Zalando daily. RecAgglo addresses C4 and it meets
the low computation time requirement R4: it can be used in a
real-world deployment setting to cluster frauds.

8 REAL-WORLD FRAUD DETECTION

We assess the performance of RecAgglo for our applied cases
of preventing organized fraud: A1 prioritizing screening and A2

automated fraud cancellation. We take the following real-world
scenario and we evaluate it using our real-world datasets. We take
a set of unlabeled orders Ou placed over one day (e.g., in a 24h
window). We have access to a set of labeled fraudulent orders Of
from an earlier time period (e.g., more than one day old). Our goal
for A1 is to provide human operators with clusters containing a
maximum number of frauds from Ou . Our goal for A2 is to use the
resulting clusters to automatically and reliably detect a maximum
number of organized frauds. This empirical evaluation assesses the
performance of RecAgglo in its own right. It assumes a deployment

Table 2: Performance of RecAgglo at clustering real-world

orders from5 countries. Different delays for obtaining fraud

labels (1 day/30 days). Cluster impurity (I), ratio of unlabeled
(CFRu) and overall (CFR) frauds clustered. Ratio of legitimate

orders clustered (CLR). Frauds are clustered 3-7 times more

than legitimate orders. Clusters do not mix legitimate or-

ders and frauds.

1 day delay for labels 30 days delay for labels
Dataset I CFR CFRu CLR I CFR CFRu CLR

DE-real 0.9 51.9 43.4 9.6 0.8 52.8 33.3 9.6
CH-real 2.9 49.8 45.8 17.7 2.6 52.1 37.3 17.8
NL-real 1.2 34.8 34.8 7.9 1.0 33.1 26.0 7.9
BE-real 1.2 49.8 41.8 13.0 1.1 48.6 29.9 13.0
FR-real 0.3 50.4 44.1 7.1 0.2 47.7 32.1 7.1
Overall 1.3 49.7 43.5 10.9 1.1 50.2 33.7 11.0

in parallel of any existing detection system (as depicted in Fig. 1)
and does not take into account the fraud detection pipeline that
Zalando has already developed. The evaluation of the incremental
value of RecAgglo with respect to the existing Zalando pipeline is
not in the scope of this paper.

8.1 Prioritizing screening

To effectively prioritize screening we must provide human analysts
with a manageable amount of orders that contains a large portion
of frauds. If we screen only clusters generated by RecAgglo, these
clusters must contain a large amount of fraud (maximize CFR) and
a low amount of legitimate orders (minimizeCLR).CLR is the ratio
of clustered legitimate orders, equivalent to CFR but for legitimate
orders. Considering our real-world scenario, we cluster orders in
Ou ∪ Of using RecAgglo. We cluster the merged sets together
since frauds fromOu can be related to frauds fromOf . We want our
clusters to maximize CFRu , which is the CFR computed solely on
Ou , i.e., the portion of fraudulent orders formOu that are clustered.
Recall that we want our clusters to have low impurity I and to keep
a low CLR to reduce the workload of human analysts.

We take orders from each day in the datasets DE-real, CH-real,
NL-real, BE-real and FR-real to create 35 sets Ou per country. We
create associated sets Of of frauds from a prior period of 60 con-
secutive days using DE-bg, CH-bg, NL-bg, FR-bg and BE-bg. We
consider two scenarios for composing Of that depict the delay in
obtaining fraud labels. The first scenario assumes a one day delay
meaning thatOf contains frauds from the period of 60 days ending
whenOu starts. The second scenario assumes a 30 days delay mean-
ing that Of contains frauds from a period ending 30 days before
Ou ends. We selected 30 days because it is a sufficient delay for
preliminary identification of orders being in payment default. We
cluster the 35 resulting sets Ou ∪Of for each country and present
averaged I , CFR, CFRu and CLR per country in Tab. 2.

RecAgglo produces clusters having low impurity which varies
depending on the country. Notably, there is a 10-fold difference
between Switzerland (I = 2.9%) and France (I = 0.3%). This shows
that legitimate orders from, e.g., Switzerland or Belgium, are more
similar to frauds than this is the case in France or Germany. The
CLR is 3- to 7-times lower than the CFR showing that RecAgglo

9

Table 3: Recall, precision and false positive rate (FPR) for

automated fraud detection in 5 countries. One quarter of

frauds are detected while generating a few false alarms

(0.1%). Only 35.3% of detected frauds are actual frauds.

