
Co-Evaluation of Pattern Matching Algorithms on IoT Devices with
Embedded GPUs

Downloaded from: https://research.chalmers.se, 2024-04-25 21:18 UTC

Citation for the original published paper (version of record):
Stylianopoulos, C., Kindström, S., Almgren, M. et al (2019). Co-Evaluation of Pattern Matching
Algorithms on IoT Devices with Embedded GPUs. ACM International Conference Proceeding
Series: 17-27. http://dx.doi.org/10.1145/3359789.3359811

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Co-Evaluation of Pattern Matching
Algorithms on IoT Devices with Embedded

GPUs
Charalampos Stylianopoulos

chasty@chalmers.se
Chalmers University of Technology

Gothenburg, Sweden

Simon Kindström
simonki@student.chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Magnus Almgren
magnus.almgren@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Olaf Landsiedel∗
olafl@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Marina Papatriantafilou
ptrianta@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

ABSTRACT
Pattern matching is an important building block for many se-
curity applications, including Network Intrusion Detection Sys-
tems (NIDS). As NIDS grow in functionality and complexity, the
time overhead and energy consumption of pattern matching be-
come a significant consideration that limits the deployability of such
systems, especially on resource-constrained devices. On the other
hand, the emergence of new computing platforms, such as embed-
ded devices with integrated, general-purpose Graphics Processing
Units (GPUs), brings new, interesting challenges and opportunities
for algorithm design in this setting: how to make use of new ar-
chitectural features and how to evaluate their effect on algorithm
performance. Up to now, work that focuses on pattern matching for
such platforms has been limited to specific algorithms in isolation.

In this work, we present a systematic and comprehensive bench-
mark that allows us to co-evaluate both existing and new pattern
matching algorithms on heterogeneous devices equipped with em-
bedded GPUs, suitable for medium- to high-level IoT deployments.
We evaluate the algorithms on such a heterogeneous device, in close
connection with the architectural features of the platform and pro-
vide insights on how these features affect the algorithms’ behavior.
We find that, in our target embedded platform, GPU-based pat-
tern matching algorithms have competitive performance compared
to the CPU and consume half as much energy as the CPU-based
variants. Based on these insights, we also propose HYBRID, a new
pattern matching approach that efficiently combines techniques
from existing approaches and outperforms them by 1.4x, across a
range of realistic and synthetic data sets. Our benchmark details
the effect of various optimizations, thus providing a path forward

∗Also with Kiel University, Germany.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC, December 9–13, 2019, Puerto Rico, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7628-0/19/12. . . $15.00
https://doi.org/10.1145/3359789.3359811

to make existing security mechanisms such as NIDS deployable on
IoT devices.

CCS CONCEPTS
• Security and privacy→ Network security.

KEYWORDS
NIDS, GPU computing, embedded devices, pattern matching

ACM Reference Format:
Charalampos Stylianopoulos, Simon Kindström, Magnus Almgren, Olaf
Landsiedel, and Marina Papatriantafilou. 2019. Co-Evaluation of Pattern
Matching Algorithms on IoT Devices with Embedded GPUs. In 2019 Annual
Computer Security Applications Conference (ACSAC ’19), December 9–13, 2019,
San Juan, PR, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3359789.3359811

1 INTRODUCTION
With the widespread adoption of Internet of Things (IoT) technolo-
gies, an increasing number of devices are equipped with the ability
to communicate and connect to the Internet. While promising in-
creased efficiency and flexibility, connected devices are vulnerable,
as shown by recent attacks that specifically targeted IoT devices
such as connected cameras and thermostats [31, 42]. Protecting
such devices with well-established security mechanisms such as
network intrusion detection systems (NIDS) is necessary. Yet, such
mechanisms are hard to deploy on these devices, because their core
function depends on pattern matching, a bottleneck that needs
significant resources (more than 70% of the running time of the
system may be spent on pattern matching [2]).

In the context of NIDS, pattern matching algorithms scan the
packet payload (Deep Packet Inspection) and detect any occurrence
of malicious string signatures (known in advance) in the stream
of packets. Pattern matching algorithms are often studied in close
relation with the hardware platforms, because the characteristics
of the target platform play an important role on performance. This
is evident by the number of algorithms in the literature that target
specific platforms or build on optimizations that utilize specific
characteristics, e.g., CPU caches [10], vector instructions [37], FP-
GAs [36] or hardware accelerators [21].

https://www.acsac.org/2019/
https://doi.org/10.1145/3359789.3359811
https://doi.org/10.1145/3359789.3359811
https://doi.org/10.1145/3359789.3359811

In IoT deployments, one can find significant hardware diver-
sity from the edge to the core of the network. For example, the
introduction of new computing approaches with new hardware
diversity in the fog increases the design space for pattern matching
algorithms and offers new capabilities for improvements of perfor-
mance. This is leveraged in recent research [32] with algorithms
tailored to medium-ranged embedded platforms, such as Raspberry
Pi or Odroid [6]. The latter platform offers an interesting combina-
tion of an IoT board equipped with an embedded, programmable
Graphics Processor Unit (GPU). Such medium/high range IoT de-
vices can take the role of NIDS boxes, protecting a network of
resource-constrained devices closer to the edge of that network.

However, challenges remain and the feasibility of such platforms
for NIDS is not established yet, especially with respect to perfor-
mance, since their hardware characteristics are different from the
well-studied high-end platforms. First, significant effort is required
to take an algorithm for a particular hardware and change it to
run well on another type of hardware. Given the development ef-
fort, it would be favorable to better understand what algorithms to
port and how. Secondly, it is not clear how different optimizations
translate across hardware. For example, the design of many pattern
matching algorithms (e.g. [10, 37, 41]) is driven by specific features
of the target architecture, such as cache sizes and vector execu-
tion units, so it is unclear how they perform on a different system.
Thirdly, most work is documented in isolation, with specific data,
and within a specific framework.

As such, a common methodology for benchmarking algorithms
tailored for fog-layer devices is needed, to understand possibilities
and limitations of the hardware itself, as well as the effects of
algorithm engineering and, most importantly, the interplay of the
algorithm and the hardware features.

Contributions: In this work we present a co-evaluation of vari-
ous pattern matching algorithms on a heterogeneous computing
platform. We target a medium range embedded device (an Odroid
XU3) that is equipped with a programmable GPU, i.e., a GPU that
can support general-purpose computing.

• We design a benchmark that facilitates a systematic compar-
ison between different pattern matching algorithms, using
realistic data sets that capture real NIDS workloads.

• We co-evaluate well-known CPU and GPU based algorithms,
including our own GPU adaptation of a state of the art CPU
based algorithm (DFC).

• We evaluate the effect of different platform-specific optimiza-
tions and parameters in the performance of the algorithms,
both in terms of execution time as well as energy consump-
tion, to guide the community in future research.

• Based on our methodology, we were also able to create a new
algorithm, HYBRID, that effectively combines the benefits
of existing approaches and achieves up to 1.4x speedup in
pattern matching compared to the best GPU baseline.

The remainder of the paper is organized as follows: in Section 2
we discuss the general aim and design considerations of the bench-
mark. Section 3 summarizes the algorithms included in our bench-
mark, both existing as well as new ones. Section 4 provides details
on the target hardware and discusses relevant optimizations. In

Section 5 we present and discuss the benchmark results. We present
related work in Section 6 and conclude in Section 7.

2 BENCHMARKING AIM AND
CONSIDERATIONS

This section discusses the high-level design considerations for our
benchmark and serves as a guideline for the general methodology
followed in our work. We motivate the aim of the benchmark, the
choice of algorithms and the steps we consider towards a fair and
useful comparison between them.

