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ABSTRACT
Electric vehicle (EV) charging stations represent a substantial load
with significant flexibility. Exploitation of that flexibility in demand
response (DR) algorithms becomes increasingly important to man-
age and balance demand and supply in power grids. Model-free DR
based on reinforcement learning (RL) is an attractive approach to
balance such EV charging load. We build on previous research on
RL, based on a Markov decision process (MDP) to simultaneously
coordinate multiple charging stations. However, we note that the
computationally expensive cost function adopted in previous re-
search leads to large training times, which limits the feasibility and
practicality of the approach. We therefore propose an improved
cost function which essentially forces the learned control policy to
always fulfill any charging demand that does not offer any flexi-
bility. We rigorously compare the newly proposed batch RL fitted
Q-iteration implementation with the original (costly) one, using real
world data. Specifically, for the case of load flattening, we compare
the two approaches in terms of (i) the processing time to learn the
RL-based charging policy, as well as (ii) overall performance of the
policy decisions in terms of meeting the target load for unseen test
data. The performance is analyzed for different training periods
and varying training sample sizes. In addition to both RL policies’
performance results, we provide performance bounds in terms of
both (i) an optimal all-knowing strategy, and (ii) a simple heuristic
spreading individual EV charging uniformly over time.
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1 INTRODUCTION
Demand response (DR) algorithms are pivotal to ensure demand-
supply balance in smart grids with intermittent renewable energy
resources and new loads (e.g., electric vehicles, EVs). In traditional
approaches for coordinating EV charging [3], DR is cast as an opti-
mization problem (e.g., model predictive control, MPC). However,
this approach requires accurate models (e.g., of user behavior, en-
ergy demand, flexibility that is available to exploit) which have
uncertainty associated with them. Furthermore, such approaches
do not generalize from one scenario to the other.

Aforementioned challenges are tackled with recent data-driven
DR algorithms, where the charging coordination problem is cast
as a time-series decision making problem and is formulated using
Markov decision process (MDP) with unknown system dynamics.
Reinforcement learning (RL) is then used to estimate the optimum
charging coordination policy (e.g., [2]). For a recent overview of
RL in DR, we refer to [7]. In terms of objectives, different DR tar-
gets have been addressed, including (i) reducing electricity costs,
(ii) maximizing profits for the provider, and (iii) load balancing in
the grid. For example, Chis et al. [1] propose a reduction in long
term cost for user for charging a single EV.

Previous research [4] formulated an MDP for a set of EV charg-
ing stations, aiming at a model-free DR approach for EV charging
stations to exploit time flexibility provided by users. In [5], a refined
MDP and experimental performance evaluation is provided, thus
giving a proof-of-principle of adopting RL for jointly coordinating
charging for a set of EVs. This approach can simultaneously control
multiple EV charging at once, in contrast to [1], which optimizes
charging for just a single EV. The MDP definition scales indepen-
dently of the number of charging stations (𝑆max) and number of
maximum cars (𝑁max), and thus can be easily deployed in multiple
scenarios. While the learned RL policy’s performance demonstrated
effectiveness in terms of meeting the DR objective, it comes at the
cost of requiring a large set of experiences (past data), long training
periods and computational power.

This paper extends the previous work in [5] by improving the
RL implementation: we reduce the computational complexity and
dataset requirements in theMDP definition and RL training through
(i) an updated cost function, and (ii) a reduced state-action space
in MDP, resulting in a smaller exploration dataset. The rest of the
paper presents the following contributions:
• We propose an updated MDP with a new cost function (§2.1);
• We train RL policies for both the original [5] and updated cost
functions (using the algorithm summarized in §2.2);

• Simulation experiments (§3) to evaluate the policies and answer
the following questions (§4):
(Q1)What reduction of training time and computational com-
plexity does the new cost function achieve?

ar
X

iv
:2

20
3.