Dataset Recallclust Recallf inal Precision FPR

DE-real 59.8 26.2 35.9 0.1
CH-real 72.3 33.2 17.0 0.3
NL-real 60.4 20.5 29.3 0.1
BE-real 63.6 26.5 34.4 0.2
FR-real 65.8 30.0 71.4 0.1
Overall 62.6(±10.6) 26.4(±5.5) 35.3(±6.3) 0.1(±0.03)

clusters more frauds than legitimate orders. The CFRu is around
35-45%, which is slightly lower than theCFR but consistently larger
than the CLR (7-18%). For screening prioritization A1, around 90%
of legitimate orders could be discarded from manual analysis while
preserving around 40% of frauds that could be detected. RecAgglo
can be used to prioritize screening.

We see that the increased delay in obtaining fraud labels de-
creases theCFRu by around 10 percentage points. There is a strong
time dependence between orders belonging to the same cluster
and to the same fraud campaign. Obtaining fraud labels in a timely
manner is crucial to maximize our ability to detect organized fraud.
It is worth noting that while we ran RecAgglo once per day in
this experiment, it can be re-ran continuously as new orders are
received (using a sliding window containing one day of orders Ou).
We recall that RecAgglo processes 100,000 orders in one hour.

8.2 Automated fraud cancellation

We devise a simple technique to automatically detect and cancel
frauds using clusters generated by RecAgglo. We detect an un-
labeled order from Ou as fraud (1) if it is clustered and (2) if at
least one known fraud from Of belongs to this cluster. We call this
technique label propagation - known fraud propagates its label to
the whole cluster it belongs to.

We apply this technique to the clusters generated in Sect. 8.1.
For each country in Tab. 3, we report Recall , Precision and False
Positive Rate (FPR) averaged over 35 clustering results (35 days).
Recall is the ratio of correctly detected frauds (TP) over the total
number of frauds (TP + FN) and it represents the ability to detect
frauds. Recallclust is computed only on clustered frauds, while
Recallf inal is computed on all frauds. Recallf inal = Recallclust ×
CFRu is the actual rate of detected frauds. Precision is the ratio of
correctly detected frauds (TP) over the total number of detected
frauds (TP + FP), i.e., the reliability of fraud detection. FPR is the
ratio of legitimate orders incorrectly detected as fraud (FP) over
the total number of legitimate orders (TN + FP). It corresponds to
the error rate for legitimate orders.

This simple automated detection technique would cancel over
one quarter (Recallf inal = 26.4%) of fraud, which likely represents
62.6% (Recallclust) of all organized fraud. It also generates few false
alarms (FPR = 0.1%) for legitimate orders. Despite this very low
FPR = 0.1%, the precision remains low because of the large imbal-
ance between fraud and legitimate orders (#fraud ≪ #leдitimate).
Our average precision of 35.4% means that 2/3 orders detected

as fraud are actually legitimate orders. This low precision is pro-
hibitive for automated fraud cancellation A2 but it can prioritize
screeningA1. Human analysts could cancel over 25% of frauds with
little effort required.

We investigated further the characteristics of legitimate orders
that our label propagation technique incorrectly identified as fraud.
We computed the ratio of these orders that belong to four legitimate
categories namely, (1) fully and (2) partially returned to the retailer
(where a customer does not pay for all items and returns some of
them), (3) partly unpaid (where items in the order remain unpaid
while delivered) and (4) canceled by the customer. We observed
that 94.7% of the false positives that degrade the Precision of label
propagation belong to one of these four categories. The majority
of the false positives (63.9%) are returned orders while 24.3% are
partly unpaid orders.

8.3 Evading fraud detection

Recent research in adversarial machine learning [25, 40] has shown
that machine learning-based systems can be evaded by manipu-
lating their inputs [18]. Fraudsters can evade our fraud detection
approach by making their orders less similar to one another. This
would result in RecAgglo not being able to group together frauds
from the same campaign. RecAgglo quantifies the similarity be-
tween orders by computing the Hamming distance. If two attributes
have different values, the distance between two orders increases
and their similarity decreases. Our attributes have a string rep-
resentation. The inequality between two attribute values can be
obtained by modifying a single character from one of them. Such a
modification (e.g., typo in street address) may have no impact on
successfully placing and receiving an order (fraud purpose), while
its similarity to other orders could be greatly reduced. An adversary
can modify order attributes that are input to RecAgglo to evade
fraud detection.

This limitation can be addressed by using only attributes that are
resilient to adversarial manipulations in RecAgglo [32]. Resilient
attributes are those for which manipulations inherently defeat the
fraud purpose. For instance, a small modification to a credit card
number makes payment information inconsistent, which causes
rejection of payment and of the order. Credit card number is an
attribute resilient to adversarial manipulations. Alternatively, we
can use a metric more fine-grained than binary equality for string
comparison. The edit distance can accurately quantify the similarity
between two strings and it accommodates small adversarial mod-
ifications. An adversary would have to make large modifications
to reduce the similarity between two orders, which makes evasion
harder. Nevertheless, the edit distance is expensive to compute and
it will increase the running time of RecAgglo clustering.

