
Stateless TCP
Marcelo Abranches

marcelo.deabranches@colorado.edu
University of Colorado Boulder

Boulder, Colorado

Eric Keller
eric.keller@colorado.edu

University of Colorado Boulder
Boulder, Colorado

CCS CONCEPTS
•Networks→Middle boxes / network appliances;Endnodes;
• Computer systems organization → Distributed architec-
tures.

KEYWORDS
Middleboxes, Elasticity, Resilience, Network State

1 INTRODUCTION
Increasingly, middleboxes have served as a means to introduce new
capabilities into network to better secure, monitor, or optimize traf-
fic. While these were traditionally deployed as physical appliances,
industry is moving to more software based solutions. In reaction to
the limitations of putting appliances inside of virtual machines, as
with network functions virtualization, Stateless Network Functions
(StatelessNF) [1] introduced a new concept where the processing
in network functions can be decoupled from the state (which is
stored in a remote data store). This enabled simultaneously solving
the elastic scaling, fault tolerance, and other operational challenges
such as software updates.

While follow on work has extended the concept to improve
performance [2, 4], each (including StatelessNF) has focused on
middleboxes. We propose that the same concept can be applied
to network end points. Applications already take steps to persist
state, but we propose going one step further and decoupling the
state from processing of the TCP stack itself. In doing so, we enable
applications to be truly elastic and resilient in a more seamless
manner than depending on other applications handling the broken
connections and re-sending requests in a graceful manner. While
otherworks have enabled TCPmigration capabilities [3], in building
the TCP stack in a StatelessNFmanner, we enable seamless handling
of planned and unplanned events.

The impact of this can enable improved behavior for a number of
applications, such as CDNs, HTTP servers, HTTP proxies, caches,
BGP speakers, SSH servers, etc. For example, CDNs can benefit from
Stateless TCP by avoiding the need to re-establish TCP connections,
after failures or scaling events, which can improve latency. Also
BGP routers (which use TCP as the transport on top of which
BGP runs) can avoid costly session re-establishments and route
re-advertisements after these events, enabling an always on router.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’19 Companion, December 9–12, 2019, Orlando, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7006-6/19/12. . . $15.00
https://doi.org/10.1145/3360468.3368182

While the concepts can be applied from the original StatelessNF
work, doing so for a TCP stack does introduce some new aspects,
which we address in this work. For example, there is new state we
need to deal with in an efficient manner, namely the packet send
and receive buffers. Also, there is a tighter coupling to the the end
applications (which can be an opportunity and a challenge).

In the remainder of this extended abstract, we dig deeper into
the challenges and provide an architectural overview of how we are
overcoming some of them. We also discuss our current, preliminary
work, toward the overall goal.

2 ARCHITECTURE
Figure 1 shows the high level design of Stateless TCP. Clients access
TCP applications as usual without needing any modification. Each
host runs a series of Stateless TCP stacks, and also applications and
enpoints that use their services. The stateless TCP stack saves and
updates its current state on a remote datastore. If the environment
consists of multiple hosts that can host a service, clients may access
services through a load balancer or through an SDN switch that
can distribute traffic based on Openflow rules.

2.1 Controller
The Stateless TCP controller is responsible formonitoring the health
and load of the machines that host the stack and the applications. It
is also responsible for detecting failures on the TCP stack and on the
applications. We rely on the services of a container orchestration
platform for building and running our controller. As the controller
has a global view of the current state of the infrastructure, we
use it to setup the entities that distribute traffic to the Stateless
TCP cluster (e.g. load balancers or SDN switches). The controller is
also responsible to track which Stateless TCP instance is currently
serving a given stream in a locking mechanism to avoid for example
two instances trying to write state for a given flow during or after
a scaling event.

2.2 TCP State
Stateless TCP saves TCP state on a remote datastore. This data
is used to enable seamless TCP recoveries from failures and also
enables cluster scaling events. As TCP works as a reliable stream
oriented communication channel between applications, our stack
must save the TCP state of each stream. Our system updates the
current state of the TCP stack at the remote datastore at the end
of the TCP stack processing for each received packet, and also
just before sending a packet through the network. In order to not
slow down the TCP stack, we designed a mechanism that allows
Stateless TCP instances to read state data from a local cache during
normal operation. But for coherent operation, Stateless TCP loads
state from the remote datastore, if it is in recovery mode i.e., if the
controller identifies a failure, and needs to restore a TCP stack. This

70

https://doi.org/10.1145/3360468.3368182
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3360468.3368182&domain=pdf&date_stamp=2019-12-09

mechanism is also used during scaling-in/out events, and stream
relocation events. We save and load TCP state on a remote key-
value datastore using the hash of the 4-tuple of the connection
as key, and state like acknowledgements and sequence numbers
as values. During a relocation or recovery event if it is needed,
Stateless TCP takes additional steps to set all the data structures,
timers and buffers needed by the TCP stack, to enable coherent
operation no matter in what state a flow currently is. We also save
send and receive buffers on the remote datastore, in order to enable
full TCP stack restore.