01
65

4v
1 

 [
cs

.A
I]

  3
 M

ar
 2

02
2

https://doi.org/10.1145/3360322.3360992
https://doi.org/10.1145/3360322.3360992


BuildSys 2019, November 13–14, 2019, New York, NY, USA Manu Lahariya, Nasrin Sadeghianpourhamami, and Chris Develder

(Q2) How does varying the parameters of input training data
impact the training time?
(Q3) Does the updated cost function affect the resulting perfor-
mance achieved by the RL policy?
(Q4)Howmuch of the offered flexibility does the RL policy use?

2 ALGORITHM
A Markov decision process (MDP) is defined by (i) a finite state
space, (ii) an action space, (iii) a cost (or rewards) function for taking
a particular action, given a state. The next subsections summarize
(i) the MDP for jointly coordinate charging a set of EVs, and (ii) a
batch reinforcement learning algorithm for training the policy.

2.1 Markov Decision Process (MDP)
State: To create a state for the set of connected EVs, at a given
timeslot 𝑡 , we assume to know for each EV (i) the time left until
it departs (Δ𝑡depart), and (ii) its charging requirement, which we
quantify as the number of timeslots it needs to charge (Δ𝑡charge),
thus assuming the same constant charging rate for each EV. Hence,
the state representation is of the form 𝑠 = (𝑡, x𝑠 ), where 𝑡 is the
timeslot (i.e., 𝑡 ∈ {1, . . . , 𝑆max}) and x𝑠 is the aggregate demand of
all EVs in the system. Formally, x𝑠 is an 𝑆max × 𝑆max matrix, where
𝑆max is the maximum timeslots in the horizon. The element of x𝑠
at position (𝑖, 𝑗) counts the fraction of EV charging stations that
have a connected car in the corresponding (Δ𝑡depart,Δ𝑡charge) bin,
i.e., for which 𝑖 = Δ𝑡depart and 𝑗 = Δ𝑡charge.

Action: Per set of EVs that have a particular flexibility, the action
dictates whether or not to charge them. We note that EVs with
the same flexibility are positioned along the diagonals of the state
matrix x𝑠 : the flexibility, defined as the amount of time shifting
we can apply in the charging process, is indeed given by Δ𝑡flex =

Δ𝑡depart−Δ𝑡charge. We indicate the number of EVs on each diagonal
of x𝑠 as xtotal𝑠 (𝑑) with 𝑑 = 0, . . . , 𝑆max − 1, where xtotal𝑠 (0) counts
the EVs on the main diagonal, xtotal𝑠 (𝑑) on the upper 𝑑th diagonal,
and xtotal𝑠 (−𝑑) on the lower 𝑑th diagonal of x𝑠 . The action u𝑠 vector
thus defines an action per diagonal, and for each of them states
what fraction of the diagonal’s EVs to charge.

Cost Function: We aim to flatten the aggregate EV charging load,
while ensuring that every EV is fully charged before departing. The
original proposition in [5] combined both aims as separate parts in
the cost function for transitioning from 𝑠 to 𝑠 ′ by taking action u𝑠 :

𝐶 (𝑠,u𝑠 , 𝑠 ′)old ≜ 𝐶demand (x𝑠 ,u𝑠 ) +𝐶penalty (x𝑠′), (1)

where 𝐶demand (x𝑠 ,u𝑠 ) is the (quadratic) power consumption from
all connected EVs in the decision timeslot. 𝐶penalty (x𝑠′) is the
penalty for unfinished charging, defined to be higher than simul-
taneously charging all EVs. Thus, 𝐶penalty is activated when a
car would move to below the main diagonal (where Δ𝑡charge >

Δ𝑡depart), to ensure fully charging all EVs, including those without
flexibility.

Our newly defined cost for taking action u𝑠 to get from cost state
𝑠 to 𝑠 ′ amounts to the charging power demand cost only:

𝐶 (𝑠,u𝑠 , 𝑠 ′)updated ≜ 𝐶demand (x𝑠 ,u𝑠 ), (2)
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Figure 1: Example state-action decision tree for 𝑁max = 2,
𝑆max = 3.

