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2 Tridgell et al

1 INTRODUCTION

The computational complexity of convolutional neural networks (CNN) imposes limits to certain applications in practice
[Jouppi et al. 2017]. There are many approaches to this problem with a common strategy for the inference problem
being to reduce the precision of arithmetic operations, or to increase sparsity [Boo and Sung 2017; Courbariaux et al.
2016; Faraone et al. 2017; Mellempudi et al. 2017; Rastegari et al. 2016; Zhou et al. 2016]. It has been shown that low
precision networks can achieve comparable performance to their full precision counterparts [Courbariaux et al. 2016; Li
et al. 2016; Zhou et al. 2016].

This paper explores further accelerating inference with Field Programmable Gate Array (FPGA) implementations of
neural networks in fixed point arithmetic with ternary weight values. As the weights are restricted to {−1, 0, 1}, the
multiplications between the inputs and the weights are reduced in complexity to subtractions, additions or no operation.
Compared with previous work, the datapath is customised based on known weight values of a trained network at
design time.

The computationally intensive parts of a CNN are matrix-vector multiplications. Given prior knowledge of the
ternary weight matrix, this paper shows matrix vector multiplications can be implemented as the evaluation of an
unrolled and pruned adder tree, effectively storing the weights in the routing. This technique is only recently feasible
due to increasing sizes of FPGAs, improvements in the tools and advances in low precision machine learning. The main
contributions of this paper are as follows:

• A novel architecture for inference of ternary neural networks on an FPGA by employing complexity reduction
to the evaluation of pruned adder trees. In particular optimisations are: (1) streaming inputs and full pipelining
of the computation; (2) ternary weights with 16-bit sums and activations to preserve accuracy; (3) bit-serial
summation for compactness; (4) weight-specific circuit generation with removal of multiplies by 0 and merging of
common subexpressions to minimise computation; (5) throughput matching of CNN layers to minimise resource
usage.

• An extension of a technique to train ternary neural networks described by Li et al. [Li et al. 2016] allowing simple
control of the sparsity of the network.

• A publicly available code with the highest reported throughput and lowest latency over the best published
results on the CIFAR10 [Krizhevsky and Hinton 2009] benchmark, while achieving superior accuracy over other
low-precision CNNs.

2 BACKGROUND

2.1 Deep Neural Networks & Convolutions

Deep Neural Networks (DNNs) [LeCun et al. 2015] are a class of machine learning algorithms that are described as a
connected graph of basic compute nodes called neurons. Each layer l performs a mapping RM → RN , where xl is the
input vector, al is the output or activation vector and bli is the bias term. The computation for each neuron is the inner
product between the input and its weight vector, wl

i ∈ R
N , followed by an activation function f which is typically

tanh, ReLU, sigmoid, etc. The operation performed to compute the i’th output in layer l is computed as

ali = f (wl
ix
l + bli ) (1)

DNNs are arranged such that the output from one layer is passed to the input of neurons in a subsequent layer, these
are named dense layers. By stacking multiple dense layers together, complex nonlinear interactions can be modeled;
Manuscript submitted to ACM
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these network topologies are named multilayer perceptrons (MLP). If inference is performed with a single input vector
at a time, the computation for each layer can be described as a matrix-vector multiplication. Consequently, the main
bulk of the computation in an MLP requires successively performing matrix-vector multiplications with the layers’
weightswl and the previous layer’s activations al−1.

Convolutional Neural Networks (CNNs) provide a way of reducing the number of parameters in the network while
also exploiting the spatial property in images where pixels located close together are more related. Let x be a square
input image with height and widthW and a depth of D. For example, an input image might have 32 × 32 pixels where
each pixel has a Red, Green, Blue (RGB) component, hence having D = 3. The convolution operation partitions the
image into small overlapping sections of N × N pixels where typically N ≪W . On each of these sections, F different
filters are applied and the results stacked together giving an output image of depth F . This can be formalised as given
an input image x ∈ RW ×W ×D , the convolutional weightsw ∈ RN×N×D×F apply a transformation to give an output
image y ∈ RW ×W ×F . The calculation of the convolution operation is given as

yi, j,f =
N∑
q=0

N∑
r=0

D∑
s=0

xa,b,swq,r,s,f (2)

where a = i + q − ⌊N /2⌋ and b = j + r − ⌊N /2⌋ and assuming the image is padded with zeros around the borders.
Expanding the sums in Equation 2 the input x can be transformed into a vector of length N × N × D for a chosen i and
j denoted Xi, j . The weights are independent of i and j and are rearranged as a matrix of constants with N × N × D

columns and F rows to produce the output vector yi, j of length F . This can be written as

yi, j = Xi, jw (3)

which is a matrix-vector operation for each pixel of the image. An important property of the convolution that is
exploited in this paper is that the result for the convolution only depends on a small area around the coordinates i, j
and that the weights, w, are constant in regard to the chosen coordinates. A hardware block can now be designed to
take Xi, j as input and output yi, j as a parallel pipeline.

2.2 Low Precision Networks

Interest in low precision CNNs has dramatically increased in recent years due to research which has shown that
similar accuracy to floating point can be achieved [Boo and Sung 2017; Courbariaux et al. 2016; Faraone et al. 2017;
Mellempudi et al. 2017; Rastegari et al. 2016; Zhou et al. 2016]. Due to the high computational requirements of CNNs,
reduced precision implementations offer opportunities to reduce hardware costs and training times. Since FPGAs can
implement arbitrary precision datapaths, they have some advantages over the byte addressable GPUs and CPUs for
these applications. Moreover, the highest throughput implementations on all platforms utilise reduced precision for a
more efficient implementation. In ternary neural networks, implemented similarly to Li et al. [Li et al. 2016], the value
of the weights is restricted to be −s , 0 or s , where s is a scaling factor. This transforms Equation 1 to

ai = f (slwl
ix
l + bli ) (4)

wherewl
i j ∈ {−1, 0, 1} are the elements of wi, bli is the bias term and sl ∈ R.

Applying it to the convolution operation in Equation 3, it can be rewritten with ternary weights t and scaling factor
s as

yi, j = sXi, j t (5)
Manuscript submitted to ACM



4 Tridgell et al

The matrix of values for the ternary weights, t, are constant, restricted to −1, 0, 1 and known at design time. The input
Xi, j is an unknown dense vector and s is a constant scalar as defined above. Therefore a hardware block can be designed
to take Xi, j as input and output yi, j . With these assumptions, this paper demonstrates that this hardware block can be
implemented with parallel adder trees to skip a large portion of the computation. The consideration of the ternary
convolutional operation in this manner is a core contribution of this paper and the benefits of this approach particularly
in regard to unstructured sparsity are demonstrated in subsequent sections.

2.3 Hardware Accelerators of CNNs

Previous work [Baskin et al. 2018; Chen et al. 2017; Fraser et al. 2017; Jouppi et al. 2017; Kim et al. 2017; Li et al.
2017; Liang et al. 2018; Meloni et al. 2018; Moss et al. 2017; Prost-Boucle et al. 2017; Qiu et al. 2016; Umuroglu et al.
2017; Venkatesh et al. 2017; Wang et al. 2017; Zhang and Prasanna 2017] has mainly focused on general accelerators,
implemented either as a sequence of instructions on fixed hardware, or accelerator platforms designed for linear algebra
intensive computation. Performance comparisons with those in this paper are presented in Section 6.

