
A Game of “Cut and Mouse”: Bypassing
Antivirus by Simulating User Inputs

Ziya Alper Genç

University of Luxembourg

ziya.genc@uni.lu

Gabriele Lenzini

University of Luxembourg

gabriele.lenzini@uni.lu

Daniele Sgandurra

Royal Holloway, University of London

daniele.sgandurra@rhul.ac.uk

ABSTRACT
To protect their digital assets from malware attacks, most users

and companies rely on anti-virus (AV) software. But AVs’ protec-

tion is a full-time task and AVs are engaged in a cat-and-mouse
game where malware, e.g., through obfuscation and polymorphism,

denial of service attacks and malformed packets and parameters,

try to circumvent AV defences or make them crash. On the other

hand, AVs react by complementing signature-based with anomaly

or behavioral detection, and by using OS protection, standard code,

and binary protection techniques. Further, malware counter-act,

for instance by using adversarial inputs to avoid detection, et cetera.
This paper investigates two novel moves for the malware side.

The first one consists in simulating mouse events to control AVs,

namely to send them mouse “clicks” to deactivate their protection.

We prove that many AVs can be disabled in this way, and we call

this class of attacks Ghost Control. The second one consists in con-

trolling high-integrity white-listed applications, such as Notepad,
by sending them keyboard events (such as “copy-and-paste”) to

perform malicious operations on behalf of the malware. We prove

that the anti-ransomware protection feature of some AVs can be

bypassed if we use Notepad as a "puppet" to rewrite the content of

protected files as a ransomware would do. Playing with the words,

and recalling the cat-and-mouse game, we call this class of attacks

Cut-and-Mouse.

CCS CONCEPTS
• Security and privacy→ Malware and its mitigation.

KEYWORDS
Antivirus, Ransomware, Evasion, Vulnerability, Simulated Inputs

ACM Reference Format:
Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra. 2019. A Game of

“Cut and Mouse”: Bypassing Antivirus by Simulating User Inputs. In 2019
Annual Computer Security Applications Conference (ACSAC ’19), December
9–13, 2019, San Juan, PR, USA. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3359789.3359844

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7628-0/19/12. . . $15.00

https://doi.org/10.1145/3359789.3359844

1 INTRODUCTION
To protect IT assets, distinct classes of basic security practices are

often provided to the end users depending on their usage scenario.

For instance, home users are instructed to always update their

operating system (OS) and applications; corporate administrators

are required to employ some form of user training to teach users,

e.g., how not to click on e-mails that look suspicious; organizations

are recommended to use firewalls to protect their networks from

remote attackers. However, it is often the case that the first security

recommendation given to all classes of users is to install an anti-

virus (AV) on their devices. In fact, AVs are believed to be one of

the best protection solutions, specifically against malware; AVs are

installed in most user computers and companies, and are implicitly

trusted by most users, and are part of the trusted computing base
1
.

It goes without saying that, while AVs do offer protection, they

cannot catch all malware. Not only there might be missing signa-

tures in their database [2], by over the years malware authors have

spent great effort in trying to evade AVs detection, e.g., through
obfuscation and polymorphism [35] or evasion [4], or by disabling

or crashing the AV [17, 33]. This is the classical cat-and-mouse game

between AVs and malware, in which the first class of attacks (e.g.,
polymorphism) is typically mitigated by some form of anomaly or

behavioral detection [8, 34, 34] while the second one (e.g., evasion)
is mitigated by making the AV more difficult to exploit, such as

through OS protection and standard binary integrity protection

techniques [1]. The battle continues on, as now malware can try

and bypass AV behavioral detection using, for instance, adversarial

inputs [7], and AVs will incorporate robust mechanisms to mitigate

the effects of these inputs [10, 14].

In relation to this cat-and-mouse game, we raise two questions.

(a) Can an attacker instrument a malware to send mouse and key-
board events to AVs to deactivate their functionalities? In particular,

we wonder whether off-the-shelf AVs can be disabled by a malicious

program’s mimicking user inputs (through synthesized keyboard

and mouse events) to turn off, or temporarily freeze, their opera-

tions, especially those aimed at protecting from malware attacks.

In theory, we would expect that, to protect from spoofed inputs,

AVs enforce some forms of integrity and authentication checks on

inter-process communications and user access control to verify the

legitimacy of the received inputs. Instead, in our experiments, we

found that most of the AVs can be easily disabled by a malware sim-

ulating mouse clicks, in particular, AVs are stoppable by spoofing

requests to their main graphical interface. (b) Can we extend this
class of attacks to control a trusted application like a “puppet” and
instruct it to perform malicious operations on behalf of a malware
itself ? To this end, we tested whether a ransomware can circumvent

1
Most AVs require kernel-level privileges to perform some of their operations.

https://www.acsac.org/2019/
https://doi.org/10.1145/3359789.3359844
https://doi.org/10.1145/3359789.3359844
https://doi.org/10.1145/3359789.3359844

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra

the Protected Folders feature of AVs by exploiting and controlling

Notepad, a trusted application, to bypass the restrictions in place

and encrypt files in the Protected Folders.

These two research questions are linked to a more fundamental

issue about human-to-process event authentication. In question (a), in
fact, the matter is whether AVs do authenticate inputs (supposedly

coming from hardware operated by a user) as really coming from

the user’s operating the hardware. In question (b), the matter is

less direct and concerns recognizing inputs as authentically coming

from the user events that are generated by a user application. Since

applications may have security clearance, source authentication

becomes necessary to recognize events that instead are generated

by a malicious software, not the user, controlling the application.

Both are hard problems and the vulnerabilities that we illustrate in

this paper show how critical are the attacks that root to a failure in

this authentication process.

Problem Statement: This paper claims that the following prob-

lems exist in current malware mitigation:

(P-i) Several AV programs contain a critical flaw that allows unau-

thorized agents to turn off their protection features. In detail,

the real-time scanning service of some AVs can be disabled

by malware. This will make victims exposed to several kinds

of cyber threats, especially those originated from malware.

(P-ii) The Protected Folders solution provided by AV vendors suffers

from design weaknesses. In fact, a small set of whitelisted ap-

plications is granted privileges to write to protected folders.

However, whitelisted applications are not protected from

being misused by other applications. This trust is therefore

unjustified, since a malware can perform operations on pro-

tected folders by using whitelisted applications as interme-

diaries. In particular, ransomware might be able to exploit

some of the whitelisted applications to change the contents

of files, thus to encrypt user data.

In this paper we discuss two classes of attacks that prove these

problems currently exist, the first one being Ghost Control, aimed

at crafting stealthy mouse events to disable AVs (P-i), while the
second one is Cut-and-Mouse, aimed at simulating keyboard events

to control trusted applications (P-ii).

1.1 Ethical Issues and Responsible Disclosure
This research may have ethical concerns of dual use. We there-

fore adhere to an ethical code of conduct and responsible disclo-

sure [19, 23]. We do not disclose the names of the AV companies,

nor publicly share any piece of software that can be used to exploit

the vulnerabilities reported in this paper. We have dutifully engaged

with the affected AV companies to inform them about our findings

by following responsible disclosure practices.

2 BACKGROUND
In this section, we recap the essential background information to

understand our attacks. We begin with explaining the ransomware

mitigation in current antivirus solutions. Next, we summarize exist-

ing measures provided by Windows OS to protect processes from

unauthorized modifications.

