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ABSTRACT
As the complexity of contemporary hardware designs continues to

grow, functional verification demands more effort and resources in

the design cycle than ever. As a result, manually debugging RTL

designs is extremely challenging even with full signal traces after

detecting errors in chip-level software simulation or FPGA emula-

tion. Therefore, it is necessary to reduce the burden of verification

by automating RTL debugging processes.

In this paper, we propose a novel approach for debugging with

the use of LTL specification mining. In this approach, we extract

fine-grained assertions that are implicitly encoded in the RTL de-

sign, representing the designer’s assumptions, to localize bugs that

are only detected when high-level properties are violated from long-

running full-system simulations. We employ template-based RTL

spec mining to infer both safety and bounded liveness properties.

We propose strategies to convert multi-bit signals to atomic propo-

sitions based on common RTL design idioms such as ready-valid

handshakes and specific state transitions using automatic static

analysis.

Our initial results with a tiny RISC-V core design show that this

methodology is promising for localizing bugs in time and space

by demonstrating that the mined fine-grained LTL properties are

violated before a high-level test failure condition occurs, such as a

timeout or hanging, and can point to specific lines of suspect RTL.
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Assertion checking.

KEYWORDS
specification mining, bug localization, RTL verification

ACM Reference Format:
Vighnesh Iyer, Donggyu Kim, Borivoje Nikolic, and Sanjit A. Seshia. 2019.

RTL Bug Localization Through LTL Specification Mining (WIP). In 17th
ACM-IEEE International Conference on Formal Methods andModels for System

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6997-8/19/10. . . $15.00

https://doi.org/10.1145/3359986.3361202

Design (MEMOCODE ’19), October 9–11, 2019, La Jolla, CA, USA. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3359986.3361202

1 MOTIVATION
It is no secret that functional verification is the main bottleneck of

the modern SoC design process, requiring huge effort and resources

in the design cycle [2]. As hardware designs are getting more so-

phisticated, RTL debugging is much more challenging. Even if we

have full signal traces for errors that only manifest in full-system

software simulation or FPGA emulation, it is mentally demanding

to localize their root causes in the RTL design due to its complexity.

For example, Kim et al. [7] report assertion failures when the out-

of-order RISC-V processor BOOM [1] was emulated on an FPGA,

while executing the SPEC2006 benchmark suite. Some assertions

were fired when the pipeline was hung, but such a failure condition

has many potential causes. Even with a full waveform extracted

from emulation, it was extremely challenging for the designer to

localize the RTL bug since manual inspection of all possible causes

in the complex hardware design requires significant time and effort.

While designer specified assertions are useful for catching errors,

they are typically high-level and do not direct the designer to where

a bug originated. While it is easy to check high-level properties

at runtime with low overhead, checking violations of fine-grained

properties caused by odd interactions in failing tests is also crucial

for bug localization. In this paper, we propose the use of specifi-

cation mining to derive fine-grained design properties that help

localize a bug.

1.1 Hypothesis
We hypothesize that if a test fails on a mature design that passes

many other tests, an implicit assumption the designer made about

the design was likely violated. These assumptions are often not

made explicit and usually describe common RTL transition pat-

terns, such as the ones in Figure 1. Linear temporal logic (LTL) is a

suitable formalization of these RTL idioms that can describe many

meaningful properties.

We can extract these designer assumptions from waveforms

of “normal” design behavior as mined specifications. These spec-
ifications can be added to the RTL design as assertions to catch

anomalies earlier and with greater locality.

1.2 Prior Work
SAT-solver-based bug localization is a popular technique for hard-

ware debugging. Smith et al. [11] present a technique to localize

post-fabrication defects by solving a SAT problem given a set of

https://doi.org/10.1145/3359986.3361202
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clk

req

resp

(a) G (req→ XF resp)
A request is followed by a

response.

clk

req

resp

(b) G (req→ XX resp)
A request gets a response in

exactly 2 cycles.
clk

valid

ready

(c) G (valid→ X (validU ready))

Once valid is asserted, it remains
high until ready is asserted.

clk

valid

ready

(d) G ((valid ∧ ready) →
(X ready ∨ XX ready))

After a R/V transaction, the
slave is ready within 2 cycles.