Systolic array based architectures implement a grid of local-connected processing units to perform a matrix-to-matrix
multiplication. Most notably, Jouppi et al. [Jouppi et al. 2017] describe the Tensor Processing Unit (TPU), an Application
Specific Integrated Circuit (ASIC) that utilises a systolic array to compute operations necessary with 8 or 16 bit weights
and activations. It provides a very high throughput on a variety of applications with a latency on the scale of 10ms,
claiming a peak throughput of 92 TOps/sec and a sustained throughput of 86 TOps/sec. Similarly, Moss et al. [Moss
et al. 2017] implemented a systolic array that utilised the Intel QuickAssist heterogeneous system with a CPU and
FPGA, accelerating CNNs with binary activations and weights on ImageNet and achieving 40.96 TOps/sec. Venkatesh et
al. [Venkatesh et al. 2017] use a method described in [Li et al. 2016] to implement a VGG style network with ternary
weights and half-precision floating point activations. They create an ASIC accelerator for training networks in addition
to inference with a systolic array like structure. Due to the use of floating point activations, they achieve high accuracy
on CIFAR10 of around 91%.

Differing from the systolic array approach, vector processors contain several independent processing lanes, with the
capability of each determined by the lanes’ architecture. Chen et al. [Chen et al. 2017] created a custom ASIC utilising
16 bit fixed point achieving a peak throughput of up to 42GMAC/s. Their architecture contains an array of independent
processing elements, each receiving operation instructions. In the programmable logic domain, Wang et al. [Wang
et al. 2017], Qiu et al. [Qiu et al. 2016] and Meloni et al. [Meloni et al. 2018] presented neural network accelerators
for the Zynq CPU+FPGA. Each implemented a vector processor and utilised low precision to improve computational
performance for object detection and image recognition. Wang et al. [Wang et al. 2017], Qiu et al. [Qiu et al. 2016] and
Meloni et al. [Meloni et al. 2018] achieved 2 TOps/sec, 187GOps/sec and 169GOps/sec respectively. Finally, Zhang and
Prasanna [Zhang and Prasanna 2017] implemented an accelerator using the frequency domain representation of the
convolution. Their datapath converts the activations into the frequency domain and uses a point-wise multiplication
to perform the convolution; this is followed by an inverse FFT. The computation is performed in floating point and
implemented on the Intel QuickAssist platform containing a CPU and Stratix V FPGA, achieving 123.5 GFLOPs.

3 ARCHITECTURE

This section describes how different components of a CNN can be implemented on an FPGA. For this paper the design
is implemented similarly to Prost-Boucle et al. [Prost-Boucle et al. 2017] where the image is streamed through the
Manuscript submitted to ACM
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network using dedicated blocks for each section of the network. Under this assumption a CNN can be divided into a
few logical blocks:

• Buffering - (im2col/im2row)
• Max Pool
• Convolution
• Scale and Shift - (Batch Normalization Inference)
• MUX Layers
• Dense Layers

These blocks are described in the following sections.

3.1 Buffering

There are two main approaches to compute the convolution. They are either passing in inputs over multiple cycles and
storing intermediate results when computing the convolution, or buffering the pixels so that the entire set of inputs
needed for the convolution is available simultaneously such as the approach in Baskin et al. [Baskin et al. 2018] and
Prost-Boucle et al. [Prost-Boucle et al. 2017]. This paper adopts the scheme used by these authors to buffer the pixels,
so the entire set of inputs is available simultaneously. It buffers previous inputs in such a way that each cycle it can
output the current vector Xi, j from Equation 5. The inputs necessary to compute an output pixel of the convolution are
only a small segment of the image. As the image is streamed into a layer of the CNN it is buffered in order to transform
the pixels to a patch of the image from which a convolution or Max Pool operation can be computed. This is referred to
as a buffering block in this paper but is also known as the im2row or im2col transform. The purpose of the buffering
hardware block is to stream the image through a fully pipelined design with p pixels provided each cycle as input from
a FIFO. To compute an output pixel of the convolution requires using inputs from various pixels of the image.

Figure 1 demonstrates the input configuration used in this paper with the assumptions that the convolutional kernel
is 3 × 3, the image is 6 × 6 × 1 and a single pixel is streamed in each cycle. The image is streamed in left to right, top to
bottom with a pixel arriving in the cycle indicated by the number in each box. The input FIFO in Figure 2 outputs the
pixel each cycle to both Buffer A and the first stage of a shift register. The value is then shifted across each cycle by the
registers as the window moves across the image. Buffer A and Buffer B delay the output by the image width (in the case
of Figure 1 this is 6 cycles) in order to output the previous two rows of the image with matching columns. For example,
when the FIFO outputs pixel 27 in Figure 1, Buffer A outputs pixel 21 and Buffer B outputs pixel 15. After the outputs
a-i are obtained at the bottom of Figure 2, there is additional logic necessary to implement zero padding by switching
between these values and zero. This produces the correct vector Xi, j from Equation 5 for the convolution. This can also
be adapted for Max Pool layers where the structure of Figure 2 changes depending on the kernel size, image size and
pixel rate p.

3.2 Max Pool

Max Pool layers are widely used in CNNs to downsample the image. The Max Pool operation takes a k × k window of
the image as input similar to that shown in Figure 1. For these pixels, it compares them based on each component and
outputs the maximum value resulting in a single pixel. Reduction in the image size is achieved by using a stride greater
than n = 1. Consider an example based on the image in Figure 1 with a kernel size of k = 2. If the stride is only n = 1,
the window of pixels 0, 1, 6, 7 would be followed by pixels 1, 2, 7, 8 meaning the output image is about the same size. To
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Fig. 1. Streaming the Image and the Window to Buffer

FIFOBuffer ABuffer B

RegRegRegRegRegRegRegRegReg

a b c d e f g h i

Fig. 2. Diagram illustrating buffering for a 3 × 3 convolution

downsample the image it is common to use a stride of n = 2 or more in Max Pool layers. With a stride of n = 2, the
window of pixels 0, 1, 6, 7 is followed by pixels 2, 3, 8, 9 which would produce a 3 × 3 image from the input in Figure 1.
The presence of Max Pool layers has the effect of reducing the amount of computation required for subsequent layers of
the CNN. The downsampling property of Max Pool is exploited in our proposed architecture to reduce hardware area.
Given a throughput of p pixels/cycle as input into a Max Pool layer with a stride of n results in the output throughput
reduced to p

n2 pixels/cycle. This property is later used to dramatically reduce the size of the convolutional layers in
hardware through the use of word and bit serial adders discussed in Section 3.3.

As a hardware block, the Max Pool is implemented in a pipelined way comparing the k2 inputs over multiple cycles
to determine the output for each component of the pixel. When using the input configuration from Figure 1, the output
of the Max Pool is bursty, either producing results frequently on particular image rows or otherwise outputting nothing.
This requires the use of a FIFO at the output of a Max Pool layer.

3.3 Convolution

Convolutional layers are where the bulk of the computation is performed in the network and hence require a large
fraction of the total hardware. Reducing the size of this hardware is essential to the viability of the method proposed
in this paper. As stated previously, this paper is based on the assumption that the convolution uses ternary weights
Manuscript submitted to ACM
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Table 1. An example 3 × 3 Convolutional Filter

a × (−1) b × 0 c × 1
d × 0 e × 1 f × 1
g × 0 h × (−1) i × 0

known and fixed at design time. The im2col transform described in Section 3.1 produces a dense vector to multiply
into the convolutional weights matrix. To understand how the convolutional layers are implemented in this paper,
consider the example convolutional weights shown in Table 1. This shows a single trinarised 3 × 3 convolutional filter
on a grayscale image centered on an input pixel with value ‘e’. The dense input vector of a 3 × 3 convolutional filter,
represented by variables a-i such as in Figure 1, is multiplied by weights known at design time. The output of this
convolution operation is then given as z0 = −a + c + e + f − h. A key insight of this paper is this equation can be
implemented without multiplications as an adder tree in hardware allowing the removal of zero weights.