2.1 Ransomware Defense in AVs
In response to the rise of ransomware threat, AV vendors have

developed dedicated ransomware detection modules that are either

integrated into their products or as standalone tools. While internal

mechanisms of AVs are not publicly documented, the available

options in most of AV configuration interfaces suggest that these

anti-ransomware components are primarily based on whitelists.

Similar to the virus signature databases, these lists are maintained

by AV vendors by default, though, users can also add additional

applications that they trust.

The vendor of Windows OS, Microsoft, has also developed a

specific anti-ransomware solution, called Controlled Folder Access,
which has been included in Windows 10 Fall Creators Update (Ver-

sion 1709) and Windows Server 2019. Ransomware Protection, in-

tegrated into Windows Defender antivirus, controls which appli-

cations have access to protected folders, a list of directories that

includes system folders and default directories such as Documents
and Pictures. Users can also add further directories to the pro-

tected folder list in order to extend the coverage of protection. By

default, the decision of granting applications access to protected

folder is made by Windows, hence Microsoft, but users can also

allow specific applications to access the protected folders.

In this paper, we use the term trusted applications when referring

to the applications that has write access to protected folders, either

granted by AV vendor or added by the user.

2.2 Process Protection via Integrity Levels
Computer architecture we use today is designed to run multiple

processes concurrently, that is, all running processes share the same

execution environment. To protect processes from malicious alter-

ations by other processes, Windows OS employs access control

mechanisms. Mandatory Integrity Control (MIC) is one of these

security features, which enables the OS to assign an Integrity Level

(IL) to a process: this value indicates the privilege level of that

process. MIC defines four values for IL, with the increasing privi-

leges: Low, Medium, High, and System. When a process attempts to

interact with another process, MIC checks IL of the initiator and

prevents if the target has higher IL. For example, injecting code to

another process using CreateRemoteThread or write data to the

memory of another process via WriteProcessMemory will fail if

the caller does not possess at least the same IL as the target.

Closely related to MIC, User Interface Privilege Isolation (UIPI)

is another security feature of Windows, which complements MIC

to prevent unauthorized process interactions. UIPI also utilizes ILs

and blocks window messages flowing from a process with lower

IL. For example, calls to SendMessage Application Programming

Interface (API) would fail if the caller has a lower IL than the target.

Specifically, UIPI prevents the Shatter attack that we review in §8.

3 THREAT MODEL
In the description of our attacks, we assume the system is protected

using the latest generation of AVs with specific modules against

ransomware, and with built-in anti-ransomware feature of the OS.

We assume the attacker is able to get access to a Windows system

with user privilege levels by either tricking the user into clicking

on a file (e.g., attached or linked in an email) or by exploiting a

A Game of “Cut and Mouse”: Bypassing Antivirus by Simulating User Inputs ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

vulnerability in the victim’s system. Once the attacker has estab-

lished a foothold into the system, it will typically drop/download a

malware to perform malicious operations, however, the malware

will be blocked by an AV, or in the case of ransomware, encryption

of files in protected folders will be blocked by anti-ransomware

protected folder feature offered by Windows or some AVs. Hence-

forth, the focus of this paper is on how attackers can bypass AVs

and anti-ransomware protection modules, and in providing prac-

tical mitigation solutions, rather than in the problem of detecting

and protecting the system from remote attacks. This threat model

is sometimes referred as a 2nd stage attack, meaning an attacker

would need to have remote access to a victim’s computer, or have

installed a malicious application using one of the two previously

outlined alternatives (or through other means).

In this threat model, we will perform two attacks, which are

described in the next two sections: the first attack (Cut-and-Mouse)
is aimed at bypassing the protected folder feature to encrypt files

in protected folder, while the second one (Ghost Control) is aimed

at disabling AVs’ real time protection.

4 ENCRYPTING PROTECTED FOLDERS
In this section, we describe our attack, Cut-and-Mouse, which al-

lows ransomware to evade detection by anti-ransomware solutions,

which are based on protected folders, and to encrypt the victim’s

files. First, we investigate the root causes that leads to this attack.

Next, we give the attack details, and finally propose a practical

solution.

4.1 Disharmony Between UIPI and AVs
As explained in §2, anti-ransomware modules of commercial AV

software grant write access to trusted applications only. To ensure

this defense strategy cannot be easily bypassed, the trusted applica-

tions should be protected from any malicious modifications which

would be seen in a typical malware attack. For instance, as we report

the details in §6, current AVs detect when a malicious Dynamic-

Link Library (DLL) module is injected into a trusted application,

and suspend or kill its process. Similarly, UIPI, another protection

described in §2, protects processes that run with administrative

privileges from malware.

Nonetheless, we have discovered two entry points for an attack

which enables malware to bypass these defense systems, namely:

(E-i) UIPI is Unaware of Trusted Applications: UIPI filters simulated

inputs based on integrity levels, however, UIPI is agnostic of

the trust level assigned to applications, so it does not enforce

any policy in these cases: as shown in Fig. 1a, that means

that an attacker can send messages to trusted applications,

in particular to those that are allowed to read and write to

protected folders;

(E-ii) AVs Do Not Monitor Process Messages: AVs do not monitor syn-

thesized clicks or key press events flowing into the trusted

applications: as depicted in Fig. 1b, this means that a ran-

somware can bypass protected folder enforcement by send-

ing control messages to a trusted application.

These two entry points form a vulnerability that can enable

malware to perform practical attacks, such as that shown in Fig. 1c

where a ransomware can control a trusted application to perform

controlled write operations as to encrypt inaccessible protected

files. The attack is described in more detail in the next section.

(a) Ransomware’s messages to
high IL applications are blocked
by UIPI (top); but ransomware
can send messages to trusted ap-
plications (bottom).

(b) Ransomware’s write at-
tempts to protected files are
blocked by AVs (top); however,
sending messages to trusted
applications is allowed (bottom).

(c) Ransomware can control a trusted application to perform write
operations to protected files.

Figure 1: The disharmony between UIPI and AV software’s
protected folders mechanism, as described in (a) and (b), is
the root cause of the vulnerability which leads to the attack
depicted in (c).

4.2 Attack Overview
Using the vulnerability described in the previous section, ran-

somware can bypass anti-ransomware protection via controlling

a trusted application and encrypt the files of the victim, including

those stored in protected folders. To this end, for each file Ftarget ,
the ransomware performs the following tasks as depicted in Fig. 2.