Utilization of the target platform. The aim of this benchmark
is to analyze the performance of pattern matching algorithms on
a specific set of newly introduced hardware platforms: embedded
devices with integrated GPUs that support General Purpose GPU
computing (GPGPU). Originally designed for processing graphics,
in the last decade, GPUs have been proven particularly successful
in accelerating general-purpose workloads as well, mostly due to
their highly parallel architecture. Their popularity increased fur-
ther with the introduction of libraries that simplify the writing of
GPU programs, namely CUDA [28] and OpenCL [16]. We focus on
algorithms that are written or can be ported to OpenCL, since it is
the library that the hardware supports (c.f. Section 4).

Choice of algorithms. Each pattern matching algorithm fol-
lows a different approach, but most of them fall into two main
categories: state machine based approaches and filtering based ones.
The first category involves variants of the Aho-Corasick algorithm
(c.f. next section), where a state machine is created out of the pat-
terns and traversed based on the input. On the contrary, filtering
based approaches try to quickly isolate parts of the input that do
not contain any matches and spend more resources on the parts
that might potentially match with one of the patterns.

In the benefit of covering a wide spectrum of approaches and
gaining insights from how different algorithms perform on the
device we target in this work, we pick representative algorithms
from both families. The description of the chosen algorithms follows
in the next section.

General and platform-specific parameters and character-
istics. The design and performance of the algorithms mentioned
above are greatly affected by the system parameters and the char-
acteristics of the target architecture. Each family of algorithms
is affected by those characteristics to a different extent. Thus, it
is important to examine the effect of a variety of parameters on
algorithms from different families, especially when targeting archi-
tectures with unique characteristics such as the one we use in our
work. In Section 4 we discuss the architecture characteristics and
the parameters that are relevant to examine.

Use of realistic data sets and patterns. The performance
of pattern matching algorithms for NIDS is often highly data-
dependent and fluctuates based on i) the number and size of patterns
used, and ii) the type of traffic that is monitored, e.g., randomly
generated data versus captured traffic from actual deployments.
Knowing the type of traffic and how the performance of each algo-
rithm will be affected beforehand is hard. However, it is important
to experiment with sets of traffic and patterns that are as close to
the ones found in real life as possible. We use publicly available data
sets that simulate traffic from real deployments, as well as patterns

taken directly from the official pattern distributors for Snort [35],
the de-facto NIDS. We refer to Section 5 for more information on
the choice of data sets and patterns.

Identical functionality. Putting different algorithms together
under the same fair and meaningful framework is not trivial. Often,
algorithms are designed with different requirements in mind, e.g.,
reporting all the matches and their positions in the input, versus
just reporting how many matching patterns the input contains.
It is hard to judge which functionality to implement, since differ-
ent applications of those pattern matching algorithms might have
different requirements. However, it is important to ensure that
we keep the same functionality for the algorithms we compare in
this benchmark. For this reason, we have manually inspected the
compared versions and rewritten parts of them to ensure that the
different implementations have identical functionality.

In later sections we will return to the considerations mentioned
above and discuss some of their implementation details.

3 CONSIDERED ALGORITHMS & NOVEL
DESIGNS

Since this benchmark focuses on NIDS applications of pattern
matching, we consider algorithms that have been designed or used
in NIDS workloads. As previously mentioned, we cover algorithms
from the two main pattern matching algorithm families: state ma-
chine based and filter based.

The algorithms chosen from the literature are representative
of methods that can benefit from different architectural features
of the computing platform, such as the high parallelism/latency
hiding of the GPU as well as cache memories. Based on insights
from the existing approaches and their properties in heterogeneous
computing platforms, we also introduce a new method, which we
call HYBRID, that aims to combine the benefits of the two. This
algorithm will also be part of our benchmark. The algorithms are
summarized in Table 1, where we also specify the code repository (if
applicable) as well as the effort to adapt the code to the evaluation.

3.1 State Machine Based Algorithms:
Aho-Corasick and PFAC

One of the most well-known algorithms for pattern matching is
Aho-Corasick (AC) [1]. Aho-Corasick has a preprocessing stage
where it builds a Finite State Automaton (FSA), in other words a state
machine, with all patterns. However the FSA differs from a normal
FSA as failure transitions are also added. These failure transitions
occur when there is a mismatch between the input and the state
machine, and point to the state sharing the longest common prefix
with the current state. During processing, one character at a time
is read from the input and used to determine the next state, using a
state transition table that represents the state machine. An example
of Aho-Corasick’s state machine is shown in Figure 1. The arrows
between each branch indicate failure transitions.

Aho-Corasick is a simple way of performing multiple pattern
matching that requires a small number of operations per byte. How-
ever, storing all the states and their transitions requires significant
memory [26, 27]. Because of the large memory requirements, many
cache misses occur during state transitions [26]. Nonetheless, AC
is often used in practice and a variant of AC is used in NIDS such

Figure 1: Aho-Corasick state machine for the patterns AC,
ACFE, CF and FKL.

Algorithm 1: High level pseudo-code of PFAC.
1 for each character C in input stream do
2 find the first state based on character C
3 while no patterns found AND state not reset to 0 do
4 read next character
5 traverse the state machine
6 end
7 end

as Snort [35]. We include Aho-Corasick as a CPU-based baseline in
our benchmark, due to its widespread use.

Parallel Failureless-AC (PFAC) is a parallel implementation of
Aho-Corasick with a focus on GPUs [21]. In PFAC, every GPU
thread starts from a single character and follows the state transitions
until a match is detected or the state machine has returned to the
original state, indicating there was not a match starting from that
character. The state machine in PFAC is simplified compared to
that of Aho-Corasick in that the failure transitions are removed and
each pattern is an individual branch in the state machine. PFAC
spawns many threads (up to one thread per input character) but
most of them will quickly detect no matches and exit. Algorithm 1
shows a highly simplified pseudo-code version of PFAC.

One reason that makes PFAC an interesting algorithm to include
in this benchmark is the fact that it has been evaluated on resource-
constrained embedded GPUs, similar to the ones we target in this
paper. Aragon et al. [4] implement PFAC in OpenCL and evaluate
it on an ARM Mali GPU, considering various optimizations. In
this work, we build upon this evaluation and extend it with more
algorithms and insights.

3.2 Filter Based Algorithms: DFC and V-Patch
The motivation behind filter based algorithms is to create small
filters that can quickly determine and discard parts of the input
that do not contain any matches, in a quick and cache-efficient way,
contrary to the cache-inefficient data structures of state machine
based algorithms.

Acronym Algorithm Family Code Effort Comment
AC (CPU) Aho-Corasick [1] state machine Snort repo [34] low CPU baseline, used in Snort
DFC (CPU) Direct Filter Classification [10] filter [10, 37] low CPU baseline (filter-based)
PFAC (GPU) Parallel Failureless AC [21] state machine [4] medium code required some work to adapt to benchmark
DFC (GPU) Direct Filter Classification [37] filter [37] high our own implementation (the first implementation of

DFC for the GPU) based on [37]
HYBRID (GPU) Mix of DFC and PFAC mixed this paper high our own design: a hybrid combining DFC and PFAC,

implemented for the GPU
Table 1: A summary of the evaluated algorithms and their acronyms.

Direct Filter Classification (DFC) is a state of the art, memory
and cache efficient pattern matching algorithm implemented on
CPUs, using Direct Filters (DFs) [10]. A Direct Filter is a bitmap that
summarizes some consecutive bytes from the pattern, and is small
enough to be cache resident. A 2 byte DF will use 2 consecutive
bytes from a pattern, e.g., the first or last two bytes, to index a bit
in the bitmap.

