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ABSTRACT
The training phase of indoor location fingerprinting has been tradi-

tionally performed by dedicated surveyors in a manner that is time

and labour intensive. Crowdsourcing process is more efficient, but

is impractical in public or commercial buildings because it requires

occasional location fix provided explicitly by the participant, the

availability of an indoor map for correlating the traces, and the

existence of landmarks throughout the area. Here, we address these

issues for the first time in this context by leveraging the existence of

stationary crowd that have timetabled roles, such as desk-bound

employees, lecturers and students. We propose a scalable and ef-

fortless positioning system in the context of a public/commercial

building by using Wi-Fi sensor readings from its stationary occu-

pants’ smartphones combined with their timetabling information.

Most significantly, the entropy concept of information theory is

utilised to differentiate between good and spurious measurements

in a manner that does not rely on the existence of known trusted

users. Our analysis and experimental results show that, regard-

less of such participants’ unpredictable behaviour, including not

following their timetabling information, hiding their location or

purposefully generating wrong data, our entropy-based filtering

approach ensures the creation of a radio-map incrementally from

their measurements. Its effectiveness is validated experimentally

with two well-known machine learning algorithms.
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1 INTRODUCTION
A significant portion of a human’s daily life is spent indoors. The

emergence of smart ubiquitous applications generally requires ac-

cess to a human’s location information in such indoor environ-

ments too. Yet, despite having garnered tremendous interest in the

research community, there is still no de-facto standard for indoor

location determination (i.e., indoor localisation). Traditionally, two

families of indoor localisation research have been pursued: one

that requires specialised hardware (e.g., customised devices) and

infrastructure setup within the localisation area [16, 20], and the

other that utilises existing communication infrastructure such as

Wi-Fi [1, 22] or Bluetooth [8]. The first family can enable centimetre-

level accuracy with the help of specialised indoor infrastructure,

but is extremely costly. Therefore, it is deemed impractical for a

commercial or public indoor environment. Even though the sec-

ond family provides coarser localisation accuracy (2 to 3 meter or

sometimes even room-level granularity), it can be more practical

and cost-effective for a public or commercial building facilitating

location based services (LBSs), such as locating the nearest store

or distributing electronic coupons in proximity to various business

intelligence applications. Within this second family, location fin-

gerprinting is a particularly popular approach, which involves one

or more surveyors tasked with conducting a training phase by po-

sitioning themselves at several points of interest and collecting the

signal strength samples. This process is time-consuming and labour

intensive, hence suffers in terms of scalability in commercial and

public building scenarios. Also, the surveyors need to be aware of

the geometry of the building for explicitly indicating their position

within an indoor map. Access to a map of a public or commercial

building comprising of multiple owners or tenants can also be quite

difficult for such purpose.

A newer trend of localisation techniques encourage implicit par-

ticipation of users in such premises to achieve the same goal, with

the main motivation of being the elimination of the surveyor’s

laborious training phase of fingerprinting. This approach gener-

ally involves crowdsourcing inertial sensor measurements (e.g., ac-

celerometer, gyroscope, compass, etc.) from people’s smartphones,

followed by the application of Simultaneous Localisation and Map-

ping (SLAM) with dead-reckoning, sensor fusion and filtering tech-

niques (e.g., Kalman) to compute the location [6, 17, 19]. These

crowd-sourced localisation approaches have been shown to be im-

practical for a public or commercial building [11] because of the

requirement of an occasional location fix provided explicitly by the
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participant, the availability of an indoor map for correlating the 
traces, and the existence of landmarks throughout the area.

In this paper, we leverage the existence of a “stationary” crowd 
in an indoor environment for localisation purpose. In a public or 
commercial building, a number of people’s positions can be con-
sidered stationary during a certain time of the day, and this is also 
supported by research findings such as [3]. For example, a salesper-
son in a shopping mall or a security guard of an office is expected 
to be at a certain location during working hours. This is generally 
true for many desk-bound employees in such public or commercial 
buildings. In a school or university, a student or teacher operates 
according to timetabling information. For example, a student might 
be scheduled to attend a tutorial session in room X at 2 pm on 
Tuesdays, and a teacher may deliver a lecture in room Y at 10 am on 
Wednesdays. In our approach, the crowd-sourced sensor readings 
(specifically Wi-Fi) from only these stationary personnel’s smart-

phones are correlated with their expected position at certain times 
to formulate the location fingerprint. As a result, the need of a sur-
veyor together with the aforementioned issues of the fingerprinting 
approaches are avoided.

The main contributions of the paper are as follows:

(1) We propose a scalable and effortless indoor positioning sys-

tem in the context of a public/commercial building by util-

ising its stationary occupants’ smartphones’ Wi-Fi sensor

readings combined with their timetabling information. We

argue that this implicit participatory location fingerprint-

ing radio-map creation will relieve the traditional laborious

training phase.