In the updated cost definition, we no longer define the penalty
term: we impose the policy to a priori charge all cars without any
flexibility (i.e., those on the main diagonal, where indeed Δ𝑡charge =
Δ𝑡depart, thus Δ𝑡flex = 0), rather than having it learn to do that
from experiencing a high penalty cost. This results in a reduced
state-action space and significantly faster training for the model.

Size of State-Action Space: As opposed to the action space for a given
state 𝑠 defined in [5], our updated action space is smaller, becausewe
improve the algorithm by not allowing to exploit flexibility where
there is none. The total number of possible actions from a given
state in the original algorithm (where, for each flexibility Δ𝑡flex = 𝑑

we could charge any number of cars between [0, xtotal𝑠 (𝑑)]) is:

|U𝑠 |old =

𝑆max−1∏
𝑑=0

(
xtotal𝑠 (𝑑) + 1

)
. (3)

This is updated to:

|U𝑠 |updated = 1 +
𝑆max−1∏
𝑑=1

(
xtotal𝑠 (𝑑) + 1

)
. (4)

The first term in Eq. (4) reflects the single “choice” we have for the
cars without flexibility (for 𝑑 = 0, where Δ𝑡flex = 0). This reduced
action space size also shrinks the exploration space for the RL agent
(see §2.2).

Figure 1 illustrates a scenario of 𝑁max = 2 EV charging sta-
tions with a horizon of 𝑆max = 3 slots. At time 𝑡 = 1 we have
𝑁𝑠 = 2 connected cars: 𝐶1 with (Δ𝑡depart1 ,Δ𝑡

charge
1 ) = (3, 2), and

𝐶2 with (Δ𝑡depart2 ,Δ𝑡
charge
2 ) = (2, 1) with no other arrivals during

the control horizon. In timeslot 2, the leftmost state in Fig. 1 has
both cars on the main diagonal, implying they have no flexibil-
ity (Δ𝑡charge = Δ𝑡depart, thus Δ𝑡flex = 0) and a fortiori need to be
charged. Hence, two feasible actions from previous MDP [5] will
not be considered in our updated MDP implementation.
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Value function: The learning objective is to minimize the expected
𝑇 -step1 return, which for a policy 𝜋 at timestep 𝑡 is defined as:

𝐽𝜋
𝑇
(𝑠) = E


𝑡+𝑇∑︁
𝑖=𝑡

𝐶 ((𝑡, x𝑠 )︸︷︷︸
𝑠

,u𝑠 , (𝑡 + 1, x𝑠′)︸      ︷︷      ︸
𝑠′

)
 (5)

The policy then amounts to evaluate a state-action value function,
and select the action that minimizes it. This value function, com-
monly named Q-function, is:

𝑄𝜋 (𝑠,u𝑠 ) = E
[
𝐶 (𝑠,u𝑠 , 𝑠 ′) + 𝐽𝜋𝑇 (𝑠 ′)

]
. (6)

2.2 Batch Reinforcement Learning
We adopt the same batch RL algorithm as in [5, Algorithm 1], fitted
Q-iteration (FQI), to approximate 𝑄∗ (𝑠,u) from past experiences
generated using a non-optimum (e.g., random) policy. Each experi-
ence is defined in terms of (i) an initial state 𝑠 , (ii) the action taken
u𝑠 , (iii) the resulting state 𝑠 ′ after taking the action, and (iv) the as-
sociated costs 𝐶 (𝑠,u𝑠 , 𝑠 ′). The experience set F is generated based
on the cost function used:
• F1 (old cost implementation): Generate all possible actions for a
given state, and use the cost function from Eq. (1).

• F2 (updated cost implementation): Only allow actions from the
updated space-action tree, and use the cost function from Eq. (2).

Each experience set of (𝑠,u𝑠 , 𝑠 ′,𝐶 (𝑠,u𝑠 , 𝑠 ′)) tuples is trained sepa-
rately to deliver an optimum policy 𝑄∗ (𝑠,u), which is then used
evaluated for the testing period. A fully connected Artificial Neural
network (ANN) is used as function approximation for 𝑄∗ (𝑠,u).