More generally, the convolution computes Equation 5 which is a sparse matrix vector operation where the matrix is
ternary and known at design time. The sparsematrix vectormultiplication can be implemented as a row ofmultiplications
followed by a different summation for each output. The implementation of the convolution in this paper aims to exploit
sparsity by removing any multiplications with zero, reducing the size or pruning the adder tree required to compute the
summation. The remaining values are multiplied by either −1 or 1. Hence the multiplications can be removed entirely
from the design with the 1 or −1 weight just indicating whether to add or subtract from the sum. As there are typically
numerous filters in the convolution, many summations are performed in parallel. Using knowledge of the weights
ahead of time it is possible to merge subexpressions within the summations to reduce hardware usage.

An example of how knowledge of theweights ahead of time can reduce the amount of hardware through subexpression
elimination is shown in Figure 3. Here, an additional equation z1 = c+d−e− f is computed in parallel to z0 simultaneously
and sharing the subexpression e + f .

This approach requires a specialized datapath to compute the results. The hardware implementation depends on
p, the number of pixels arriving each cycle for a given layer. Under the assumption p ≥ 1 it is straight forward to
construct an efficient hardware block by implementing p versions of the adder trees in parallel. However, when p < 1 a
single adder tree results in idle cycles and an inefficient design. Time multiplexing the computation for different sets of
weights destroys a lot of the advantages of this approach as it becomes much more difficult to eliminate subexpressions
and exploit sparsity. However, if the activations have a sufficently high bitwidth and based on p, word or bit serial
adders can be used to implement the adder trees shown in Figure 4. Assuming 16 bit inputs, a parallel 16 bit adder
requires 2 slices on a Xilinx Ultrascale FPGA to be implemented. If this computation is performed over 4 cycles with
a 4 bit word size, the area required to implement the adder is only 1

2 of a slice. With a bit serial adder, the result is
calculated over 16 cycles and only requires a single LUT or 1

8 of a slice.
The carry is reset to begin computation of the next set of numbers. For addition, the carry is reset to 0 and for

subtraction to 1. The inputs a and b are added with the carry to output the result for that word or bit. For subtraction, b
can be inverted inside the slice. The carry out is stored for the next word or bit to be computed. The output is passed
directly into the next adder of the tree. This reduces the hardware cost for implementing the layers while allowing
them to match the required pixel rate p.

This approach can be applied generally to any 2D convolution with ternary weights and takes advantage of
unstructured sparsity very effectively. Sharing of results dramatically reduces the hardware required and is discussed
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a b c d e f g h i

Reg(c-a) Reg(e+f)Reg(c+d) Reg(h)

Reg(c-a) Reg(e+f-h)Reg(c+d-e-f)

z0z1

Fig. 3. Computing z0 = c + e + f − (a + h) and z1 = c + d − e − f

Reset

a b

+Carry

Carry Out Out

Fig. 4. Word or Bit Serial Adders/Subtractors

further in Section 4. The convolution operation outputs a vector based on the number of filters the layer contains which
is typically followed by batch normalization (BN) and an activation functions such as ReLU.

3.4 Scale and Shift

Batch Normalization (BN) is included in nearly every network due to its ability to improve training times and reduce
overfitting. In feed-forward mode, it is reduced to a simple equation

y = a ⊙ x + b (6)

where x represents activations, a and b are constants to scale and shift from the batch normalization operation known
at design time and ⊙ is the elementwise product. Equation 6 is referred to in this paper as a scale and shift operation.
As BN typically directly follows the convolutional layer, the scaling coefficient of the scaling s from Equation 5 can be
combined into a single equation

y = c ⊙ x + b (7)

where c = s · a as a and s are constants known at design time.
The Scale and Shift hardware block can be implemented with a straight forward multiplication and addition using the

constant values of c,b for each output followed by an activation function. This requires a fixed point multiplication with
a constant after each layer, for each output filter. This is achieved by having a multiplication operation at all outputs
followed by an adder for the bias and finally having the activation function applied on y. As the multiplications are
with constants, depending on the value they might be implemented with or without DSPs at the discretion of the tools.
Manuscript submitted to ACM



Unrolling Ternary Neural Networks 9

a wa b wb c wc d wd

Reg(a*wa ) Reg(b*wb ) Reg(c*wc ) Reg(d*wd )

Reg(a*wa + b*wb ) Reg(c*wc + d*wd )

Reg(a*wa + b*wb + c*wc + d*wd )

Reg(a*wa + b*wb + c*wc + d*wd + sum) sum

Fig. 5. Multiplying and Accumulating weights for the Dense Layer

3.5 MUX Layers

Convolutional layers output a three dimensional image of sizeW ×W × D where a single pixel is a vector of size D
so each output only depends on a small section of the image. Following multiple pooling layers, the convolution will
output D values everyM cycles.

The purpose of the MUX Layer hardware block is to transform a bursty output into a steady one. For the convolution
this block will take D values everyM cycles as input and output D

M values each cycle. The MUX Layer implements this
by buffering the vector of D values in registers and making a multi-cycle MUX to output a portion of the values in
order each cycle. This reduces the width of the bus required to transport the values.

3.6 Dense Layers

CNNs can include dense layers at the end of the network for the final classification. The output of the convolutional
layers is flattened, then passed into the dense layer. Unlike the convolutional layers the dense layer requires the entire
image to be available before any of the outputs can be computed. Similar to the rest of the network, it is assumed they
also have ternary weights.

While the dense layer is also a matrix vector operation, it typically has a significantly larger number of weights
meaning it is expensive to expand it into a tree as with the convolutional layers. Additionally, as a dense layer is
operated on the vector of the entire image, it would be inefficient to use the technique described for convolutional
layers. The main reason for this is the pruned adder tree approach would require the entire image to be buffered
before beginning the computation. This means the hardware to compute the dense layer only being utilised once each
image and would be inefficient and unreasonably large in hardware. For this reason, taking advantage of sparsity and
common subexpression elimination (CSE) such as in Figure 3 is not efficient for dense layers. Because of this, the
approach common in the literature of streaming the weights from memory, multiplying them into the activations and
accumulating the result is adopted as shown in Figure 5. As the weights are known ahead of time they can be stored in
read only memory blocks on chip. The number of MAC units as shown in Figure 5, depends on the size of the dense
layer. Each output of the dense layer has its own accumulation block.
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4 SUBEXPRESSION ELIMINATION

This section discusses techniques that can be applied to merge common subexpressions in the implementation of the
pruned adder trees to reduce the hardware required for implementation. The subexpression elimination problem has a
long history in computer science and its solvers are widely used in many applications such as the GCC compiler. It has
been determined to be NP-hard and hence can only be solved approximately [Cappello and Steiglitz 1984] for large
problems. The subexpression elimination discussed in this paper is a specialized case of the problem. It is an unknown
dense vector multiplied by a sparse matrix of constant values, restricted to −1, 0, 1. Figure 3 shows the desired solution
to the problem given then input equations z0 = c + e + f − (a + h) and z1 = c + d − e − f . The solution should be a
pipelined adder tree aiming for the smallest implementation on an FPGA. As an FPGA has registers after adder blocks,
the cost for Add+Reg is considered the same as just Reg and should optimize this for minimal cost. The implementation
details of the Add+Reg block is considered irrelevant. There are three related approaches to this problem in the literature.
RPAG by Kumm et al. [Kumm et al. 2017] uses constant integer values in the matrix. Hsiao et al. [Hsiao et al. 2006] use
common subexpression elimination (CSE) on a binary matrix for implementation of AES in hardware which will be
modified for ternary values and referred to as top-down CSE (TD-CSE) in this paper. Wu et al. [Wu et al. 2013] expand
on this to what they call gate level delay computing CSE (GLDC-CSE) for binary values which will be modified for
ternary values and referred to as bottom-up CSE (BU-CSE) in this paper.