(2) While the stationary crowd need not be aware of the underly-
ing location-based data collection, there must be a provision

for incorporating only the good quality sensor readings and

filtering out spurious ones, for example if a user is not at

his/her expected position (for legitimate or even malicious

reasons). For this purpose, we utilise the entropy concept of

information theory to differentiate between good and bad

quality sensor measurements. To the best of our knowledge,

no work has used entropy in the creation of a fingerprinting

radio-map database before.

(3) Our approach has been experimentally validated using data

collected from a floor of our university campus. A few lec-

turer volunteers participated in building the fingerprinting

radio-map for the floor comprising of seven office rooms.

The rest of the paper is organised as follows. In Section 2, we

discuss our idea of using entropy to differentiate between good and

bad quality crowdsourced sensor measurements, and a resulting

filtering algorithm for incorporating them into fingerprinting radio-

map. We provide a brief description of related work in Section 3. In

Section 4, we present our evaluation with experimental findings.

Finally, we discuss in Section 5 the conclusions drawn, and our

future work.

2 INFORMATION CONTENT IN
LOCALISATION

2.1 Location Fingerprinting Principle
Suppose there is a set of l distinct rooms/locations where the i th

room is denoted by level Li . According to the location fingerprinting
principle, each location is expected to be uniquely identified in the

signal domain. In other words, each fingerprint has one-to-one map-

ping to the set of locations, L = {L1,L2, . . . ,Ll } where |L| = l . Let
this set of fingerprints, F be denoted by, F = {F1, F2, . . . , Fl } where
|F | = l . Traditionally, if n access points (APs) or anchors are ob-

served at a particular location, Li , the corresponding fingerprint of

Li in the signal domain can be represented as, Fi = {F
1

i , F
2

i , . . . , F
n
i }.

The quantity, F
j
i can take the form of a simple average received sig-

nal strength (RSS) indication [1] to a histogram representation of dif-

ferent signal levels [22] or even a much complex probabilistic mea-

sure [12] of the observed RSSs from AP j, where j ∈ {1, 2, . . . ,n}.
Majority of such location fingerprinting techniques utilise the

already available wireless communication infrastructure indoors

(e.g., Wi-Fi, Bluetooth) in order to build the radio-map, i.e., a collec-

tion of < Li , Fi > tuple obtained from the perceived RSS samples

where i ∈ {1, 2, . . . , l }. The conventional way of constructing such

radio-map was to laboriously survey the whole localisation area,

and collect the RSSs, i.e., Fi ’s at the points of interests Li ’s. The loca-
tion determination phase consists of first acquiring the fingerprint,

by a client device at an “unknown” location. Subsequently, this

perceived measurement will be compared against the fingerprints,

Fi ’s of the stored radio-map < Li , Fi >, and the best match will be

returned as the corresponding location.

2.2 Probabilistic Localisation
Probabilistic localisation algorithms will return the most likely Li
among the set of training locations/rooms, L == {L1,L2, . . . ,Ll }
where |L| = l , given the perceived fingerprint, S = {S1, S2, . . . , Sm }.
Themaximum a posteriori (MAP) algorithm is based upon the Naive

Bayes classifier that computes argmaxi P (Li |S ), where P (Li |S ) is
expressed by the formula,

P (Li |S ) =
P (S |Li )P (Li )∑l
i=1 P (S |Li )P (Li )

. (1)

As commonly seen in the literature [12, 22], the perceived sig-

nal strength from a particular AP or anchor can be considered

independent from other APs at a location. Subsequently, P (S |Li ) is
computed from the training radio-map database as,

P (S |Li ) =
m∏
j=1

P (S j |Li ). (2)

Without loss of generality, if all the locations/rooms are equally

likely, then, P (Li ) =
1

l . By choosing the normalising constant as∑l
i=1 P (S |Li ) = 1 in (1), the MAP can equivalently be written as,

argmax

i
P (Li |S ) = argmax

i
P (S |Li )

= argmax

i

m∏
j=1

P (S j |Li ). (3)
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2.3 Entropy and Information Content
Entropy expresses the measure of uncertainty. For a continuous 
probability distribution,∫ ∞ 

p (x ) of a random variable x , its entropy is 
defined as, H  =  −  p(x ) ln p(x )dx . Thus, minimising the max-

imum conditional probability distribution (3)’s entropy will cor-

respond to: given the true measurement, the computed location

estimation will be the least random. In other words, if we could re-

duce the uncertainty in RHS of (3), fingerprinting based algorithms

are likely to produce more accurate estimations. Our filtering al-

gorithm for crowdsourced measurements that we discuss in the

next section is motivated by this. In order to add a crowdsourced

measurement, we first compute the entropy of the resulting signal

strength’s probability distribution at the claimed location after its

incorporation, and compare it with its existing entropy. We only

accept the measurement if the resulting entropy is smaller. In other

words, we discard any measurement, the incorporation of which

increases the uncertainty in (2)’s modelling.