Figure 1: Examples of common RTL idioms that can be
represented as LTL properties.

failing test vectors. REDIR [4] uses a combination of mux instru-

mentation and SAT solving, along with executed statement analysis

from RTL simulation to localize injected design bugs. Mux instru-

mentation involves adding bug models to the RTL design that could

rectify common design bugs, such as using the wrong logical oper-

ator, and adding a mux to select between the bug model and the

existing RTL which can be controlled by the SAT solver. Mirzaeian

et al. [10] also use SAT-solver-based techniques with word-level

mux instrumentation and a fault candidate list and demonstrated a

technique to whittle down the candidates. While these techniques

can enable spatial bug localization, they scale poorly for large se-

quential designs where many scenarios could have caused the bug

and the design has to be unrolled for many cycles to reveal buggy

behavior.

Specification mining has been used for analyzing behavior, con-

structing models, and evaluating test suites for software. Perra-

cotta [14] mines properties from software execution traces and

property templates, and can handle mining from traces where a

property is occasionally violated. van der Aalst et al. [12] develop

a general LTL mining algorithm on finite-length traces and mixes

temporal operators with universal and existential quantification.

Texada [8] introduces a spec mining tool that can mine any LTL for-

mula with a powerful recursive algorithm, and introduces notions

of confidence, support, and support potential which are particularly

useful when evaluating properties over finite-length traces.

Specification mining has also been used for hardware design,

often with the intent of constructing a formal specification of the

system. IODINE [3] provides many spec mining analyses includ-

ing extracting req-ack pairs, mutexes, one-hot signals, and score-

boards/FIFOs from analyzing waveforms. The tool was able to suc-

cessfully extract FSM transitions and mine implicit low-level prop-

erties of several on-chip protocols, and revealed deficiencies in test

coverage. Li et al. [9] introduce LTL templates and the notion of

delta traces to handle multi-bit signals, applied them to mine specs

on various RTL designs, and demonstrated fault localization using

the mined properties. GoldMine [13] combines constrained random

stimulus testing, static analysis, and spec mining with a formal

verification engine to produce a set of verified properties for an

RTL design.

RTL

Simulate

Failing VCD

Passing VCDs

Mine + Merge

Simulate

Mined Properties

Checker Property Failures

Likely Bug Locations

Ranking

Figure 2: Bug localization flow using specification mining.

The key insight of our approach is that specification mining

for bug localization is distinct from its use in deriving high-level

designer-understandable formal specifications. Our goal is to ex-

tract “normal” design behavior, constrain it narrowly, and identify

anomalies and deviations in error traces. Therefore, we aim to mine

as many fine-grained properties as possible.

2 APPROACH
We begin with an RTL design and a set of waveforms from RTL

simulations. Waveforms from passing tests are fed into a specifi-

cation miner which produces a set of mined properties based on

the observed “normal” behavior. The mined properties are checked

on a waveform from a failing test to identify any anomalies and

localize the RTL bug. The flow is summarized in Figure 2.

2.1 LTL Formula Templates
The mined properties are expressed as LTL formulas. We consider

these LTL formula templates from [9] where a and b are atomic
propositions (APs) that are a function of the signals in the RTL

design.

• Alternating (A):
¬aWb ∧ G((a → X(¬xUb)) ∧ (y → X(¬aWb)))
• Until (U): G (a → X (aUb))
• Next (N): G (a → Xb)
• Eventual (E): G (a → XFb)

The Alternating template captures a combination of a mutex prop-

erty (a and b cannot be true simultaneously) and an ordering prop-

erty (once a switches from true to false, b must transition from false

to true to false before a can become true again).

These templates can capture a wide range of behavior when

combined with various ways of constructing APs from signals in

the design (Section 2.3).