The constant matrix optimization RPAG of Kumm et al. uses a graph-based algorithm [Kumm et al. 2012] to solve the
generalized constant multiplication problem where the weights can be arbitrary integer numbers instead of restricted
to −1, 0, 1. Conversely, Hsiao et al. require values of either 0 or 1 to use TD-CSE and is hence a specialization of the
problem required to be solved in this work.

4.1 RPAG Algorithm

Kumm et al. [Kumm et al. 2017] propose a method to perform subexpression elimination with integer values. The
algorithm looks at all the outputs of a matrix-vector multiplication and calculates the minimal tree depth, d , required to
get the results. At this depth, it then tries to determine the minimum number of terms needed at depth d − 1 to compute
the terms at depth d . It then performs this iteratively until the depth is 1 resulting in the whole tree being generated.
These steps perform a broad search of the space and hence find very good solutions. However, common subexpressions
are searched which can be shared between integer coefficients which is not necessary in our case. This and the broad
search makes the approach computationally intensive and only suitable for relative small matrices. The algorithm was
recently extended to also utilize 3-input adders, which can be efficiently mapped to recent FPGAs [Hardieck et al. 2018].
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4.2 Top-Down CSE Approach

The TD-CSE algorithm proposed by Hsiao et al. [Hsiao et al. 2006] iteratively eliminates subexpressions of size 2. To
explain the TD-CSE approach, consider the following example of a maxtrix-vector product:

y =

©­­­­­­­­­­­­­«

0 0 1 1 0 0
1 0 1 1 1 0
0 1 0 0 1 1
0 1 0 0 0 1
1 0 1 1 0 0
1 0 0 1 0 0
0 1 0 0 1 1

ª®®®®®®®®®®®®®¬

©­­­­­­­­­­«

x0
x1
x2
x3
x4
x5

ª®®®®®®®®®®¬
=

©­­­­­­­­­­­­­«

x2 + x3
x0 + x2 + x3 + x4

x1 + x4 + x5
x1 + x5

x0 + x2 + x3
x0 + x3

x1 + x4 + x5

ª®®®®®®®®®®®®®¬
. (8)

The TD-CSE algorithm counts the frequency of all subexpressions of size two, selecting the most frequent. In this case,
it is x2 +x3, occurring 3 times. This expression is removed by defining x6 = x2 +x3 and replacing all previous equations
with x6 resulting in

y =

©­­­­­­­­­­­­­«

x6
x0 + x4 + x6
x1 + x4 + x5

x1 + x5
x0 + x6
x0 + x3

x1 + x4 + x5

ª®®®®®®®®®®®®®¬
. (9)

This process continues until there are no more subexpressions occurring more than once.
This approach can be thought of as building multiple adder trees from the inputs to the outputs by creating an

adder each iteration. There are some tricks to implement this approach that can dramatically improve the runtime.
When calculating the most common pairs the results can be stored and reused as, after removing a subexpression,
most of these values do not need to be recalculated. The first iteration requires the number of expressions containing
each pair of variables to be computed where n is the number of expressions, v is the number of variables and p is the
number of pairs of variables in the expressions. For example in Equation 8, n = 7, v = 6 and p =

(v
2
)
=

v(v−1)
2 . The

complexity of the first iteration is thenO(nv2). These results are then stored, and when a pair of variables are chosen to
be removed as a common subexpression, the computation of the update is only O(nv). For the example in Equation 8,
after the subexpression is removed only combinations containing x2, x3 and x6 would need to be computed. The count
of previous pairings between say, x0 and x1, do not need to be updated. Another minor optimization to further skip
computations is to look at combinations with x2 and x3. If there were no expressions in common in the initial equations,
say between x2 and x5, then the initial calculations would have a value of zero here. As the number of subexpressions
can only decrease after removing a subexpression, this value of zero does not need to be recomputed and the pair
between x2 and x5 can be skipped. As the problem grows in size, the amount this saves increases but the update is still
O(nv). It should also be noted that v grows by 1 each new subexpression that is removed as a new variable is created for
it. This method is generalized to −1, 0, 1 reasonably easily by creating another table for subexpressions with different
signs.

Manuscript submitted to ACM



12 Tridgell et al

4.3 Bottom-Up CSE Approach

Wu et al. [Wu et al. 2013] propose a method they term gate-level delay computing CSE (GLDC-CSE) for AES S-Box
implementation. We expand this method to −1, 0, 1 instead of 0, 1 and refer to it as bottom-up CSE (BU-CSE). It considers
building the tree from the other direction than TD-CSE as in RPAG. Instead of starting at the inputs, it starts at the
outputs and works back to the inputs. Compared with TD-CSE, finding common expressions is more computationally
intensive but can find better results as larger common subexpressions are preferred. When building the tree from the
bottom up, the size of the largest common subexpression needs to be determined for every pair of vectors. The largest
common subexpression is then selected to be removed. For the example in Equation 8, x0 + x2 + x3 appears twice. The
subexpression, x6 = x0 + x2 + x3 is added to the table of updated equations leading to

y =

©­­­­­­­­­­­­­­­«

x2 + x3
x4 + x6

x1 + x4 + x5
x1 + x5

x6
x0 + x3

x1 + x4 + x5
x0 + x2 + x3

ª®®®®®®®®®®®®®®®¬

. (10)

Note the new expression, x0 + x2 + x3 added in the bottom row. This is because x6 still contains a subexpression of
x2 + x3 or x0 + x3 that can be removed.

The algorithm for removing common terms is described as follows:

(1) Compute the number of common terms for each pair of vectors and store this as the pattern matrix

(2) Find the largest value in the pattern matrix and the vectors it corresponds to
(3) Remove that subexpression from all matching vectors following the process described for the example in

Equation 8
(4) Update the pattern matrix

(5) Go to step 2 until the largest value in the pattern matrix is 1

5 CASE STUDY ON THE VGG CNN OF LI ET AL. FOR THE CIFAR10 DATA SET

This section considers applying the above techniques to the network described in Li et al. [Li et al. 2016], as applied to
the CIFAR10 dataset which classifies 10 different image types: airplane, automobile, bird, cat, deer, dog, frog, horse, ship
and truck.