DFC performs matching in multiple phases: filtering and verifi-
cation. In the filtering phase, a window of two bytes is slid over the
input, summarized and matched to the filter. If the windowmatches,
additional DFs requiring more bytes for indexing may be used to
check that it really is a match. The verification phase performs
exact matching using a compact hash table with efficient indexing.
Unlike other filter based algorithms (e.g. FFBF [26]), DFC works
with patterns of any length and avoids expensive hash computa-
tions for indexing the filters. Algorithm 2 shows a highly simplified
pseudo-code version of DFC.

Algorithm 2: High level pseudo-code of DFC.
1 for each character C in input stream do
2 feed C (and neighbouring character) through a series of filters
3 if there is a hit in the filters then
4 do verification
5 end
6 end

Since its inception, DFC has been the basis for further improve-
ments on its filter design and its ability to utilize features of the
architecture, such as vectorization. Stylianopoulos et al. [37] re-
design the filter architecture of DFC (S-Patch) to better fit realis-
tic traffic scenarios and allow for a vectorizable design (V-Patch),
which leads to an increased throughput of up to 3.6x compared to
the original DFC algorithm.

In this work, we implemented our own GPU version of DFC. We
based our filter design on the CPU filtering design of S-Patch [37].
Such a GPU implementation is not straight-forward and involves
re-factoring the CPU version and orchestrating the communica-
tion between the CPU and the GPU. We briefly mention here that
the data structures that hold the series of hash tables used in the
verification version of DFC need to be serialized so that they can
be transferred to the GPU. Moreover, the results of the pattern
matching kernel on the GPU are stored in a buffer that indicates
whether or not there was a match, for each character in the input.
Those results are later transferred to the CPU and processed there.

We include in our experiments both the CPU version of DFC,
as a baseline, as well as our own GPU algorithm implementation.
Upon these implementations, we evaluate and discuss the effect of
different optimizations and algorithm engineering methods.

3.3 A Hybrid Approach
In addition to algorithms from the two different families described
above, in this work we also introduce a new approach, HYBRID,
that borrows the benefits of both families.

The new, albeit simple idea behind this approach is to filter the
input using one filter, similar to the ones used in DFC and then
perform PFAC-based pattern matching only on the parts of the
input that cause a hit in the filters. The motivation behind this
scheme is that it combines: (i) the good cache locality of filter based
approaches, allowing us to quickly filter out most of the input (c.f.
Section 5.5) and (ii) the ability to avoid the costly verification part of
DFC by falling back to PFAC which uses only a minimum number
of operations (jumps from one state to the other). The fact that, in
PFAC, we can traverse the automaton starting from any individual
character in the input (contrary to, e.g., Aho-Corasick), makes it
possible to pipeline the execution of PFAC with that of DFC, by
starting an automaton traversal only where there is a hit in the
filter. Algorithm 3 shows a highly simplified pseudo-code version
of HYBRID.

Algorithm 3: High level pseudo-code of HYBRID.
1 for each character C in input stream do
2 feed C (and neighbouring character) through a series of filters
3 if there is a hit in the filters then
4 find the first state based on character C
5 while no patterns found AND state not reset to 0 do
6 read next character
7 traverse the state machine
8 end
9 end

10 end

The HYBRID algorithm is actually a result of the insights gained
from the benchmark described in this paper and came as a later ad-
dition to the paper. However, to ease the presentation, we evaluate
the HYBRID algorithm together with the other algorithms included
in this benchmark in Section 5.

4 HARDWARE-ORIENTED ALGORITHM
OPTIMIZATIONS

In this section, we provide details on the architecture of the target
platform and discuss relevant algorithm engineering methods that
make use of the architectural features.

4.1 Overview of the Target Platform
We use the ODROID-XU3 [6] to execute all tests. The XU3 uses
the Exynos 5 Octa (5422) chip that has a quad-core ARM Cortex-
A15 and quad-core ARM Cortex-A7, along with 2GB of RAM. The
Exynos 5422 is used in one variant of the Samsung Galaxy S5,
showing that the XU3 is a reasonable choice for a more powerful
embedded device today. It also suggests that hardware and the
pattern matching algorithms considered in this paper could also
be used, e.g., in scanning malicious mobile application. The most
important reason as to why we use the XU3 is because it possesses
a GPU that allows General-Purpose computing on Graphics Pro-
cessing Units (GPGPU). Further reasons are that it has a high-speed
Ethernet port, allowing for high-speed network sniffing. We chose
the Odroid XU3 over the newer XU4 model (that has the same CPU
and GPU) because the former has on-board energy sensors that
allow us to easily measure the energy consumed.

The XU3’s variant of the GPU is a Mali-T628 MP6 [5] that has 6
cores (much less than the typical high-end discrete GPUs). These
shader cores may be programmed using OpenCL. The GPU does not
have a separate devicememory but share the same physical memory
as the CPU [7]. Moreover, any shared or local memory on the GPU
is actually mapped in the global memory instead. Each core has L1
and L2 memory caches to remedy the cost of always accessing the
global memory. These caches have a 64-byte cache line. There are
two 16KB L1 caches for each core, one used for generic memory
accesses and one for texture memory. Another unique feature of the
Mali GPU is that there is Single Instruction Multiple Data (SIMD)
parallelism supported within each GPU thread. Finally, each GPU
thread has a separate instruction counter, meaning that divergent
execution is not a problem on the Mali-GPU [7]. Architectures with
similar features (e.g. shared memory between the CPU and the
GPU) are also available from NVIDIA [29] and we expect similar
performance trends.

Based on the above the description, the Odroid XU3 platform
is a relatively powerful single board computer that belongs to the
medium/high range of IoT devices. Although the architecture and
the capabilities of the device are far different from those of the
typical end-point, resource-constrained sensors (that are usually
powered by ARM Cortex-M or similar processors), medium/high
range devices have a central role in the IoT context, as they can
play the role of cluster-heads or gateways to a network of less
powerful end-nodes. Also, platforms like the Odroid XU3 fit in the
fog computing [11] context, as an intermediate layer between the
cloud and the edge network.

4.2 Relevant Algorithm Optimizations
In this section, we discuss optimizations that are relevant to explore
and relate to (i) features of the architecture and (ii) possibilities
for the evaluated algorithms to make good use of those features. A
similar discussion on some of these parameters can also be found in

the work by Aragon et al. [4]. We extend their discussion with more
parameters to also consider the use of texture memory for storing
the relevant data structures, as well as the use of vectorization, as it
has shown promise for CPU-based algorithms [37]. In Section 5.2 we
evaluate the effect of each of the optimizations described in detail in
the following sections. They are also summarized in Table 2, with a
comment on how they were realized and the corresponding effort.

Reducing memory transfers (MAP): Memory transfers be-
tween an OpenCL host (CPU) and OpenCL device (GPU) is often
the bottleneck in GPGPU applications [13]. In most cases, memory
transfers include a copy of data from the physical memory of the
host to that of the GPU. The platform we target here offers an
interesting way to alleviate this problem. The GPU shares the same
physical address spaces as the CPU, making memory copies redun-
dant. A naive use of the OpenCL API would still force the driver
to perform memory copies of the data to be transferred. Instead, it
is possible to map a memory region (through the OpenCL API) to
make it accessible from the GPU and then map it back to the CPU
to read the results.

Increasing work per thread (THR): An issue with having
each thread handle a single character, is that many threads are
spawned. This is not a free operation, costing time and energy. By
having each thread process multiple characters, fewer threads are
needed.

Utilizing local memory (MEM LOCAL/GLOBAL): The GPU
local memory is shared between each work-item in a workgroup
and is often faster to access than the global memory. As described
earlier, the target platform does not have dedicated local memory
and references to local memory are served by the global memory
instead. Nonetheless, we experiment with local memory to show
how optimizations that would be beneficial on high-end GPUs can
actually have a negative impact on embedded platforms like ours.