Firstly, ransomware reads the contents of Ftarget , which is in a pro-

tected folder (1). This is perfectly legal: in fact, reading a protected

file is permitted by default
2
. The plaintext retrieved from Ftarget is

encrypted in ransomware’s own memory. The resulting ciphertext

is then encoded in a suitable encoding format, e.g., Base64 [13], and
copied into the system clipboard (2). Next, the ransomware launches

the Run window (3) to start a trusted application Apptrusted , with
the goal of controlling it. In this example,Apptrusted is Notepad as it
is typically trusted inWindows environments. In addition, Notepad
understands shortcuts for file and edit commands that ransomware

will send. Using the Run window, ransomware executes Apptrusted
with the argument Ftarget , so that the contents of Ftarget is loaded
into Apptrusted ’s window (4). Next, the data in Apptrusted ’s window
are selected, and overwritten with the clipboard data (the encrypted

data) with a paste command (5). Finally, Apptrusted is instructed by

the ransomware to save the modifications, and close the handle to

Ftarget (6). All interactions in Steps 3-6 are carried out by sending

keyboard inputs which are synthesized programmatically by the

ransomware to control Apptrusted .
The combination of these actions effectively allows ransomware

to bypass the current protection methods of AVs that are aimed

explicitly at blocking ransomware. Therefore, by referring to the

2
Some AVs also provide an optional, more strict access setting that, if activated, makes

AVs block the read requests from non-trusted applications.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra

Ransomware

Windows Clipboard

Run Window

Trusted Application
e.g., Notepad

Protected Files

0 For Each File

1
Read File

Contents

3 Open Run Window

4

Launch

Notepad

2

Copy to

Clipboard

5 Paste to Notepad

6
Save &

Close File

Figure 2: Bypassing anti-ransomware protection of AVs by
using inputs programmatically synthesized by ransomware
to control a trusted application.

never-ending ‘cat-and-mouse’ game of detection/anti-detection and

anti-evasion/evasion among AVs and malware, and the usage of

simulated keyboard and mouse inputs, we have named this attack

Cut-and-Mouse. Algorithm 1 details the main steps of the Cut-and-
Mouse attack.

Algorithm 1 Cut-and-Mouse Attack: Exploit Trusted Apps with

Simulated Keyboard and Mouse Inputs to Write to Protected Fold-

ers.

1: function Control(Apptrusted) ▷ Application to Control.

2: FileList ← EnumerateTargetFiles()
3: for all f ∈ FileList do
4: plainBytes ← f .ReadAllBytes()
5: encBytes ← Encrypt(plainBytes)
6: encodedText ← Base64(encBytes)
7: CopyToClipboard(encodedText)
8: Simulate(Run, Apptrusted < f >) ▷ Win+R
9: Simulate(SelectAll) ▷ Ctrl+A
10: Simulate(Paste) ▷ Ctrl+V
11: Simulate(Save) ▷ Ctrl+S
12: Simulate(Close) ▷ Alt+F4

13: return Success

In more detail, there are two steps that are required for the Cut-
and-Mouse attack to be successful. First, the step Open Run Window
(3) in Fig. 2 is needed to disguise the operation of starting a trusted

application as if it was executed on behalf of the user. If, instead,

Notepad is directly executed by the ransomware, AVs would block

write requests even if the rest of the attack is performed as described

previously. In fact, in this example, even if Notepad is a trusted

application (therefore allowed to write on protected folders), its

parent process would be the ransomware, which is not trusted

by the AVs, hence, write operations would be blocked. Secondly,

as noted in Footnote 2, the step Read File Contents depicted in (1)

in Fig. 2 can be blocked by AVs in some circumstances. For this

reason, this limitation (that of not being able to read file contents)

can be circumvented if ransomware exploits a trusted application

to access the content on behalf of the ransomware. For example,

ransomware could instruct Notepad to open the target file, and

then synthesize two keyboard press events for Ctrl+A (Select All)

and Ctrl+C (Copy), which would allow the ransomware to select all

the content of the file and copy it to the system clipboard. Since the

clipboard is shared between all running processes, ransomware can

easily obtain the clipboard contents. It should be noted that, though,

this technique might result in unrecoverable data loss with binary

encoded files, due to the the presence of non-printable characters

displayed by Notepad. However, ransomware can detect the content

of the file before deciding which file to encrypt.

4.3 Mitigation Strategy
As a simple yet effective countermeasure to protect AVs modules

against our Cut-and-Mouse attack, we suggest that trusted applica-

tions should not receive messages from non-trusted applications.

That is, AVs must intercept all the messages flowing to a trusted

process and block or discard the messages sent by non-trusted pro-

cesses. This countermeasure is analogous to what UIPI implements

to guarantee process privileges. It should be noted that, however,

UIPI is not provided with a whitelist of AVs: therefore, it cannot

enforce such a filtering in practice and this defense task should be

fulfilled by the AV programs.

We elaborate more on this strategy in §7, where we define a

requirement that a secure message filtering system should at least

have.

5 DISABLING ANTIVIRUS SOFTWARE
In this section, we describe how the simulation attack Cut-and-
Mouse described in §4 can also be effectively applied in other sce-

narios, and we also attempt to hypothesize how it can be used in

future attacks.

In the course of our analysis, we have found a surprisingly simple

utilization of synthesized mouse events technique, which would al-

low an attacker to deactivate some of themost popular AV programs.

We start by explaining the reasons for the presence of deactivation

functionalities in AVs. Next, we describe the steps to perform the

attack, investigate the weakness in detail, and propose a practical

solution to fix it.

5.1 Necessity of the AV Deactivation Function
Signature-based detection has been the primary defense method of

AVs, and naturally, this technique is efficient only against known

malware as it can be bypassed easily, e.g. by obfuscation/packing

and polymorphic malware. To minimize this limitation, nearly all

current AVs employ some heuristics to detect malware by monitor-

ing behaviors of processes and looking for anomalies. However, this

A Game of “Cut and Mouse”: Bypassing Antivirus by Simulating User Inputs ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

functionality comes with a price: occurrences of false positives. In
the context of malware defense, false positive is the situation where

an AV software flags a benign executable as malware, and it usually

proceeds with termination of the associated process, hence inter-

rupting the user. For example, when a user installs a new software

package, the installer may write to system directories, modify the

Windows Registry and configure itself to run when the user logs in.

The behavioral decision engine of an AV may be confused by these

activities, which indeed might look suspicious as they are largely

used by malware. Therefore, an AV may prevent the software from

being installed correctly. Consequently, some vendors recommend

the users to turn off their AV temporarily for a successful installa-

tion of their benign application, for instance [27]. Moreover, some

special software may require AV to be disabled while running, for

instance [12]. As a result, AV companies provide users with a switch

that can be used to deactivate the real-time protection for different

periods of time, ranging from a short period, such as 2 minutes, to

longer periods, such as 2 hours, or until the computer reboots. Of

course, the ability to "freeze" an AV might lure attackers to abuse

this functionality to bypass malware detection, hence, AVs should

offer ways to ensure that this functionality can be disabled only by

authorized users.

5.2 Stopping Real-time Protection
In our second attack, Ghost Control, we show how an attacker can

disable the AV protection by simulating legitimate user actions

to activate the Graphical User Interface (GUI) of the AV program,

and then to "click" the turn-off button. The proposed attack com-

prises two phases. The first phase, Collect, is performed off-line

by the malware author. In this phase, the developer collects the

required pieces of information about the user events to be simulated

to successfully disable the AV. This set of information consists of

(i) x and y coordinates on the screen; (ii) which mouse button to

be simulated; and (iii) length of time to wait until the next menu

is available. Please note that the mouse coordinates should lie in

the correct area on the screen for this attack to work. In addition,

these values would change from victim to victim, or even in the

same host, as the screen dimensions vary or would differ under

various resolutions. Therefore, the malware author needs to collect

the correct locations of the menus of all the major AVs under dif-

ferent display settings to increase the effectiveness. For example,

this would require the attacker to install the target AVs in virtual

environments with different screen dimensions to collect the neces-

sary data. Once Collect phase is completed, malware authors embed

the information into the sample to be used during the attack (or,

alternatively, they store these pieces of information on a server and

deliver them on a request made by the malware).