LTL has two major caveats that are addressed in our approach:

• LTL formulas are defined over traces of infinite length, whereas

simulation waveforms consist of finite-length traces.

• LTL formulas are defined over atomic propositions (boolean

expressions), whereas an RTL design contains arbitrary-

length bitvectors which must be transformed into mean-

ingful atomic propositions.

2.2 LTL on Finite Traces
Typically, LTL formulas are evaluated on models by conversion to

a Büchi automata and checking if its accepting states are visited

infinitely often. This formulation is useful for model checking, but
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is not appropriate for monitoring the formula on a finite-length

trace.

On finite traces, safety properties can be falsified, but liveness

properties are unfalsifiable. In our approach, the F operator is inter-

preted as a bounded liveness operator. When mining the Eventual
property on “normal” waveforms, the miner tracks the longest time

observed between an a and b proposition and records it. When

a mined Eventual property is checked on a failing waveform, ev-

ery a proposition must be followed by a b within the observed

bound. Note that the bounded Eventual property generalizes the

Next property.
The mined LTL formulas are of the form G(X → Y ) where X

and Y are inner LTL formulas. The notion of support is defined to

be the number of points on the trace where Y is satisfied, which is a

specialization of the definition given by Lemieux et al. [8] Support

measures how often a property has “completed”, and is a heuristic

that estimates the likelihood the property is true.

A property is falsifiable on a trace if X holds at any point in

the trace and a property is falsified if X → Y is ever false. When

merging properties mined from multiple waveforms, the miner

discards any properties that were falsified on any waveform or

were never falsifiable, and aggregates the support for properties

that were never falsified.

2.3 Constructing Atomic Propositions
For the LTL templates in Section 2.1 to produce useful properties,

the signals in the RTL design must be transformed into appropriate

atomic propositions (APs). Firstly, we consider the signal values

of 1-bit registers and wires in the design to be APs themselves.

Secondly, we transform 1-bit signals into APs corresponding to

the $rose and $fell system tasks in SystemVerilog, indicating

whether the signal rose or fell from the last clock cycle. We also

transform 1-bit and multi-bit signals into APs corresponding to the

$stable system task in SystemVerilog, which indicates that the

signal did not transition from the last clock cycle.

In a similar vein, Li et al. [9] convert traces of 1-bit and multi-bit

signals into delta traces, where the delta trace is 1 if the signal transi-
tioned on a given clock cycle and 0 otherwise. Figure 3 demonstrates

the construction of delta traces from RTL signals.

clk

τ1
1 2 1 3 2 0

τ∆1

τ2

τ∆2

Figure 3: Examples of delta trace construction on a
multi-bit (τ1) and a 1-bit (τ2) signal

LTL properties can then be mined over delta traces; this has the

advantage of dealing with 1-bit and multi-bit signals uniformly and

also takes advantage of the signal transition sparsity, common in

digital designs, to build a fast spec miner.

However, delta events are insufficient to capture detailed behav-

ior in multi-bit signals since they lose information about specific

transitions. We additionally construct APs from multi-bit signals

by creating a set of propositions that record transitions between

every pair of states of the signal. This construction can be extended

to produce APs that record transitions from an arbitrary state to

a specific one, which is useful for capturing the reset behavior of

FSMs. Figure 4 shows a trace of a 2-bit state register and AP traces

constructed from specific transitions from state 1 to 2 and 3 to 0, as

well as from an arbitrary state to 0.

clk

τstate
5 0: IDLE 1: PREP 2: SEND_REQ 3: GET_RESP 0: IDLE

τ1→2

τ3→0

τarb→0

Figure 4: Examples of constructing transition APs on the
multi-bit state signal.

Even though these proposition constructions produce tens of

traces permulti-bit signal in the RTL design, they do not degrade the

mining algorithm performance substantially since each produced

trace still has sparsity in the number of transitions.

2.4 Extracting Design Semantics for Targeted
APs

All the proposition constructions described in Section 2.3 are usable

for any RTL design, but may not be specific enough to capture

useful properties. We propose deriving more APs from automatic

static analysis of the RTL and annotations passed down from the

designer.