9 RELATEDWORK

9.1 Categorical clustering

Categorical clustering faces two main challenges: scalability and
guarantee of convergence. Generic algorithms such as Kmodes [22],
ROCK [20], CACTUS [15] (greedy hierarchical grouping of tuples)
or CLICKS [50] (representing the dataset as a graph and finding dis-
joint vertices) provide good guarantees of convergence and many
recent clustering algorithms [6, 16] are built upon these techniques.

10

The main alternative approaches use information-theoretic criteria
to assess the quality of the clustering. For instance, COOLCAT [5]
searches locally to find clusters with the lowest entropy, while
LIMBO [4] produces a hierarchical summary of the data that pre-
serves as much information as possible. While generalizable to any
kind of categorical data, these algorithms have high complexity
and they do not scale to large datasets.

To improve scalability, the data can be either partitioned into
chunks that are clustered individually and then combined into
global clusters [6] or it can be transformed into representations that
make processing faster, e.g., Merkle trees [28]. These approaches
are typically problem specific (images [28], streamed data [19])
and they are not applicable to categorical data. A more generic
solution produces several clusterings using subsets of features and
aggregates the results to obtain global clusters [16]. Similarly, low-
dimensional clusters can be generated using dissimilarity matrices
and then combined using an ensemble method to get the final
clustering [3]. These methods use sampling, as we do, but they take
a local approach, trying to reduce the dimension of the input space
to improve scalability.

9.2 Fraud detection

Fraud detection is a sparse subject relevant to many domains: credit
card fraud [10, 17], tax evasion [7], online dating [46], erotic con-
tent [23], advertising [36], among others. Despite efforts to system-
ize it [8, 37, 43], there is no commonly accepted means of comparing
different detection techniques or application scenarios.

Many solutions try to detect frauds in isolation using supervised
classifiers such as neural networks [2, 9, 17, 29] and ensemble of de-
cision trees [10]. Improvements have been proposed to incorporate
the time component in the process of eCommerce fraud detection
by identifying changes in the underlying distribution of orders (also
known as concept drift) [31]. Finally, one can analyze the temporal
activity of users from a small set of features to predict possible
account take-over [21]. These solutions analyze orders in isolation
or in a group related to a specific user and they are not suitable for
identifying organized fraud that involves many users. Also, they
require labeled data that is not available for fraud campaigns.

Graph-based methods can be used to take a global view at the
fraud detection problem [1, 34, 44, 47]. Social network analysis
methods [1, 47], the PageRank algorithm [44] and sets of graph-
derived features [34] have been used to spot frauds in the payment
network and to identify the key links between frauds. However,
these methods require having access to (or constructing) a graph
with a well-defined notion of the vertex and edge (e.g. credit card
and merchant vertices and interaction as an edge). In our case, we
do not have a proper link between orders that we could use to build
a graph. Instead, we try to identify similarities through clustering.
Moreover, building a graph with a static set of assumptions could
hinder the performance of the graph analysis method if the nature
of fraud changes overtime.

A few works also proposed to use clustering to identify fraud-
ulent activity, as we do. However, these methods either use only
numerical features as input [48] or they do not scale to data of such
a scale as ours (100,000s samples) [26].

10 CONCLUSION

We introduced a novel clustering solution (RecAgglo) to detect
organized fraud and we evaluated it on 6M real-world orders placed
on the Zalando website. We showed RecAgglo is able to process
100,000s of orders in a few hours and it groups over 40% of fraudu-
lent orders together. The algorithm can be deployed and used to
efficiently prioritize screening A1. We further proposed a simple
technique named label propagation that uses our generated cluster
to automatically detect 26.2% of fraud while raising false alarms for
only 0.1% of legitimate orders. In spite of its high accuracy, label
propagation incorrectly identifies many legitimate orders as fraud
(35% precision). Considering our definition of what “fraud” is, label
propagation cannot be used for automated fraud cancellation A2.
Nevertheless, we observed that 95% of the legitimate orders incor-
rectly identified as fraud by label propagation are either returned,
partly unpaid or canceled orders.

Canceling legitimate orders from good customers can create a lot
of harm to a business [12]. It generates a bad customer experience
with a detrimental effect on customer satisfaction and customer
lifetime value, which may ultimately decrease the profitability of
an online retail service. “Fraud” has a subjective definition that
is different for different online retailers. The effectiveness and de-
ployability of a fraud detection system are evaluated according to
this definition. Hence, the suitability of our solution to prioritize
screening A1 and automatically cancel fraud A2 depends on the
categorization of returned (fully/partly), unpaid (fully/partly) and
canceled orders for a given online retailer.