5.1 CNN Training

A CNN similar to VGG-7 was trained using a scheme adopted from Li et al. The following parameters were used:

• A batch size of 128
• An initial learning rate of 0.1
• Learning rate decays by a factor of 0.1 every 100 epochs.
• Run for 120k steps or 307.2 epochs
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Table 2. Effect of ϵ on sparsity and accuracy for CIFAR10

TNN Type ϵ Sparsity ( % ) Accuracy
Graham [Graham 2014] (Floating Point) - - 96.53%
Li et al. [Li et al. 2016], full-size 0.7 ≈ 48 93.1%
Half-size 0.7 ≈ 47 91.4%
Half-size 0.8 ≈ 52 91.9%
Half-size 1.0 ≈ 61 91.7%
Half-size 1.2 ≈ 69 91.9%
Half-size 1.4 ≈ 76 90.9%
Half-size 1.6 ≈ 82 90.3%
Half-size 1.8 ≈ 87 90.6%

We also used data augmentation as described by Li et al. [Li et al. 2016] where the image is padded with 4 pixels to each
side and randomly cropped back to the 32x32 image size during training. Li et al.’s method of training a CNN utilises a
threshold

∆∗ ≈ ϵ · E(|W |) (11)

where Li recommend a value of ϵ = 0.7. If the magnitude of the floating point weight is less than this threshold, ∆∗, it is
set to 0, otherwise the sign of the floating point weight is used multiplied with a scaling factor s . The parameter ϵ thus
directly controls the sparsity of a layer in this method.

This technique of adjusting ϵ to tradeoff accuracy and sparsity of the network simply and quickly is not explored in
Li et al. [Li et al. 2016] but is a strong feature of their method and important to our approach as sparsity directly effects
the size of the hardware. The network architecture proposed by Li et al. was modified by reducing the number of filters
by half in all convolutional layers of the network and the size of the dense layer by 8× before training. This was done
as it had a minor impact on accuracy but dramatically reduces the size of the network for a hardware implementation.

The results obtained for different values of ϵ are summarised in Table 2. We also note that the result of our
implementation in the second row of the table is higher than the 92.6% reported by Li et al. [Li et al. 2016] which is
likely due to longer training time. As Table 2 shows, the choice of ϵ = 0.7 produces a network with high accuracy but is
relatively dense, with a sparsity of around 47%. The remaining results were obtained by maintaining ϵ = 0.7 in the
first layer, ϵ = 1.0 for the dense layers and adjusting all the other convolutional layers to use a different value of ϵ . As
Equation 11 shows, a larger value of ϵ corresponds to a higher threshold. As the weight is set to 0 if it is below this
threshold, a higher value of ϵ means increased sparsity. As ϵ increases, a slight drop in accuracy is observed with an
increase in sparsity dependent on the value shown in Table 2.

With the value of ϵ = 1.4 chosen from Table 2, the computation required for the network is reduced by almost half
compared to a value of ϵ = 0.7. This is extremely advantageous as, for our implementation of Equation 5, increased
sparsity reduces the area allowing a larger design to fit on a FPGA. The final network architecture chosen is given in
Table 3. Batch normalization and ReLU activations are used after each convolutional and dense layer.

5.2 The Impact of Subexpression Elimination Techniques

To compare the effectiveness of the three CSE techniques, ten models with the above network, each with a random
initialisation, were trained with a chosen ϵ = 1.4. The accuracy obtained from these models with floating point
activations is 91.7% ± 0.1% and using 16 bit fixed point activations is 90.9% ± 0.1%. The first layer was selected from all
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Table 3. Architecture of the CNN used in this paper

Layer Type Input Image Size Num Filters ϵ Sparsity
Conv2D 32 × 32 × 3 64 0.7 54.7%
Conv2D 32 × 32 × 64 64 1.4 76.9%
Max Pool 32 × 32 × 64 64 - -
Conv2D 16 × 16 × 64 128 1.4 76.1%
Conv2D 16 × 16 × 128 128 1.4 75.3%
Max Pool 16 × 16 × 128 128 - -
Conv2D 8 × 8 × 128 256 1.4 75.8%
Conv2D 8 × 8 × 256 256 1.4 75.4%
Max Pool 8 × 8 × 256 256 - -
Dense 4096 128 1.0 76.2%
Softmax 128 10 1.0 58.4%

Table 4. Comparison of CSE techniques on ternary weights with 2-input adders (top) and 3-input adders (bottom) for the first layer

Technique Avg Adders Avg Reg Avg Add/Reg Avg Time (s)
None (2-input) 755.2 146.5 901.7 -
RPAG (2-input) 487.3 26.7 460.6 52.3
TD-CSE (2-input) 300.4 309.8 610.2 0.317
BU-CSE (2-input) 296.3 345.7 642 0.459
None (3-input) 406.2 54.1 460.3 -
RPAG (3-input) 332 7.5 324.5 28460.8
TD-CSE (3-input) 246.7 294.5 541.2 0.297
BU-CSE (3-input) 258.8 321.7 580.5 0.474

ten trained models with a matrix size of 27 inputs and 64 outputs where all values are −1, 0, 1. The average results of
the techniques are compared in Table 4 for 2-input as well as 3-input adders.

It can be seen that RPAG has the lowest register and adder combined cost. This is likely the smallest in hardware on
an FPGA due to the structure of adders having optional registers at the outputs. The cost on the FPGA of an adder and a
register compared with just a register is similar, hence the rightmost column provides the most meaningful comparison
[Kumm et al. 2012]. These results suggest that RPAG is the best technique, followed by TD-CSE, then BU-CSE.

However, experiments showed that RPAG does not scale well to the larger layers as shown by the significant running
time for the smallest layer in Table 4. The scalability of these techniques to larger matrices is significant for this
application, as the matrix size grows significantly in the later layers. For those, the TD-CSE method is the most scalable
as it can skip large portions of the computation each cycle. These results only reflect a first layer of a network with
more outputs than inputs. In all subsequent layers there are more inputs than outputs in the rest of a CNN.

Table 5 shows a comparison between the TD-CSE and BU-CSE techniques for the larger matrices in layer 2. These
matrices had 576 inputs and 64 outputs with a sparsity of around 75%. These results show that the BU-CSE technique
finds better solutions for this configuration. It was not possible to run RPAG on these matrices as the large size makes it
infeasible. This suggests that BU-CSE is better for larger matrices but the results are similar enough that both should be
run to find a better solution.
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Table 5. Comparison of CSE techniques on ternary weights with 2-input adders (top) and 3-input adders (bottom) for the second layer

Technique Avg Adders Avg Reg Avg Add/Reg Avg Time (s)
None (2-input) 8936.4 254.3 9190.7 -
TD-CSE (2-input) 3970.6 1521.5 5492.1 20.68
BU-CSE (2-input) 3890.3 902.0 4792.3 55.94
None (3-input) 4536.7 91.6 4628.3 -
TD-CSE (3-input) 2826.8 1447.9 4274.7 20.78
BU-CSE (3-input) 2425.6 439 2864.6 58.59

Table 6. Common Subexpression Elimination and Hardware Usage on the Convolutional Layers
The adder-tree section of the convolution was run out-of-context with area optimizations; Only 2-input adds are compared in this
table for consistency

Layer Method Adds Regs Adds+Regs Time(s) Mem(GB) CLB/148K FF/2.4M LUTS/1.2M P&R(hrs)

1

None 731 137 868 - - 1400 8723 8272 0.5
RPAG 451 31 482 64 0.008 894 5764 6260 0.48
TD-CSE 295 304 599 0.4 0.029 - - - -
BU-CSE 295 321 616 0.5 0.03 820 4499 5230 0.45

