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ABSTRACT
Malware is one of the most popular cyber-attack methods in the

digital world. According to the independent test company AV-TEST,

350,000 new malware samples are created every day. To analyze all

samples by hand to discover whether they are malware does not

scale, so antivirus companies automate the process e.g., using sand-

boxes where samples can be run, observed, and classified. Malware

authors are aware of this fact, and try to evade detection. In this pa-

per we describe one of such evasion technique: unprecedented, we

discovered it while analyzing a ransomware sample. Analyzed in a

Cuckoo Sandbox, the sample was able to avoid triggering malware

indicators, thus scoring significantly below the minimum severity

level. Here, we discuss what strategy the sample follows to evade

the analysis, proposing practical defense methods to nullify, in our

turn, the sample’s furtive strategy.
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1 INTRODUCTION
More than ever there is a need of automated systems to perform

malware analysis as new malware samples are created at such a

pace that security analysts are unable to manually analyse them.

For instance, in 2018 more than 856,000,000 samples were found

on-the-wild, with an average of 350,000 new malicious program

released each day in the latest months of the year [1].

Analysing new samples of malware is a complex task. In fact, on

one hand, security researchers are aimed at developing malware

analysis systems, such as "sandboxes", i.e. confined and protected

systems (typically based on virtualisation) which are used to exe-

cute suspected untrusted programs to analyse their behaviours. On

the other hand, cyber-criminals creating malware and associated

infrastructure want a return on their investments in their effort,

and therefore are becoming more adept at developing threats that

can evade increasingly sophisticated sandboxing environments [3].

In particular, in recent years, several ransomware families have

started incorporating advanced evasion techniques [10]. For exam-

ple, the first version of the WannaCry ransomware included a basic

anti-sandboxing mechanism, based on DNS query, to bypass analy-

sis [8]. Evasive techniques employed by malware are based upon

the fact that the execution environment of a process may change

slightly depending on whether it is run inside a native or a virtu-

alised/sandboxed environment, e.g. due to the presence of memory

and execution artifacts introduced by the sandboxing environment

(environment-based evasion) or due to the different execution time

of the process inside a sandbox (behavioural-based evasion) [9].

Malware may also specifically look for signs of emulation or virtual-

isation, e.g. specific drivers created inside a virtual machine, or the

presence of specific applications, such as standard add-ons used by

sandboxing solutions, or the lack of standard application and files

(e.g., an empty virtual machine) to detect sandboxes. Finally, certain

malware will check for user input before performing any action,

and the lack of user interaction will sometime cause the malware to

infer it is being run in a sandboxed environment. In all these cases,

the goal of any evasive malware is to detect whether it is being run

in a sandbox and, in such a case, stop performing any malicious

action to avoid being analyzed further by sandboxing systems –

therefore making it hard for analysts to extract the features and

describe the behaviour of malware for future detection.

Other works have addressed the problem of the detection of

evasive malware. For instance, [2] proposes a reliable and efficient

approach to detect malware with split personality – behaving dif-

ferently according to the running environment, in an attempt to

evade analysis. Similarly, [7] describes BareCloud, an automated

evasive malware detection system which is based on bare-metal

dynamic malware analysis to compare the traces of analysis on

different environments and compare them with the bare-metal one

– a discrepancy meaning the malware is employing evasive tech-

niques. Finally, [6] presents MalGene, an automated technique for

extracting analysis evasion signature by leverages bioinformatics

algorithms to locate evasive behavior in system call sequences.

In this paper, we describe a technique to bypass sandboxes that

we have found being used by an active ransomware that we in-

spected. We also describe the process that has allowed us to observe

the malicious activity in this specific sample. To the best of our

knowledge, this malicious technique has never been described be-

fore: it is stateless, i.e., the attack comprises multiple phases but

the malware does not store any data on the target machine, and

does not depend on any logical condition on the victim system to

be triggered. The technique enables the ransomware to employ a

stealthy attack strategy which would evade detection by sandboxes.

After presenting our findings, we discuss the feasibility and im-

pact of cyber attacks that use this technique, and propose possible

mitigation strategies.