Utilizing texture memory (MEM TEXTURE): An additional
optimization strategy used in this work is to utilize the texture
memory, an on-chip memory designed to quickly serve addresses
that have spatial locality. As there is a separate L1 cache for tex-
tures (16KB) in the XU3, one may increase the cache hits further
by storing one or more DF as a texture. It is worth noting that
storing the filters in texture memory results in the need for some
additional registers and computations to retrieve the one bit of
interest, potentially reducing the gain from better cache locality.

Vectorized execution (VEC): As mentioned earlier, each GPU
thread can operate on multiple elements at a time in a SIMD fashion.
In this work we implement and evaluate a vectorizable version
of DFC, based on V-Patch [37], and HYBRID. In this version, the
filtering is done on multiple (in this case eight) elements at the same
time. Notice however that some parts of the filtering are still done in
scalar code, due to the lack of special vector instructions such as the
gather instruction [25], which is important for the implementation
of V-Patch.

Altering OpenCL workgroup size (WG): Another variable is
the size of the OpenCL workgroup [7]. Fewer workgroups should
result in a lower overhead for maintaining them, but more results in
better latency hiding. The size of a workgroup is usually amaximum
of 256, as is the case on the ODROID-XU3.

Configurations
Acronym Description Effort Comment
MAP The use (or not) of memory mapping to avoid data transfers. low Done through the OpenCL API
THR Thread granularity. low Done through the OpenCL API
MEM Type of memory used to store the filters of DFC (GLOBAL/LOCAL/TEXTURE). high Using texture memory requires data structure

re-arrangement
VEC The use (or not) of vectorization in the GPU kernel. high Vectorization requires code refactoring
WG Work group size. low Done through the OpenCL API

Table 2: A list of optimizations and their acronyms used throughout the evaluation.

5 EVALUATION
In this section we co-evaluate the algorithms presented in Section 3
under the same benchmark. We start by describing the methodol-
ogy followed throughout the experiments. Then we focus on DFC
(which has not been previously studied in a GPU context) and study
the effects of different optimizations. We then report and discuss
the overall performance comparison between the different versions,
as well as how the performance changes across different data sets
and number of patterns. Finally, we discuss some insights from the
execution of HYBRID.

5.1 Evaluation Methodology
In our study we use the Odroid XU3, presented in Section 4, to run
all experiments. We test the algorithms using the three following
publicly available data sets that represent realistic traffic traces:1

• 162MB of HTTP traffic from the DARPA 2000 data set [20]
(unless otherwise stated, this data set is used)

• 100MB of traffic from the ISCX 2012 data set [12, 33], and
• 100MB of traffic from the BigFlows data set [3].

We also test against 100MB of randomly generated data. In all cases
the algorithms read the data from a file in chunks of 25MB each
and the cost of reading the data is included in the measurements.

The set of malicious patterns to be matched are taken directly
from Snort v2.9: we use a set of 2,183 HTTP-related patterns from
the default Snort distribution, as well as 5,000 randomly chosen
patterns from emergingthreats.net. Unless otherwise stated, the set
of 2,183 patterns is used for experiments.

Due to restrictions in OpenCL, statically allocating enough space
to fit the longest possible pattern would be wasting memory re-
sources. For this reason, we use no pattern longer than sixty-
four (64) characters and remove any instance longer than this
threshold. This choice is motivated by the distribution of pattern
lengths in the first and second pattern data set, which is shown
in Figures 2 and 3 respectively. In the case of the patterns from
emergingthreats.net, the longest pattern is 513 characters, while
most are much much shorter than that. Removing any pattern
longer than 64 characters removes approximately 80 and 500 from
the first and second pattern data set respectively. This decision
to remove excessively long patterns is similar to what happens in

1 We are aware of the artifacts in the DARPA 2000 set, and the discussions in the
community about its suitability for measuring the detection capability of intrusion
detection systems [23, 24]. In our experiments, we use it only for the purpose of
comparing execution time and energy usage between algorithms, allowing for future
comparisons on a known and easily-available dataset.

0 50 100 150 200 250 300
Pattern length

0

20

40

60

80

100

120

140

160

Pa
tte

rn
 c

ou
nt

Figure 2: Snort HTTP patterns

0 100 200 300 400 500
Pattern length

0

200

400

600

800

1000

Pa
tte

rn
 c

ou
nt

Figure 3: All patterns from emergingthreats.net

Figure 4: Distribution of pattern lengths. Red line signifies
64 characters

systems such as Snort, where long patterns are truncated and only
shorter versions of them are used in the pattern matching engine.

In order to ensure a fair comparison between the algorithms
based on the considerations mentioned in Section 2, we have en-
sured that all versions have identical functionality, i.e., they all
count the number of patterns that are matched in the input.

Finally, our main performance criterion used to compare the dif-
ferent versions is the execution time of the algorithm as a whole,
which includes: reading data from a file, performing pattern match-
ing, counting the number of matches and, for the GPU versions,

emergingthreats.net
emergingthreats.net

mappingmemory between the CPU and the GPU.We do not include
the cost of pre-processing, e.g., building the state machines of PFAC
or the filters of DFC, since this happens offline before deployment.
When measuring energy consumption, we gather measurements,
using the on-board energy sensors of the device, at a rate of 100Hz.

5.2 Deciding Parameters for DFC
It is important to understand how the characteristics of the tar-
get platform affect the performance of the algorithms and allow
for different optimizations. This analysis has been done already
for PFAC by Aragon et al. [4], but not for DFC since we are the
first to implement a GPU version of it. Therefore, we follow the
approach of Aragon et al. and we present, in Table 3, the effects of
the optimizations discussed in Section 4 on DFC’s performance.

In order to limit the number of different configurations that need
to be examined, we follow a greedy approach: we change one param-
eter until we find the value for which we get the best performance,
i.e., the smallest TOTAL execution time, then keep that value and
move on with the next parameter. The configurations and their
effect in Table 3 are described below. In the results section of the ta-
ble we report the time it takes to write/read data to/from the device
(WRITE/READ), the execution time of the kernel (KERNEL) that
implements pattern matching on the GPU, and the total measured
time (TOTAL), as well as the energy consumed (ENERGY). Yellow
boxes indicate configurations that improve the overall performance
(TOTAL time) compared to the previous configuration, while red
boxes indicate changes in configuration that do not have a positive
effect on performance.

Reducing Memory transfers (MAP): The MAP configuration
option is binary (yes/no) reflecting whether we use map to reduce
memory copies. Overall, mapping memory instead of copying it
has the most significant effect, seen from the reduction in the time
it takes to read/write data to/from the device. This is expected since,
as previously mentioned, the CPU and the GPU share the same
physical memory which makes memory copies redundant.

Increasing work per thread (THR): The THR configuration
option controls the thread-granularity, i.e., how many characters
each GPU thread processes. It is varied from 1 character per thread
to 48. Increasing the thread granularity to more than one character
per thread resulted in a great decrease in the kernel execution time,
since there is now more work for each thread to do, instead of
exiting early. However, at a certain point there are too few threads
to keep the hardware pipeline busy and performance decreases.

Utilizing global, local or texturememory (MEM):TheMEM
configuration option has three cases, reflecting the type of memory
where the filters are stored, i.e. global, local, or texture memory.
As expected, using local memory to store the filters had a negative
effect on performance, because the local memory in the Mali GPU
is simulated by global memory. Moreover, this simulation seems
to come at a cost in that the local memory is more expensive than
the global memory with the same overall settings (which was also
observed by Aragon et al. [4]). Surprisingly, using texture mem-
ory did not have a beneficial effect on performance either. This is
likely due to the extra instructions needed to access and isolate the
relevant bits from the filter when it is stored as a texture.