ACKNOWLEDGMENTS

This research was funded by a research donation from Zalando
Payments GmbH. It is supported by theAcademy of Finland through
the SELIoT Project (Grant 309994). We thank Zalando employees
and N. Asokan for interesting discussions and valuable feedback.

REFERENCES

[1] Leman Akoglu, Mary Mcglohon, and Christos Faloutsos. 2009. Anomaly detection
in large graphs (CMU-CS-09-173). Technical Report.

[2] E. Aleskerov, B. Freisleben, and B. Rao. 1997. CARDWATCH: a neural network
based database mining system for credit card fraud detection. In Proceedings of the
IEEE/IAFE Computational Intelligence for Financial Engineering (CIFEr). 220–226.

[3] Saeid Amiri, Bertrand S. Clarke, and Jennifer L. Clarke. 2018. Clustering Cate-
gorical Data via Ensembling Dissimilarity Matrices. Journal of Computational
and Graphical Statistics 27, 1 (2018), 195–208.

[4] Periklis Andritsos, Panayiotis Tsaparas, Renee J. Miller, and Kenneth C. Sevcik.
2004. LIMBO: Scalable clustering of categorical data. In 9th International Conf.
on Extending DataBase Technology. 123–146.

[5] Daniel Barbará, Yi Li, and Julia Couto. 2002. COOLCAT: An Entropy-based
Algorithm for Categorical Clustering. In Proceedings of the Eleventh International
Conference on Information and Knowledge Management. 582–589.

[6] Malika Bendechache, Nhien-An Le-Khac, and M. Tahar Kechadi. 2016. Efficient
Large Scale Clustering Based on Data Partitioning. 2016 IEEE International
Conference on Data Science and Advanced Analytics (DSAA) (2016), 612–621.

[7] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. 2015. How the
estonian tax and customs board evaluated a tax fraud detection system based on
secure multi-party computation. In International conference on financial cryptog-
raphy and data security. Springer, 227–234.

[8] Richard J. Bolton and David J. Hand. 2002. Statistical Fraud Detection: A Review.
Statist. Sci. 17, 3 (08 2002), 235–255.

[9] R. Brause, T. Langsdorf, and M. Hepp. 1999. Neural Data Mining for Credit Card
Fraud Detection. In Proceedings of the 11th IEEE International Conference on Tools
with Artificial Intelligence. IEEE Computer Society, 103–106.

[10] Fabrizio Carcillo, Andrea Dal Pozzolo, Yann-Aël Le Borgne, Olivier Caelen, Yannis
Mazzer, and Gianluca Bontempi. 2018. Scarff: a scalable framework for streaming
credit card fraud detection with spark. Information fusion 41 (2018), 182–194.

11

[11] Thomas Chmielewski and Denise James. 2009. Mortgage fraud detection systems
and methods. US Patent 7,546,271.

[12] Clearsale. 2017. Are False Declines Hurting Your Online Reputation? last ac-
cessed June 3, 2019. https://blog.clear.sale/false-declines-hurting-your-online-
reputation

[13] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi. 2018. Credit
Card Fraud Detection: A Realistic Modeling and a Novel Learning Strategy. IEEE
Transactions on Neural Networks and Learning Systems 29, 8 (2018), 3784–3797.

[14] Europol. 2018. 95 e-commerce fraudsters arrested in international operation. last
accessed June 3, 2019. https://www.europol.europa.eu/newsroom/news/95-e-
commerce-fraudsters-arrested-in-international-operation

[15] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. 1999. CAC-
TUS&Mdash;Clustering Categorical Data Using Summaries. In Proceedings of the
Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’99). 73–83.

[16] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. 2007. Clustering
Aggregation. ACM Trans. Knowl. Discov. Data 1, 1, Article 4 (March 2007).

[17] Jon Ander Gomez, Juan Arvalo, Roberto Paredes, and Jordi Nin. 2018. End-to-
end Neural Network Architecture for Fraud Scoring in Card Payments. Pattern
Recogn. Lett. 105, C (April 2018), 175–181.

[18] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[19] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. 2003. Clustering Data Streams: Theory and Practice. IEEE Trans.
on Knowl. and Data Eng. 15, 3 (2003), 515–528.

[20] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. 2000. ROCK: A robust clus-
tering algorithm for categorical attributes. Information systems 25, 5 (2000),
345–366.

[21] Hassan Halawa, Matei Ripeanu, Konstantin Beznosov, Baris Coskun, and Meizhu
Liu. 2018. Forecasting Suspicious Account Activity at Large-Scale Online Service
Providers. CoRR abs/1801.08629 (2018). arXiv:1801.08629

[22] Zhexue Huang. 1998. Extensions to the k-means algorithm for clustering large
data sets with categorical values. Data mining and knowledge discovery 2, 3 (1998),
283–304.