3 EXPERIMENT SETUP
Our simulations will compare the original (see [5]) cost function
and associated state-action space, with the updated ones, in terms
of the resulting policies, trained with the respective updated and
old cost datasets (F1 and F2). Experiments are run on a system with
an Intel Xeon E5645 3.1 GHz processor and 16GB RAM.

3.1 Parameters and Settings
Data preparation: Our dataset is derived from real world data col-
lected by ElaadNL since 2011, from 2500+ public charging stations
[6]. The maximum connection duration is set to 𝐻max = 24 h with
time granularity Δ𝑡 slot = 2 h, which means 𝑆max = 12 timeslots. We
jointly coordinate 𝑁max = 10 charging stations.

As summarized in §2.2, the input to the policy learning is a set of
experiences, which depends on the cost function used: F1 (old cost
implementation) and F2 (updated cost implementation). These expe-
riences are collected as so-called trajectories by beginning at the
starting of the day (𝑡1,𝑥1), taking actions randomly until a terminal
state is reached (for details, see [5]). Each such trajectory com-
prises 12 tuples (𝑠𝑖 ,u𝑠,𝑖 , 𝑠𝑖+1,𝐶 (𝑠𝑖 ,u𝑠,𝑖 , 𝑠𝑖+1)). We vary the number
of unique trajectories per day, 𝑁traj ∈ {5𝐾, 10𝐾, 15𝐾, 20𝐾}.

Function Approximator: We use the same artificial neural network
(ANN) architecture as in [5], comprising an input layer and 2 hidden
layers with ReLU activation functions.

1As previously stated, we note the specific control time horizon as𝑇 = 𝑆max .

3.2 Evaluation
Training time: Defined as the time it takes for RL agent to be trained.
To generate training data, we take contiguous period for a given
duration of Δ𝑡 ∈ {1, 3, 5, 7, 9 months}. For each Δ𝑡 , we randomly
selected 5 training data periods, each within the range between Jan.
1, 2015 and Sep. 30, 2015. We run 12 iterations to train the ANN for
each selected period for a given Δ𝑡 . We record the training time for
each of these training datasets, for both agents (one trained on F1
and the other on F2).

Cost comparison: The last 3 months of 2015 are used as the test set
for evaluation, i.e., Btest = {𝑒𝑖 |𝑖 = 274, . . . , 365} containing 92 days.
We report the same normalized cost as in [5], given by:

𝐶𝜋 (Δ𝑡, 𝑗) =
1

|Btest |
∑︁

𝑒∈Btest

𝐶𝑒
𝜋 (Δ𝑡, 𝑗)
𝐶𝑒opt

. (7)

Following costs are calculated and compared to analyze the various
policies:
• 𝐶RL,updated: cost of the policy trained with the updated cost.
• 𝐶RL,old: cost of the policy obtained by [5].
• 𝐶BAU: cost of the business-as-usual (BAU) policy2.
• 𝐶opt: for an optimum policy, derived from optimization with
perfect knowledge of future EV connections.

• 𝐶heur: for a discrete-action heuristic.
The latter heuristic policy assumes that individual EVs are charged
uniformally over their entire connection time.3

4 RESULTS
4.1 Training Time
Figure 2 shows the training time for each of the old and new policies,
i.e., using the respective cost functions Eq. (1) and Eq. (2), to answer
research questions Q1 (i.e., what training time reduce does the
update cost function achieve?) and Q2 (i.e., how do training set
parameters affect training time?). Figure 2(a) compares the training
time for increasing training dataset size in terms of number of
sampled trajectories, for a training period of Δ𝑡 = 5 months.4 We
note that our updated cost function and resulting policy achieves a
reduction of training time compared to the old ones (from [5]) in
the range of 42%–54% (for 5k–20k sampled trajectories per training
day; averages over 5 runs).