We take advantage of the FIRRTL compiler [5] to write analysis

passes to detect common inter-module interfaces such as ready-

valid or AXI4 and instantiated module types such as arbiters, FIFOs,

and counters. This extracted metadata drives the construction of

targeted APs for particular modules and interfaces. We present

some targeted APs for two interfaces and two module types:

• Ready-Valid interface

– Transaction fired: ready ∧ valid
– Backpressure applied: ¬ready ∧ valid
• AXI-4 Bus

– Multibeat write: AWVALID ∧ AWREADY ∧ AWLEN ≥ 0

– Last write beat: WVALID ∧ WREADY ∧ WLAST
– Specific read: ARVALID ∧ ARREADY ∧ ARADDR == ADDR
• FIFO/Queue

– Write while full (overflow): wr_en ∧ full ∧ ¬rd_en
– Write and read: wr_en ∧ rd_en
• Counter

– Overflow: count == COUNT_MAX ∧ count_en
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Table 1: Properties mined on riscv-mini ranked by support

Template τ∆a τ∆b Support

Until core.ctrl.io_A_sel core.dpath.io_ctrl_imm_sel 6113

Next core.dpath.brCond.eq core.dpath.brCond.neq 5457

Eventual core.dpath.io_ctrl_imm_sel core.dpath.regFile_io_wen 4466

Until icache.io_cpu_req_valid icache.is_idle 4359

Until icache.io_cpu_req_valid icache.is_read 4359

Eventual icache.io_cpu_req_valid icache.is_read 4336

Until icache.io_cpu_req_valid core.dpath.csr_io_stall 4318

Next core.dpath.csr.isEcall dcache_io_cpu_abort 45

– Reset: $past(count) , 0 ∧ count == 0

clk

τstate
0: IDLE 5: WRITE 0: IDLE

τWVALID

τWREADY

τWLAST

τlastbeat

τ5→0

Figure 5: Combining state transition and AXI-4 specific
APs to mine complex properties.

Figure 5 shows the behavior of an AXI4 master sending a 2 beat

write transaction to a slave. τlastbeat is the trace of an AXI-4 spe-

cific AP constructed according to the ‘Last write beat’ formula above.

The τlastbeat and τ5→0 APs slot cleanly into the ‘Next’ LTL tem-

plate, whereas separately examining the WVALID, WREADY, WLAST,
and state signals would not have revealed this property.

2.5 Algorithm

Algorithm 1 Spec Miner

1: procedure Miner([τ1, . . . , τN ], M, S )
2: P ← ∅
3: for [τm ],m ←Modularize([τ1, . . .,N ], M) do
4: if ¬ IsLeaf(m) then
5: [τm ] ← StripInternal([τm ])
6: [τm ] ← Trim([τm ])
7: [τm,props ] ← ConstructProps(τm, S )
8: for (τi , τj ) ← Permutations([τm,props ], 2) do
9: for Checker← LTL Templates do
10: P ← P ∪ Checker(τi , τj )

11: return P

The spec mining algorithm is simple and fast to execute. The

input is a value change dump (VCD) file which contains the traces

(τ1, . . . ,τN ) of the N signals in the RTL design (including both

registers and named wires). The module hierarchyM is extracted

from the VCD file and is used to partition the signals that can be

combined together into a mined property.

For every module in the RTL design (Modularize), we only

consider signals directly inside the module for mining ([τm ]), and
furthermore, only the module’s I/O ports are considered if the

module is not a leaf of the hierarchy. To further constrain the

mining algorithm, only signals 5 bits wide or less are considered

(Trim); this strips away most datapath signals, leaving FSM state

registers and control signals.

An optional input S describes the design semantics in each mod-

ule for targeted construction of propositions (Section 2.4). The

ConstructProps function uses S and the generic proposition con-

struction formulas (Section 2.3) to build a set of traces of APs derived

from [τm ]. Pairwise permutations of [τm,props ] are substituted into

each LTL template (Section 2.1) and each template’s Checker re-

turns a tuple containing the support, falsifiability, falsification, and

liveness bounds for the candidiate traces plugged into the template.