Vectorized execution (VEC): The VEC configuration option
controls whether the kernel is vectorized. In related work [37]
for the CPU, vectorization played a large role in improving the
performance. However, vectorizing the kernel in our setting did
not have a beneficial effect, likely due to the lack of proper gather
operations, which means that we incur a penalty when switching
between vectorized and scalar code. However, future architectural
support for vectorized operations would likely bring improvements
similar to what is seen in [37] for the CPU.

Altering OpenCLworkgroup size (WG): Finally, theWG con-
figuration option varies the workgroup size. The best configuration
for the work-group size is 128 work-items per work-group.

5.3 Overall Comparison
After establishing a set of parameters that works best for DFC (the
best configurations from Section 5.2), in addition to the parameters
that work best for PFAC fromAragon et al. [4], we put all algorithms
to the test in this section. Figure 5 shows the execution time of all
algorithms when processing the DARPA data set with the default
set of 2,183 patterns. We run each experiment five times and report
the average execution time. In Figure 5 we have broken down
the cost to its individual components. Post-processing refers to
counting the number of matches, based on the results read from the
GPU. Even though the main focus is the execution time of pattern
matching itself (light blue bars), we still present the additional costs
for completeness.

When comparing results between the performance of the CPU
baseline and the GPU, keep in mind that a direct comparison is not
always straightforward. Here, we compare against the performance
of parallel algorithms that have been transformed to operate on
the GPU, against single-threaded algorithms that operate on the
CPU. Using all the available threads in the CPU is likely to improve
CPU performance, assuming there is an efficient way to parallelize
the algorithms on the CPU and taking into account bottlenecks
involved in CPU parallelization. Still, our comparison allows us to
express the performance of the GPU in terms of something easily
understood: the performance of a single CPU thread. Moreover, note
that the GPU and CPU can complement each other: it is possible to
have both the GPU and the CPU threads working simultaneously,
either on disjoint parts of the input data, or on different tasks (e.g.
the post-processing can be done in parallel by the CPU).

CPU vs GPU: First, comparing the CPU (the first two bars in
Figure 5) and the GPU versions (the rest) shows that all GPU ver-
sions perform significantly better than the CPU versions, up to
2X less total execution time when comparing Aho-Corasick with
HYBRID. That result supports the claim that embedded accelerators
such as the Mali GPU can effectively offload pattern matching for
Network Intrusion Detection applications, regardless of the family
of algorithms used. Particularly, we notice that the execution cost of
the pattern matching part alone (light blue bars) is greatly reduced
on the GPU by up to 7X, suggesting that pattern matching kernels
make great use of the high degree of parallelism offered by the
GPU. However, notice that the extra costs of data transfers and
post-processing of the results are significant and offset, to some
extent, the total benefit of offloading pattern matching on the GPU.

Configurations Results Improvement
MAP THR MEM VEC WG WRITE (ms) READ (ms) KERNEL (ms) TOTAL (ms) ENERGY (J) EXE ENE
NO 1 GLOB NO 128 431 4870 2596 11170 2867 1 1
YES 1 GLOB NO 128 198 945 2661 6787 1806 1.65 1.59
YES 8 GLOB NO 128 195 678 1829 4118 991 2.71 2.89
YES 16 GLOB NO 128 195 654 1599 3790 923 2.95 3.11
YES 24 GLOB NO 128 196 653 1488 3670 875 3.04 3.28
YES 32 GLOB NO 128 194 644 1427 3451 854 3.24 3.36
YES 40 GLOB NO 128 196 648 1406 3440 845 3.25 3.39
YES 48 GLOB NO 128 196 647 1412 3464 845 3.22 3.39
YES 40 LOC NO 128 194 643 6267 8411 2238 1.33 1.28
YES 40 TEX NO 128 197 646 1777 3897 996 2.87 2.88
YES 40 GLOB YES 128 191 637 2065 4172 1095 2.68 2.62
YES 40 GLOB NO 64 196 645 1674 3784 905 2.95 3.17
YES 40 GLOB NO 256 196 645 1435 3501 870 3.19 3.29

Table 3: Summarized configuration impact for GPU version of DFC, similar to the evaluation methodology followed in [4].

AC
(CPU)

DFC
(CPU)

PFAC
(GPU)

DFC
(GPU)

DFC Vect
(GPU)

HYBRID
(GPU)

HYBRID
Vect (GPU)

Versions

0

1000

2000

3000

Ex
ec

ut
io

n
tim

e
(m

s)

Read from file
Write to device
Pattern matching execution

Read from device
Post-procesing

Figure 5: Execution time (broken down to its different com-
ponents) of the different versions.

Even though data copies are avoided, the overhead of mapping/un-
mapping the memory region every time the buffer is full is still
significant in this application. As such, a new design that would
minimize this effect further, e.g., by overlapping the CPU and the
GPU execution, would be interesting to explore.

We now focus on the GPU versions and compare them with each
other.

PFAC vs DFC (GPU): Comparing PFAC with DFC (GPU), we
find the pattern matching part of PFAC is 1.62x faster than DFC
(Figure 5). This is likely due to two reasons. First, the cost of verifi-
cation in DFC is high, because it includes accesses to hash tables
containing the patterns as well as exact matching. Second, DFC was
originally designed to have an increased instruction count com-
pared to Aho-Corasick (more instructions needed to access filters
and hash tables) but a better cache utilization. In GPUs, the benefit
from high cache utilization is not as important as in CPUs, due to
the large number of threads spawned and the device’s ability to
switch between threads quickly and hide the high memory latency
incurred when there is a cache-miss. As a result, the benefits of
cache utilization are offset from the cost of the extra instructions
and the costly verification phase.

Interestingly, the vectorized version of DFC (DFC Vect (GPU))
fails to bring any speedup in the GPU. As already mentioned in Sec-
tion 5.2, vectorizing the kernel for each GPU thread is not efficient
for this workload, due to the lack of gather operations.

AC
(CPU)

DFC
(CPU)

PFAC
(GPU)

DFC
(GPU)

DFC Vect
(GPU)

HYBRID
(GPU)

HYBRID
Vect (GPU)

Versions

0

200

400

600

800

1000

En
er

gy
 (J

ou
le

)

CPU energy GPU energy

Figure 6: The CPU and GPU energy consumed by the differ-
ent versions.

The HYBRID approach: Among the GPU versions, HYBRID
manages to execute the patternmatching part faster than both PFAC
andDFC (1.3X faster than PFAC and 2.2X faster thanDFC). Contrary
to DFC, HYBRID avoids the costly verification by switching to PFAC
when there is a hit in the filters, while still keeping the benefits
of using filters to quickly filter out parts of the input that cannot
contain a match. As in DFC though, the vectorized version (HYBRID
Vect (GPU)) does not bring a speedup.

Energy Comparison: Finally, in Figure 6 we report the total
consumed energy for the same experiment, across the different
versions. Overall, we see that the reduction in execution time from
the previous figure translates, in almost all cases, directly to re-
duction in consumed energy, with the best GPU version (HYBRID)
consuming 2X less energy than Aho-Corasick. In this figure we
also show separately the energy consumed by the CPU (A15) and
the GPU. Notice that the GPU versions still consume significant
CPU energy, mostly due to post-processing and idly waiting for the
GPU execution to finish.

5.4 Varying the Data Sets and the Number of
Patterns

In this section, we evaluate the behavior of the different algorithms
across different data sets and number of patterns. Insights about this
behavior are important when considering real packet processing
deployments where the characteristics of the incoming traffic might
change or new malicious patterns might be added in the database.