2
None 8432 249 8681 - - 15231 119848 116345 1.08

TD-CSE 3782 1517 5299 24 0.1 - - - -
BU-CSE 3686 858 4544 64 0.17 10258 71908 66131 0.93

3
None 17481 491 17972 - - 15171 102657 77743 1.9

TD-CSE 8466 2299 10765 89 0.18 - - - -
BU-CSE 8492 1878 10370 545 1.1 8772 61965 36611 1.13

4
None 36155 586 36741 - - 30536 206940 164458 4.25

TD-CSE 17143 4214 21357 873 0.63 - - - -
BU-CSE 17309 3056 20365 2937 6.6 16909 118476 73581 2.68

5
None 71050 1198 72248 - - 18414 165794 85743 3.86

TD-CSE 32829 6830 39659 3088 1.2 - - - -
BU-CSE 33026 6109 39135 25634 44 7579 89820 39805 1.72

6
None 144813 1270 146083 - - 35117 335134 180402 11.15

TD-CSE 62653 13852 76505 26720 4.8 - - - -
BU-CSE 63832 10103 73935 147390 191.0 13764 160634 74696 3.08

In the following, we selected one out of the ten models trained for ϵ = 1.4 and applied CSE to its weights in all
convolutional layers to reduce the amount of computation required for the FPGA implementation. Table 6 shows the
results of running subexpression elimination on the convolutional layers of the trained network described in Table 3,
comparing different techniques. The table does not show RPAG for layers 2-6 as it becomes computationally prohibitive.
The reason that only the first two layers use 3-input adders in Table 3 is that the remaining layers compute the result
over multiple cycles as discussed with Figure 6. Here, 3-input adders can not be efficiently utilized.

The results from Table 4 show that RPAG is the most successful on the first layer of the network. Table 6 shows that,
except for the first layer, BU-CSE finds the superior solution on the chosen network. One possible reason is the relative
numbers of inputs and outputs as shown by the contrasting results in Tables 4 and 5. Layer 1 matrices used for the
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Table 7. Improvement in resource usage when applying BU-CSE vs None

Layer % decrease in Adds+Regs % decrease in CLBs %decrease in FFs % decrease in LUTs
1 -29.0 -41.4 -48.4 -36.8
2 -47.7 -32.6 -40.0 -43.2
3 -42.3 -42.1 -39.6 -52.9
4 -44.6 -44.6 -42.3 -55.3
5 -45.8 -58.8 -45.8 -53.6
6 -49.4 -60.8 -52.1 -58.6

comparison in Table 4 have a smaller number of inputs than outputs. Conversely, layers 2-6 have a much larger number
of inputs than outputs. The scalability of BU-CSE and TD-CSE should be mentioned as the time taken to run BU-CSE
on the 6th (largest) convolutional layer is over a day, where as TD-CSE only needs a couple of hours and significantly
less memory. This time is relatively insignificant for the model updated reasonably infrequently and can be considered
an extension of the training time.

The effectiveness of the CSE results can be compared by running Vivado with aggressive area optimizations in
synthesis and implementation in out of context mode. The Verilog generated without CSE (‘None’ in Table 6) is compared
to the Verilog generated after optimization with the BU-CSE algorithm. The effectiveness of CSE is compared with
the difference in the originally generated Verilog in columns ‘Adds’, ‘Regs’ and ‘Adds+Regs’. The runtime and peak
memory used to run the CSE algorithm is shown in columns ‘Time’ and ‘Mem’. The last four columns show the logic
resources after Place and Route (P&R) as well as its runtime. Table 7 compares the rows for None and BU-CSE from
Table 6 by calculating the decrease when using CSE. The results demonstrate that the solution to the CSE problem of
an entire network layer is difficult for Vivado to manage. The reason for the difference in results may be the abstracted
view of the problem that the CSE methods have. This allows them to explore the problem in more detail and find a
better solution than Vivado. Due to the use of word and bit serial adders, the amount of area that is used for layers
3-6 is reduced significantly compared to the amount of adders required. As discussed previously in Section 3.6, it is
ineffective to use the pruned adder tree for the dense layers and thus CSE is not used for these.

5.3 FPGA Implementation

The network described by Li et al. [Li et al. 2016] contains floating point activations which limits FPGA performance as
it is hardware intensive to implement add and multiply blocks. After the network was trained, the batch normalization
variables and scaling coefficients for the convolutional layers were extracted from the model. A Python script then
computed the network performance using these weights on the CIFAR10 test set in fixed point. By outputting the
maximum absolute values obtained at various stages of the calculation, it was determined to use a total of 16 bits to
maintain accuracy, ensure no overflow and to simplify the implementation of the word and bit serial adders discussed in
Section 3.3. The weights of the network are all ternary values, however for the activations of the network, 4 fractional
bits were used leaving 12 integer bits. Each layer is followed by batch normalization and also has a scaling factor
which are floating point values. These constant values were combined in floating point, as discussed in Section 3.4 and
Equation 7, then quantised with 6 fractional bits leaving 10 integer bits. The number of fractional bits was obtained
experimentally to achieve maximum precision without the risk of overflow. This was relatively simple to apply to the
network and its impact on the performance achieves the same result as the floating point scaling reported in Table 2.
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Input Image

Conv1/2 (16-bit adders)

Max Pool 1

Conv3/4 (4-bit adders)

Max Pool 2

Conv5/6 (1-bit adders)

Max Pool 3

MUX Layer

Output

32x32x3 3 values every cycle

32x32x64 64 values every cycle

16x16x64 64 values every 4 cycles

16x16x128 128 values every 4 cycles

8x8x128 128 values every 16 cycles

8x8x256 256 values every 16 cycles

4x4x256 256 values every 64 cycles

4096 4 values every cycle

Fig. 6. Impact of Max Pool Layers

The design was then implemented using Chisel3 [Bachrach et al. 2012] which facilitated the generation of irregular
adder trees. The CNN was partitioned into hardware blocks discussed in previous sections to stream the images through
the network as shown in Table 8.

As discussed in Section 3.3, convolutional layers can be implemented with word or bit serial adders if the throughput
is low enough. This is possible to apply to the 3rd and 4th convolutional layers as the Max Pool layer shrinks the image
from 32 × 32 to 16 × 16, dropping the throughput to 1

4 of what it was originally. As 16 bit fixed point is used for the
activations the adder trees for the 3rd and 4th convolutional layers can use 4 bit word serial adders requiring 1

4 of the
area. Similarly for the 5th and 6th convolutional layers, the throughput required is only one output every 1

16 cycles.
Hence, bit serial adders are used to compact the design to 1

16 of the area of a full adder while maintaining sufficient
throughput to ensure a fully pipelined design. This avoids the adders idling by creating hardware to compute the result
over numerous cycles.

Figure 6 demonstrates how this impacts the design at a high level. The left side shows the image size, while the
right side shows the throughput required. This structure allows the pruned adder tree to be implemented efficiently
while still exploiting unstructured sparsity and common subexpressions in the design to reduce the area required. It is
ineffective to implement the dense layer using CSE as discussed in Section 3.6.
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Table 8. FPGA CNN Architecture blocks

Operation Image Size In Channel In Channel Out
Buffer 32x32 3 3
Conv 32x32 3 64
Scale and Shift 32x32 64 64
Buffer 32x32 64 64
Conv 32x32 64 64
Scale and Shift 32x32 64 64
Buffer 32x32 64 64
Max Pool 32x32 64 64
Buffer 16x16 64 64
Conv 16x16 64 128
Scale and Shift 16x16 128 128
Buffer 16x16 128 128
Conv 16x16 128 128
Scale and Shift 16x16 128 128
Buffer 16x16 128 128
Max Pool 16x16 128 128
Buffer 8x8 128 128
Conv 8x8 128 256
Scale and Shift 8x8 256 256
Buffer 8x8 256 256
Conv 8x8 256 256
Scale and Shift 8x8 256 256
Buffer 8x8 256 256
Max Pool 8x8 256 256
FIFO 4x4 256 256
MuxLayer 4x4 256 4096
Dense 1x1 4096 128
Scale and Shift 1x1 128 128
MuxLayer 1x1 128 128
Dense 1x1 128 10

5.4 The Aggregated Network

The VGG-7 network blocks for the FPGA design are described in Table 8. This architecture is designed to accept a
single pixel each cycle such that p = 1. Given an image size ofW ×W ,W 2 cycles are therefore required to stream each
image in. Hence, classifying a new image everyW 2 cycles and assuming a clock frequency of fclk gives a throughput of
fclk
W 2 classifications/second. The ternary MACs required to compute the VGG-7 style network described in Table 3 for a
single image is given in Table 9. Operations in Max Pool and batch normalization are considered trivial and not counted
in this total.