The second phase of the attack, Control, is the actual malicious

step which starts immediately after the infection. On the victim

machine, Control begins the reconnaissance phase to determine the

installed AV product(s) and obtain the screen dimensions. Using

this information, Control prepares the event sequence to be simu-

lated to turn off the AVs, by using the information stored during

Collect phase, and synthesizes the required user inputs accordingly.

Alg. 2 illustrates the part of Ghost Control that is responsible for
the turning off of the installed AV program.

Algorithm 2 Ghost Control Attack: Disable Real-Time Protection

of AV with Simulated Events.

1: global EventSequenceDatabase
2: function TurnOffProtection

3: antivirus← GetInstalledAV() ▷ AV to deactivate.

4: events← GetEventSequenceFor(antivirus)
5: for all e ∈ events do
6: Simulate(e)

7: return Success

As a consequence, the range of functionalities that Ghost Control
enables tomalware authors is very large, some having a high impact:

for instance, once the real-time scanning is stopped, malware can be

instructed to use Ghost Control to drop and execute any malicious

program from its Command and Control (C&C) server.

5.3 Mitigation
In order to develop a robust defense against this vulnerability, we

need to understand the root causes behind this vulnerability. Our

analysis shows that there are two reasons why Ghost Control is able
to deactivate the shields of several AV programs:

(W-i) AV Interface with Medium IL. Processes related to the AV

main interfaces that manage these defense systems run in

such a way that they are accessible from processes that run

without administrative privileges. It is therefore possible

to send “messages” from any process to these process, e.g.,

mouse click events, without any restriction.

(W-ii) Unrestricted Access to Scan Component. The scanning com-

ponents of vulnerable AVs do not require the user to have

administrative rights to communicate to them, e.g., they can

receive a TURN_OFFmessage from any process. Consequently,

Control can initiate and control the reaction which involves

accessing this critical component of AVs.

(W-ii) is actually a more critical vulnerability than (W-i). In fact,

if an AV software has (W-ii), then malware can skip interacting

with the GUI of AVs through (W-i) to directly communicate with

the AV’s scanner component and send a TURN_OFFmessage. This is

in fact only a practical limitation: for instance, in our experiments

(see §6), we have noticed that AV12 employs CAPTCHA mecha-

nisms to verify that the user really wants to turn-off the protection.

Even if we assume the CAPTCHA is a solid measure against auto-

mated attacks
3
, however, malware can still bypass the CAPTCHA

verification by directly accessing the scanner component due to

(W-ii).

To mitigate the root causes of the failure of the affected AVs, we

propose the following solution:

(F-i) AV Interface with High IL. AVs should run the main GUI

interface with administrative privileges. By doing so, AVs

would not receive the the messages of Control or any other

malware since UIPI would drop the unauthorized messages.

(F-ii) Restricted Access to Scan Component. AVs should design and

develop their scan components in such a way that accessing

it would require the user to have administrative rights.

3
We note that CAPTCHA can actually be bypassed using other means, e.g. with

CAPTCHA solving services, but they might not always be applicable.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra

In the next section, we discuss and share the results of our ex-

periments, which show that (i) some AVs are vulnerable to Ghost
Control (ii) the proposed measures are actually employed by some

AVs that, therefore, are not vulnerable to the Ghost Control attack.
From that evidence, we conclude that (i) these attacks are able to

circumvent several off-the-shelf AVs (ii) the proposed mitigation is

both effective and practical to use in real-world systems.

6 EXPERIMENTAL RESULTS
To demonstrate the impact of the exploitation of the vulnerabilities

described in §4 and §5, we developed proof-of-concept prototype

of the attacks, and tested them against some commercial AVs. To

report our findings, we first describe the test environment.

6.1 Test Environment
We conducted all experiments on a Virtual Machine (VM) running

Windows 10 Pro x64 Version 1809 (OS Build 17763.437). After a

fresh installation of Windows 10 OS, we updated the system and

created a snapshot of a template VM. Next, in each run of the

experiment, we restored VM to the snapshot and installed the latest

version of the AV software to be tested (available at the time of this

writing), which was usually determined by the installer application

downloaded from the vendor’s website.

The list of the AV programs that wewould test in the experiments

was determined from the product list published by AV-TEST
4
, an

independent company which tests AV products of 34 vendors. Most

of the software that we decided to test are certified as "top product"

in the latest test results of AV solutions for Windows users, which is

available at [5]. In addition, we also added some other AV programs

to our test set due to their popularity. After the selection procedure,

our test set contained 13 AV programs, including most of the AV

products of notable vendors.

6.2 Bypassing Protected Folders Feature via
Simulated Inputs

In this section, we report the test results where Cut-and-Mouse
attack is run against AVs. Before we continue, we share the results

of some attacks that were detected by AVs.

6.2.1 Attacks Detected by AVs. We first verified whether AVs are

able to detect and block known attacks aimed at bypassing the

anti-ransomware module. In the first experiment, we injected a

malicious DLL into a trusted application, where the DLL would

start encrypting the default files protected by AVs. As expected, all

of the 13 AVs in our dataset detected this technique, and suspended

(or sometimes killed, e.g., AV13) the injected trusted application

before the first write operation, as DLL injection is one of the oldest

attack techniques.

The next experiment was aimed at maliciously controlling a

trusted application to save encrypted content to protected files. In

this attack, we instructed a ransomware program implemented in

C# language to launch the trusted application using Process.Start
method. As expected, this attack is also not effective as the trusted

application is created as a child process of the ransomware, which

is not trusted, and therefore blocked by AVs.

4
AV-TEST, https://www.av-test.org

Lastly, we executed a ransomware with elevated privileges while

protected folders feature of AVs were active. The sample, instead of

using our Cut-and-Mouse technique, is designed to directly encrypt

and overwrite the files in Documents and Pictures folders. Again,

all AVs in our dataset detected the attack and blocked the malicious

operations, which shows that protected folders feature of AVs is

immune to ransomware having admin privileges.

In the next section, we describe the technical requirements for

the successful exploitation of Cut-and-Mouse attack, and our imple-

mentation.

6.2.2 Technical Requirements. Successfully performing Cut-and-
Mouse attack requires a trusted application that should be available

on the victim’s machine. Furthermore, this specific trusted applica-

tion should possess the capabilities to: (i) be started from command

line; (ii) accept file paths as argument; (iii) edit/manipulate files;

and (iv) receive inputs from clipboard. We have discovered that the

best candidate that fulfills all these requirements is the Notepad
application, since it is one of the most commonly-used built-in Win-

dows application, and it is digitally signed
5
, therefore, whitelisted

by AV programs. In addition, file size limit of Notepad is 56 MB on

Windows 7, while it can open documents with size more than 512

MB on Windows 8.1. To send data to from a ransomware sample to

Notepad application, we exploit Windows Clipboard, which stores

objects that can be shared between all running applications. The

memory area to store these objects are allocated using GlobalAlloc
function. On 32-bit systems, virtual memory of a process is limited

with 2GB, which also determines the maximum capacity of the

clipboard. This gives us a sufficiently large memory space to store

encrypted and encoded data, so makes the clipboard suitable to use

as a swap area in our attack.