[23] Alice Hutchings and Sergio Pastrana. 2019. Understanding eWhoring. arXiv
(2019). arXiv:cs.CR/1905.04576

[24] Lou Jost. 2006. Entropy and diversity. Oikos 113, 2 (2006), 363–375.
[25] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. 2019. PRADA:

protecting against DNNmodel stealing attacks. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 512–527.

[26] Marie-Jeanne Lesot and Adrien Revault d’Allonnes. 2012. Credit-Card Fraud
Profiling Using a Hybrid Incremental Clustering Methodology. In Scalable Un-
certainty Management, Eyke Hüllermeier, Sebastian Link, Thomas Fober, and
Bernhard Seeger (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 325–336.

[27] Michael Levi. 2008. Organized fraud and organizing frauds: Unpacking research
on networks and organization. Criminology & Criminal Justice 8, 4 (2008), 389–
419.

[28] Ting Liu, Charles Rosenberg, and Henry A Rowley. 2007. Clustering billions
of images with large scale nearest neighbor search. In 2007 IEEE Workshop on
Applications of Computer Vision. 28–28.

[29] Sam Maes, Karl Tuyls, Bram Vanschoenwinkel, and Bernard Manderick. 2002.
Credit Card Fraud Detection Using Bayesian and Neural Networks. (08 2002),
261–270.

[30] Oded Maimon and Lior Rokach. 2005. Data mining and knowledge discovery
handbook. Springer.

[31] Huiying Mao, Yung-wen Liu, Yuting Jia, and Jay Nanduri. 2018. Adaptive Fraud
Detection System Using Dynamic Risk Features. arXiv preprint arXiv:1810.04654
(2018).

[32] Samuel Marchal, Giovanni Armano, Tommi Gröndahl, Kalle Saari, Nidhi Singh,
and N Asokan. 2017. Off-the-hook: An efficient and usable client-side phishing
prevention application. IEEE Trans. Comput. 66, 10 (2017), 1717–1733.

[33] Samuel Marchal and Sebastian Szyller. 2019. Recursive Agglomerative Clustering
(RecAgglo) for categorical data. last accessed August 30, 2019. https://github.
com/SSGAalto/recagglo

[34] Ian Molloy, Suresh Chari, Ulrich Finkler, Mark Wiggerman, Coen Jonker, Ted
Habeck, Youngja Park, Frank Jordens, and Ron van Schaik. 2017. Graph Ana-
lytics for Real-Time Scoring of Cross-Channel Transactional Fraud. In Financial
Cryptography and Data Security. 22–40.

[35] David Montague. 2014. The Fraud Practice. last accessed June 3, 2019. http:
//fraudpractice.com/gl-manual.html

[36] Shishir Nagaraja and Ryan Shah. 2019. Clicktok: Click Fraud Detection Using
Traffic Analysis. In Proceedings of the 12th Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec ’19). 105–116.

[37] Xuetong Niu, Li Wang, and Xulei Yang. 2019. A Comparison Study of
Credit Card Fraud Detection: Supervised versus Unsupervised. arXiv (2019).
arXiv:cs.LG/1904.10604

[38] Andrei Novikov. 2019. PyClustering: Data Mining Library. Journal of Open Source
Software 4, 36 (apr 2019), 1230–1230. https://doi.org/10.21105/joss.01230

[39] Aaron Orendorf. 2019. What Is the Future of eCommerce? 10 Insights on the
Evolution of an Industry. last accessed May 25, 2019. https://www.shopify.com/
enterprise/the-future-of-ecommerce

[40] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P Wellman.
2018. SoK: Security and privacy in machine learning. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 399–414.

[41] Signifyd & PYMNTS.com. 2017. Global Fraud Index. Technical Report. PYM-
NTS.com.

[42] PyPi. 2019. Kmodes clustering. https://pypi.org/project/kmodes/
[43] Andrei Sorin Sabau. 2012. Survey of Clustering based Financial Fraud Detection

Research. Informatica Economica 16, 1 (2012), 110–122.
[44] Alex Sangers, Maran van Heesch, Thomas Attema, Thijs Veugen, Mark Wigger-

man, Jan Veldsink, Oscar Bloemen, and Daniël Worm. 2018. Secure multiparty
PageRank algorithm for collaborative fraud detection. IACR Cryptology ePrint
Archive 2018 (2018), 917.

[45] Edward H Simpson. 1949. Measurement of diversity. Nature 163, 4148 (1949),
688.

[46] Guillermo Suarez-Tangil, Matthew Edwards, Claudia Peersman, Gianluca Stringh-
ini, Awais Rashid, and Monica Whitty. 2019. Automatically Dismantling Online
Dating Fraud. (05 2019).