 DARPA ISCX BigFlows Random
Data sets

0
500

1000
1500
2000
2500
3000
3500

Ex
ec

ut
io

n
tim

e
(m

s)

AC (CPU)
DFC (CPU)

PFAC (GPU)
DFC (GPU)

HYBRID (GPU)

(a) 2183 patterns

 DARPA ISCX BigFlows Random
Data sets

0
1000
2000
3000
4000
5000
6000
7000
8000

Ex
ec

ut
io

n
tim

e
(m

s)

(b) 5000 patterns

Figure 7: Execution time across different data sets when us-
ing a) the default set of 2183 patterns and b) 5000 randomly
chosen patterns.

Varying the data sets: Figure 7a shows the overall cost (in-
cluding reading from file, data transfers etc.) for different real and
synthetic data sets, when using the default set of patterns. Here,
we have omitted the vectorized versions since they do not bring a
significant change in performance. In all cases, the GPU versions
outperform the CPU, with HYBRID having the smallest total execu-
tion time in almost all cases.

An interesting observation is that, when using randomly gen-
erated data, the CPU version of DFC performs significantly better
than with real traffic. This is because randomly generated charac-
ters are very unlikely to cause hits in the filters, reducing the need
for verification and most of the memory accesses are now served
by the CPU cache [10]. This stresses the need to use realistic data
sets when comparing algorithms in a benchmark.

Increasing the number of patterns: In Figure 7b, we increase
the number of malicious patterns to 5,000. Overall, we see that the
execution time of all versions increases (notice the different range
on the y-axis between Figures 7a and 7b). Aho-Corasick nearly
doubles in execution time, mostly due to the fact that the state
machine grows and does not fit the CPU cache.

Interestingly, GPU versions that also use a state machine, i.e.,
PFAC and HYBRID, do not get affected to such a great extent. This
is, again, due to the fact that GPU cache misses are not detrimental
if the GPU is able to hide the latency of accessing the main memory,
by switching between many active threads. We also notice that both
DFC versions increase significantly in execution time, likely due
to the exact matching part of the verification step of DFC, which
is costly and happens more often when the number of patterns
increases.

5.5 Deciding a Filter Size for HYBRID
In this section, we take a closer look at the HYBRID approach and
specifically at the effect of the filter size on the performance of the

0.5 1 2 4 8 16 32 64
Filter size (KB)

250
300
350
400
450
500
550
600
650
700

Ex
ec

ut
io

n
tim

e
(m

s)

Total execution cost
Filtering cost

5

10

15

20

25

Hi
t r

at
io

 (%
)

Hit ratio

Figure 8: Cost of filtering and total GPU execution time of
the HYBRID approach (left y-axis), as well as the effective-
ness of the filtering (hit ratio, right y-axis), as we increase
the filter size.

algorithm. Intuitively, a larger filter will be more sparsely populated,
meaning that we expect fewer hits (therefore fewer times that we
need to resort to the state machine of PFAC) when filtering the
input. On the other hand, a small filter can fit in the GPU cache
(16KB per shader core), making it easier to access.

In the following experiment, we use the first three characters
from each pattern to populate the filter, after hashing them with
a simple multiplicative hash function. We vary the effective size
of the filter by masking the hash value appropriately, effectively
bounding the size of the filter. In Figure 8 we report: (i) the cost
of only accessing the filter (green line, left y-axis) (ii) the hit ratio
of the filter, i.e., the number of hits in the filter compared to the
total number of input characters (red line, right y-axis) and (iii) the
total cost of the HYBRID execution on the GPU, i.e., the cost of both
filtering and traversing the state machine of PFAC when there is a
hit in the filter (blue line, left y-axis).

As expected, the hit ratio decreases as the filter becomes larger,
ranging from 25% hit rate for a half-KB filter to 5% hit rate for a
64KB filter. The cost of accessing the filter remains small while
the filter is smaller than the size of the cache (16KB) and increases
rapidly afterwards. The best performing configuration is when the
size is much less than the size of the cache, because we still need to
save space for the state machine for when there is a match.

5.6 Summary of the Results
In this section, we presented the results of our benchmark where
multiple pattern matching algorithms are brought to the test on
a medium/high range IoT device with an embedded GPU. Experi-
ments using real data sets and patterns showed that: (i) the GPU
is a viable alternative for pattern matching on these devices, both
in terms of execution time and energy consumption and (ii) there
were significant differences in performance between the GPU based
algorithms, uncovering the strength and weaknesses of each ap-
proach. Stemming from this analysis, it was possible to identify
new meaningful combinations (HYBRID) that combine techniques
from existing work and outperform them. The co-evaluation of
CPU and GPU algorithms also uncovered how different algorithms
utilize the hardware’s resources differently: in the CPU, having
good cache locality proved important, whereas it mattered less in
the GPU. Finally, using both synthetic and real data sets showed

that most pattern matching algorithms are highly data-dependent,
raising interesting future directions about the feasibility to adapt
to the distribution of the data.

6 RELATEDWORK
Pattern matching has been an active field of research for decades
and the literature offers numerous algorithms for a variety of dif-
ferent settings. On single string pattern matching, Boyer-Moore [9]
and Knuth-Morris-Pratt [18] are two well-known algorithms that
skip over parts of the input and perform pattern matching in sub-
linear time. However, such algorithms do not work well in the
context of pattern matching for intrusion detection where there are
many patterns to search for simultaneously. An important multiple
string matching algorithm, other than the Aho-Corasick [1] we
already summarised in Section 3, is the Wu-Manber [43] algorithm
that keeps a table to store information on how many bytes we
can skip from the input. Hyperscan [41] is an open source regular-
expression library that also includes many optimizations for fixed
string pattern matching. However, these optimizations are built
around Intel’s high-end vector instruction set extensions and are
not available in the ARM-based platform we use in this work.

Apart from the pattern matching algorithms included in this
work (and summarized in Section 3), there are others that target
GPU platforms. FFBF [26] is a filter based approach by Moraru and
Andersen that uses Bloom filters to find a subset of the input and the
patterns that should be matched together. However, FFBF imposes
restrictions on the pattern size and requires long patterns in order
to work effectively. On the contrary, the approaches we consider
are flexible with respect to the number of patterns. Kouzinopoulos
et al. [19] also experiment with pattern matching algorithms on
GPUs, using the CUDA framework. In [8], Bellekens et al. present a
compressed Aho-Corasick algorithm that improves the bandwidth
of data transfers on both NIDS and DNA sequencing workloads.
All of the above-mentioned work targets high-end, desktop GPUs.
In this work, we focus on embedded GPUs that have a significantly
different architecture, as described in Section 4.

On the topic of embedded GPUs, as already mentioned, Aragon
et al. [4] implement PFAC in OpenCL and report its performance
on two embedded GPUs that have almost the same architecture
as the one used in this paper. In [22], Maghazeh et al. benchmark
various GPGPU applications on an embedded GPU, concluding that
the high energy efficiency of such devices makes them a promising
choice for a wide range of workloads such as genetic algorithms
and vector similarity (referred to as pattern matching in their work).
In [14], Grasso et al. present optimizations techniques for the Mali
GPU that allow them to gain significant speedups (both in terms of
execution time, as well as energy) for various benchmarks.

Even though this work focuses on the pattern matching algo-
rithms themselves, it is important to mention work that considers
the role of GPUs in the NIDS as a whole. Vasiliadis et al. [38] use
Aho-Corasick to build a GPU based NIDS. In [39], they also in-
tegrate more network processing workloads into a general GPU
framework, including flow state management and TCP stream re-
construction. Go et al. [13] experiment with integrated GPUs and
show that they provide an appealing alternative for packet process-
ing workloads, including pattern matching. There is also work that

considers both the CPU and the GPU and how they can coordinate
to better serve the needs of the NIDS. Kim et al. [17] propose NBA, a
framework that abstracts the GPU offloading from the programmer
and includes load balancing and batching. Their NIDS implementa-
tion is also based on Aho-Corasick. Vasiliadis et al. [40] present a
system based on Snort that uses all CPU threads and multiple GPU
devices. Jamshed et al. [15] present Kargus, a similar parallel design
that is based on their own custom NIDS. Papadogiannaki et al. [30]
extend the existing work in the field with a scheduler that decides
the placement of the different computing tasks of the NIDS, across
a heterogeneous platform.