In order to derive the cumulative entropy of all the observed

APs’ signal strength distributions at a particular location, we first

present the differential entropy expression considering only one. In

localisation literature, a single AP j’s signal strength distribution,

P (S j |Li ) at a particular location, Li is generally assumed to be nor-

mally distributed supported by experimental results [11, 12]. We

also follow this claim. If P (S j |Li ) ∼ N (µ j ,σj ), then a normal distri-

bution’s differential entropy expression can be directly used to rep-

resent the entropy of AP j’s signal strength distribution as follows,

H = −
∫ ∞
−∞

(2πσ 2

j )
− 1

2 e

−(x−µj )
2

2σ 2

j
ln [(2πσ 2

j )
− 1

2 e

−(x−µj )
2

2σ 2

j
]dx . By sim-

plifying the RHS using the identities,

∫ ∞
−∞

(2πσ 2

j )
− 1

2 e

−(x−µj )
2

2σ 2

j dx = 1,

and

∫ ∞
−∞

(2πσ 2

j )
− 1

2 (x − µ j )
2e

−(x−µj )
2

2σ 2

j dx = σ 2

j , we obtain,

H =
1

2

ln (2πσ 2

j ) +
1

2

=
1

2

ln (2πeσ 2

j ). (4)

Using (4), the differential entropy of n-dimensional Gaussian

probability densities which is the entropy of RHS of (2) is computed

as,

Hn =
n

2

ln 2πe (σ 2

1
σ 2

2
. . . σ 2

n )
1

n . (5)

This is shown in [15] by McEliece. A simplified derivation of (5)

can be provided based on the independence assumptions of the

observed signal strengths from the APs at a location [12, 22], and

the property that the differential entropy ofn independent Gaussian
variables is the sum of their individual entropy values, i.e.,

Hn =
1

2

ln (2πeσ 2

1
) +

1

2

ln (2πeσ 2

2
) + . . . +

1

2

ln (2πeσ 2

n )

=
1

2

ln

{
(2πe )nσ 2

1
σ 2

2
. . . σ 2

n
}

=
n

2

ln 2πe (σ 2

1
σ 2

2
. . . σ 2

n )
1

n .

2.4 Filtering Approach Based on Entropy
We conceptualise a filtering technique for crowdsourced measure-

ments based on information content. Let us assume that incor-

porating a measurement,S received at a certain time, t results

in the differential entropy, H
′

n of the probability distribution of

the observed signal strength at the claimed location. If the orig-

inal differential entropy without this contribution is denoted by,

Hn =
n
2
ln 2πe (σ 2

1
σ 2

2
. . . σ 2

n )
1

n
, then the overall filtering algorithm

works in two steps as follows: i) check whether a participant’s mea-

surement’s input time, t is within the time constraint ts ≤ t ≤ tf ,
where ts and tf may be the starting and finishing time of his/her

working hours, respectively, and ii) for all measurements satisfying

the time constraint mentioned in (i), compute H
′

n , and

< Li , S >=



accept, if H
′

n < Hn

reject, otherwise

(6)

The algorithm operates according to two constraints: i) a time

constraint, and ii) an entropy constraint based on our previous

section’s discussion. The time constraint follows the idea that if

an occupant’s submitted measurement comes at a different time

other than his/her expected location’s timing, it is not accepted. The

entropy constraint ensures that only the good quality crowdsourced

measurements will be incorporated but the inappropriate ones will

be discarded. In other words, only the measurements that reduces

the uncertainty of the signal strength distribution at the claimed

location inside the fingerprinting radio-map will be accepted.

Fig. 1 depicts our overall entropy based fingerprinting localisa-

tion approach. The crowdsourced measurements from participants’

smartphones are collected and stored inside a central server. Each

submitted measurement takes the form of an expected location at a

time that may come from the participant’s timetabling information,

and the observed Wi-Fi signal strengths from the perceived APs

during that time. The “Entropy-based filtering” entity consists of

the algorithm that we discuss in this section. Its detailed algorith-

mic description that we implement is omitted for brevity. If the

measurement is passed by this filtering entity, it is then fed into

building the machine learning model’s fingerprinting radio-map of

the claimed location. During run-time or location determination

phase, the collected measurement is used as input for the machine

learning model’s reasoning to obtain the location. Note that, for

our evaluation of whether the filtering algorithm is efficient or not,

we stored all the measurements irrespective of whether it is filtered

or not. Hence, the “Entropy-based filtering” entity is followed by

the central server storage in Fig. 1. For practical deployments, it

should generally appear before the operation of storing the mea-

surements once the effectiveness of the filtering algorithm is proven.