Hence for a fully floating point implementation with the equivalent throughput to this FPGA implementation, this
network requires a total of 153MMAC/Image × fclk

W 2 Images/sec × 2 Ops/MAC. In the case of a network with ternary
weights, the multiplication is with -1,0 and 1. Table 9 then shows the MMACs after accounting for sparsity, reducing the
cost per image to 38MMACs. As discussed in Section 3.3, this can be implemented with only adds and subtracts with
the CSE structure. The multiplication is no longer performed in the convolutional layers but still in the dense layers
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Table 9. Ops needed to compute

Layer Num Mults Num Mults With Sparsity With CSE
Conv1 32*32*3*3*3*64 1769472 716800 630784
Conv2 32*32*3*3*64*64 37748736 8637440 4653056
Conv3 16*16*3*3*64*128 18874368 4559616 2654720
Conv4 16*16*3*3*128*128 37748736 9396480 5213440
Conv5 8*8*3*3*128*256 18874368 4656768 2504640
Conv6 8*8*3*3*256*256 37748736 9356736 4731840
Dense 4096*128 524228 524228 10484561
SM 128*10 1280 1280 25601
Total 153289924 153 MMACs/Image 38 MMACs/Image 21 MOps/Image

1 Obtained by converting one MACs to two Ops

and hence the final column in Table 9 shows the MOps needed on the FPGA for a single image, counting 1 MAC as 2
Ops. The actual computation performed on the FPGA with CSE is therefore 21MOps/Image × fclk

W 2 Images/sec. With
these parameters and the implementation of the dense layers described in section 3.6, the largest dense layer needs
4096 × 128 × 2 b = 1Mb of storage for the weights as each weight is only 2 bits. As this is computed at a rate of 4 per
cycle, the bandwidth for this memory is required to be 4 × 128 × 2 b = 1 Kb each cycle. Given that a BRAM on a Xilinx
device typically has an output bandwidth of 64 bits each cycle, this implies just 16 BRAMs are needed to store the
weights, each storing 64 kb of data.

6 RESULTS

The entire system is implemented on an AWS F1 instance and achieves a frequency of 125MHz. The entire system is a
loopback application which passes the CIFAR10 images in from the C application using DPDK libraries [Foundation
2015], onto the FPGA via PCIe, through the network and back to the C program. The relatively low clock frequency
of 125MHz was necessary due to routing congestion that we observed when using tighter clock constraints. The
bottleneck is routing between the convolutional layers. Due to the windowing for the convolution in the buffer layer, a
large amount of routing to different CLBs for the input of the matrix multiplication is required. Due to the limits in
routing resources, it is difficult to fanout the wide bus to all adders that require that input. The critical path is in the
layers that have high numbers of inputs that are going to a variety of locations. Conv2 has 9*64 inputs with 16 bit bus
width. This is a wide bus width, but requires a smaller number of unique locations and hence the granularity of the
routing can be course. Conv4 has 9*128 inputs with 4 bit bus width and Conv6 has 9*256 inputs with 1 bit bus width.
With a larger convolutional layer, more fanout is required at these points. The critical path in this design is between the
two modules in bold in Table 8.

The synthesisable Verilog register transfer level (RTL) code was generated in Chisel3, with custom modules being
used to invoke components from the Vivado IP Core, such as the FIFOs. The design was developed using Vivado 2018.2.
The hardware was verified with an input image passed into the design and obtaining identical output as verified against
a Python script used to compute the fixed point performance of the network in Table 2. The code for the implementation
is publicly available on github1.

1github.com/da-steve101/aws-fpga.git and github.com/da-steve101/binary_connect_cifar.git
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Table 10. Vivado size hierarchy

Block LUTs/1182240 FFs/2364480
Conv1 3764 ( 0.3% ) 10047 ( 0.4% )
Conv2 40608 ( 3.4% ) 71827 ( 3.0% )
Conv3 55341 ( 4.7% ) 56040 ( 2.4% )
Conv4 111675 ( 9.4% ) 110021 ( 4.7% )
Conv5 73337 ( 6.2% ) 79233 ( 3.4% )
Conv6 127932 ( 10.8% ) 139433 ( 5.9% )
All Conv 535023 ( 45.3% ) 631672 ( 26.7% )
Dense 12433 ( 1.1% ) 19295 ( 0.8% )
SM 500 ( 0.04% ) 442 ( 0.02% )
Whole CNN 549358 ( 46.5% ) 659252 ( 27.9% )
Whole design 787545 ( 66.6% ) 984443 ( 41.6% )

Table 10 shows the resources used by various layers of the network in the implemented design. In total, 66.6% and
41.6% of the LUT and FF resources were utilized.

For fclk = 125MHz, the total theoretical Ops required for an equivalent dense floating point implementation is
153MMAC/Image × 125MHz

322 Images/sec × 2 Ops/MAC = 37.3 TOps/sec. For this implementation, multiplications in the
convolutional layers are not required and a significant portion of the operations can be removed. Hence, in practice
only approximately 2.5 × 1012 Adds/sec are necessary. The implemented system achieves the throughput of classifying
122k images/sec and a latency of 29 µs as only a fraction of the PCIe bandwidth is needed. This is including a DPDK
[Foundation 2015] virtual ethernet interface to send and receive packets from the FPGA. Table 11 gives a comparison of
this work with previously reported results for CIFAR10. It shows the properties of different implementations. There is a
TOps column in this table to show the actual Ops computed on the FPGA, the logical Ops and the equivalent floating
point Ops for the same sized network. As these operations are typically very few bits, multiplying and accumulating
with 1 or 2 bit numbers are typically integrated in a single logical statement. For this reason the actual logical operations
are also shown. The values in order for the TOps column are Actual/Logical/Equivalent (A/L/E). Table 11 shows that
our work has a significant improvement in both latency and throughput compared with the previous best reported
results for FPGAs. The latency reported is for the entire system.

Remarkably, this is achieved with better accuracy compared to previous work as much higher precision activations
are used. Despite the low frequency, the current design already meets the performance of all existing comparable
implementations even after normalizing for the large FPGA used in this paper.