7 CONCLUSION
In this paper, we introduce a fair and thorough co-evaluation of
pattern matching algorithms for network intrusion detection on
embedded devices with GPUs with the aim to methodologically
investigate the algorithm behavior in conjunction with the archi-
tectural features available on medium to high-level devices used in
deployments for the Internet of Things. We present results from
existing approaches, in-house implementations of state of the art
algorithms, as well as a new algorithm, HYBRID, that combines the
benefits from existing designs.

We conclude that GPUs on embedded devices are an attractive al-
ternative to CPUs when it comes to pattern matching for intrusion
detection, since the GPU-based algorithms in our benchmarks man-
aged to reduce the overall execution time and energy consumption
of pattern matching workloads by up to 2 times. We investigate how
algorithm engineering approaches that are based on the platform’s
architectural features, e.g., shared GPU and CPUmemory, affect the
performance of various algorithms. Finally, we show that HYBRID
is a good fit for the GPU, achieving up to 1.4x speedup compared to
the best GPU-based baseline. This investigation provides a baseline
for the community to further develop algorithms and make stan-
dard security tool deployable in IoT devices. Implementations used
in the benchmark are available online2.

ACKNOWLEDGEMENTS
The research leading to these results has been partially supported
by the Swedish Civil Contingencies Agency (MSB) through the
projects RICS and RIOT, by the Swedish Foundation for Strategic
Research (SSF) through the framework project FiC, by the Swedish
Research Council (VR) through the project ChaosNet and the project
AgreeOnIT, the Vinnova-funded project “KIDSAM”, and from the
European Community’s Horizon 2020 Framework Programme un-
der grant agreement 773717.

REFERENCES
[1] Alfred V. Aho and Margaret J. Corasick. 1975. Efficient String Matching: An

Aid to Bibliographic Search. Commun. ACM 18, 6 (June 1975), 333–340. http:
//doi.acm.org/10.1145/360825.360855

[2] Spyros Antonatos, Kostas G. Anagnostakis, and Evangelos P. Markatos. 2004. Gen-
erating Realistic Workloads for Network Intrusion Detection Systems. SIGSOFT
Softw. Eng. Notes 29 (2004), 9.

[3] Appneta. [n. d.]. Sample Captures. http://tcpreplay.appneta.com/wiki/
captures.html/ [Accessed: 2018-09-18].

[4] Elena Aragon, Juan M. Jiménez, Arian Maghazeh, Jim Rasmusson, and Unmesh D.
Bordoloi. 2014. Pattern Matching in OpenCL: GPU vs CPU Energy Consumption

2https://bitbucket.org/mpastyl/acsac_pattern_matching_benchmark_opencl/src/
master/

http://doi.acm.org/10.1145/360825.360855
http://doi.acm.org/10.1145/360825.360855
http://tcpreplay.appneta.com/wiki/captures.html/
http://tcpreplay.appneta.com/wiki/captures.html/
https://bitbucket.org/mpastyl/acsac_pattern_matching_benchmark_opencl/src/master/
https://bitbucket.org/mpastyl/acsac_pattern_matching_benchmark_opencl/src/master/

on Two Mobile Chipsets. In Proceedings of the International Workshop on OpenCL
2013 & 2014 (IWOCL ’14). ACM, New York, NY, USA, Article 5, 7 pages.
http://doi.acm.org/10.1145/2664666.2664671

[5] ARM. [n. d.]. ARM Mali-T628 product page. https://www.arm.com/products/
multimedia/mali-cost-efficient-graphics/mali-t628.php. Accessed: 2018-03-14.

[6] Arm. [n. d.]. ODROID-XU3. https://developer.arm.com/graphics/development-
platforms/odroid-xu3. Accessed: 2018-05-25.

[7] ARM. 2018. ARM Mali GPU OpenCL, Version 3.0, Developer Guide.
https://static.docs.arm.com/100614/0300/arm_mali_gpu_opencl_developer_
guide_100614_0300_00_en.pdf. Accessed: 2018-03-14.

[8] Xavier JA Bellekens, Christos Tachtatzis, Robert C Atkinson, Craig Renfrew, and
Tony Kirkham. 2014. A highly-efficient memory-compression scheme for GPU-
accelerated intrusion detection systems. In Proceedings of the 7th International
Conference on Security of Information and Networks. ACM, 302.

[9] Robert S. Boyer and J. Strother Moore. 1977. A Fast String Searching Algo-
rithm. Commun. ACM 20, 10 (Oct. 1977), 762–772. http://doi.acm.org/10.1145/
359842.359859

[10] Byungkwon Choi, Jongwook Chae, Muhammad Jamshed, KyoungSoo Park, and
Dongsu Han. 2016. DFC: Accelerating String Pattern Matching for Network
Applications. In 13th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 16). USENIX Association, Santa Clara, CA, 551–565.

[11] Cisco. 2015. Fog Computing and the Internet of Things: Extend the Cloud
to Where the Things Are. White Paper https://www.cisco.com/c/dam/en_us/
solutions/trends/iot/docs/computing-overview.pdf. Accessed: 2018-05-07.

[12] Canadian Institute for Cybersecurity. 2012. UNB ISCX Intrusion Detection Evalu-
ation DataSet. http://www.unb.ca/research/iscx/dataset/iscx-IDS-dataset.html.
Accessed: 2016-12-10.

[13] Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon, Changho
Hwang, and KyoungSoo Park. 2017. APUNet: Revitalizing GPU as Packet Pro-
cessing Accelerator. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA, 83–96. https:
//www.usenix.org/conference/nsdi17/technical-sessions/presentation/go

[14] I. Grasso, P. Radojkovic, N. Rajovic, I. Gelado, and A. Ramirez. 2014. Energy
Efficient HPC on Embedded SoCs: Optimization Techniques for Mali GPU. In 2014
IEEE 28th International Parallel and Distributed Processing Symposium. 123–132.

[15] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, Deokjin
Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park. 2012. Kargus: A Highly-
scalable Software-based Intrusion Detection System. In Proceedings of the 2012
ACM Conference on Computer and Communications Security (CCS ’12). ACM, New
York, NY, USA, 317–328.

[16] Khronos Group. [n. d.]. OpenCL Overview. https://www.khronos.org/opencl/.
Accessed: 2018-03-11.

[17] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Junhyun Shim, and Sue
Moon. 2015. NBA (Network Balancing Act): A High-performance Packet Pro-
cessing Framework for Heterogeneous Processors. In Proceedings of the Tenth
European Conference on Computer Systems (EuroSys ’15). ACM, New York, NY,
USA, Article 22, 14 pages. http://doi.acm.org/10.1145/2741948.2741969

[18] D. Knuth, J. Morris, Jr., and V. Pratt. 1977. Fast Pattern Matching in Strings.
SIAM J. Comput. 6, 2 (1977), 323–350. arXiv:https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024

[19] Charalampos S Kouzinopoulos and Konstantinos G Margaritis. 2009. String
matching on amulticore GPU using CUDA. In Informatics, PCI’09. 13th Panhellenic
Con. on. IEEE.

[20] Lincoln Laboratory. 2000. DARPA Intrusion Detection Data Sets.
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-
scenario-specific-data-sets. Accessed: 2018-09-20.