Consequently, only the good quality measurements will be stored.

2.5 Accept and Reject Scenarios
In this section, we will discuss a series of accept and reject scenarios

for our filtering algorithm’s entropy constraint (6). We provide

proofs as to why measurements from certain scenarios should be

accepted or rejected with intuitive explanation. They will later be

supported by our experimental results in Section 4.

Lemma 2.1. If Fi = {Fki }, k = {1, 2, . . . ,n} denotes the existing
signal strength distribution of n APs at the claimed location, Li , the
measurement S = {S j }, ∀j ∈{1,2, ...,m } (j , k ) will always be rejected.



Figure 1: Our entropy-based fingerprinting localisation approach

Proof. In this scenario, none of the claimed observed APs of the

measurement, S = {S1, S2, . . . , Sm } appears in the existing finger-

print of the location, Li . The differential entropy after incorporating
this measurement is represented as,

H
′

n = Hn+m

=
n +m

2

ln 2πe (σ 2

1
σ 2

2
. . . σ 2

nσ
2

n+1 . . . σ
2

n+m )
1

n+m

=
n +m

2

ln 2πe (σ 2

1
σ 2

2
. . . σ 2

n )
1

n+m +
1

2

ln (σ 2

n+1 . . . σ
2

n+m )

=
n +m

2

ln 2πe (σ 2

1
σ 2

2
. . . σ 2

n )
1

n −
m

2n
ln (σ 2

1
σ 2

2
. . . σ 2

n )

+
1

2

ln (σ 2

n+1 . . . σ
2

n+m )

= Hn +
m

2n
ln (2πe )n (σ 2

1
σ 2

2
. . . σ 2

n ) −
m

2n
ln (σ 2

1
σ 2

2
. . . σ 2

n )

+
1

2

ln (σ 2

n+1 . . . σ
2

n+m )

= Hn +
m

2

ln (2πe ) +
1

2

ln (σ 2

n+1 . . . σ
2

n+m )

> Hn ,

Consequently, the input measurement, S will be rejected by (6). □

Since the measurement may be produced in an automated and

arbitrary manner, it is unlikely to include any AP that was observed

at the same location inside the existing fingerprinting radio-map.

Therefore, this type of measurement should not be accepted.

Lemma 2.2. A measurement S = {S1, S2, . . . Sm } will be rejected
(accepted) if after incorporation, at least one of the AP’s signal strength’s
deviation (improvement) is more from its previously stored distribu-
tion, while the rest remains the same.

Proof. Suppose, the j th AP’s signal strength’s deviation is more

than its stored distribution, i.e., σ
′

j
2

> σ 2

j , while for the rest, they

remain the same, i.e., ∀i ∈{1,2, ...n }\{j } (σ
′

i
2

= σ 2

i ). Subsequently, it

can be proved that S will be rejected by (6) as follows,

H
′

n =
n

2

ln 2πe (σ 2

1
σ 2

2
. . . σ

′

j
2

. . . σ 2

n )
1

n

>
n

2

ln 2πe (σ 2

1
σ 2

2
. . . σ 2

j . . . σ
2

n )
1

n , since, lnx is a

monotonically increasing function for x > 0.

= Hn .

The accept scenario’s proof is exactly the same as above, where

σ
′

j
2

< σ 2

j which results in H
′

n < Hn . □

It was discussed in Section 2.3 that a measurement is accepted

only if it reduces a particular location’s overall signal strength

distribution’s uncertainty. Lemma 2.2 imposes a strict rejection

constraint upon the measurement which takes into consideration

that an intruder may snoop the signal strength, thereby gaining

knowledge about the signal map of that particular indoor location.

He/she may then submit tampered measurement to corrupt the

fingerprinting radio-map. Incorporation of it will likely result in

deviation from the previously stored fingerprints. This is prevented

since the filtering approach rejects any measurement that causes

deterioration in regard to even one AP’s stored distribution while

the rest remains the same.

In the above, we discussed a specific scenario where the intruder

deliberately attempts to corrupt any particular AP’s or a group

of APs’ fingerprints inside the training radio-map assuming the

rest will remain the same. Next, we derive a generalised expression

denoting the level of manipulation required by the intruder so that

his/her malicious measurement is accepted. For this to happen, it

can be shown using (5) that the impact of deterioration of a few

APs’ fingerprints should be offset by the improvement of a few

others through manipulation of the measurement perceived at the

location. Suppose among n APs’ signal distribution model stored as

a location fingerprint, I of themwere improved, J were deteriorated,

and the rest remained the same. In other words, ∀i ∈I (σ
′

i
2

< σ 2

i ),

∀j ∈J (σ
′

j
2

> σ 2

j ), and ∀k ∈{1,2, ...n }\{I∪J } (σ
′

k
2

= σ 2

k ).