6.2.3 Implementation. We implemented a prototype of Cut-and-
Mouse in C# language, using .NET Framework version 4.6.1. The pro-

totype synthesizes only keystrokes as input simulation, for which,

SendInput is employed.

Our prototype implements Alg. 1 and works as follows. First, all

of the files in the target directory are enumerated using Directory.
GetFiles, and the files with the target extensions are filtered.

Namely, in the experiments, we targeted the following file exten-

sions: .docx, .xlsx and .png. Next, using Clipboard.SetText,
ransomware copies the command attrib.exe -r targetPath*.*
to the clipboard, where targetPath is replaced with the absolute

path of the target directory. We instructed the ransomware program

to simulate keystrokes Win+R to open the Run window, and Ctrl+V
and ENTER to run the copied command. This step ensures that the

read-only attribute was removed from the target files.

Next, for each file, our Cut-and-Mouse prototype proceeds as

follows. Firstly, the file is read using File.ReadAllBytes and then,
using AesCryptoServiceProvider, the content of the file is en-

crypted in memory. After this, the byte stream is converted into

printable text using Base64 encoding, and copied to the system

clipboard. As previously discussed, our prototype uses Notepad
as Apptrusted , so it executes Win+R command, sleeps 500ms while

waiting for the Run window to open, and then pastes the command

5
The digital signature of Notepad, as is the case formany built-inWindows applications,

is not embedded in the binary but can be found in the appropriate catalog file.

https://www.av-test.org

A Game of “Cut and Mouse”: Bypassing Antivirus by Simulating User Inputs ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

notepad.exe targetFile into the Runwindow,where targetFile
is replaced with the absolute path of Ftarget . At this step, the proto-
type sleeps for an additional 500ms to ensure that Notepadwindow
is opened – this window displays the contents of the file. Next, the

prototype sends the keystrokes Ctrl+A to select all the text in the

Notepad window and Ctrl+V to paste the clipboard data into it,

which replaces the selected content with the ciphertext. Here, the

prototype performs one final sleep of 500ms to ensure that all the

data are correctly pasted into Notepad. To save the file, Ctrl+S
command is sent to Notepad, which effectively overwrites the file

with the encrypted data. Finally, Alt+F4 command is sent to close

Notepad.

6.2.4 Test Results of Cut-and-Mouse Attack. After installing the

AV software on the VM snapshot, we placed decoy files in the Doc-
uments and Pictures folders of the user – these are both protected

folders, hence protected from ransomware attacks. Next, we run

our Cut-and-Mouse prototype and checked the effect of the attack

on the files.

The results of our tests are shown in the second column of Table 1.

In particular, the results demonstrate the effectiveness of the Cut-
and-Mouse attack, which was able to bypass seven AV programs

and encrypt the files in the protected folders. The other six AVs

were not tested against Cut-and-Mouse (denoted by n.t.), as they

contain a more critical vulnerability which we report in the next

section.

To the best of our belief, Cut-and-Mouse is a new attack that

controls legitimate applications for malicious purposes via simu-

lated user inputs. The evidence that even the latest AV products

cannot detect this attack suggests that this new attack type can

cause more damages if used by real-world attackers with different

–and possibly creative– ideas to perform powerful exploitation of

systems.

6.3 Controlling Real-Time Protection of AVs
In order to demonstrate the feasibility of our attack in §5, we imple-

mented the prototype of Ghost Control in C# language, using .NET

Framework version 4.6.1. To collect the coordinates of the mouse

on the screen, the prototype uses GetCursorPos() API. For synthe-
sizing keystrokes, mouse motions, and button clicks, SendInput()
API is used. Between each simulated mouse clicks, the prototype

sleeps for 500ms to ensure that the next menu on the GUI is avail-

able to be selected.

6.3.1 Collecting Coordinates to Disable AVs. After installing the tar-
get AV, we started Collect phase and performed cursor movements

towards the tray icon area as to select and click the AV icon
6
and

used AV’s GUI to disable the real-time scanning using the provided

menus. During this procedure, we recorded the (x ,y) coordinates of
the cursor and the types of clicks that we had performed until the

protection was disabled, i.e., AV’s security notification appeared.

For instance, the output of Collect while a real user disables AV8 on

a VM with screen resolution set to 4096x2022, is as follows:

6
For the sake of proof-of-concept, we did not implement a function to detect AV’s

icon among the tray icons. Actual malware would need to do that, for example, by

checking window titles to find AV’s icon, but this is not a difficult routine.

Table 1: Evaluation of AV products. Check marks in Weak
Self Protection column denotes that the AV product was suc-
cessfully disabled by Ghost Control. No further test are per-
formed on AVs that are found to have weak self protection.
Check marks in Weak RW Detection column denotes that
our Cut-and-Mouse could bypass the AV product and en-
crypt the protected files.

Product

Weak Self

Protection

Weak RW

Detection

AV1 ✓

AV2 ✓

AV3 ✓ n.t.

AV4 ✓ n.t.

AV5 ✓

AV6 ✓

AV7 ✓

AV8 ✓ n.t.

AV9 ✓

AV10 ✓ n.t.

AV11 ✓ n.t.

AV12 ✓ n.t.

AV13 ✓

Left Click, x=1868, y=992 // Show Tray Icons
Right Click, x=1866, y=952 // Open AV's Menu
Move Cursor, x=1860, y=873 // Change Settings Submenu
Left Click, x=1700, y=877 // Real-Time Scan Settings
Left Click, x=1315, y=430 // Turn-off Button
Left Click, x=1280, y=555 // Verify Turn-off

Figure 3: Output of Collect, which sniffed the real user ac-
tions while disabling AV8.

For the duration of the deactivation, we used the default values

suggested by AVs to freeze their functions. The minimum length

is usually set to be 15 minutes, which is a sufficient time frame to

successfully conduct an effective attack. Here, the attackers could

also select an option that gives them a longer time-period.

6.3.2 Stopping Real-Time Protection. Using the information ob-

tained from Collect, we instrumented the recorded actions and

parameters into Control, which is used to exploit the specific AV

that we tested in each experiment. Next, we run Control and waited
until all the events are simulated.

If Control attack succeeds, a warning window appears which

notifies the user that the computer is not protected. In some ex-

periments, we even went further and simulated mouse clicks to

remove this notification window, which would be expected from a

real-world malware. This shows how this class of attacks can be

further extended to perform potentially more powerful malicious

actions.

As shown in the first column of Table 1, during our experiments

on 13 AV products, we detected that 6 AVs could be efficiently

deactivated by Ghost Control using our attack in §5. According to a

recent report by OPSWAT [24], the market share of AVs that are

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra

vulnerable to Ghost Control is at least 23%7. Furthermore, 4 of these

AVs have been frequently rated as “top product” in the reports of

AV-TEST. It is surprising for us that such a critical vulnerability,

arguably one of the worst that an AV might have, is found in such

a large share of AVs.

In the experiments in which Ghost Control was not able to suc-

cessfully disable the AV, we noticed that this was due to User Ac-

count Control (UAC) prompt, which uses MIC. In these cases, after

Ghost Control generated a click event to turn-off protection, UAC

notification appeared, which always runs with High IL. However,

since Ghost Control is a Medium IL process, it was not be able to

bypass UAC verification successfully.