2 METHODOLOGY
The detection methodology we follow in this paper is composed of

the following steps: firstly, we run a malware sample multiple times

in a sandbox and collect the traces. Afterwards, we check if the

sample has performed no suspicious activity in the first run, but has

acted maliciously in the subsequent runs. If this is the case, it means

the malware is empowered with some evasive functionalities. In the
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following, we explain the details of (i) the steps we have followed

when building the test environment, (ii) how we have gathered the

data set and (iii) how we have conducted the experiments.

The analyses are performed using Cuckoo Sandbox, an open

source automated malware analysis system [4]. Our test environ-

ment consists of 20 Virtual Machines (VMs) running atop Kernel-

based Virtual Machine (KVM)
1
, each has 2 CPU cores clocked at

2.60 GHz and 2GB RAM. On each VM, we performed a clean instal-

lation of Windows 7 32-bit Operating System (OS) with SP1. No

guest agent is installed on VMs. Moreover, we performed additional

steps to ensure the virtualization artifacts are removed to make the

detection of the sandbox harder [5]. For instance, default BIOS
2

of VMs is replaced with a customized version which contains a

real-world vendor name. Likewise, the hypervisor flag of the vir-

tual CPUs is disabled to prevent guest OS from being aware of the

virtualization. Next, we created user profiles on VMs and installed

popular applications such as web browser (along with top-rated

extensions), multimedia player, archive utility and office software.

Furthermore, we artificially populated usage history in these pro-

files to reflect an authentic user. Finally, we took the snapshot of

VMs and configured the Cuckoo accordingly.

Ransomware samples are obtained from the malware corpus

provided by VirusTotal [13]. To filter cryptographic ransomware,

i.e., the programs that encrypts victim’s data, we performed a query

using ransomware-related keywords in the anti-virus scan results,

such as ransom, crypt, and lock. After the search is complete, we

had a set of 112 potential ransomware samples.

Once the data set is ready, we submitted the ransomware sam-

ples to Cuckoo Sandbox to study their behaviours. The label of VM

used for each analysis task is noted to use in the second run. After

all samples are analyzed, the samples that did not show any mali-

cious activity are re-submitted selecting the same VM. Finally, we

compared the reports generated by Cuckoo Sandbox to determine

the samples that did not perform encryption in the first execution,

but encrypted the victim’s files in the second run.

3 RESULTS
Out of 112 malicious samples, one ransomware sample showed no

malicious activity in the first execution, but encrypted user’s files in

the second run. SHA256 digest of the sample is bcbc1aee86f5e1fd
c2ba6fcb2e29933933b132a4c3d0f2eb0f73061702041243. At the
time of this writing (August 2019), 58 out of 66 anti-virus engines at

VirusTotal identified this sample as a malicious program. Malware

labeling tool AVclass [12] identified the sample as a TeslaCrypt
variant.

3.1 Behavioral Analysis Reports
Now, we compare the behavioral analysis reports of two executions

of the ransomware sample, generated by Cuckoo Sandbox.

3.1.1 First Execution. In the first execution of the sample, we ob-

served no write operation on user files. Although no persistent

change were made to the files, the sample

1
Kernel-based Virtual Machine, https://www.linux-kvm.org.

2
SeaBIOS, https://seabios.org/SeaBIOS.

• called GetComputerName Application Programming Inter-

face (API) to retrieve the NetBIOS name of host;

• called GetVolumeInformation API to collect various infor-

mation about the virtual volumes and the hard disk;

• read the InstallDate key
3
in the registry which stores the

installation date of the OS; and

• read MachineGuid key4 from the registry, which is created

during the installation of Windows OS.

Up to this point, the collected pieces of information would give

the attacker the ability to identify the victim’s computer with a

high accuracy, i.e., generate the fingerprint of the machine.

Immediately after taking the fingerprint of the environment,

the ransomware sample established several network connections.

Table 1 represents the IP addresses and the domain names that the

sample connected using the HTTP protocol only. Using the threat

intelligence services, we were able to confirm that the URL of each

connection is related to a well-known, malicious activity pattern

previously reported by anti-malware community.

Table 1: HTTP connections of the analyzed sample.

IP Address Domain Name

204.11.56.48 imagescroll.com
85.128.188.138 stacon.eu
109.73.238.245 surrogacyandadoption.com
69.89.31.77 biocarbon.com.ec

Despite the suspicious activity summarized above, the sample

did not perform any encryption, and shortly after the execution, it

terminated itself, leaving no artifacts on the analysis environment.