Lemma 2.3. The magnitude of allowed deviation of J APs’ stored
signal strengths’ distributions is bounded by the I APs’ achieved



improvement by incorporating the same fingerprint, i.e.,
σ
′

I+1
2

σ 2

I+1

σ
′

I+2
2

σ 2

I+2
. . .

σ
′

I+J
2

σ 2

I+J
<

σ 2

1

σ ′
1

2

σ 2

2

σ ′
2

2
. . .

σ 2

I

σ ′I
2
.

Proof. According to our algorithm, an input measurement is

accepted iff, H
′

n < Hn .

⇒
n

2

ln 2πe (σ
′

1

2

. . . σ
′

I
2

σ
′

I+1
2

. . . σI+J
′2

σ
′

I+J+1
2

. . . σ
′

n
2

)
1

n

<
n

2

ln 2πe (σ 2

1
. . . σ 2

I σ
2

I+1 . . . σ
2

I+Jσ
2

I+J+1 . . . σ
2

n )
1

n ,

⇒ (σ
′

1

2

. . . σ
′

I
2

σ
′

I+1
2

. . . σ
′

I+J
2

) < (σ 2

1
. . . σ 2

I σ
2

I+1 . . . σ
2

I+J ),

⇒
σ
′

I+1
2

σ 2

I+1

σ
′

I+2
2

σ 2

I+2
. . .

σ
′

I+J
2

σ 2

I+J
<

σ 2

1

σ
′

1

2

σ 2

2

σ
′

2

2
. . .

σ 2

I

σ
′

I
2
.

□

This implies that on one hand, it will require extensive knowl-

edge of the existing radio-map database on the intruder’s part,

and on the other hand, it will limit the magnitude of deviation

from the original fingerprint that can be caused. Additionally, even

if the intruder was successful, the negative impact can be offset

by subsequent good quality measurements by others at the same

location.

Lemma 2.4. A measurement S = {S1, S2, . . . Sn , Sn+1} with a
newer (n + 1)th AP’s reading at a location will be accepted under

the following condition, σ 2

n+1 <
1

2π e
σ 2

1

σ ′
1

2

σ 2

2

σ ′
2

2
. . .

σ 2

n

σ ′n
2
.

Proof. Incorporating the measurement S , the resulting entropy

is, Hn+1 =
n+1
2

ln 2πe (σ
′

1

2

σ
′

2

2

. . . σ
′

n
2

σn+1
2)

1

n+1
. S is accepted iff,

n + 1

2

ln 2πe (σ
′

1

2

. . . σ
′

n
2

σn+1
2)

1

n+1
<

n

2

ln 2πe (σ 2

1
σ 2

2
. . . σ 2

n )
1

n ,

⇒ σ 2

n+1 <
1

2πe

σ 2

1

σ
′

1

2

σ 2

2

σ
′

2

2
. . .

σ 2

n

σ
′

n
2
. (7)

□

Eq. (7) gives an idea of the initial sample’s variance to be set

which is influenced by the improvement achieved from other n APs’

distributions. For example, if σ 2

n+1 = 1, the required improvement

should be greater than 2πe for the measurement to be accepted.

We need to carefully consider this scenario as it influences how

missing APs from the stored distribution can be part of the actual

fingerprint. Following (7), it is straightforward to show that form
newAPs to be integrated through a measurement, the improvement

required is greater than (2πe )m . This also ensures the crowdsourc-

ing mechanism of creating fingerprinting radio-map evolves over

time while still being adaptable to environmental changes.

3 RELATEDWORK
The field of crowdsourced indoor positioning has received consider-

able attention over the last few years. Most of the related research

focuses on increasing accuracy by optimising the reasoning ap-

proach, for example through ensemble learning [21], collaborative

sensing between nearby devices [13] or activity detection [23], as

well as on increasing efficiency [5] and reducing computational

complexity [24].

Here, our focus instead is on filtering out unreliable data at the

labelling stage. The handling of unreliable data labelling is a key

challenge not only in crowdsourced indoor positioning but more

generally in all participatory sensing applications. For example,

Barnwal et al. [2] have followed a Bayesian approach to enhancing

the reliability of a vehicular participatory sensing system. The ra-

tionale is that confidence can be estimated based on the conditional

probability of occurrence of a particular traffic event at a partic-

ular location given that supporting reports have been generated.