7 DISCUSSION
Secure composability is a well known problem in security engi-

neering. It challenges developers to ensure that security properties

enjoyed by individual software components are preserved when the

components are put together. It also challenges them to demonstrate

that the components together give stronger security assurances

than just the mere sum of their original properties. This rarely

happens in practice, and the opposite is quite often true. Compo-

nents that, when taken in isolation, offer a certain known attack

surface do generate a wider surface when integrated into a system.

Intuitively this seems obvious. Components interact one another

and with other parts of the system create a dynamic with which

an attacker can interact too and in ways that were not foreseen by

the designer. An attacker can, for example, uses a component as an

oracle or replay its output to impersonate it while interacting with

another.

This is exactly what we have found happening to mechanisms

like UIPI and AV software. They provide a robust defense when

tested individually against a certain target, but the attacks that we

demonstrate in this paper show that their combination reveals new

vulnerabilities. We draw two considerations from it.

First, in complex systems it is essential to control the message-

flow between security critical components. This is actually enabled

by Microsoft via UIPI. It allows messages flowing from sender

applications to receiver applications only when the integrity level

of the first is not less than the integrity level of the second. In

principle, UIPI enables a good defence mechanism, but the problem

is that integrity levels do not reflect trust: theymerely indicate when

an application runs with administrative right (high), in standard

mode (medium), or in a sandbox (low). The authority who decides

which level an application takes is generally the operating system,

and sometimes the user, after a request from the application. It

may be, like in the scenario that we illustrated in Section 5, that

developers do not implement that request.

This is against what Microsoft Driver Security Guidance sug-

gests [20]: “It is important to understand that if lower privilege callers
are allowed to access the kernel, code risk is increased. [..] Following
the general least privilege security principle, configure only the mini-
mum level of access that is required for your driver to function.”. We

think that the process which controls the status of the anti-malware

and AV’s kernel module should be designed to require ‘high’ IL. Our

7
We were not able to calculate the exact statistics as the shares of the 3 AVs that we

could stop are consolidated into "Others".

findings show that several anti-malware companies either failed

to follow this guidance or have misjudged the minimum level re-

quested for their security, or did not diversify enough between

kernel and non-kernel modules.

Secondly, and this is linked to our finding in Section 4, relying

only on integrity levels is not sufficient to ensure system security.

This does not surprise, since UIPI has been designed to protect pro-

cesses, and in fact anti-malware applications top-up their defence

strategy relying on whether an application is whitelisted, that is,

trusted. Only trusted applications can e.g., access protected files.

But, our findings have revealed a dissonance here: medium integrity

level applications, like Notepad, are considered trusted and thus al-

lowed to e.g., access protected files. But an application with medium

integrity level, that is running with standard user rights, does not

necessarily behave in a benign manner. As we showed for the case

of Notepad, medium but untrusted applications, such as malware,

can have their actions looking like be trusted by using the appli-

cation as a puppet; in so doing, they can bypass the anti-malware

guard.

We think that a better defence is to combine the integrity levels

and the trust label used by anti-malware.We state it as the following

principle:

Security Principle 1. Messages between applications should be
allowed only when the sender has at least the same integrity level as
the receiver and and the sender is at least as trusted as the receiver.

Principle 1 reminds the renowned Bell and La Padula Model

on messages-flow between different security “clearence” levels [6]

(see also [28]). But it is not exactly the same, since we cope with

“security” instead of confidentiality. Attempting a formalization of

Principle 1, components should be classified by “security levels”,

made of two elements: the UIPI “integrity levels”, (I = [admin ,

user, or sandbox], ordered) and the anti-virus software’s “trust

levels” (T = [digitally signed / whitelisted, not digitally signed / not

whitelisted], also ordered). Principle 1 suggests a policy saying that

an application of security level (I ,T) should not accept messages

coming from applications of security level (I ′,T ′) when (I ′ < I), or
when (I ′ ≥ I) but (T ′ < T ′).

In conclusion, we believe that applying Principle 1 would have

prevented receiving SendInput from effecting whitelisted applica-

tions that has a potential to be exploited, e.g., Notepad. One should,
however, evaluate whether this may also broke some of the existing

automation software solutions. A conclusive statement about this

would require to perform a wide spread test on automation appli-

cations. It also had fostered AV vendors take measures not only to

protect the system, but also to protect their AV programs against

other supposedly trusted applications, in addition to conventional

malware attacks against AV products. A practical fix is to configure

AV kernel module to require admin rights to be accessed. In this

regard, it might be helpful to monitor SendInput API and block all

simulated keyboard and mouse events dispatched to AV program

although the problem of understanding whether a low-level event,

such as an interrupt, has been generated by a human or not might

be difficult to solve in general.

A Game of “Cut and Mouse”: Bypassing Antivirus by Simulating User Inputs ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

8 RELATEDWORK
In this section, first we review existing attacks involving simulated

inputs to perform malicious actions. Next, we outline previous

research on the security of antivirus software.

8.1 Attacks Related to Input Simulation
Input simulation is the practice of programmatically synthesiz-

ing input events, such as mouse clicks or key strokes, which are

typically performed by the user. This section describes some the

most powerful existing attack techniques that make use of input

simulation.

8.1.1 Ghost Clicks. In [30], Springall et al. developed a proof-of-

concept malware to manipulate votes in Estonian Internet Voting

system. On infected clients, the malware simulates keyboard inputs

to activate the electronic identifier (e-ID) of voters and submit a

vote in a hidden session that is invisible to the voters.

Recently, under a different threat model, in [18] Maruyama et
al. demonstrate a method to generate tap events on touch screens

of smart phones using electromagnetic waves. In this scenario, the

victim’s device can be forced to pair with a malicious Bluetooth

device once it gets in the range of the attackers. Even if the victim

denies the pairing by choosing CANCEL in the security prompt, the

attacker can alter this selection and make the OS to recognize user

input as CONNECT.
Pay-per-click advertising systems are also vulnerable to fake

clicks, which is known as Click Fraud [31]. In these systems, the

advertisers get paid according to the number of clicks on adver-

tisements. By generating fraudulent clicks on the ads, a malicious

advertiser can increase its payment.

Perhaps the attack closest to the one described in this paper

is Synthetic Clicks [21], credited to Patric Wardle [11]. Exploiting

a bug in macOS OS, the attacker could send programmatically-

created mouse clicks events to security prompts that would result

in vertical privilege escalation. This way the attacker could cause

any damage, including retrieving all of the user’s passwords stored

in the keychain. Our attacks, Cut-and-Mouse and Ghost Control,
target Windows OS, do not rely upon a bug in the OS, and can

be used to instruct a privileged application to perform different

malicious operations.

8.1.2 Reprogramming USB Firmware. In [22], Nohl et al. demon-

strated that it is feasible to modify the firmware of a USB device, for

instance a USB stick, to behave like a keyboard. Known as BadUSB,

this technique works by reprogramming the device’s firmware in

order to type commands on the victim’s computer. When plugged

into a computer, the malicious USB device can simulate the key

strokes of the user, for example, type and execute a script which

downloads and runs a malware.