As a result, the malice score assigned to this sample by Cuckoo

Sandbox is 2.4.

3.1.2 Second Execution. In the second run, the sample conducted

the same reconnaissance steps taken in the first run. However, this

time, after fingerprinting and connecting to remote addresses, and

instead of ceasing, the sample

• silently deleted Volume Shadow Copy Service (VSS) copies

(backup copies or snapshots of files or volumes, created by

Windows OS) – this operation is typically encountered in

ransomware attacks to prevent recovery of files;

• dropped an executable file – this is another typical malware

action to bypass signature based detection;

• configured registry in order to automatically run itself at

each login; and

• created encrypted files, rename them by appending the ex-

tension .mp3, and deleted the original files.

Cuckoo developers state that there is no upper limit for malice

score, but currently the security threshold is set to 10. After the

second run, the analyzed sample scored 25, and hence labeled by

Cuckoo as “very suspicious”.

3HKML\SOFTWARE\Microsoft\Windows NT\CurrentVersion\InstallDate
4HKML\\SOFTWARE\Microsoft\Cryptography\MachineGuid

https://www.linux-kvm.org
https://seabios.org/SeaBIOS
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3.2 Reconstructing the Attack Scheme
The second behavioral analysis report displays a detailed picture

of the attack. However, one piece of the puzzle is still missing: how

does the ransomware sample decides to commence the attack?

Since the analyses are performed on freshly restored snapshot

of VMs, the sample cannot store any state on the VM. Namely, all

data generated during an analysis will be lost once the analysis

ends. Furthermore, the ransomware is analysis-aware and collects

various information that can be used to fingerprint the environment.

Moreover, the sample connects to several remote machines before

starting the attack, if it attacks.

Algorithm 1 Server-Cooperated Attack Strategy.

1: function ATTACK

2: machineID← GenerateFingerprint()
3: SendToServer(machineID)
4: response← GetResponseFromCC()
5: if response == CEASE then ExitProcess()
6: else EncryptFiles() ⊲ response is ATTACK
7: return Success

A full disclosure of the sample’s logic is possible only if we

reverse-engineered the sample’s executable. We did not, but we

can formulate an hypothesis on the sample’s possible functionality

from its behavioral analysis. For the sake the goal of our discussion,

this suffices. Surely, once infected the victim machine, the sample

collects information likely to identify the running environment and

generate a fingerprint of the machine. And it is almost certain that

the information is sent to a Command and Control (C&C) server.

Here, we speculate. The C&C may use the fingerprint to identify

the victim machine and to decide whether the sample is executed

for the first time on it. In this case, we keep on speculating, the

C&C server returns a CEASEmessage to tell the ransomware to stop

all operations and remain silent. On the contrary, when the victim

machine is known, the C&C sends an ATTACK message to trigger

the ransomware. If we are right, the attack occurs like as in Alg. 1

and its information flow as in Fig. 1.
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Figure 1: Reconstructed attack diagram.

4 DISCUSSION AND LIMITATIONS
In this section, we discuss the security impact of the described

evasion technique and propose potential mitigation strategies.

Evading Sandbox Detection. The evasion technique analyzed in

this paper allows the malware to stay under the radar, at least in

the first run. This might allow the malware to bypass a defense

system, for example, a system that whitelists applications that do

not show malicious activities when run in sandbox environment. It

should be noted that, though, the ability to evade sandbox detection

comes with a price: malicious functionality of the malware gets

activated on if the user runs the malware executable as many times

as configured by the malware authors, i.e., typically more than once,

which is not guaranteed to happen.

Bypassing Malware Appliances. In [14], authors report that three

popular malware appliances from well-known vendors analyze

the binaries in an isolated environment, i.e., run the executables

in a machine disconnected from the network. In this setting, the

malware would not be able to connect the C&C server and therefore

would not receive an ATTACK command. Consequently, the binary

would not exhibit any malicious behaviour. In this case, it is likely

that the appliance is left with only signature based detection and the

static analysis options which both can be evaded via obfuscation.

In the end, the malicious binary would be not detected by these

malware appliances. We note that, this result is not exclusive to the

attack technique described here, rather, it is the limitation of the

isolated analysis strategy followed by these appliances.