Also, Gisdakis, Giannetsos and Papadimitratos [9] have proposed a

comprehensive framework that is agnostic of the cause of a faulty

measurement. Each report is transformed into a probability mass,

so as to compute the hypothesis with the maximum belief; the

belief corresponding to this hypothesis; and the local conflict of

the probability mass, as per Dempster-Shafer Theory. Its output is

a partitioning into inliers and outliers, which is dependent on the

existence of an ‘honest majority’. The system then compares the

similarity between the inlying reports of two neighbouring units

with a two-sample Kolmogorov-Smirnov test. It uses a merging

and training phase, followed by an ensemble of machine learning

classifiers to characterise incoming reports as inliers or outliers, and

a concept drift detection module to detect changes in the statistical

properties of the sensed phenomenon. The framework has been

evaluated on environmental monitoring.

Specifically for indoor positioning, Li et al. [14] have proposed

defences for different adversary models and attacks. Their logic

is that an initial set of measurements from trusted users can be

used to infer the trustworthiness of the fingerprints submitted by

unknown users. The authors have used two metrics to evaluate

trustworthiness and a corresponding iterative algorithm to build a

reliable fingerprint radio-map in the presence of unreliable reports.

The first metric is the temporal correlation within an RSS trace, as

fingerprints collected by different users tend to exhibit a similar

RSS trend (e.g., when the user walks towards an AP, the RSS in-

creases, and when the user walks away, it decreases). The second

is the spatial likelihood, which captures the spatial RSS correlation

between the fingerprints from the same position in different traces.

However, the defences proposed assume that there are always some

users that can be trusted, such as the employees in a shopping mall,

and this may not always be the case. For example, an employee

may have reasons to want to hide their location at a specific point

in time.

Cheng et al. [4] have proposed a technique for addressing the

challenge of missing values in participatory sensing. The key idea

is to employ the spatio temporal compressive technique originally

proposed in [18] to reconstruct the sensory data given an incom-

plete and partially inaccurate dataset if the sensory data being

reconstructed exhibit low-rank structure and spatio-temporal prop-

erties. One of the two case studies evaluated is crowdsourced Wi-Fi

fingerprinting. 10 users equipped with smartphones were asked to

walk through a university campus for two hours. Their technique

involves inferring the smartphones’ proximity based on other multi-

dimensional sensor readings, and to derive a corresponding spatial

constraint. This was feasible because the users are non-stationary

and specifically tasked with the work of fingerprinting, so that a
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Figure 2: Performance of filtering approach while incorporating different types of participants’ measurements

Figure 3: The four types of participants considered
sensor node could obtain substitute sensor readings from the next

time slot.

Zhou et al. [25] have proposed a minimax conditional entropy

principle to infer ground truth from noisy crowdsourced labels.

Based on this, they derived a unique probabilistic labelling model

jointly parameterised by worker ability and item difficulty. This is

the only known example of work in the literature that has proposed

to benefit from entropy for identifying unreliable crowdsourced

labels. However, it has not been evaluated on dataset related to

location fingerprinting.

The above solutions proposed in the literature for handling un-

reliable data in participatory sensing either have not been designed

and evaluated for indoor positioning applications or assume that

volunteers are tasked with walking through areas with the purpose

to collect series of spatio-temporal data that can be cross-checked

for their veracity, or that there exist users whose measurements

can always be considered as trusted. In our work, we do not need to

record users’ movement across different locations other than their

destination as expected by their pre-defined timetable, and we also

do not assume the trustworthiness of a select set of users. Next, we

present the experimental evaluation of our approach.

4 EVALUATION
4.1 Experimental Setup and Participant Groups
We collected measurements from seven rooms of a building of our

university campus where four rooms are on one side and the rest are

on the other side divided by a corridor. Each room has the dimension

of 7.85m× 3.8m. We involved lecturer volunteers who are the users

of those rooms. Their timetabling information were pre-loaded in a

smartphone application that was given to them. The smartphone’s

application perceives the Wi-Fi signal strength, and correlates it

with the location retrieved from the timetabling information by the

software running inside the particular volunteer’s smartphone, and

sends it to a central server. All measurements satisfying the time

constraint as discussed in Section 2.4 are stored.

The crowdsourced measurements do not require the participants

to explicitly indicate their locations where they are taken, and they

can be oblivious of the data collection procedure. In order to provide

supporting results for the proofs of Section 2.5, we first discuss four

different types of participants based on the scenarios (Fig. 3), and

then describe how we emulate their measurements:

i) Regular: participants who remain at their expected locations at

the time their devices submit the measurements,

ii) Irregular: participants who are not at their timetabled locations

during submission,

iii) Random: adversarial participants who wish to hide their loca-

tion by generating automated or arbitrary measurements that do

not correlate with the indoor environment’s geometry and commu-

nication infrastructure, and

iv)Rogue: adversarial participants who intentionally try to corrupt
the radio-map database through tampered measurements.