The return values of the Checker are aggregated and returned as

the mined properties for the waveform.

2.6 HW Spec Mining Caveats
Spec mining on RTL traces has additional consideration when com-

pared to mining on a software execution log.

2.6.1 Resets. RTL designs usually have one global reset and many

sub-resets that can selectively reset a module or some part of its

functionality. When mining, we do not want to falsify properties

based on erroneous behavior which only occurs during a module’s

reset sequence, but not during regular execution.

To handle this, we extract global and module-level reset signals

from static analysis of the RTL and only begin mining properties

once the associated signals are out of reset. Additionally, we mine

on RTL tests where the resets are exercised frequently to produce

properties related to reset behavior.

2.6.2 Sampling. Digital circuits update state on one or more clock

signals at the rising or falling clock edge. RTL static analysis is used

to mark registers with their sampling clock and edge to handle

sampling on multi-clock designs.

2.6.3 Trivial Properties. Many mined properties are uninteresting

and trivial such as mining a Next property on delta traces entering

and exiting a shift register chain. Some of these trivial properties
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can be extracted from static RTL analysis and are used to skip over

potential permutations during mining to improve runtime.

3 PRELIMINARY RESULTS
We apply our specification mining engine to riscv-mini[6], a sim-

ple RISC-V processor with caches written in Chisel. The processor

contains about 200 signals that meet the criteria for mining. Specs

were mined on VCDs produced by running all the ISA tests us-

ing only the delta trace proposition construction technique. After

merging the mined properties from each waveform, a total of 3251
fine-grained specifications were produced, shown in Table 1. Note

that properties with low support values can still be useful (e.g.

isEcall→ cpu_abort).

3.1 Bug Localization
After mining specs from a working version of riscv-mini, bugs
were introduced in the source RTL. The injected bugs caused some

ISA tests to fail and the failing waveforms were checked against

the mined specs.

We introduced a typo bug in the control unit that changed how

an illegal instruction was detected:

- io.illegal := ctrlSignals(12)

+ io.illegal := ctrlSignals(11)

Several ISA tests began to hang, and the failing VCDs were

checked against the mined properties. The following properties

were violated by the failing waveform:

core.dpath.csr.io_illegalU icache.io_cpu_req_valid

core.dpath.csr.io_illegalU icache.io_cpu_resp_valid

core.dpath.csr.io_illegalU core.ctrl.io_A_sel

The violated properties point to something wrong with the

io_illegal signal, and effectively localize the bug.

In another example, we introduce a logic bug in the cache:

- hit := v(idx_reg) && rmeta.tag === tag_reg

+ hit := v(idx_reg) && rmeta.tag =/= tag_reg

This bug does not affect most ISA tests but causes a microbench-

mark to fail by hanging. After checking the failing VCD against the

mined properties, these violations were found, ranked by time of

violation:

arb_io_dcache_r_readyU dcache.hit (418)

dcache_io_nasti_r_validU dcache.hit (418)

dcache.is_allocU dcache.hit (418)

arb.io_dcache_ar_readyU arb_io_nasti_r_ready (640)

The violated properties point to something wrong with the hit
signal and localize the bug. Of note, this failing waveform had over

60 property failures, however the earliest failures point to the origin

of the bug, while the subsequent failures indicate the downstream

effects of the bug.

4 CONCLUSION AND FUTUREWORK
Our preliminary results show promise for using specification min-

ing to localize RTL bugs by performing waveform anomaly detec-

tion. This work is being extended with the methods for construct-

ing propositions and extracting design semantics explained in this

paper. We are exploring techniques to detect bus protocols and

interfaces from RTL analysis, extract transaction-level traces from

VCDs, and use software spec miners to supplement fine-grained

RTL-level properties. We are in the process of applying specifica-

tion mining to localize difficult to diagnose bugs in more complex

designs like BOOM [1].
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