It should be noted that for a fully floating point network, 37.3 TOps/sec would be required to achieve the same
number of classifications. Only a fraction of these need to be executed in practice due to our compile-time optimisations
as shown in the right two columns of Table 9. This shows the reduction is mostly due to the implementation taking
advantage of unstructured sparsity of 75%. This is further reduced by the application of CSE to the adder tree to
reduce the remaining operations by removing the multiplications and merging computations. Not reflected in the
TOps but critical for the design is the 4 bit word serial adders and the bit serial adders which reduce area by factors of
approximately 4 for layers 3 and 4 and 16 for layers 5 and 6, making this method feasible for the AWS F1 platform.
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6.1 Comparison with previous work

The method proposed by Prost-Boucle et al. [Prost-Boucle et al. 2017] achieves the previously best reported low
precision throughput on an FPGA for CIFAR10. This work implements a VGG-7 style network with ternary weights and
activations. The approach is similar to Baskin et al. [Baskin et al. 2018] and Li et al. [Li et al. 2017] at a higher frequency
of 250MHz and using hand written register transfer language (RTL) as opposed to C-based high-level synthesis (HLS)
tools. Their work is also the most similar to ours both in architecture and network choice, and they used an FPGA
approximately 4× smaller than ours. Compared with their work, our design achieves significantly higher FPS (122k FPS
vs 27k FPS). Accounting for the much larger FPGA used in this paper, this improvement in throughput disappears as the
frequency is 2× higher than achieved with this design. The reason for the comparable throughput despite the advantage
of exploiting sparsity is the use of 16-bit activations in this paper as opposed to ternary activations in Prost-Boucle et
al. [Prost-Boucle et al. 2017] and binary activations in Fraser et al. [Fraser et al. 2017]. This design choice results in
higher accuracy of 90.9% on CIFAR10 compared to Prost-Boucle et al. with 86.7% or Fraser et al. with 88.7%.

The custom ASIC accelerator by Jouppi et al. [Jouppi et al. 2017], was designed with datacenter requirements in
mind. Their work uses higher precision weights, meaning higher accuracy can probably be achieved. Due to the much
higher frequency of 700MHz compared to 125MHz and the difficulty of comparing the amount of hardware used it is
hard to make a meaningful comparison on throughput. Given the die area they report of 331mm2 and the Ultrascale
of 2256mm2 the ASIC is significantly smaller. Hence, in terms of throughput alone, the TPU is superior to this work.
However, the latency achieved by this design is very low. While the TPU does not have a benchmark for CIFAR10,
they quote a latency of around 10ms to achieve the peak throughput with a batch size of 250 images. This is nearly 3
orders of magnitude more than the implementation in this paper. For latency sensitive applications, this is a significant
difference. Additionally, the TPU is not commercially available for purchase and is accessible only through Google
cloud.

YodaNN [Andri et al. 2017] creates a very small ASIC with an area of 1.9mm2. They use binary weights and 12 bit
activations and hence achieve a very high throughput for the area they used. This is lower precision than the TPU and
hence would likely lose some accuracy. However, the throughput they get for the area is nearly 3× that of the TPU and
using 65 nm technology more than double the TPUs 28 nm.

Venkatesh et. al. [Venkatesh et al. 2017] use 14nm technology to claim a peak speed of 2.5 TOps/sec with a size of
1.09mm2. This uses ternary activations and half precision floating point, meaning it will likely have higher accuracy
than YodaNN.

To summarise, the method proposed in this work achieves the highest throughput and the lowest latency reported
on an FPGA platform so far, significantly reducing the gap to the highly customized ASIC architectures.

Figure 7 shows a comparison of accuracy and throughput normalized for Logic Elements (LE) and Logic Cells
(LC). This figure compares the available FPGA implementations on the CIFAR10 dataset. Due to the higher precision
activations chosen in this paper, the accuracy achieved by this design is significantly higher. Despite the higher precision
used, this design keeps up in throughput per LE or LC with other much lower precision implementations.

7 CONCLUSION

The method described of unrolling a convolution with ternary weights is very efficient for inference due to its ability
to exploit unstructured sparsity. Combined with the use of word or bit serial adders, this allows a very high image
throughput and low latency. While it is difficult to take advantage of sparsity on traditional computational platforms
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Table 11. Comparison of CNN inference implementations for CIFAR10 where reported for ASICs (top) and FPGAs (bottom).

Reference Hardware Precision Freq. Latency TOps/sec FPS Accuracy
(mm2,nm,LE5/LC5 ×106) (wghts, actv) [MHz] A/L/E6

[Venkatesh et al. 2017] ASIC(1.09,14,–) (2,162) 500 – 2.5/2.5/2.5 – 91.6%3

[Andri et al. 2017] ASIC(1.9,65,–) (1,12) 480 – 1.5/1.5/1.5 434 –
[Jouppi et al. 2017] ASIC(331,28,–) (8,8) 700 ≈10 ms 86/86/864 – –
[Baskin et al. 2018] 5SGSD8(1600,28,0.7) (1,2) 105 – – 1.2 k3 84.2%
[Li et al. 2017] XC7VX690(1806.25,28,0.7) (11, 1) 90 – 7.7/3.9/7.7 6.2 k 87.8%
[Liang et al. 2018] 5SGSD8(1600,28,0.7) (1,1) 150 – 9.4/4.7/9.4 7.6 k3 86.31%
[Prost-Boucle et al. 2017] VC709(1806.25,28,0.7) (2,2) 250 – 8.4/4.2/8.4 27 k 86.7%
[Umuroglu et al. 2017] ZC706(961,28,0.35) (1,1) 200 283 µs 2.4/1.2/2.4 21.9 k 80.1%
[Fraser et al. 2017] KU115(1600,20,1.45) (1,1) 125 671 µs 14.8/7.4/14.8 12 k 88.7%
This work VU9P(2256.25,20,2.6) (2,16) 125 29 µs 2.5/2.5/37.3 122k 90.9%

1First layer is fixed point, 2floating point, 3estimated, 4 92 TOps/sec peak, 5 LE and LC are from Xilinx or Altera documentation of the
FPGAs, 6 Actual/Logical/Equivalent
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such as CPUs and GPUs, our method has no overhead for exploiting sparsity as redundancies are removed at compile
time. This paper has also demonstrated that the technique of Li et al. can directly tradeoff sparsity and accuracy. Finally,
as our architecture does not require the image to be buffered, larger images such as in ImageNet could still be used
with the main constraints in implementation being the CNN size and the sparsity that can be achieved with acceptable
accuracy.

While our technique is only loosely dependent on image size as there is only a limited amount of buffering, it is
strongly dependent on the CNN size. This technique has the disadvantage that compared to other approaches that can
support larger networks this method is restricted by the amount of hardware available. However, it has the advantage
of very efficiently exploiting unstructured sparsity and common subexpressions. Additionally, we do not require large
batch sizes, resulting in a very low latency. Our approach of unrolling the entire inference computation has only recently
become feasible due to the increased size of FPGAs, improved quality of tools and research into low precision networks.
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As FPGA capacity continues to increase, our method may become more favourable, particularly for small to medium
neural networks. Future work will involve creating an implementation of ImageNet which utilises multiple FPGAs,
in particular using Amazon f1.16xlarge instances which contain 8 FPGAs. Research into improving the merging of
subexpressions for favourable routing in the convolutional layers should also be explored.

ACKNOWLEDGEMENT

This work was partially funded by the Australia–Germany Joint Research Co–operation Scheme and the German
Academic Exchange Service (DAAD) under grant no. 57388068. This work was also supported by a CMCRC scholarship.

A SUPPLEMENTARY MATERIALS

The github repo at https://github.com/da-steve101/binary_connect_cifar is written in chisel3 that generates the VGG
network in Verilog and Python scripts are used to verify the results and perform the CSE. This generated code is used
in https://github.com/da-steve101/aws-fpga and has an interface modified from the AWS cl_sde example in branch
sde_if_test.
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