[47] Lei Tang, Geoffrey Barbier, Huan Liu, and Jianping Zhang. 2010. A social net-
work analysis approach to detecting suspicious online financial activities. In
International Conference on Social Computing, Behavioral Modeling, and Prediction.
Springer, 390–397.

[48] Sutapat Thiprungsri andMiklos A Vasarhelyi. 2011. Cluster Analysis for Anomaly
Detection in Accounting Data: An Audit Approach. International Journal of
Digital Accounting Research 11 (2011), 69–84.

[49] Zalando website. 2019. last accessed June 3, 2019. https://www.zalando.com
[50] Mohammed J. Zaki, Markus Peters, Ira Assent, and Thomas Seidl. 2005. CLICKS:

An Effective Algorithm for Mining Subspace Clusters in Categorical Datasets. In
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining. ACM, 736–742.

[51] Zalando. 2015. Half-year report January-June 2015. last accessed August
16, 2019. https://corporate.zalando.com/sites/default/files/media-download/
zalando_se_half-year_report_2015_e_s.pdf

[52] Zalando. 2019. Annual Report 2018 - Key figures. Technical Report. Zalando.
https://corporate.zalando.com/en/investor-relations/key-figures-2018

A CLUSTERING ALGORITHMS DETAILS

A.1 Agglomerative clustering

The agglomerative clustering algorithm is detailed in Algorithm 2.
DistanceMatrix compute a |ci | × |c j | matrix of the distance be-
tween elements of ci and c j . Hamming distance and Jaccard Index
are the most widely used [30] methods for measuring the distance
of categorical data. We select Hamming distance since it is fast to
compute. It counts the number of different attribute values between
two elements u and v (cf. Eq. 1).

The linkage matrix computed using LinkageMatrix describes
the successive cluster fusions to go from singletons to a single clus-
ter (dendrogram). Cluster fusion is done according to the distance
between two clusters, which is defined by a linkage method. Single
linkage uses the minimum distance between any two points in each
cluster. Complete linkage takes the maximum distance between any
two points from each cluster.Ward linkage [30] takes the increase in
the sum of square obtained by merging two clusters rather than by
keeping them separate. We use the single linkage method here. We
compute the final clustering using Cluster based on the linkage
matrix and the ’distance’ criterion parametrized by dmax .

A.2 Agglomerative clustering with sampling

The algorithm for agglomerative clustering with sampling is pre-
sented in Algorithm 3. We modify the basic sampling algorithm to
create a maximum number of clusters. Rather than initially cluster-
ing sampled elements, we use each of them as the basis for a new
cluster (no initial clustering). Our sampling algorithm randomly

12

https://blog.clear.sale/false-declines-hurting-your-online-reputation
https://blog.clear.sale/false-declines-hurting-your-online-reputation
https://www.europol.europa.eu/newsroom/news/95-e-commerce-fraudsters-arrested-in-international-operation
https://www.europol.europa.eu/newsroom/news/95-e-commerce-fraudsters-arrested-in-international-operation
http://arxiv.org/abs/1801.08629
http://arxiv.org/abs/cs.CR/1905.04576
https://github.com/SSGAalto/recagglo
https://github.com/SSGAalto/recagglo
http://fraudpractice.com/gl-manual.html
http://fraudpractice.com/gl-manual.html
http://arxiv.org/abs/cs.LG/1904.10604
https://doi.org/10.21105/joss.01230
https://www.shopify.com/enterprise/the-future-of-ecommerce
https://www.shopify.com/enterprise/the-future-of-ecommerce
https://pypi.org/project/kmodes/
https://www.zalando.com
https://corporate.zalando.com/sites/default/files/media-download/zalando_se_half-year_report_2015_e_s.pdf
https://corporate.zalando.com/sites/default/files/media-download/zalando_se_half-year_report_2015_e_s.pdf
https://corporate.zalando.com/en/investor-relations/key-figures-2018

Algorithm 2 Agglomerative clustering

1: Let c = v1, . . . ,vm denote a set of |c | =m elements v ,
2: dmax , the maximum distance for cluster fusion.
3:
4: function AggloClust(c,dmax)
5: D ← DistanceMatrix(c, c , ’Hamming’)
6: LM ← LinkageMatrix(D, ’single’)
7: Cr es ← Cluster(LM,dmax , ’distance’)
8: return Cr es
9: end function

selects n samples from c (where n is a factor ρs of
√
|c |). Thus, we

compute the distance matrix between the sample and all elements
in c . We use the single linkage method to compute the linkage
matrix since we only know the distance to a single element in each
cluster (because of sampling). Finally, it generates a clusteringCr es
using the maximum number of clusters criterion (’maxclust’) where
cmax is computed as a factor ρmc of the set size |c |. This criterion
is selected with the goal of splitting a large set of elements into
smaller clusters but without providing any guarantee of goodness
for the resulting clustering.