All the collected measurements in our experimental setup are

considered to be input by regular participants. The measurements

from the other participants are emulated by manipulating a regular

participant’s measurement as follows. Suppose, < Li , Fi , S > repre-

sent the <location, stored fingerprint, measurement> at the claimed

location Li where i ∈ {1, 2, . . . l }. An irregular participant’s mea-

surement < Lj , S > is emulated by selecting a location Lj from a uni-

form distribution of the available locations, {Lj }, j ∈ {1, 2, . . . l } \ {i},
that is different from Li . In order to create a random participant’s

measurement, we first select the number of arbitrary APs, x from

U (1,m) whereU (.) denotes a uniform distribution over the range.

We chosem = n where n is the number of APs observed at Li , and
∀j ∈{1,2, ...x } (j < {1, 2, . . .n}). Then, each of the x signal strengths

is generated from U (RSSmin,RSSmax). In our experiments, we set

RSSmin = −90 dBm, and RSSmin = −30 dBm. To emulate a rogue

participant’s measurement, we first pick a number x form U (1,n),
and then choose a set of x indices again from U (1,n). Then, each
j ∈ {1, 2, . . . x } AP’s signal strength is selected from a Gaussian

distribution N (S j ,σ 2) where we change σ 2
to control the deviation

of noise.
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Figure 4: 25%-75% split between already existing and incorporating different types of participants’ measurements

4.2 Results and Discussion
125 measurements were recorded from our volunteers across seven

rooms. We randomly divided them into 5 sets of 25 measurements

each. 5-fold cross validation was used where 4 sets (100 measure-

ments in total) were used as fingerprinting radio-map (training)

in each fold, and the remaining (25 measurements) were used as

testing samples.

With the first set of experiments, we aim to show the effec-

tiveness of our filtering approach discussed in Section 2. For this

purpose, we assume that there are already some existing measure-

ments inside the fingerprinting radio-map. We consider three cases

where the training samples were separated between already ex-

isting and the participants’ contributions. 25%–75%, 50%–50% and

75%–25% depict the separation between already existing and par-

ticipants’ contributions, respectively. Five different training sample

points, 20, 40, 60, 80 and 100 are considered for each separation. The

different participants’ measurements were modelled following the

previous section’s discussion. Fig. 2 is constructed as the average of

10 experimental runs with 95% confidence interval. Each run consti-

tutes an instance of 5-fold cross validation. Our filtering approach’s

effectiveness can be seen from the results of Fig. 2. 100% of the Ran-

dom participants’ measurements were filtered. This directly follows

Lemma 2.1. Another observation is that the filtering approach’s

performance improves as the sample size increases concerning both

Irregular and Rogue measurements. This can be perceived for all

three separations. This is intuitive since a larger sample size is ex-

pected to model the fingerprinting radio-map with less uncertainty

which in turn will improve the filtering performance. Furthermore,

the incorporation of regular measurements remain steady across

various sample sizes and different separations. This is an important

characteristics, because the filtering approach ensures good quality

measurements are accepted, and also, it is not overly restrictive.

This follows the property of Lemma 2.2 and 2.3. One may argue that

why 100% regular measurements were not accepted by the filtering

approach. It is a well-known phenomenon in localisation litera-

ture that even at the same location, the perceived signal strength

may vary due to environmental factors, device heterogeneity, and
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Figure 5: 50%-50% split between already existing and incorporating different types of participants’ measurements

also the time of the day [11]. This justifies a proportion of regular

measurements being filtered. We argue that as long as a steady

stream of good quality of regular measurements are ensured to be

incorporated, the fingerprinting radio-map will evolve over time.

This is the case as can be seen in Fig. 2. With 75% existing training

samples, the least number of regular measurements are discarded

which is again intuitive since the filtering approach’s modelling is

based upon a larger sample size compared to the 25% and 50% ones.

For the second set of experiments, we retained the same sepa-

ration across similar training sample points as the previous one.

Two well-known machine learning algorithms such as Nearest

Neighbour (NN) and maximum a posteriori (MAP) are then applied.

For comparison, we considered both ’with filter’ and ’without fil-

ter’ training dataset, where one results from applying the filtering

approach, and the other consists of all the measurements with com-

plete trust. The testing dataset comprises of 25% measurements in

each fold of 5-fold cross validation as described in the beginning

of this section. The results of the two algorithms’ are presented in

Fig. 4, 5, and 6. In general, for all combinations, both algorithms’

localisation accuracy is better for ’with filter’ variant than its ’with-

out filter’ counterpart. This is evident more when the sample size

increases. This directly follows from our previous experiment’s

results too since the filtering approach performed better with larger

sample size, and also for 75%–25% separation which consequently

gave rise to a more accurate radio-map for the machine learning

algorithms. This leads to another observation that irrespective of

the different types of participants’ measurements, the localisation

accuracy reached similar levels for both algorithms (see 100 training

sample points’ results for the four different types of participants’

measurements of Fig. 6). Also, we expect the results based on Reg-

ular participants’ measurements for ’with filter’ variant should

generally follow the trend of its ’without filter’ counterpart which

is generally observed in Fig. 4(a), 5(a) and 6(a). These findings vali-

dates our claim that our entropy based fingerprinting approach can

result in an effortless and scalable IPS for a public or commercial

building.
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Figure 6: 75%-25% split between already existing and incorporating different types of participants’ measurements