Mitigation Strategy. As a countermeasure to this attack, we pro-

pose the following strategy: to reveal the malicious behaviours,

the analyzed samples should be executed multiple times in each

analysis session. This way, the malware will run at the same en-

vironment for more than once, which will increase the chance of

showing its real behaviour. Of course, the malware authors may set

a higher threshold to prevent detection, but this would also delay

the attack which is against the goals of cyber-criminals. Still, a high

threshold would prevent detection by the sandbox. However, even

if the detection fails after 𝑁 execution, i.e., the malware do not show

a malicious activity, and the malware passes sandbox and reaches

the actual user environment, the user –at least– would be secure

for the first 𝑁 execution. That said, our analysis assumes that the

C&C uses a basic counter and a threshold to decide attack, but it

may also utilize a smarter decision algorithm. For example, C&C

might ignore subsequent fingerprint messages if the time frame

between two executions are too narrow. Finding the best move of

C&C in this game is therefore an open problem.

Defense in Depth. Alternatively, we propose a defense-in-depth
strategy to be used in user environment as an auxiliary mitigation

for this attack. To recall, the analyzed technique aims to bypass

sandbox detection by acting benign in the first run. That is, if the

each run of the malware executable occurs on an environment

different from previous ones, the executable would not cause any

damage. Using this idea, one can make the actual user environment

look unique to unknown/untrusted executables for each run. This

way, the executable –assuming that it is a malware– would report to

its C&C server a unique fingerprint at each execution. Once received
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a previously unseen fingerprint, C&C server would not find any

match in its database, and send a CEASE message to the malware. It

should be noted that realization of this defense method is feasible.

For instance, it can be achieved by hooking certain APIs that can

potentially be used to fingerprint the environment and randomize

their return values. However, fingerprinting is a practice also used

by software companies, e.g., for activating proprietary programs.

Therefore, benign applications should be whitelisted when applying

this defense method to prevent undesired interference.

Network Dependency. The investigated technique involves com-

munication between a C&C server, to receive ultimate decision to

attack. This obviously requires the remote server to be available

when the malware program is executed each time. If the C&C server

becomes unreachable, there would be no location to keep the state

of the attack, and the strategy cannot work: the malware would not

perform its nefarious actions. At first, this might look like a short-

coming of the technique, as blocking malicious IP addresses is an

efficient and effective practice to distort malware communications.

However, malware authors has been encountering this limitation

for a long time, and they already employ workarounds. For example,

as analyzed in [11], authors of Cerber ransomware uses messages

encoded in Bitcoin transactions to coordinate the C&C servers.

Being decentralized, impeding communication with blockchain

network is considered difficult. Malware authors can enhance the

examined evasion technique by integrating the blockchain-based

coordination of C&C servers. We therefore argue that the said

limitation do not decrease the significance of the threat.

5 CONCLUSION
The arms-race between malware authors and anti-malware devel-

opers has been occurring in the digital world since its early days. In

the last two decades, however, malware developers are living their

golden age. Powerful techniques such as metamorphic obfuscation

have largely limited the effectiveness of signature-based defense

systems. Consequently, protection systems started to move toward

dynamic analysis to detect freshly generated malware. Sandboxes,

isolated execution and monitoring environments, have been widely

used for this purpose. Consequently, the sandbox environments

have been among the top items of the target list of cyber-criminals,

and numerous advanced evasion techniques have been seen in

real-world malware attacks.

In this paper, we described a not-yet-discussed evasion tech-

nique that we found being followed by a still active TeslaCrypt
ransomware sample. Using it, the sample manages to look benign

and therefore is capable to avoid being classified as a malware, when

analyzed in Cuckoo sandbox. We suggested two improvements, one

tightening current behavioral analysis methods, the other working

to mitigate the severity of an attack by that sample. Namely, we

discussed (i) a smart execution strategy to increase the detection

chance of the malware in the sandbox; and (ii) a complementary

defense method to be employed in the actual user environment,

preferably integrated into already existing protection systems. We

have also compared pros and cons of the two defense approaches

and their potential side effects to the user, but an experimental

evaluation of the effectiveness and usability of these methods is left

as a future work.
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