Figure 2(b) reports similar relative differences in training time
between old and updated policies when varying training period
time spans, i.e., Δ𝑡 ∈ {1, 3, 5, 7, 9 months}. Training time savings
now range from 37%–53% when varying Δ𝑡 from 1 to 7 months.

4.2 Cost Reduction Comparison
Figure 3 compares the normalized cost achieved by our improved
formulation with that of previous work [5] as well as the baselines

2Continuously charge each EV upon arrival.
3Specifically, the heuristic spreads the 𝑐 slots that the EV needs to charge over the total
available number of slots 𝑑 . This amounts to distributing 𝑑 − 𝑐 no-charge slots evenly
over the total number of 𝑑 slots, thus splitting them into 𝑑 − 𝑐 + 1 parts. Assuming for
simplicity that 𝑐 ≥ 𝑑/2, this means we insert a no-charge slot every ⌊𝑑/(𝑑 − 𝑐 + 1) ⌋
other slots. (For 𝑐 < 𝑑/2, similarly distribute ‘charge’ slots evenly over the majority
of ‘no-charge’ slots.)
4We noted a similar trend for all time spans, i.e., for all Δ𝑡 ∈ {1, 3, 5, 7, 9 months}.
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Figure 2: Policy training time for varying (a) number of sam-
ples per day 𝑁traj (for Δ𝑡 = 5months), and (b) training period
horizon Δ𝑡 (for 𝑁traj = 5000) .
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from §3.2. We note how normalized costs for the various RL poli-
cies vary with increasing training sets, in terms of (a) number of
sampled trajectories per training day, and (b) training period time
spans. Comparing old and new cost policies, we note no significant
difference in the normalized cost (i.e., 𝐶RL,updated ≈ 𝐶RL,old). There
are slight variations in the distributions, which are statistically in-
significant, and may be caused by the randomization of the samples.
It is also worth noting that the RL algorithm performs better than
both business-as-usual (BAU) and the newly defined heuristic pol-
icy. Unexpectedly, it performs worse the the all-knowing optimum
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Figure 4: Flexibility Utilization for cars arrived in each slot.

policy baseline, since the latter has exact visibility of future EV
arrivals. Still, the RL approach deviates less than 10%.

We conclude for Q3 (effect of updating the RL cost function on
the RL policy?) that performance of both cost functions is statisti-
cally similar (over multiple training sets).

4.3 Flexibility Utilization
To quantify the overall utilization of flexibility offered by users, we
use previously introduced energy (𝐸flex) and time flexibility (𝑇flex)
measures in [6]. These measures are important for energy providers
and users alike (e.g., for providing incentives, cost minimization,
time management). In short, 𝐸flex reports the fraction of total charg-
ing load that is shiftable outside the BAU charging interval that is
effectively deferred, and 𝑇flex the fraction of the flex time window
(Δ𝑡flex) that is actually exploited.

To answerQ4, Fig. 4 plots𝑇flex and 𝐸flex for EVs for each timeslot
they arrive in, thus quantifying the utilized flexibility for the exem-
plary5 training data of 𝑁traj = 5K sample trajectories per day, and
period Δ𝑡 = 1 month. We note that the RL learning policy utilizes
much more flexibility than the heuristic policy. On average, 40% of
provided energy flexibility is utilized with RL. It is also important
to note that RL policies energy flexibility utilization is close to that
exploited in the all-knowing optimum policy. This indicates the
trained RL agent balances loads similarly as the optimum policy,
despite having no a priori exact knowledge of future EV arrivals.

5 CONCLUSION
We significantly improve the previously proposed reinforcement
learning (RL) strategy in [5], to learn a policy coordinating the
charging of multiple EVs. Our updated MDP definition, with a new
cost function, strongly shrinks the the state-action space and thus
significantly reduces training time (with > 50%), while retaining the
beneficial performance of the RL trained policy. This training time
reduction increases with larger training sets, thus suggesting the
updated cost approach to be more practical. Future work includes
evaluating an 𝜖-greedy RL approach for the new MDP definition.
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