Algorithm 3 Agglomerative clustering with sampling

1: Let c = v1, . . . ,vm denote a set of |c | =m elements v ,
2: ρs , the multiplying factor for the sample size,
3: ρmc , the dividing factor for maxclust number.
4:
5: function SampleClust(c, ρs , ρmc)
6: n ← ρs ×

√
|c |

7: cmax ←m ÷ ρmc
8: s ← RandomSample(c,n)
9: D ← DistanceMatrix(s, c , ’Hamming’)
10: LM ← LinkageMatrix(D, ’single’)
11: Cr es ← Cluster(LM, cmax , ’maxclust’)
12: return Cr es
13: end function

B DATASETS COMPOSITION

Small datasets with artificial distribution: We selected TrainF-
15K and TestF-15K from Zalando orders passed in France over
2017. In each dataset, we simulate an artificial distribution where
frauds are over-sampled compared to a real-world distribution (2
legitimate / 1 fraud). TrainF-15K consists of 10 disjoint subsets
TrainF-15K-i, each composed of 10,000 legitimate and 5,000 frauds.
The 5,000 frauds are randomly selected from a continuous period
of 1-1.5 month. The 10,000 legitimate orders are randomly selected
from a period of 1-2 days. For each subset i , the period from which
legitimate orders are selected is included into the period fromwhich
frauds are selected. TestF-15K consists of 10 disjoint subsets TestF-
15K-i selected the same way as for TrainF-15K (10,000 legitimate
and 5,000 frauds) TestF-15K and TrainF-15K are disjoint.
Large datasets with artificial distribution. We select TrainG-
30K and TrainG-100K from orders passed in Germany over 2017.
Each subset of TrainG-30K is composed of 25,000 legitimate and

5,000 frauds. The 5,000 frauds are randomly selected from a contin-
uous period of 1 month. The 25,000 legitimate orders are randomly
selected from a period of 1 day contained in the month from which
frauds are selected. Each subset of TrainG-100K is composed of
95,000 legitimate and 5,000 frauds. The 5,000 frauds are randomly
selected from a continuous period of 1 month. The 95,000 legitimate
orders are randomly selected from a period of 1 week contained in
the month from which frauds are selected.

C HYPERPARAMETER SELECTION

C.1 Linkage method selection

We want to select a linkage method that minimizes the impurity
I and maximizes the clustered fraud rate (CFR). We cluster the 10
TrainF-15K-i datasets using single linkage, complete linkage and
Ward linkage. Figure 6 shows the evolution of impurity I according
to CFR while varying the maximum distance for cluster fusion
dmax . Values are averaged over 10 clustering results. We see that
for CFR < 0.6 all linkage methods have similar impurity values.
For CFR > 0.6 Ward outperforms other linkage methods, while
single becomes the worst method with high increase in impurity.

Figure 6: Impurity vs. CFR for single / complete / Ward link-

age methods. Each linkage method provides the same Impu-

rity/CFR tradeoff when the impurity is low: 0.01-0.03.

Our primary goal is to keep the impurity as low as possible. All
methods are comparable at providing a highCFR while keeping the
impurity low (0.01 - 0.03). Single and complete linkage are computed
using a single distance between two points from two clusters: the
closest and the furthest away ones respectively. Thus, they are faster
to compute than Ward. They are also better suited for clustering
with sampling, since the distance between any two points is not
available using sampling. We can see from Fig. 6 (zoom) that single
linkage provides higher CFR than complete linkage for the same
impurity value. Thus, we select single linkage as our base linkage
technique.

C.2 Weighting strategy selection

Figure 7 shows the evolution of impurity I according to CFR while
varying the maximum distance for cluster fusion dmax . Values are
averaged over 10 clustering results. We see that for CFR < 0.55 all
weighting strategies have similar impurity values. For CFR > 0.55

13

Table 4: Results of grid search for SampleClust hyperpa-

rameters: ρs = {0.25, 0.5, 1, 2} and ρmc = {1.01, 1.5, 2, 3, 4, 6, 10}.
Average impurity, CFR and computation time computed

over 10 runs of RecAgglo on TrainG-30K (δa = 1, 000). A low

performance score means a combination of hyperparame-

ters that maximizes our clustering objectives: low impurity,

high CFR and low computation time.