8.1.3 Shatter Attack. In [3], Paget describes a weakness in Win-

dows OS that allow a process to inject arbitrary code into another

process and execute. The “shatter attack”, a term coined by Paget,

works as follows: first, the malware copies the code-to-be-injected

to the clipboard. Next, it sends WM_PASTE message to target process

to paste the clipboard contents into a text field on the GUI of the

target process. At this point, the malicious code has been moved

onto the memory space of the target process. To execute this code,

the malware process sends another window message, a carefully

crafted WM_TIMER message, which causes a jump to the address of

the malicious code. The main difference with our attacks is the

presence of the malicious code during the injection, while with

Cut-and-Mouse we use and control a privileged application as a

"puppet" to perform various operations without injecting new code

into the target process memory.

8.2 Previous Research on Security of AVs
Traditionally, AVs have been in the target of security researchers

due to their incomparable importance. Since AV vendors mostly

utilize blacklisting as the main defense technique, many researchers

investigated this area. For instance, [9] and [29] analyzed the feasi-

bility of evade detection via obfuscation.

Another significant research topic about AVs is the implemen-

tation related vulnerabilities. To name a few examples: [15, 16, 25,

26, 32]. That said, the discoveries in this field mostly involve the

bugs in the AV software, rather than a flaw in their design or threat

model.

Finally, in [2], Al-Saleh and Crandall developed a technique to

determine if the target AV is up-to-date using side channel analy-

sis, allowing the attacker to learn which signatures exists in virus

database of the victim.

9 CONCLUSIONS
Antivirus programs (AVs) have become one of the de facto computer

security standards. Recently, they have also integrated ransomware

detection modules. There has been quite an attention to this class of

malware, given its world-wide impact; therefore, interested to know

how current AVs can mitigate the threat, we started to dive into

the matter. What we found is indeed surprising. Despite the great

attention to security that AV companies put into their products, the

security issues we discovered are in the interaction between OS

defences and AV defences.

Precisely, we found that it is possible for a malicious program

to (i) turn off AV’s real-time scanning protection feature; and (ii)

bypass anti-ransomware protected folder solutions by misusing

whitelisted applications to encrypt user data. To this end, we have

discussed and provided two proof-of-concept programs, Ghost Con-
trol and Cut-and-Mouse, which were able to either disable several

off-the-shelf AVs or bypass their anti-ransomware feature. We be-

lieve that the two issues can be fixed and avoided in the future, but

this requires software developers to have a general understanding of

what caused them. We stated that understanding in our Principle 1.

One could question whether such attacks can be detected by

the human user’s seeing, e.g., the mouse icon clicking here and

there. However, we believe that making security dependent on the

user’s reaction is fundamentally a wrong design choice, as user may

indeed enlarge the attack surface; in addition, malware can perform

these attacks when the user is not using the computer, e.g., through
some heuristic based on user’s activities. Thus a better mitigation

solution would be aimed at understanding whether keyboard and

mouse events come from a legitimate user or whether instead they

are synthesized by a (malicious) program. In a sense, discerning

such situation is what malware is already trying to achieve, namely

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra

understanding if it is running in a sandbox, e.g., using reverse Tur-

ing tests to detect the presence (or absence) of a human, – this

further reinforces the analogy of attackers and defenders are each

learning from others. However, before that discernment becomes

possible, OS and AV defences have to cooperate better. At the root

of our findings there is a misalignment between two different con-

cepts: that of integrity levels used by the OS, and that of trusted

applications on which instead AV defences rely upon. They have

not been conceived to work together and, at a higher level, they

have to be harmonized. This is indeed what our Principle 1 means

to achieve. We will attempt a synthesis of the two concepts by

developing a proof-of-concept component that implements it, thus

creating a test-bed for the validity of the Principle itself, which is

one of our future research works.

ACKNOWLEDGMENTS
This work was partially funded by European Union’s Horizon 2020

research and innovation programme under grant agreement No

779391 (FutureTPM) and by Luxembourg National Research Fund

(FNR) under the project PoC18/13234766-NoCry PoC.

REFERENCES
[1] Mohsen Ahmadvand, Alexander Pretschner, and Florian Kelbert. 2019. A tax-

onomy of software integrity protection techniques. In Advances in Computers.
Vol. 112. Elsevier, Cambridge, MA, USA, 413–486.

[2] Mohammed I. Al-Saleh and Jedidiah R. Crandall. 2011. Application-level Recon-

naissance: Timing Channel Attacks Against Antivirus Software. In Proceedings of
the 4th USENIX Conference on Large-scale Exploits and Emergent Threats (LEET’11).
USENIX Association, Berkeley, CA, USA, 9.

[3] Chris Paget (alias Foon). 2002. Exploiting design flaws in the Win32 API for

privilege escalation. Retrieved May 15, 2019 from https://web.archive.org/web/

20060904080018/http://security.tombom.co.uk/shatter.html

[4] Hyrum S. Anderson, Anant Kharkar, Bobby Filar, David Evans, and Phil Roth.

2018. Learning to Evade Static PE Machine Learning Malware Models via Rein-

forcement Learning. arXiv:cs.CR/1801.08917

[5] AV-TEST. 2019. The best antivirus software for Windows Home User. Retrieved

June 10, 2019 from https://www.av-test.org/en/antivirus/home-windows/

[6] D. E. Bell and L. J. La Padula. 1976. Secure computer system: Unified exposition
and Multics interpretation. Technical Report ESD-TR-75-306. Mitre Corporation.

[7] Battista Biggio and Fabio Roli. 2018. Wild Patterns: Ten Years After the Rise of

Adversarial Machine Learning. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’18). ACM, New York, NY, USA,

2154–2156. https://doi.org/10.1145/3243734.3264418

[8] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crowdroid:

Behavior-based Malware Detection System for Android. In Proceedings of the 1st
ACM Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM
’11). ACM, New York, NY, USA, 15–26. https://doi.org/10.1145/2046614.2046619

[9] Mihai Christodorescu and Somesh Jha. 2004. Testing malware detectors. ACM
SIGSOFT Software Engineering Notes 29, 4 (2004), 34–44.

[10] Ian Goodfellow, Patrick McDaniel, and Nicolas Papernot. 2018. Making Machine

Learning Robust Against Adversarial Inputs. Commun. ACM 61, 7 (June 2018),

56–66. https://doi.org/10.1145/3134599

[11] Andy Greenberg. 2019. Another Mac Bug Lets Hackers Invisibly Click Security

Prompts. Retrieved June 10, 2019 from https://www.wired.com/story/apple-

macos-bug-synthetic-clicks/

[12] IT Services of Mitchell Hamline School of Law. 2017. Technology No-

tice – Disable Antivirus before using Examplify. Retrieved May

31, 2019 from https://mitchellhamline.edu/technology/2017/12/03/technology-

notice-disable-antivirus-before-using-examplify/

[13] S. Josefsson. 2006. The Base16, Base32, and Base64 Data Encodings. RFC 4648. RFC

Editor. http://www.rfc-editor.org/rfc/rfc4648.txt http://www.rfc-editor.org/rfc/

rfc4648.txt.

[14] Dhilung Kirat and Giovanni Vigna. 2015. MalGene: Automatic Extraction of

Malware Analysis Evasion Signature. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security (CCS ’15). ACM, New York,

NY, USA, 769–780.