[21] C. H. Lin, C. H. Liu, L. S. Chien, and S. C. Chang. 2013. Accelerating Pattern
Matching Using a Novel Parallel Algorithm on GPUs. IEEE Trans. Comput. 62, 10
(Oct 2013), 1906–1916.

[22] A. Maghazeh, U. D. Bordoloi, P. Eles, and Z. Peng. 2013. General purpose com-
puting on low-power embedded GPUs: Has it come of age?. In 2013 International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simula-
tion (SAMOS). 1–10.

[23] MatthewVMahoney and Philip KChan. 2003. An analysis of the 1999DARPA/Lin-
coln Laboratory evaluation data for network anomaly detection. In Int. Workshop
on Recent Advances in Intrusion Detection. Springer.

[24] John McHugh. 2000. Testing intrusion detection systems: a critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed by lincoln
laboratory. ACM Tran. on Information and System Security (TISSEC) 3, 4 (2000),
262–294.

[25] MichaelS. 2015. Gather Scatter Operations. http://insidehpc.com/2015/05/gather-
scatter-operations/. Accessed: 2016-12-10.

[26] Iulian Moraru and David G. Andersen. 2012. Exact Pattern Matching with Feed-
forward Bloom Filters. J. Exp. Algorithmics 17, Article 3.4 (Sept. 2012), 1.08 pages.
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/2133803.2330085

[27] Marc Norton. 2004. White paper: Optimizing pattern matching for intrusion
detection. Technical Report. Snort.

[28] Nvidia. [n. d.]. About CUDA. https://developer.nvidia.com/about-cuda. Ac-
cessed: 2018-03-11.

[29] NVIDIA. [n. d.]. Jetson Nano Brings AI Computing to Everyone. https:
//devblogs.nvidia.com/jetson-nano-ai-computing/. Accessed: 2019-04-17.

[30] E. Papadogiannaki, L. Koromilas, G. Vasiliadis, and S. Ioannidis. 2017. Efficient
Software Packet Processing on Heterogeneous and Asymmetric Hardware Ar-
chitectures. IEEE/ACM Transactions on Networking 25, 3 (June 2017), 1593–1606.

[31] David E. Sanger and Nicole Perlroth. 2016. A New Era of Internet Attacks
Powered by Everyday Devices.
https://nytimes.com/2016/10/23/us/politics/a-new-era-of-internet-attacks-
powered-by-everyday-devices.html. Accessed: 2018-03-04.

[32] Alessandro Sforzin, Félix Gómez Mármol, Mauro Conti, and Jens-Matthias Bohli.
2016. RPiDS: Raspberry Pi IDS - A Fruitful Intrusion Detection System for IoT.
In UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld, Toulouse, France, July 18-21, 2016.
440–448.

[33] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. 2012. Toward
developing a systematic approach to generate benchmark datasets for intrusion
detection. Computers & Security 31, 3 (2012).

[34] Snort. [n. d.]. Snort++. https://github.com/snort3/snort3. Accessed: 2018-12-21.
[35] Snort [n. d.]. Snort Network Intrusion Detection and Prevention System. https:

//www.snort.org. Accessed: 2018-09-21.
[36] Ioannis Sourdis and Dionisios Pnevmatikatos. 2003. Fast, Large-Scale String

Match for a 10Gbps FPGA-Based Network Intrusion Detection System. In Field
Programmable Logic and Application, Peter Y. K. Cheung and George A. Constan-
tinides (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 880–889.

[37] C. Stylianopoulos, M. Almgren, O. Landsiedel, and M. Papatriantafilou. 2017.
Multiple Pattern Matching for Network Security Applications: Acceleration
through Vectorization. In 2017 46th International Conference on Parallel Processing
(ICPP). 472–482.

[38] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P.
Markatos, and Sotiris Ioannidis. 2008. Gnort: High Performance Network In-
trusion Detection Using Graphics Processors. In Recent Advances in Intrusion
Detection, Richard Lippmann, Engin Kirda, and Ari Trachtenberg (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 116–134.

[39] Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, and Sotiris Ioanni-
dis. 2014. GASPP: A GPU-Accelerated Stateful Packet Processing Framework. In
2014 USENIX Annual Technical Conference (USENIX ATC 14). USENIX Association,
Philadelphia, PA, 321–332. https://www.usenix.org/conference/atc14/technical-
sessions/presentation/vasiliadis

[40] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. 2011. MIDeA:
A Multi-parallel Intrusion Detection Architecture. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS ’11). ACM, New York,
NY, USA, 12.

[41] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu
Hu, and Heqing Zhu. 2019. Hyperscan: A Fast Multi-pattern Regex Matcher for
Modern CPUs. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19). USENIX Association, Boston, MA, 631–648. https:
//www.usenix.org/conference/nsdi19/presentation/wang-xiang

[42] Wang Wei. 2018. Casino Gets Hacked Through Its Internet-Connected
Fish Tank Thermometer. https://thehackernews.com/2018/04/iot-hacking-
thermometer.html. Accessed: 2019-01-16.

[43] Sun Wu and Udi Manber. 1994. A fast algorithm for multi-pattern searching.
Technical Report TR-94-17. University of Arizona. Department of Computer
Science.

http://doi.acm.org/10.1145/2664666.2664671
https://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-t628.php
https://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-t628.php
https://developer.arm.com/graphics/development-platforms/odroid-xu3
https://developer.arm.com/graphics/development-platforms/odroid-xu3
https://static.docs.arm.com/100614/0300/arm_mali_gpu_opencl_developer_guide_100614_0300_00_en.pdf
https://static.docs.arm.com/100614/0300/arm_mali_gpu_opencl_developer_guide_100614_0300_00_en.pdf
http://doi.acm.org/10.1145/359842.359859
http://doi.acm.org/10.1145/359842.359859
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
http://www.unb.ca/research/iscx/dataset/iscx-IDS-dataset.html
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/go
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/go
https://www.khronos.org/opencl/
http://doi.acm.org/10.1145/2741948.2741969
http://arxiv.org/abs/https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-data-sets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-data-sets
http://insidehpc.com/2015/05/gather-scatter-operations/
http://insidehpc.com/2015/05/gather-scatter-operations/
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/2133803.2330085
https://developer.nvidia.com/about-cuda
https://devblogs.nvidia.com/jetson-nano-ai-computing/
https://devblogs.nvidia.com/jetson-nano-ai-computing/
https://nytimes.com/2016/10/23/us/politics/a-new-era-of-internet-attacks-powered-by-everyday-devices.html
https://nytimes.com/2016/10/23/us/politics/a-new-era-of-internet-attacks-powered-by-everyday-devices.html
https://github.com/snort3/snort3
https://www.snort.org
https://www.snort.org
https://www.usenix.org/conference/atc14/technical-sessions/presentation/vasiliadis
https://www.usenix.org/conference/atc14/technical-sessions/presentation/vasiliadis
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://thehackernews.com/2018/04/iot-hacking-thermometer.html
https://thehackernews.com/2018/04/iot-hacking-thermometer.html

	Abstract
	1 Introduction
	2 Benchmarking Aim and Considerations
	3 Considered Algorithms & Novel Designs
	3.1 State Machine Based Algorithms: Aho-Corasick and PFAC
	3.2 Filter Based Algorithms: DFC and V-Patch
	3.3 A Hybrid Approach

	4 Hardware-oriented algorithm optimizations
	4.1 Overview of the Target Platform
	4.2 Relevant Algorithm Optimizations

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 Deciding Parameters for DFC
	5.3 Overall Comparison
	5.4 Varying the Data Sets and the Number of Patterns
	5.5 Deciding a Filter Size for HYBRID
	5.6 Summary of the Results

	6 Related work
	7 Conclusion
	References