ρmc ρs I (%) CFR (%) time (s) performance score

1.01

0.25 3.61 28.59 2,070 3.06
0.5 3.65 29.54 4,722 5.10
1 3.75 30.13 9,049 9.33
2 3.68 30.53 16,657 15.90

1.5

0.25 3.43 27.72 461 1.17
0.5 3.45 28.36 657 1.00
1 3.38 28.49 1,010 0.89
2 3.49 28.74 1,365 1.61

2

0.25 3.38 27.45 397 0.98
0.5 3.39 28.29 620 0.72
1 3.43 28.48 920 1.09
2 3.53 28.70 1,300 1.82

3

0.25 3.43 27.42 410 1.30
0.5 3.42 28.31 629 0.86
1 3.44 28.82 913 0.91
2 3.56 28.75 1,262 1.91

4

0.25 3.46 27.67 417 1.29
0.5 3.51 28.65 632 1.12
1 3.40 28.71 884 0.72
2 3.48 28.76 1,265 1.49

6

0.25 3.49 27.56 456 1.57
0.5 3.44 28.48 682 0.88
1 3.43 28.76 936 0.88
2 3.48 28.78 1,350 1.52

10

0.25 3.41 27.89 540 0.99
0.5 3.44 28.43 720 0.94
1 3.47 28.81 995 1.12
2 3.53 28.89 1,456 1.83

Figure 7: Impurity vs. CFR for default / cardinality / label

driven attribute weighting. All methods have comparable

performance. Label driven weighting provides marginally

higher CFR for the same impurity.

our label driven weighting becomes better than other strategies
providing up to a 2 percentage points higherCFR than other strate-
gies while keeping impurity low (0.025). Cardinality driven features
provide the best trade-off betweenCFR and impurity (for I > 0.10).
This is an interesting result but it is not useful since our goal is to
minimize impurity. We see that label driven weighting gives the
best trade-off between CFR and impurity.

C.3 SampleClust hyperparameters selection

Table 4 presents the impurity (I), CFR and computation time (t)
for each combination of SampleClust hyperparameters ρmc and
ρs tested during the grid search. These results are limited to the
grid search we performed on TrainG-30K and they depict how our
performance metrics vary according to ρmc and ρs values. We also
computed a performance score to choose the optimal hyperparame-
ter combination. It is the sum of normalized performance metrics Î ,
ˆCFR and t̂ , which are respectively defined in Eq. (8), (9) and (10)3.

A low performance score depicts a combination of ρmc and ρs that
maximizes our clustering objectives: low impurity, high CFR and
low computation time.

Î(ρs=x,ρmc=y) =
I(ρs=x,ρmc=y) −min(I)

max(I) −min(I) (8)

ˆCFR(ρs=x,ρmc=y) =
max(CFR) −CFR(ρs=x,ρmc=y)

max(CFR) −min(CFR) (9)

t̂(ρs=x,ρmc=y) =
t(ρs=x,ρmc=y) −min(t)

max(t) −min(t) (10)

We see that hyperparamater choice heavily impacts the compu-
tation time while impurity and CFR remain almost constant. Too
low ρmc value (e.g., 1.01) or a high ρs value significantly increase
the computation time. This is expected since ρs defines the sample
size used in clustering with sampling. A high ρs value means a
large sample.
3We discarded time results obtained using rhomc from the normalization process
in Eq. (10). These are too high and represent outliers.max (t) andmin(t) only take
ρmc = {1.5, 2, 3, 4, 6, 10} into account.

14

	Abstract
	1 Introduction
	2 Detecting eCommerce fraud
	2.1 Fraud detection and cancellation
	2.2 Preventing organized fraud
	2.3 Attributes representing orders
	2.4 Challenges in clustering fraud campaigns
	2.5 Requirements

	3 Recursive Agglomerative Clustering
	3.1 Agglomerative clustering and sampling
	3.2 Our RecAgglo algorithm
	3.3 RecAgglo properties

	4 Attribute weighting strategies
	4.1 Cardinality driven attribute weight
	4.2 Label driven attribute weight

	5 Performance metrics and datasets
	5.1 Performance metrics
	5.2 Datasets

	6 Weighting strategies evaluation
	6.1 Weight computation
	6.2 Attribute importance
	6.3 Weighting strategies performance

	7 RecAgglo performance evaluation
	7.1 Hyperparameter setting
	7.2 Experimental setup
	7.3 Performance analysis

	8 Real-world fraud detection
	8.1 Prioritizing screening
	8.2 Automated fraud cancellation
	8.3 Evading fraud detection

	9 Related Work
	9.1 Categorical clustering
	9.2 Fraud detection

	10 Conclusion
	References
	A Clustering algorithms details
	A.1 Agglomerative clustering
	A.2 Agglomerative clustering with sampling

	B Datasets composition
	C Hyperparameter selection
	C.1 Linkage method selection
	C.2 Weighting strategy selection
	C.3 SampleClust hyperparameters selection