[15] Joxean Koret. 2014. Breaking Antivirus Software. Retrieved June 10, 2019 from

http://joxeankoret.com/download/breaking_av_software_44con.pdf

[16] Joxean Koret. 2016. AV: Additional Vulnerabilities. Retrieved June 10, 2019 from

https://www.hoystreaming.com/wp-content/uploads/2016/03/hb_bilbo.pdf

[17] Joxean Koret and Elias Bachaalany. 2015. The Antivirus Hacker’s Handbook. John
Wiley & Sons, Indianapolis, IN, USA.

[18] S. Maruyama, S. Wakabayashi, and T. Mori. 2019. Tap ’n Ghost: A Compilation

of Novel Attack Techniques against Smartphone Touchscreens. In 2019 2019 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos,

CA, USA, 628–645.

[19] Alana Maurushat. 2013. Disclosure of Security Vulnerabilities: Legal and Ethical
Issues. Springer-Verlag London, London.

[20] Microsoft. 2019. Driver security checklist. Retrieved June

10, 2019 from https://docs.microsoft.com/en-us/windows-hardware/drivers/

driversecurity/driver-security-checklist

[21] NIST. 2017. NVD – CVE-2017-7150. Retrieved June 10, 2019 from https:

//nvd.nist.gov/vuln/detail/CVE-2017-7150

[22] Karsten Nohl, Sascha Krißler, and Jakob Lell. 2014. BadUSB—On accessories that

turn evil. Retrieved May 15, 2019 from https://srlabs.de/wp-content/uploads/

2014/07/SRLabs-BadUSB-BlackHat-v1.pdf

[23] Working Group Dual Use of the Flemish Interuniversity Council. 2017. Guidelines

for researchers on dual use and misuse of research.

[24] OPSWAT. 2019. Windows Anti-malware Market Share Report. Retrieved June

10, 2019 from https://metadefender.opswat.com/reports/anti-malware-market-

share#!/

[25] Tavis Ormandy. 2015. Analysis and Exploitation of an ESET Vulnerability.

Retrieved June 10, 2019 from https://googleprojectzero.blogspot.com/2015/06/

analysis-and-exploitation-of-eset.html

[26] Tavis Ormandy. 2016. How to Compromise the Enterprise Endpoint. Re-

trieved June 10, 2019 from https://googleprojectzero.blogspot.com/2016/06/how-

to-compromise-enterprise-endpoint.html

[27] TaxSlayer Pro. 2017. Quick Start Manual. Retrieved June 10, 2019 from http:

//downloads.taxslayer.com/online/2017-Quick-Start-Manual.pdf

[28] John Rushby. 1986. The Bell and La Padula Security Model. Computer Science

Laboratory, SRI International, Menlo Park, CA. Draft Technical Note.

[29] Monirul I. Sharif, Andrea Lanzi, Jonathon T. Giffin, and Wenke Lee. 2008. Imped-

ing Malware Analysis Using Conditional Code Obfuscation.

[30] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri Hursti,

Margaret MacAlpine, and J. Alex Halderman. 2014. Security Analysis of the Esto-

nian Internet Voting System. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’14). ACM, New York, NY, USA,

703–715.

[31] Kenneth C. Wilbur and Yi Zhu. 2009. Click Fraud. Marketing Science 28, 2 (2009),
293–308.

[32] Feng Xue. 2008. Attacking Antivirus. Retrieved June 10, 2019

from https://blackhat.com/presentations/bh-europe-08/Feng-Xue/Presentation/

bh-eu-08-xue.pdf

[33] Feng Xue. 2008. Attacking The Antivirus.

[34] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.

2007. Panorama: Capturing System-wide Information Flow for Malware De-

tection and Analysis. In Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS ’07). ACM, New York, NY, USA, 116–127.

https://doi.org/10.1145/1315245.1315261

[35] Ilsun You and Kangbin Yim. 2010. Malware Obfuscation Techniques: A Brief

Survey. In International Conference on Broadband, Wireless Computing, Com-
munication and Applications (BWCCA ’10). IEEE, Piscataway, New Jersey, US,

4.

https://web.archive.org/web/20060904080018/http://security.tombom.co.uk/shatter.html
https://web.archive.org/web/20060904080018/http://security.tombom.co.uk/shatter.html
http://arxiv.org/abs/cs.CR/1801.08917
https://www.av-test.org/en/antivirus/home-windows/
https://doi.org/10.1145/3243734.3264418
https://doi.org/10.1145/2046614.2046619
https://doi.org/10.1145/3134599
https://www.wired.com/story/apple-macos-bug-synthetic-clicks/
https://www.wired.com/story/apple-macos-bug-synthetic-clicks/
https://mitchellhamline.edu/technology/2017/12/03/technology-notice-disable-antivirus-before-using-examplify/
https://mitchellhamline.edu/technology/2017/12/03/technology-notice-disable-antivirus-before-using-examplify/
http://www.rfc-editor.org/rfc/rfc4648.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
http://joxeankoret.com/download/breaking_av_software_44con.pdf
https://www.hoystreaming.com/wp-content/uploads/2016/03/hb_bilbo.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/driver-security-checklist
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/driver-security-checklist
https://nvd.nist.gov/vuln/detail/CVE-2017-7150
https://nvd.nist.gov/vuln/detail/CVE-2017-7150
https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://metadefender.opswat.com/reports/anti-malware-market-share#!/
https://metadefender.opswat.com/reports/anti-malware-market-share#!/
https://googleprojectzero.blogspot.com/2015/06/analysis-and-exploitation-of-eset.html
https://googleprojectzero.blogspot.com/2015/06/analysis-and-exploitation-of-eset.html
https://googleprojectzero.blogspot.com/2016/06/how-to-compromise-enterprise-endpoint.html
https://googleprojectzero.blogspot.com/2016/06/how-to-compromise-enterprise-endpoint.html
http://downloads.taxslayer.com/online/2017-Quick-Start-Manual.pdf
http://downloads.taxslayer.com/online/2017-Quick-Start-Manual.pdf
https://blackhat.com/presentations/bh-europe-08/Feng-Xue/Presentation/bh-eu-08-xue.pdf
https://blackhat.com/presentations/bh-europe-08/Feng-Xue/Presentation/bh-eu-08-xue.pdf
https://doi.org/10.1145/1315245.1315261

	Abstract
	1 Introduction
	1.1 Ethical Issues and Responsible Disclosure

	2 Background
	2.1 Ransomware Defense in AVs
	2.2 Process Protection via Integrity Levels

	3 Threat Model
	4 Encrypting Protected Folders
	4.1 Disharmony Between UIPI and AVs
	4.2 Attack Overview
	4.3 Mitigation Strategy

	5 Disabling Antivirus Software
	5.1 Necessity of the AV Deactivation Function
	5.2 Stopping Real-time Protection
	5.3 Mitigation

	6 Experimental Results
	6.1 Test Environment
	6.2 Bypassing Protected Folders Feature via Simulated Inputs
	6.3 Controlling Real-Time Protection of AVs

	7 Discussion
	8 Related Work
	8.1 Attacks Related to Input Simulation
	8.2 Previous Research on Security of AVs

	9 Conclusions
	Acknowledgments
	References