We conclude this section with a few more details. While it can

be argued that NN is another form of MAP, we have utilised deter-

ministic average RSS as NN’s fingerprint, and applied Euclidean

distance between fingerprints for location estimation decision. MAP

is implemented following Section 2.2’s model. This might be the

reason for inferior performance of MAP compared to NN in our

experiments, where MAP generally requires a significant number

of samples for its fingerprint modelling. The number of samples

per room (≈ 18) in our experiments was relatively small. Both algo-

rithms were implemented with efficient data structure, and have

run-time complexity of O (nl ) where l is the number of locations,

and n is the dimension of the fingerprint at each location. NN pro-

vided better localisation accuracy with almost 85% correct detection

of rooms. We observed more than 300 different Wi-FI APs in total

within just one premise during our data collection process. Our

university wireless network providers are only considered which is

a natural localisation choice for any particular commerical or public

building that reduces this number to 125. However, only on-demand

availability for energy conservation purpose, heterogeneity of mo-

bile devices with varying capability to scan the nearby APs, and

spatio-temporal factor result in variability in the number of APs

observed at a certain location. This can give rise to missing RSS

phenomenon of fingerprinting techniques [7, 10] that we perceive

in our radio-map as well. We believe this also has adverse impact on

both the algorithms’ offered localisation accuracy since we adopt an

elementary imputation practice that substitutes the missing value

with the minimum RSS (e.g., -96 dBm). There are multiple research

work as in [7, 10] that try to resolve this missing RSS phenomenon,

which we consider to be out of scope for our work. Because, our

crowdsourced fingerprinting approach’s benefit is independent of

the choice of the machine learning algorithm, and any other im-

provements that they may be incorporated. This claim follows from

our observation that in all our experiments, the ’with filter’ variant

is generally better than its ’without filter’ counterpart. We contend

that by adopting an appropriate missing value resolution techinque,

and considering more advanced machine learning algorithms is

likely to offer better localisation accurary compared to the two



simplistic ones that we considered here. For the presented results 
concerning the Rogue participants, we fixed the Gaussian noise 
deviation, σ of its modelling (see Section 4.1) to be 20. We observed 
that for lower values than 20, it performs almost like the Regular 
participants’ contributions that were even better. This is quite intu-
itive looking at Fig. 3 since lower σ will shift the participants’ level 
of adversarial tendency from high to low. For higher values of σ , 
more measurements are required to achieve the similar accuracy 
as the presented ones since higher proportion of them are filtered 
by our algorithm. Those results are omitted for brevity.

5 CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a scalable and effortless fingerprinting-
based IPS in the context of a public/commercial building by lever-
aging the existence of a “stationary” crowd, and correlating their 
smartphones’ Wi-Fi sensor readings with their timetabling infor-
mation. Both our analysis and experimental results have shown 
that, regardless of such participants’ unpredictable behaviour, i.e., 
not following their timetabling information, our entropy based fil-
tering approach ensures the creation of fingerprinting radio-map 
incrementally from their measurements. We considered four types 
of participants’ behaviours to support our claim. The localisation 
performance of two machine learning algorithms was evaluated 
based on the created fingerprinting radio-map which has shown 
our approach’s effectiveness.

By having provided a practical means for introducing partic-
ipatory location fingerprinting through the stationary crowd of 
a commercial or public building, we anticipate the generation of 
several future work directions. For example, we have assumed a 
few measurements to exist inside the fingerprinting radio-map in 
all scenarios (i.e., the 25%-75%, 50%-50% and 75%-25% separations) 
of our filtering approach’s experimental evaluation. The creation 
of radio-map from scratch with no existing fingerprint will require 
modifications to our current filtering approach so that the few ini-
tial measurements are integrated only after careful consideration, 
i.e., imposing additional constraints. More experiments with dif-
ferent public or commercial building setup and size other than a 
university campus can be conducted to establish applicability in 
very large indoor areas and involving large crowd. Also, the radio-
map created following our approach could easily be applied to train 
different families of machine learning models, and subsequently 
compare their localisation performance with finer granularity. Fi-
nally, a rigorous theoretical framework can be pursued to show 
that the entropy based filtering approach can incrementally create 
the training radio-map. In this paper, experimental validation was 
provided together with the relevant lemmas with proofs.
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