2.3 TCP Buffer Recovery
In order to allow correct protocol operation and to add useful fea-
tures for applications, Stateless TCP provides two levels of buffer
recovery. The first level does not require applications to be changed
and it enables consistent protocol operation during recovery or
relocation events. In the case of the receive buffer, recovery works
by verifying if the last sequence of bytes read by the application
is less than the last acknowledge number sent by the TCP stack. If
so Stateless TCP will engage the first level buffer recovery mecha-
nism, by reading buffer data from the remote datastore, where it is
indexed by sequence numbers. After recovering data at the recov-
ery buffer, Stateless TCP generates an epoll event that informs the
application that there is data to be read. In the case of the sending
buffer Stateless TCP verifies if data was passed to the TCP stack
and was not sent by the packet I/O layer. In this case Stateless TCP
will recover the send buffer using buffer data from the remote data
store and generate an event to the packet I/O layer so that this data
can be sent through the network.

The second level of recovery buffer leverages the fact that there
is a copy of the TCP buffers at the remote datastore enabling the
application to request data that it may previously have read, but
the data was not persisted by the application. With this mechanism
the application needs to inform our stack which bytes from the
receive buffer an application has already consumed and persisted.
So developers need to change applications to keep track of the bytes
from receive buffer that already have been consumed by the appli-
cation. This mechanism increases flexibility because a developer
can choose to immediately commit the bytes that the application
has received (e.g. before persisting its data at the application level),
or it can delay the commit until important state on the application
has been updated.

2.4 Offloader
We leverage the fact that the Stateless TCP only needs to read
remote state and buffers during a recovery or relocation event to
build an asynchronous state write mechanism that we call offloader.
The offloader is used to accelerate writing state to remote datastore.
For each active stream in Stateless TCP we create a lightweight
queue that is stored in a hash table. Instead of writing state and
TCP data directly to the remote datastore, Stateless TCP writes to
the offloader, and a pool of threads is responsible for flushing these
queues to the remote datastore. During a relocation or recovery
event, Stateless TCP first queries the offloader to see if there is still
data to be written to the remote datastore. If this is the case Stateless

TCP will wait until the queue becomes empty before restoring the
TCP stack.

Client App

Apps State/
Files

TCP
States

SND/RCV
Buffers

Host

read()

write()

Apps

TCP
State

SND/RCV
Buffer

Stateless
TCP Stack

App

Stateless TCP
controller

O
V
S

Offloader

Figure 1: Stateless TCP high level design

3 PROTOTYPE AND FUTUREWORK
We are building stateless TCP on the top of mTCP and DPDK. We
also use Redis as the remote datastore and built the offloader from
scratch in C. Currently the controller is a simple Python program
that install Openflow rules on OpenVswitch in order to balance
load between Stateless TCP instances at the granularity of a stream.
We are evaluating our stack using an HTTP server built on the top
of Stateless TCP and using Apache Bench as our benchmark. At
this point we are able to perform seamless recovery of TCP flows
after induced Stateless TCP app failures, and we can also perform
seamless relocation of streams through multiple instances of an
application running on the top of Stateless TCP. We compared the
performance of Stateless TCP with plain mTCP and we saw that
Stateless TCP currently reduces throughput by less than 20%, but
we still see room for improvements that could lower this gap. The
first level of buffer recovery is already implemented, and we are
working on the second level. We are also designing use cases like
balancing load across clusters, live updates, live malware recovery,
BGP resiliency, offloaded firewall/IDS and much more.

4 ACKNOWLEDGEMENTS
This work was supported in part by NSF Grants 1652698 (CAREER)
and the Coordenação de Aperfeiçoamento de Pessoal de Nível Su-
perior - Brasil (CAPES) - Finance Code 001

REFERENCES
[1] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. Stateless network

functions: Breaking the tight coupling of state and processing. In 14th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 17). 97–112.

[2] Junaid Khalid and Aditya Akella. 2019. Correctness and Performance for Stateful
Chained Network Functions.. In NSDI. 501–516.

[3] Alex C Snoeren, David G Andersen, and Hari Balakrishnan. 2001. Fine-Grained
Failover Using Connection Migration.. In USITS, Vol. 1. 19–19.

[4] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy, and Scott
Shenker. 2018. Elastic scaling of stateful network functions. In 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 18). 299–
312.

71

	1 Introduction
	2 Architecture
	2.1 Controller
	2.2 TCP State
	2.3 TCP Buffer Recovery
	2.4 Offloader

	3 Prototype and Future Work
	4 Acknowledgements
	References

